
Int J Parallel Prog (2013) 41:59–88
DOI 10.1007/s10766-012-0204-y

Kernel Polynomial Method on GPU

Shixun Zhang · Shinichi Yamagiwa ·
Masahiko Okumura · Seiji Yunoki

Received: 10 April 2012 / Accepted: 21 June 2012 / Published online: 4 July 2012
© Springer Science+Business Media, LLC 2012

Abstract The simulation of lattice model systems for quantum materials is one of the
most important approaches to understand quantum properties of matter in condensed
matter physics. The main task in the simulation is to diagonalize a Hamiltonian matrix
for the system and evaluate the electronic density of energy states. Kernel polynomial
method (KPM) is one of the promising simulation methods. Because KPM contains
a fine-grain recursive part in the algorithm, it is hard to parallelize it under the thread
level parallelism such as on a supercomputer or a cluster computer. This paper focuses

S. Zhang
Department of Computer Science, Graduate School of System and Information Science,
University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
e-mail: sxzhang@cs.tsukuba.ac.jp

S. Yamagiwa (B)
Faculty of Engineering, Information and Systems, University of Tsukuba/JST PRESTO,
Tsukuba, Ibaraki 305-8573, Japan
e-mail: yamagiwa@cs.tsukuba.ac.jp

M. Okumura
CCSE, Japan Atomic Energy Agency, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8587, Japan
e-mail: okumura.masahiko@jaea.go.jp

S. Yunoki
Computational Condensed Matter Physics Laboratory, RIKEN ASI, Wako, Saitama 351-0198, Japan

S. Yunoki
JST CREST, Kawaguchi, Saitama 332-0012, Japan

S. Yunoki
Computational Materials Science Research Team, RIKEN AICS, Kobe, Hyogo 650-0047, Japan
e-mail: yunoki@riken.jp

123

60 Int J Parallel Prog (2013) 41:59–88

on methods to parallelize KPM on a massively parallel environment of GPU, aiming to
achieve high parallelism for more speedups than the recent CPUs. This paper proposes
two implementation methods called the full map and the sliding window methods, and
evaluates the performances in the recent GPU platform. To enlarge available simula-
tion sizes and at the same time to enhance the performance, this paper also describes
additional optimization techniques depending on the GPU architecture.

Keywords Kernel polynomial method · GPU · Condensed matter physics ·
Strong correlation lattice

1 Introduction

The modern technological advancement, which keeps improving our life more con-
venient, has been based mostly on discovery of a new class of materials with rich
functionalities such as semiconductors, magnets, and superconductors. Researchers
in condensed matter physics have been working for an ultimate alchemy to design
those materials by modeling the constituent atomic elements using the theory of quan-
tum mechanics, which is now called materials design [10]. The implementation for
materials design requires large scale computations, and thus it is typically performed
on cluster computers and supercomputers [3].

Although the quantum mechanics, which governs the electronic motion in materials,
was established more than 80 years ago, there exist many properties and phenomena
whose origins are yet to be understood. Such examples include copper based high
temperature superconductors [1] and peculiar magnetic insulators of certain organic
compounds [17]. The common feature of these materials is a strong quantum correla-
tion between electrons, which is turned out to be crucial for determining their behavior.
It is exactly this strong correlation that makes it difficult to treat these systems analyt-
ically without introducing any bias.

The best way to treat the strong quantum correlations is to solve quantum mechani-
cal equation of motion numerically and exactly. Since the degrees of freedom increase
exponentially with the number of electrons ∼ O(1023), we still need to resort some sort
of approximations. However, unlike the standard analytical treatments, the numeri-
cal simulations can handle the strong correlation effects in a controllable manner.
Among many, well established numerical methods thus far are exact diagonaliza-
tion method [2], quantum Monte Carlo method [4,6], density-matrix renormalization
group method [11,14–16], and KPM [13]. Each method is suited to particular sets
of problems, and also each has severe limitations. For instance, the density-matrix
renormalization group method is able to evaluate the ground state as well as the low
energy excited states in high accuracy, but it is limited so far to (quasi) one-dimensional
systems.

The simulation evaluates various physical quantities such as density of states (DOS)
and Green’s functions for electrons, which are necessary to study electronic and
magnetic structures. In particular, a straightforward method to calculate the DOS by
diagonalizing a Hamiltonian matrix requires computational complexity O(D3), where
D is the system size. This complexity is a performance bottleneck to evaluate higher

123

Int J Parallel Prog (2013) 41:59–88 61

energy excited states. In this respect, the KPM has an exceptional advantage because
the KPM reduces the complexity of diagonalization to O(D) at most by truncating
polynomial expansions, which controls the accuracy of the approximation. There-
fore, this paper focuses on the KPM to appropriately evaluates the electronic DOS
and Green’s function for a whole range of excitation energy including higher excited
states [13].

The KPM is an approximation method based on polynomial expansions from
which physical quantities are evaluated. In particular, the Chebyshev expansion is
the most common and useful polynomial to be applied. To avoid the Gibbs phenom-
enon caused by truncation of the polynomial expansions with a finite order, modified
kernel polynomials are preferably used. For example, the Dirac’s delta function is
well approximated by truncating Chebyshev expansion with the Jackson kernel [13].
Moreover, in quantum statistical mechanics, it is required to evaluate the trace of
a large-dimensional Hamiltonian matrix. This trace is efficiently approximated by
using random vectors [13] (we call it “stochastic trace method” in this paper). By
truncating polynomial expansions and adapting random vector bases, the computa-
tional complexity is significantly reduced to evaluate the DOS and other physical
quantities.

The computational cost inevitably increases with the system sizes, and with the
number of polynomials kept and random vectors generated to meet the desired accu-
racy. It is therefore expected to reduce the simulation latency drastically by imple-
menting the KPM in a parallel platform.

Regarding computer hardware, the graphics processing units (GPU) have become
available to be used for acceleration platform as a substitute of CPU. Due to the recent
drastic performance growth of GPU, it has already achieved the performance up to
TFLOPS order and also has implemented the double precision floating point engines.
Therefore, it is applied to various scientific fields to solve the grand challenge appli-
cations equipped to a personal computing environment [8].

This paper proposes designs and implementations of the KPM on GPU that achieve
much higher performances than the recent CPUs. This paper will show two implemen-
tations called the full map and the sliding window methods. As explained in the next
section, vectors (higher order polynomials) are generated recursively. This character-
istic is suffered to parallelize the KPM effectively in a CPU-based large system based
on thread level parallelism. Applying GPU resources, this paper will challenge to over-
come the performance limitation caused by the fine-grain recursive operations. This
paper also addresses a potential issue on the memory size which becomes explosively
enormous for a larger system in the KPM.

This paper is organized as follows. Section 2 describes the detailed explanation of
KPM and the overview of the general purpose computing on GPU. Section 3 proposes
the designs and implementations of the KPM on GPU. Section 4 analyzes the per-
formances of typical sets of input parameters used in condensed matter physics and
discusses the programming methods proposed in this paper. Section 5 applies addi-
tional architectural and application specific optimization techniques for improving the
performance discussed in Sect. 4. Finally, Sect. 6 concludes this paper and describes
the future directions.

123

62 Int J Parallel Prog (2013) 41:59–88

2 Backgrounds and Definitions

2.1 Simulations in Condensed Matter Physics

Employing the theory of quantum mechanics, the simulations in condensed matter
physics define models with atoms arranged in one to three spatial dimensions (D) as
illustrated in Fig. 1. For example, Fig. 1a shows a 1D model with four sites, where
each site mimics an atom of a target material. The simulation analyses the quantum
mechanical motion of electrons, which are described by “hopping” from one atom
to another in the model. The hopping amplitude ti j (= t j i) is given by the overlap
between wave functions of electrons locating at site i and its nearest neighbor site j .
The potential energy on site i is denoted by εi . Using these definitions, the Hamiltonian
matrix of the model is organized, e.g., as shown in Fig. 1b for a 1D system. The char-
acteristics of the matrix are i) the number of rows or columns (called H_SI Z E in this
paper) is determined by the total number of sites in the model system, ii) the number
of non-zero matrix elements is given by summing the number of non-zero hoppings
(ti j) and the number of non-zero on-site potentials (εi), and iii) other elements are
zeros because there are no hoppings and thus correlations between farther sites. For
example, in the case of Fig. 1a (see also Fig. 1b), H_SI Z E = 4 (the total number of
matrix elements: 4 × 4) and the number of non-zero and zero matrix elements are 12
and 4, respectively. For this 1D example, the matrix dimensions are very small. Note,
however, that most of the target materials in condensed matter physics are modeled
by 3D lattices, as depicted in Fig. 1c for one of the simplest 3D models. When we
consider a small 3D model, e.g., a 10×10×10 lattice model, H_SI Z E = 1, 000 and
the number of non-zero and zero matrix elements are 7,000 and 993,000, respectively.
Generally, in 3D system, the dimension of matrix and the number of non-zero matrix
elements become larger quickly with respect to the number of sites.

In order to study physical properties of materials, the simulation computes the elec-
tronic DOS. If we evaluate the DOS exactly, the full diagonalization of the Hamiltonian
matrix is necessary. This computation requires the complexity of O(H_SI Z E3) using

Fig. 1 Modeling electrons in a one and c three dimensional systems. Elements in the Hamiltonian matrix
for the one dimensional system are tabulated in b

123

Int J Parallel Prog (2013) 41:59–88 63

a straightforward algorithm. It is highly desirable to reduce this complexity because
the increase of H_SI Z E causes the computation time explosion. One of the best
methods widely used to reduce the computation time is the kernel polynomial method
(KPM), which gives an approximated DOS in a controlled manner [13].

2.2 Kernel Polynomial Method

2.2.1 Definition

The basis of KPM is the following (Chebyshev) polynomial expansion of a function
f (x) defined in [−1, 1],

f (x) = 1

π
√

1 − x2

[
μ0 + 2

∞∑
n=1

μnTn(x)

]
, (1)

where

μn =
1∫

−1

dx f (x)Tn(x), (2)

and Tn(x) is the Chebyshev polynomial defined as

Tn(x) = cos [n arccos(x)] . (3)

It should be mentioned that the Chebyshev polynomials satisfies the following recur-
sion relations,

T0(x) = 1 , T1(x) = x, (4)

Tn+2(x) = 2xTn+1(x) − Tn(x). (5)

KPM is defined as

fKPM(x) = 1

π
√

1 − x2

[
g0μ0 + 2

N−1∑
n=1

gnμnTn(x)

]
, (6)

where the additional coefficients gn given by a kernel which satisfies the limit

|| f − fKPM|| N→∞−−−−→ 0 , (7)

where || · || is suitable well-defined norm.

123

64 Int J Parallel Prog (2013) 41:59–88

2.2.2 Application to Quantum Systems

In quantum physics, we need to expand functions of the Hamiltonian matrix. In this
paper, we focus on the DOS. Then, we show an example of application of KPM for
calculation of DOS.

We consider the system described by the Hamiltonian matrix H . First, we apply
the following linear transformation in order to fit the spectrum of H to [−1, 1],

H̃ = (H − α+)/α−, (8)

where

α± = (Eupper ± Elower)/2, (9)

The parameters Eupper and Elower are the upper and lower limits of the eigenvalues of
H obtained by the Gerschgorin theorem [12].

The density of state (DOS) ρ(ω) of the D-dimensional Hamiltonian matrix H is
defined by

ρ(ω) = 1

D

D−1∑
k=0

δ(ω − Ek), (10)

where Ek is the kth eigenvalue and δ(x) is the delta function. We apply the linear
transformation (8) and obtain the equation

ρ(ω̃) = 1

D

D−1∑
k=0

δ(ω̃ − Ẽk), (11)

where

ω̃ = (ω − α+)/α−. (12)

In order to obtain the approximated DOS using KPM, the coefficients μn (2) in this
case is obtained as

μn =
1∫

−1

dω̃ ρ(ω̃)Tn(ω̃)

= 1

D

D−1∑
k=0

Tn(Ẽk)

= 1

D

D−1∑
k=0

〈k|Tn(H̃)|k〉 = 1

D
Tr[Tn(H̃)], (13)

where |k〉 is the kth eigenvector and 〈k| = |k〉†.

123

Int J Parallel Prog (2013) 41:59–88 65

2.2.3 Stochastic Evaluation of Traces

In order to evaluate the trace in Eq. (13), we introduce the stochastic evaluation method
of traces, which estimates μn by average over only a small number R � D of ran-
domly chosen vector.

First, we introduce an arbitrary basis {|i〉} a set of independent identically distrib-
uted random variables {ξr,i |ξr,i ∈ R} which in terms of the statistical average 〈〈·〉〉
fulfill

〈〈ξr,i 〉〉 = 0 , 〈〈ξr,iξr ′,i ′ 〉〉 = δrr ′δi i ′ , (14)

a random vector is defined through

|r〉 =
D−1∑
i=0

ξr,i |i〉. (15)

Using them, we can approximately evaluate the trace as follows,

μn = 1

D
Tr

[
Tn(H̃)

]

= 1

D

D−1∑
i=0

[
Tn(H̃)

]
i i

� 1

D

1

R

D−1∑
i, j=0

R−1∑
r=0

〈〈ξr,iξr, j 〉〉
[
Tn(H̃)

]
i j

=
〈〈

1

D

1

R

R−1∑
r=0

〈r |Tn(H̃)|r〉
〉〉

. (16)

In order to make 〈r |Tn(H̃)|r〉, we use the following recursive relations for the
vectors |rn〉 := Tn(H̃)|r〉 derived from the relations (4) and (5),

|r0〉 = |r〉 , |r1〉 = H̃ |r0〉, (17)

|rn+2〉 = 2H̃ |rn+1〉 − |rn〉. (18)

Then μn is expressed by this expression as

μn �
〈〈

1

D

1

R

R−1∑
r=0

〈r0|rn〉
〉〉

. (19)

2.2.4 Numerical Complexity

The numerical complexity of the KPM is O(S RN D) if the H̃ is sparse matrix, where
S is the number of the realization of the set of random variables {ξr,i }. The process

123

66 Int J Parallel Prog (2013) 41:59–88

costing O(D) is the making part of |rn〉 shown in Eq. (18), which is the heaviest part
in KPM. When the H̃ is considered as a dense matrix, the complexity of the part
becomes O(D2). The O(S R) comes from the average and summation in Eq. (19) and
O(N) from the number of recursive iterations in Eqs. (17) and (18). This numerical
cost O(S RN D) is very effective against the full diagonalization which costs O(D3)

if S RN � D2, and the H̃ is a sparse matrix. However, when it is a dense matrix, the
numerical cost becomes O(S RN D2) due to all multiplications for all elements in the
H̃ and the |rn〉 must be performed straightly without considering the CRS (Compressed
Row Storage) format as used for storing a sparse matrix efficiently.

2.3 Compression Techniques for Sparse Matrix

The multiplication between a Hamiltonian matrix and a vector takes the most com-
putation in KPM algorithm. Additionally, Hamiltonian matrix is usually huge (for
example, correlation among one hundred atoms in a 3D cubic lattice model is pre-
sented by a one million by one million matrix) due to the fact that physical system
usually contains huge amount of atoms or molecules. Therefore, in order to simu-
late huge physical systems and improve the performance of simulation, compression
techniques are almost inevitably introduced to Hamiltonian matrix. In this paper, in
addition to the discussion of the dense matrix implementation, we also discuss the
impact of both compression row format (CRS) and ELL format [5].

2.3.1 CRS Format

The CRS format is a well-known expression technique that reduces memory usage
in computer applying to a sparse matrix. Figure 2 shows an example of 6 × 6 sparse
matrix. The A is an array of non-zero elements. The arrays I A and J A contain the
indices of row and column respectively of elements in A. The I A can be simplified
to I A′ by translating the elements to the positions where each element in each row
appears. Thus, represented the original matrix by A, I A′ and J A, the total memory
usage can be reduced. In the example shown in Fig. 2, the original matrix can be
compressed to about 80 %.

Applying the CRS format to the Hamiltonian matrix of 3D cubic lattice model, the
number of bytes is calculated as follows:

H_SI Z E × 7 × 8 + H_SI Z E × 7 × 4 + H_SI Z E × 4 = 88 × H_SI Z E

Fig. 2 CRS format

123

Int J Parallel Prog (2013) 41:59–88 67

because each row in the matrix includes 7 non-zero elements. Here, elements in A
consists of 8 byte double precision floating point numbers. Elements in J A and I A′
consists of 4 byte integer numbers.

When the CRS format is applied to the sparse matrix used in the simulation of the
three dimensional lattice illustrated in Fig. 1c, the larger the number of sites is, the
higher the compression ratio is achieved. Thus, it is very effective to apply the CRS
format to a large sparse matrix used in the computation of the KPM.

2.3.2 ELL Format

ELL format is another effective compression format for sparse matrix. Using the same
sparse matrix used in the case of CRS format, ELL format compress it to a non-zero
element matrix A and a column index one J A as shown in Fig. 3. The A consists of
non-zero elements in corresponding rows. The number of rows of A is equal to the
one of the original sparse matrix. If the number of columns does not match to the
maximum number of non-zero elements in a row of the sparse matrix, A is padded by
∗ to indicate zero-elements. To implement the ∗, 0 or −1 is applied depending on the
application. In our case, we apply 0 to it to ignore multiplication between a non-zero
number and a zero because KPM performs matrix multiply mainly. On the other hand,
J A consists of column numbers of non-zero elements in the original sparse matrix.
The number of rows corresponds to the original matrix. The ∗ is also applied to J A
as the same definition of A. Thus ELL format generates two matrices of the same size
with the number of rows that equals to the original sparse matrix. The sparse matrix
of Fig. 3 can be compressed to about 66 %.

In the case of 3D lattice cubic model we consider, the total number of bytes in ELL
format is calculated as follows:

H_SI Z E × 7 × 8 + H_SI Z E × 7 × 4 = 84 × H_SI Z E

when the elements in A employs 8 byte double precision floating point and the ones
of J A employs 4 byte integer numbers.

As we can see in the equations above, ELL format generates the smaller number
of bytes in the actual use in the 3D cubic model. The efficiency is about 4/88 ≈ 4.5
%. However, this efficiency is given by the special case due to the characteristics of
the correlations of 3D cubic lattice model illustrated in Fig. 1c that is expressed by a
sparse matrix of seven non-zero elements in each row. Because KPM can be applied to
general physics or chemistry problems to find eigenvalues with diagonalizing a corre-
lation matrix of atoms. In those general use of KPM, the compression ratio of ELL can

Fig. 3 ELL format

123

68 Int J Parallel Prog (2013) 41:59–88

become worse than CRS. Therefore, because CRS format is a compression method for
any sparse matrix. Here, we first focus on the CRS format in KPM implementation.

2.4 General Purpose Computing on GPU

2.4.1 GPU Architecture

A video adapter that includes a GPU and a Video RAM (VRAM) is connected to a
CPU’s peripheral bus such as PCI Express. The video adapter works as a peripheral
device of the CPU, and its GPU is controlled by the CPU to perform a part of visual-
ization tasks in the system. To utilize the GPU as a computing resource for GPGPU
applications, the CPU downloads the application program, called kernel program, to
the GPU’s instruction memory and also prepares input data for the program.

The recent GPUs have only a kind of processor called the stream processor. Hun-
dreds of the stream processors are massively integrated in an LSI chip and work
together concurrently fetching the SIMD style program. The processor works for gen-
eral purpose processing in any kind of calculation. However, the computing style must
be followed in the stream-based one that enforces the programmer to revise the original
program targeted to the von Neumann style architecture to the stream processing style.

The GPU-based program fetches the data and generates the result to the memory
areas. The GPU reads/writes the VRAM directly to execute the calculation for the
program. In this case, the original data is prepared in the main memory. The CPU cop-
ies the data to the VRAM. During the execution of the program, the GPU generates
the results to the VRAM. The CPU copies the results from the VRAM to the main
memory. During the execution of the program, GPU uses two types of memory called
global and shared memories. The global memory is provided by the memory placed
outside of GPU such as DDR3 VRAM. The shared memory is placed besides of the
stream processor that works as if a semi-automated data cache.

In addition to the massively parallel processing ability of the GPU, it has a large I/O
capacity in the memory interface. For instance, the NVIDIA’s Tesla C2050 provides
its peak memory bandwidth up to 144GB/s, according to its profiler named compute-
prof. On the other hand, the recent CPU achieves the following theoretical peak I/O
bandwidth applying dual channel DDR2-800 memory modules:

400M H z × (2channels) × (64 bits/channel) × (2 bits/clock) = 12.5G B/s

Actually the Intel’s Core i7 processor achieves about 9 GB/s using the stream bench-
mark [7], which is only less than 10 % of the peak bandwidth of C2050. Thus, to
utilize the large I/O bandwidth of GPU, it is effective to brush up the I/O part of the
program.

2.4.2 CUDA

The compute unified device architecture (CUDA) has been proposed by NVIDIA
corporation [9]. The CUDA assumes an architecture model as illustrated in Fig. 4a.

123

Int J Parallel Prog (2013) 41:59–88 69

(a)

(b)

Fig. 4 Programming model on CUDA environment

The model defines a GPU which is connected to a CPU’s peripheral bus. A VRAM
(the global memory) that maintains data used for calculation on the GPU is connected
to the GPU. The data is copied from the host memory before the CPU commands
to execute a program on the GPU. The program is executed as a thread in a thread
block. The thread blocks are tiled in a matrix of from one to three dimensions. In
the figure, thread blocks are tiled in two dimensions which size is ngrid × mgrid .
Each thread block has multiple threads in a matrix which size is varied from one to
three dimensions. The figure also shows a thread block that includes nblock × mblock

threads. The number of threads in a thread block is represented as BS in this paper.
Each thread block has individual shared memory space where shared values accessed
among threads in the block are stored temporally. Thus, the program targeted to GPU
in the CUDA environment is invoked as threads. The threads are grouped by the unit
of the thread block. Therefore, a large number of threads are invoked concurrently
obtaining a large parallelism.

123

70 Int J Parallel Prog (2013) 41:59–88

In the program on the CUDA environment, the threads are described as a stream-
based function written in C called a kernel function as shown in Fig. 4b. The program
has two parts of the codes targeted to CPU and GPU, which is initially invoked by the
CPU; a main program for CPU and a kernel function called as the thread on GPU. The
kernel function is defined with the __global__ directive so that it is executed on
GPU. In the function, the global variables namedgridDim,blockDim,blockIdx,
threadIdx, implicitly declared by the CUDA runtime, are available to be used to
specify the size of the grid and the thread block, the indices of the thread block and of
the thread respectively. For example, using these global valuables, Fig. 4b performs
a summation of arrays A and B assigning each summation of the elements in those
arrays to a thread and returns the result to the array C. The function is called by the
main program specifying the sizes of the grid and the thread block with <<<>>>.
Finally, reading data from the VRAM transferred by the main program, the kernel
function is assigned to GPU, and runs as multiple threads. Thus, because programmer
can just simply consider the stream-based kernel function and the calling code for the
function in the main program, using the conventional C language manner, the CUDA
provides an easy to access to the computational resource and transparent interface for
GPGPU.

2.5 Summary

The aim of this paper is targeted to speedup the simulation for the strong correla-
tion lattice system using parallel processing techniques. However, as we can see in the
KPM algorithm the calculation of the −→rn as seen in the Eq. (18) forms recursive opera-
tions. Therefore it is clear that the implementation based on a fine-grain parallelization
under thread level parallelism causes fatal bottleneck of the performance such as on
supercomputers and cluster computers among processor cores because either message
passing or shared memory implementation needs frequent synchronizations to scatter
and gather −→r i and a part of the H matrix among all processors via an interconnection
network. On the other hand, GPU contains the stream processors that can concurrently
access to the global memory to share variables among threads. The accesses to the
global memory from the threads are performed fast due to the high bandwidth local
bus massively connected to the external VRAM. Therefore, the fine-grain parallelism
can be extracted by enormous number of threads concurrently working with shared
variables among the threads. Thus, GPU can be expected to address the performance
bottleneck of the KPM.

In addition to the parallelization difficulty due to the recursive operation discussed
above, the KPM has also a memory usage problem. When we consider to implement
the KPM on GPU, during the −→r i calculation the entire H matrix must be stored in the
global memory due to accesses from all threads. However, the H matrix is very huge.
We need to invent any effective implementation with reasonable memory usage that
extends available problem size.

Thus, this paper focuses on implementing effective parallelization methods of the
KPM invoked on GPU maintaining two aspects of the highly parallelism and the lowest
memory consumption.

123

Int J Parallel Prog (2013) 41:59–88 71

3 KPM on GPU

Let us introduce the GPU-based implementations applying mainly two methods to
parallelize the KPM. One occupies in a large memory area to calculate directly the−→rn and generate the μ̃N . Another reduces the memory consumption by applying a
technique to accumulation of μ̃N in a fixed memory square. Before describing the
implementation detail, let us begin to explain the algorithm design of the KPM.

3.1 Algorithm Design

Figure 5 summarizes the KPM algorithm. The step (1) generates randomly a vector−→r that the number of elements is H_SI Z E (this equals to the D used in Sect. 2.2).
The step (2) gets −→rn from −→rn−1 and −→rn−2 recursively calculating a matrix multiply
of H and −→rn−1 in the step (2.1). This multiplication potentially obtains difficulty to
be parallelized based on the thread level parallelism using MPI or OpenMP due to the
dependencies of the recursive iteration where the most intensive calculation is needed.
Then a dot product is calculated using −→rn again with −→r at the step (2.2) and generates
μ̃n . Each μ̃n , where 1 ≤ n ≤ N , is calculated repeatedly for RS times. The generation
of the μ̃n is iterated for RS times. Finally, the average of all the μ̃ns is generated at
the step‘(3).

Each generation of μ̃n can be massively parallelized on GPUs, and then N μns are
finally generated from the RS-time iterations of the step (1) and (2). This generation
of the moments achieves the objective of the KPM. The summation to generate μ̃n can
be also parallelized on GPU. Therefore, implemented on GPUs, two parallel process-
ing parts are entirely performed during the evaluation of the moments using KPM: a)
generation of −→rn and b) generation of μn .

Here, GPU has an architectural restriction to the number of threads in a thread block
referred as BS in this paper. Considering the parallelization techniques above, let us
explain the implementation of a kernel program on CUDA that invokes both the a)
generation of −→r and b) generation of μ̃n parts.

Fig. 5 Algorithm and
complexity regarding H_SI Z E ,
N , R, and S of KPM

123

72 Int J Parallel Prog (2013) 41:59–88

3.2 Overall Implementation

We have implemented a kernel program for GPU using CUDA. The kernel receives
the H_SI Z E , N that is the number of moments and RS as the arguments. All calcu-
lations are performed based on double precision. The kernel includes two important
concepts; one is how to keep high parallelism, another is an effective memory man-
agement without reducing the parallelism.

Focusing on the μ̃n calculation, we propose two implementation techniques called
the full map [18] and the sliding window methods. The former provides a simple imple-
mentation, which is a straight forward method without complex control for accessing
the memory resource to calculate μn . On the other hand, the latter one needs a complex
control for accessing the memory resource, but is expected less memory consumption.
Let us explain these two methods in the following sections.

3.2.1 The Full Map Method

Figure 6(1) shows the generation part for the −→rn . −→rn needs −→rn−1, −→rn−2 and −→r that is
randomly generated. These four vectors are obtained in the global memory and each
block will write those vectors swapping the pointers. BS threads work concurrently
to generate vectors −→r and −→rn according to the calculation of Fig. 5(2.1). Therefore,
this part will generate μ̃1, μ̃2, . . . , μ̃N using −→r and −→rn in the iteration regarding n
from 1 to N .

Figure 6(2) depicts the parallelization for generation of μn . It performs a dot prod-
uct of −→r n and −→r , and saves all μ̃ to another memory area. Finally, working in parallel,
all threads in a block just make summation for a scalar μ̃n where 1 ≤ n ≤ N .

Here, let us consider the required memory amount for the full map method in the
case of double precision. For the operation (1) depicted in Fig. 6, because four −→r

Fig. 6 Implementation applying the full-map method

123

Int J Parallel Prog (2013) 41:59–88 73

vectors per block are stored in the global memory. Each −→r vector has H_SI Z E ele-
ments. Therefore, this part consumes Number of Blocks × 4 × H_SI Z E × 8 bytes.
During the operation (2), each block performs summations to produce N μ̃s. Each
μ̃n is spread horizontally to a vector of H_SI Z E long. Therefore, it needs totally

Number of Blocks × N × H_SI Z E × 8

bytes.
Because both operations need the H matrix, the matrix is permanently stored in the

memory occupying H_SI Z E2 × 8 bytes. The operation (1) writes μ̃n into the global
memory. This needs to be kept with −→r vectors simultaneously. Therefore, the total
number of memory needed for the full map method is calculated as follows:

H_SI Z E2 × 8 + Number of Blocks × H_SI Z E × (8 × N + 32)

This method seems to have an advantage of less control overhead because all vari-
ables are prepared in memory. However, the memory usage increases linearly by the
number of thread blocks. Thus, this method must decrease the parallelism (i.e. reducing
the number of thread blocks) to calculate the larger lattice model.

3.2.2 The Sliding Window Method

Let us examine how much memory where the full map method uses in the case when
H_SI Z E is 100 × 100 × 100, N = 128 and Number of Blocks = 8. Here we
assume that the H matrix is not allocated in the memory because we will discuss it
later. The operation (1) in Fig. 6 costs 256 Mbytes. The operation (2) in Fig. 6 costs
8 Gbytes that will be increased explosively when we increase the truncation N . This
lattice is not able to be simulated by the full map method because 32Gbytes for the
data structure of Fig. 6(2) actually does not exist technically on the recent GPU boards.
Therefore, although the control overhead would increase, the operation (2) should be
improved not to consume such a large memory area.

We propose another method for the operation (2) of the full map method called
sliding window method. The former part of the sliding window method corresponds to
the operation (1) in Fig. 6 of the full map method. Figure 7 summarizes the operation
in the sliding window method that corresponds to the operation (2) of the full map
method. The operation is performed by two parts; one is accumulation of μ̃i partially
and another is final reduction of μ̃i .

The first part prepares a memory area where the square is BS × BS × 8 bytes in
each thread block. Each block performs generations of μ̃i where 1 ≤ i ≤ N from the
dot product −→rn · −→r according to the operation (1). Each multiplication performed in
the dot product (i.e. −→r n[i] × −→r [i] where 1 ≤ i ≤ H_SI Z E) is stored and added to
variables in the window memory that correspond to divided summations assigned to
the computing threads. This means that BS threads in a thread block calculates the dot
products in parallel and it iterates the parallel calculation for BSμ̃s. Finally summa-
tions of BS −→rn · −→r are stored in the window memory. Thus BS threads concurrently
works to implement the parallelism.

123

74 Int J Parallel Prog (2013) 41:59–88

Fig. 7 Implementation applying the sliding window method. Each thread block manages this operations
using the memories

Figure 7(Op.1) shows the first calculation part using the window. The thread block
needs to prepare only the window memory. After making summation of the μ̃s from
the dot products of −→rn · −→r , and reducing all μ̃s with summations into the window,
the window slides to the next BS μ̃s. For example, assume BS = 4, H_SI Z E = 12,
N = 24 and the window is w[][]. The thread i produces∑

m

−→rn[m × BS + i] × −→r [m × BS + i]

where 0 ≤ m ≤ 2, and saves it to w[j%4][i] where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 24. Thus,
the window keeps the part of μ̃i .

The second part just makes summations in parallel assigning each row to a thread
and reduces the final summation of μ̃i to an array allocated in another memory area
sized in N × 8 bytes as depicted in Fig. 7(Op.2). Because every iteration of R × S
times accumulates the summation of μ̃i to the memory. Using the same parameters
above, the second part makes summations of w[i][j] for solving μi by the thread i ,
and saves the μi to the different memory area of Fig. 7(Op.2) where 1 ≤ i ≤ 4 and
1 ≤ j ≤ 4. To calculate the μi where 5 ≤ i ≤ 8, the window is shifted below and
then repeated the first and the second parts until the window includes μN .

Here, let us estimate the total memory size needed when H_SI Z E is 100 × 100 ×
100, N = 128 and Number of Blocks = 8 as the same case considered for the full
map method. The generation of −→rn in the KPM needs the same memory size as the
one in the full map method, which is 256 Bytes. On the other hand, the generation of
μn becomes Number of Blocks × (BS × BS × 8 + N × 8). When we apply the

123

Int J Parallel Prog (2013) 41:59–88 75

actual parameters to this equation, it becomes about 1MByte. Thus, the sliding win-
dow method reduces the memory usage drastically, and makes the large size simulation
available.

According to the discussion about the memory usage of the sliding window method
above in the case of double precision, we can conclude that the memory cost is esti-
mated using the equation below:

H_SI Z E2 × 8 + Number of Blocks × H_SI Z E

×4 × 8 + Number of Blocks × (BS × BS × 8 + N × 8)

3.3 Discussion

This section focused on two methods that parallelize the KPM on the GPU. The KPM
has a fatal bottleneck regarding the required amount of memory. Especially all threads
must access the same H matrix. However, the H matrix is typically sparse in our
target lattice simulation as explained in Sect. 2.1. When we apply the CRS format to
the H , it is clear that we can reduce the consumed amount of memory. Moreover, each
row of the H has only seven elements in the case of 3D lattice model. This mean that
statically the sizes of A, I A′ and J A become H_SI Z E × 7 × 8 bytes, H_SI Z E × 4
bytes and H_SI Z E × 4 bytes respectively when the index is stored in a 32bit integer.
When we consider H_SI Z E is 256 × 256 × 256, the dense case needs 2 Peta Bytes
for the H matrix. But the CRS format needs only 1 GBytes. Thus, the size problem
can be moderated by the CRS format.

GPU has another technical optimization possibility in the architecture. GPU also
has a data cache memory between the stream processors and the global memory. It
is actually implemented on a thread block. In the default configuration of NVIDIA
C2050 case, the GPU assigns 16Kbytes to the L1 cache memory and assigns 48Kbytes
to the shared memory accessed by the threads. Calling cudaFuncSetCacheCon-
fig function in CUDA API from the CPU side, it swaps the sizes between the cache
memory and the shared memory. Thus, we can extend the size of the data cache mem-
ory related to a thread block. The larger the data cache memory is, the more effective
threads read the H matrix allocated in the global memory.

As discussed in the sections above, the implementations on GPUs will perform
highly parallelism with the enormous numbers of threads concurrently working
together. Thus, it is expected that the KPM on GPU will extract the potential per-
formance of the massively parallel platform and achieves better performance than the
recent CPUs.

4 Experimental Performance Analysis

4.1 Experimental Setup

This section shows performance evaluations of the KPM implemented with the tech-
niques discussed in the sections above. The performance based on GPU is compared

123

76 Int J Parallel Prog (2013) 41:59–88

with the one based on CPU and the ratio (CPU time/GPU time) is shown as the speedup.
The experimental environment is a PC that consists of an Intel’s Core i7 930 processor
at 2.80 GHz with 12GB DDR3 memory, and the NVIDIA Tesla C2050 with 3GB
memory that is connected to the PCI Express bus. The OS of the PC is the CentOS of
the Linux Kernel 2.6.18. The driver version of the GPU is 3.2. All KPM calculations
are performed with double precision floating point. The CPU version is implemented
straightly employing arrays and a matrix dynamically allocated, is brushed to achieve
the best performance in an execution thread, and is compiled with GCC 4.4.1 with
O3 option. We also compiled the CPU version by the Intel C compiler. However, the
performance changes less than 5 % better/worse than the GCC version because the I/O
overhead for the H matrix dominates the total execution time. Therefore, to compare
the general performance on Linux, we use the performance of the GCC version to
compare with the one of GPU.

We evaluate performances between the full map and the sliding window meth-
ods applying 16 or 48 Kbyte L1 cache and also with/without the CRS format. All
evaluations in this section apply N = 128, R = 14 and S = 128 for the KPM param-
eters. In the aspects of the architectural parameters on GPU, we apply BS = 128,
Number of Blocks = 32 for all the evaluations.

4.2 Evaluation for the Full Map Method

The first evaluation analyzes the performance of the full map method applying an
allocation of whole H matrix in the global memory. This case becomes equivalent to
the one when a dense matrix is applied to the H matrix. In Fig. 8, the performances
are shown as bars, the speedups are depicted in lines with points.

As we discussed in Sect. 2.2, due to the dense matrix, the performance follows the
complexity O(S RN D2). Therefore, changing H_SI Z E causes sensitive increase of

Fig. 8 Performances of the full map method comparing among 16 KByte/48 KByte cache and the speedup

123

Int J Parallel Prog (2013) 41:59–88 77

the execution time. Moreover, the required amount of memory on the GPU is exhausted
by the full map method when H_SI Z E is 32×32×32. Therefore we applied 8×8×8,
32 × 32 × 32 and 24 × 24 × 24 to the experiments in this section.

We confirmed that the performances with 48Kbyte cache size achieve almost 30–35
% better performance than the ones with 16 Kbyte cache size. This means clearly that
the larger cache size enhances the performance because the cached part of the −→r or
the H matrix can be effectively shared with all the threads in a block.

Because the full map method achieves only less than six times better performance
than the GPU. This means that it is better to use the recent CPU which has eight
processor cores assigning eight threads to the processor to achieve better performance
than the GPU’s. Therefore, although the full map method does not include much con-
trol code, it can not achieve reasonable performance comparing to the recent CPU
and also it is very hard to increase the problem size because the required amount of
memory is large. Thus we have confirmed that the full map method does not achieve
good performance.

4.3 Evaluation Applying the CRS Format

Let us apply the CRS format to the full map method. Figure 9 illustrates the perfor-
mances. We confirmed that the CRS format drastically improves the performance in
both GPU and CPU versions because the calculation amount is much reduced by ignor-
ing redundant calculations with zeros. We also confirmed that the complexity becomes
O(S RN D) from the performance shown in Fig. 9 as we discussed in Sect. 2.2.

The speedup seems to be saturated to about 4–5. In the aspect of the speedup, the
CRS format is not effective because the CPU version also has large improvement of the

Fig. 9 Performances of the full map method with the CRS format

123

78 Int J Parallel Prog (2013) 41:59–88

performance. On the other hand, the execution time become drastically small. There-
fore, we have confirmed that the CRS format is indispensable technique for speeding
up the KPM. The full map method with the CRS format can executes the case with
H_SI Z E of 32 × 32 × 32 because the required amount of memory is reduced.

Although the problem size seems too small for GPU, it is not able to become larger
than 32 × 32 × 32 because the required amount of memory explosively increases,
and becomes larger than 3GBytes (i.e. actual memory resource of C2050). Therefore,
it is very important for the KPM algorithm on GPU to reduce the required amount
of memory. Thus, we can expect that the sliding window method reduces the require
amount of memory, and increases the available problem size.

4.4 Evaluation for the Sliding Window Method with the CRS Format

We have confirmed that the CRS format is very effective for the performance in the
previous section. Therefore, this section additionally applies the format to the sliding
window method, which can increase the problem size drastically due to reduction of
the required amount of memory for summation for μ̃i . Applying large size H_SI Z E ,
we can expect that the KPM is fully parallelized on the stream processors and the
method will extract the potential high performance of GPU.

Figure 10 shows the performances and the speedups of the sliding window method
applying the CRS format. Although the sliding window method includes many control
code to reduce μ̃i to the window memory, it achieves better performance than the full
map method comparing the execution times of H_SI Z E = 32×32×32. The sliding

Fig. 10 Performances of the sliding window method with the CRS format comparing among 16 KByte/48
KByte cache and the speedup

123

Int J Parallel Prog (2013) 41:59–88 79

0

0.005

0.01

0.015

0.02

-1 -0.5 0 0.5 1

N=128
N=512

Fig. 11 The DOS comparison with truncation between N = 128 and N = 512 when the lattice is 128 ×
128 × 128, R = 14 and S = 128

window method has an advantage in the required amount of memory. Therefore, it
can accept the problem size of H_SI Z E = 128 × 128 × 128.

The speedup reaches about 14.4 times due to the optimized memory access that
only occurs after accumulating a part of μ̃n into a register. This is reasonable to use
GPU as the advanced processing platform for the KPM because the speedup is larger
than the maximum number of cores in the recent CPU (i.e. eight on such as Corei7).
Thus, we have confirmed that the sliding window method invokes the KPM effectively
although it includes much larger control code than the full map method.

Applied the sliding window method with H_SI Z E = 128 × 128 × 128, Fig. 11
plots two DOS data combinations when N = 128 and N = 512. When N is the
smaller number, the truncation reduces to the resolution of the DOS.

4.5 Discussion

Let us consider additional possibilities to improve the performance of the sliding
window method. The sliding window method can execute the problem size when
H_SI Z E = 256 × 256 × 256. However, as seen in Fig. 10, the speedup degrades
very much because to reduce the required amount of memory the experimental case
needed to decrease the Number of Blocks to one. Therefore, only a thread block
is working for all KPM operations, and others are idle. To avoid the decrease of the
number of active thread blocks, we finally propose another technique to reduce the
required amount of memory.

The part where the sliding window method consumes memory at most is the opera-
tion (1) in Fig. 6 calculated with the memory of Number of Blocks×H_SI Z E×4×8
bytes as discussed in Sect. 3.2.1. To reduce the required amount of memory for the
operation (1), we propose a technique that divides the operations to multiple kernel
programs and calls the kernels for many times from the CPU side. Here, we divide
the operations into three kernels as shown in Fig. 12a; the createR randomly generates−→r , the createRn calculates −→rn using −→rn−2, −→rn−1 and −→r and also saves −→rn · −→r into

123

80 Int J Parallel Prog (2013) 41:59–88

Fig. 12 Implementation of the divided kernel version

the window memory. Finally the SumMu performs the operation (2) in the sliding
window method for μN .

The createR and createRn kernels share a single memory block sized in H_SI Z E ×
4 × 8 bytes for recursive calculation. The elements of the −→r s are calculated respec-
tively in parallel based on the thread size (T S = Numberof Blocks × BS) as illus-
trated in Fig. 12. The createR is called once per N time iterations of createRn. The
createRn kernel also saves a part of μi into the sliding window used in the Sum-
Mu kernel. Therefore, every TS times of calling createRn kernel the SumMu kernel
is invoked because the window size is T S × T S. In the other word, all threads are
working concurrently for calculating μi in the SumMu kernel. Therefore the maxi-
mum number of parallelism of createR and createRn corresponds to the number of
threads that do not related to the required amount of memory. Finally, the SumMu
kernel needs a size of window memory of T S × T S × 8 Bytes. Thus, divided a ker-
nel program to several small ones, the required amount of memory can be reduced
because the total memory size does not have any relationship to the number of thread
blocks as seen in Fig. 6(1) and the parallelism becomes available to be controlled
flexibly.

Because every kernel must be loaded into GPU’s instruction memory before the
execution, the divided kernels contain the potential overhead caused by loading and
discarding every kernel execution at the iteration. The overhead should significantly
degrade the performance when the problem size is small. We have measured the per-
formances of the divided kernel version with the sliding window method varying
H_SI Z E from 32 × 32 × 32 to 256 × 256 × 256 as shown in Fig. 13 when 32 thread
blocks and 128 BS are used for all kernels. Therefore, the total number of threads
working concurrently is 4,096. The sliding window is 4, 096 × 4, 096. The data cache
size is also exchanged between 16 and 48 Kbytes. As we have expected, the over-
head for loading/discarding the kernel to/from GPU causes performance degradation.

123

Int J Parallel Prog (2013) 41:59–88 81

Fig. 13 Performances and speedup of the divided sliding window method with the CRS format with 16
KByte/48 KByte data cache

However, when H_SI Z E is 256 × 256 × 256, the performance has become very
much better than the one of the single kernel version because different parallelism
is applied to each kernel. Thus, according to the performances in the graphs, we can
conclude that when H_SI Z E is less than 256 × 256 × 256, we should employ the
single kernel version. If H_SI Z E is larger than it, the divided kernel version must be
selected.

Let us discuss the speedups among the different implementations proposed in this
paper. Figure 14 shows the comparisons from different performance aspects. Regard-
ing the effect of data cache size illustrated in (a), (c) and (e), any implementation
achieves a performance improvement from 1.10 to 1.65 times. On the other hand,
the effect of the CRS format shown in (b) is remarkable because it achieves a drastic
performance improvement both in CPU and GPU versions. The speedup increases as

Fig. 14 Performance comparisons between each implemetaion of KPM on GPU and CPU

123

82 Int J Parallel Prog (2013) 41:59–88

the problem size increases. Therefore, it is very clear that the CRS format has a large
performance impact when H_SI Z E becomes very large.

According to the performance improvements between the algorithms shown in
(d), the sliding window method is about two times faster than the full map method.
Although this comparison is performed only with the available H_SI Z E measured
in both algorithms (i.e. 32 × 32 × 32), the performance improvement increases if
the comparison is performed with a larger H_SI Z E . Thus, the overall performance
improvement from the full map method with a dense H matrix to the sliding window
method with a sparse one has become about 2,600 times. Additionally, using the best
algorithm, we are able to simulate a lattice of 256 × 256 × 256 in a PC with a GPU
by about 10 times shorter simulation time than the CPU-based implementation in a
single thread. Therefore, we expect that the GPU-based implementation will achieve
much higher performance than the CPU-based one due to the higher integration ratio
of the stream processors than the one of CPU cores.

Here, let us focus on a numerical comparison of the performances calculating
FLOPS values among the divided version on GPU and the CPU one. The parts of the
double precision floating point operations correspond to a) the random −→r generation
performed in the step (1), b) the recursive −→r n generation done in the step (2.1), c)
the vector dot products for μ̃i done in the step (2.2) and finally d) the μ generation
done in the step (3). The a) occupies a very few percentage in the total execution time
using the CUDA’s random number generation library. We just estimate the part takes
H_SI Z E ×w FLOPS where w � RSN . The w is actually very small number. The b)
needs H_SI Z E ×14× R × S for calculating H−→r0, H_SI Z E ×16× R × S ×(N −2)

for doing H · −→rn−1 − −→rn−2 that consists of H_SI Z E × 8 × R × S × (N − 2) mul-
tiplications and H_SI Z E × 7 × R × S × (N − 2) summations in an H · −→ri and
H_SI Z E × R × S × (N −2) subtractions in the vector subtraction of −→ri respectively.
The c) performs H_SI Z E×R×S×N time multiplications and H_SI Z E×R×S×N
summations. Finally the d) needs RS summations plus a division. Totally the FLOPS
in the KPM is calculated by;

H_SI Z E × w + 18 × H_SI Z E × R × S × (N − 1) + R × S + 1

∵ N � 1

≈ 18 × H_SI Z E × R × S × N (20)

To discuss the actual performances of the divided version on GPU and the CPU
one, we apply the actual parameters to the equation above. In the case of the GPU
version (i.e. where N = 128, R = 14 and S = 128 are applied for the param-
eters), the performance becomes 7.7 GFLOPS on Tesla C2050 when we apply
H_SI Z E = 256 × 256 × 256. Because the peak performance of C2050 based
on double precision floating point operations is 500 GFLOPS, the KPM on GPU
achieves about 1.5 % of potential GPU performance. On the other hand, using the
same parameters, we can calculate the performance of the CPU version as well that
obtains 0.9 GFLOPS. The performance achieves 3.0 % of the peak performance of
the Core i7 processor. All in all, we conclude that the KPM is a typical I/O inten-
sive application for the computing hardware. Especially, GPU needs to perform a

123

Int J Parallel Prog (2013) 41:59–88 83

large number of random accesses to large area of the global memory. Thus, the key
technique that improves the entire performance of the KPM is to reduce the num-
ber of I/O operations for reading/writing the compressed sparse matrix in the global
memory.

5 Further Performance Extensions

Let us consider additional performance extensions focusing on further reducing
required memory for KPM. It is important to consider the I/O bandwidth during the
KPM calculation because the part (2) in Fig. 5 occupies 83 % of the total execution
time when the divided kernel version is applied resulting in the previous section. As
the amount of required memory is reduced, the utilization ratio of I/O bus for GPU
memory is also increased because redundant memory access is eliminated from the
overall calculation of KPM. Thus the I/O bandwidth during the calculation of KPM
will be increased applying the more compact memory usage.

Here, we will apply two optimization techniques. The first consideration for the
extension is to optimize access pattern recycling the memory area that will not be used
again during the same calculation phase. Moreover we also optimize the access pattern
considering the memory organization of GPU system. This optimization promises to
reduce the number of memory I/O and increase the total I/O bandwidth of KPM.
Another optimization performs dedicated optimization to the application of KPM,
which targets to the case of the 3D cubic model of the condensed matter physics.
We discuss the performance increase from these two optimization techniques in the
following sections.

5.1 Optimization on Memory Access Pattern

The part (2) in Fig. 5 includes the recursive calculation of −→rn . The divided version
with CRS format saves all the −→r i vectors on GPU’s memory. However, the −→rn−2 is not
used after it is used once for the recursive calculation. Therefore, to reduce memory
usage, the −→r n can be saved in the memory region of −→rn−2. Therefore, we modify the
equation for the calcularion to:

−→rn−2 = H−→rn−1 × −→rn−2

This memory recycling technique reduces H_SI Z E × 8 bytes from the required
memory amount in the case of the divided version with CRS format.

Moreover, we place the matrix A of CRS format for H in the column major order
on the GPU’s memory. Due to the burst transfer to the cache memory on GPU, massive
data in some elements in the memory is transferred at an access. Therefore, access-
ing to the column elements of A consumed by the multiplication with −→rn−1 hit to
the cache memory on the GPU. Thus, each thread will use memory I/O bandwidth
of GPU effectively because the recursive −→rn−2 calculation will always access to the
continuous memory region.

123

84 Int J Parallel Prog (2013) 41:59–88

(a)

(b)

Fig. 15 Performance comparisons with OMAP a CPU performance (OMAP); b GPU performance (OMAP
with 48KB L1 cache)

Applying the techniques for optimizing memory access patterns (in short, we call
it OMAP) mentioned above, we have measured the performance on GPU and CPU.
Figure 15 shows (a) performance of CPU version and (b) the one of GPU version
with 48KB L1 cache with OMAP. The performance of CPU version is affected by the
OMAP technique because −→ri is placed in a localized and continuous memory area
and the cache memory is effectively used for the recursive calculation. The speedup

123

Int J Parallel Prog (2013) 41:59–88 85

Fig. 16 Performance of ELL compression

is about 30 % comparing the performance without OMAP. On the other hand, the
performance of GPU version also shows about 30 % better result comparing to the
one without OMAP. The speedup from the CPU version with OMAP has become 10.5
times. Moreover, the total performance of KPM has result about 10 GFLOPS. Thus
the OMAP techniques are effective for both CPU and GPU implementations because
the memory access is optimized to utilize the cache memory.

5.2 Optimization Dedicated to 3D Cubic Lattice Model

According to the mathematical property of KPM, it is available to apply it to solving
eigenvalue of any matrix defined by models of natural phenomenon. When the matrix
is sparse, to reduce memory size for the matrix, CRS format is suitable for compress-
ing it. On the other hand, if we limit to use KPM in the condensed matter physics,
especially to the simulation for a 3D cubic model, it is clear that ELL format fits to this
case because the compression ratio becomes better than CRS format as we discussed
in Sect. 2.3.

Due to the smaller required memory size compressed by ELL format, both CPU
and GPU versions have the benefit to the performances. Figure 16(a), (b) shows the
performances on GPU and CPU versions respectively. The GPU version has been
improved for about 10 % than the one with CRS format. Moreover, the CPU version
has the improvement from the performance with CRS format for 25 %. Comparing the
GPU version with the CPU one, the performance speedup is finally about 11.5 times.
Thus, ELL format works as more effective compression method for reducing required
memory amount and accelerating performance if the sparse matrix has fixed elements
in each row because the 3D cubic case has 7 elements in any row in the matrix.

123

86 Int J Parallel Prog (2013) 41:59–88

Fig. 17 Comparison of memory bandwidth

5.3 Performance Consideration for Additional Extensions

Using OMAP and ELL format, we have improved the performance of KPM from 7.7
GFLOPS without those techniques to 11.5 GFLOPS. During the improvements, we
have focused on the memory bandwidth measured by the NVIDIA’s performance pro-
filer called computeprof. Figure 17 depicts a graph of the bandwidth changes among
the performances of the divided versions with CRS format, with OMAP only and with
OMAP and ELL format. The OMAP technique shows a large effect to achieve about
40 % higher memory bandwidth than the divided version with CRS format. This is
caused by contiguous memory assignment for −→ri vector that accelerates to utilize the
cache memory on GPU. ELL format also accelerates the effective use of the cache
memory improving the memory bandwidth for about 5 % of the one of the OMAP
version. Finally, our KPM achieves 128 GByte/sec for the effective memory band-
width during the calculation. The bandwidth has become 89 % of the peak memory
I/O speed (i.e. 144 GByte/s) of the GPU. Thus, we can conclude that it is available to
improve performance applying special condition dedicated to the lattice model sim-
ulation of the H matrix to KPM and the improvement is related to increasing the
effective memory bandwidth during the calculation. Finally we have achieved almost
the peak performance that can be the fastest performance in our environment using
the Tesla C2050 GPU.

123

Int J Parallel Prog (2013) 41:59–88 87

6 Concluding Remarks

Focusing on the KPM used in the simulations for strong lattice correlation model in
condensed matter physics, this paper proposed methods of GPU-based implementa-
tions for the KPM. Applying typical architectural optimizations on GPU, the sliding
window method has achieved up to 14.4 times better performance than the CPU-based
implementation, and also is able to perform the simulation for 256×256×256 lattice
model at the maximum size on NVIDIA’s Tesla C2050.

Moreover, under a condition used in the simulation for a 3D cubic correlation lattice
model, KPM includes availability to be improved by memory accessing optimization
and ELL format for sparse matrix compression. We have confirmed that the GPU
performance is improved for up to 30 % using these optimizations. We have also
considered the memory bandwidth on the GPU under the improved performance. The
bandwidth reaches almost peak of the memory interface on the Tesla C2050. Thus,
we have implemented KPM algorithm on the GPU that uses fully hardware resources.

For the future plans, we are now considering two aspects; performance acceleration
in the cluster environment and the physics applications. Regarding the former plan,
the KPM can be embarrassingly parallelized into multiple GPUs following the coarse
grain parallelism of the parameters R, S. Therefore, we are now trying to parallelize
the sliding window method using MPI and OpenMP. On the other hand, regarding the
physics applications, we are now planning to actually simulate a large lattice model
to find unknown state of materials using the techniques in this paper.

Acknowledgments This work is partially supported by the Japan Science Technology Agency (JST)
PRESTO program. And also this work is partially supported by KAKENHI (24300020) Grant-in-Aid for
Scientific Research (B).

References

1. Bednorz, J.G., Müller, K.A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys.
B Condens. Matter 64(2), 189–193 (1986)

2. Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66(3), 763–
840 (1994)

3. Ferrario, M., Ciccotti, G., Binder, K.: Computater Simulations in Condensed Matter: From Materials
to Chemical Biology, vol. 1, 2. Springer, Berlin (2006)

4. Foulkes, W., Mitas, L., Needs, R., Rajagopal, G.: Quantum monte carlo simulations of solids. Rev.
Mod. Phys. 73(1), 33–83 (2001)

5. Grimes, R., Kincaid, D., Young., D.: ITPACK 2.0 User’s Guide. Technical Report CNA-150, Center
for Numerical Analysis, University of Texas (1979)

6. Grotendorst, J., Mark, D., Muramatsu, A.: Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms. NIC-Directors (2002)

7. McCalpin, J.D.: Memory Bandwidth and Machine Balance in Current High Performance Computers.
IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter (1995)

8. Nguyen, H.: GPU Gems 3, 1st edn. Addison-Wesley Professional, Reading (2007)
9. NVIDIA Corporation: CUDA: Compute unified device architecture programming guide. http://

developer.nvidia.com/cuda
10. Ohno, K., Esfarjani, K., Kawazoe, Y.: Computational Materials Science. Springer, Berlin (1999)
11. Schollwöck, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77(1), 259–315 (2005)
12. Varga, R.: Geršgorin and His Circles. Springer Series in Computational Mathematics. Springer,

Berlin (2004)

123

http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda

88 Int J Parallel Prog (2013) 41:59–88

13. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod.
Phys. 78(1), 275–306 (2006)

14. White, S.: Density matrix formulation for quantum renormalization groups. Phys. Rev.
Lett. 69(19), 2863–2866 (1992)

15. White, S.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48(14), 10345–
10356 (1993)

16. Yamada, S., Okumura, M., Machida, M.: Direct extension of density-matrix renormalization group to
two-dimensional quantum lattice systems: studies of parallel algorithm, accuracy, and performance.
J. Phys. Soc. Jpn. 78(9), 094004 (2009)

17. Yamashita, M., Nakata, N., Senshu, Y., Nagata, M., Yamamoto, H.M., Kato, R., Shibauchi, T., Matsuda,
Y.: Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science
328(5983), 1246–1248 (2010)

18. Zhang, S., Yamagiwa, S., Okumura, M., Yunoki, S.: Performance accelaration of kernel polyno-
mial method applying graphics processing units. In: IPDPS/APDCM 2011, pp. 564–571. IEEE CS
(2011)

123

	Kernel Polynomial Method on GPU
	Abstract
	1 Introduction
	2 Backgrounds and Definitions
	2.1 Simulations in Condensed Matter Physics
	2.2 Kernel Polynomial Method
	2.2.1 Definition
	2.2.2 Application to Quantum Systems
	2.2.3 Stochastic Evaluation of Traces
	2.2.4 Numerical Complexity

	2.3 Compression Techniques for Sparse Matrix
	2.3.1 CRS Format
	2.3.2 ELL Format

	2.4 General Purpose Computing on GPU
	2.4.1 GPU Architecture
	2.4.2 CUDA

	2.5 Summary

	3 KPM on GPU
	3.1 Algorithm Design
	3.2 Overall Implementation
	3.2.1 The Full Map Method
	3.2.2 The Sliding Window Method

	3.3 Discussion

	4 Experimental Performance Analysis
	4.1 Experimental Setup
	4.2 Evaluation for the Full Map Method
	4.3 Evaluation Applying the CRS Format
	4.4 Evaluation for the Sliding Window Method with the CRS Format
	4.5 Discussion

	5 Further Performance Extensions
	5.1 Optimization on Memory Access Pattern
	5.2 Optimization Dedicated to 3D Cubic Lattice Model
	5.3 Performance Consideration for Additional Extensions

	6 Concluding Remarks
	Acknowledgments
	References

