
Cross-Site Scripting Attacks in Social Network APIs

Yuqing Zhang

University of Chinese Academy of Sciences

Beijing, China,

zhangyq@ucas.ac.cn

Xiali Wang

University of Chinese Academy of Sciences

Beijing, China,

wangxl@nipc.org.cn

Qihan Luo

University of Chinese Academy of Sciences

Beijing, China,

luoqh@nipc.org.cn

Qixu Liu

University of Chinese Academy of Sciences

Beijing, China,

liuqixu@ucas.ac.cn

Abstract—Nowadays, it is becoming more popular that

RESTful APIs are used by web developers to enhance the

functionality of websites. However, this might raise potential

XSS attack threats. Unlike traditional XSS attacks, XSS

attacks in this scenario may take advantage of more

characteristics of RESTful APIs. RESTful APIs are common in

social networks. Consequently, in this paper, we took social

networks as motivating examples to illustrate XSS attacks in

RESTful APIs.

This paper presents the first systematic and deep security

analysis on XSS attacks in RESTful APIs in social networks.

We designed a tool to automatically detect XSS vulnerabilities

in APIs and discovered several serious XSS flaws in eleven

popular social networks. We also examined 143 web-based

apps and verified the prevalence of Cross-API XSS (XAS)

vulnerabilities. Based on the results, we conclude the root

causes of XAS vulnerabilities and explain their differences to

traditional XSS vulnerabilities in depth. Finally, we propose

preliminary measures both for social networks and third-party

application developers to alleviate XAS.

Keywords- Web security; social eco-system; RESTful APIs;

Cross API Scripting; Cross Site Scripting; social network APIs

I. INTRODUCTION

More and more websites are opening their cloud services
to third-party developers as RESTful Application
Programming Interfaces (RESTful APIs) [1]. These APIs are
introduced to open up a channel where third-party
applications can interact with those websites for data and
resources. RESTful APIs are common especially in social
networks. Consequently, in this paper, we take social
networks as motivating examples to illustrate security
problems in RESTful APIs. Social network APIs have
promoted the forming of social eco-systems which are
composed of not only social networks, but also all kinds of
third-party applications and Internet services (e.g. Web
mash-up applications). It was reported that by the end of
March 2012, more than 9 million apps and websites had
been integrated with Facebook [2]. While social eco-systems
bring convenient and integrated experiences to their users,

social networks and their users are confronted with more and
more security problems.

Cross Site Scripting (XSS) vulnerabilities in social
network APIs have been exposed in the wild. A XSS flaw
was found in twitpic.com [3] in May 2009, which was due to
the missing sanitization of a Twitter API response. In March
2011, a XSS flaw in Facebook mobile API allowed the
attacker to launch a self-propagating spam worm [4]. During
the same period, a security researcher discovered a self-XSS
flaw in a Google Code example page due to the Google Map
API [5]. All these flaws can be exploited directly or
indirectly to compromise the privacy of the users. These
cases indicate that new threats involved with XSS in social
network APIs have arisen. We need to further understand the
causes and details of the XAS flaws lying behind the APIs.

In order to differentiate from traditional XSS attacks, we
referred to XSS flaws exploited via RESTful APIs as Cross-
API Scripting (XAS for short). We discuss the difference
between traditional XSS and XAS after we give analysis on
some real-world XAS cases in Section II.

So far, studies on XAS are rare. In 2009, Hristo Bojinov
et al. [6] analyzed a new type of vulnerability called Cross-
Channel Scripting (XCS). XCS used electronic devices such
as security cameras to launch XSS attacks in web interface.
In their paper, XSS in insecure RESTful APIs were regarded
as an example to prove the existence of reverse XCS. The
security characteristics and causes on RESTful APIs were
not deeply studied. Moreover, the examples given were only
one type of XAS attacks.

In this paper, we provide the first systematic study on
analyzing XAS flaws in social eco-systems. We designed a
tool to identify XAS flaws within social APIs in eleven
popular social networks and detected a variety of security
issues such as tainted API responses (API responses
containing unsanitized user inputs, e.g. on Facebook and
LinkedIn), inconsistent handling of user-input data (e.g. on
Twitter and Flickr APIs), and incorrect API responses (e.g.
on t.qq.com and t.sohu.com APIs). Our analysis supports that
design and implementation faults of social APIs contribute to
XAS.

Further probing of 143 web-based applications turns out
to confirm the fact that XAS has become an extended threat
against Web applications, especially social eco-systems. Of
the total 143 web applications, 107 were found vulnerable to
XAS. We reported several vulnerabilities to corresponding
operators and all of the flaws we reported had been fixed by
the time we finished this paper. Finally, we also proposed
preliminary measures to mitigate XAS.

Contribution. This is the first paper to propose
systematic and deep security analysis on XAS attack and
demonstrate its threats to real-world social networks in detail.

(1) We analyze real-world XSS vulnerabilities in social
APIs and summarized their unique features
compared with traditional XSS vulnerabilities.

(2) We implement a fuzzing tool to detect XAS
vulnerabilities automatically. Utilizing this tool, we
further discuss the root causes of XAS by
discovering XAS flaws in eleven popular social
networks and 143 third-party online applications.

(3) Based on our security analysis of XAS, we propose
preliminary measures to mitigate XAS.

Organization. The rest of the paper is organized as
follows. In Section II, we demonstrate the XAS attack cases
in real world. In Section III, we propose the design of our
XAS detecting tool and in Section IV we conduct
experiments and analyze the results in depth. Then, we give
preliminary mitigation techniques against XAS in Section V.
We introduce related work in Section VI, and finally
conclude our work in Section VII.

II. XSS IN SOCIAL NETWORK APIS

In this section, we examine RESTful APIs in many
popular social networks including Twitter, Facebook,
LinkedIn, Renren, Weibo, etc. We also checked for XAS
within social networks themselves.

Attacker Social Network

(3)Accessing data

XAS

(7)Sending the victim's data in social networks

(2) Authorization process

Third-party App

(1) Injecting

attack payload

(3) Invoking API

(5) Parsing API

responses

Victim (TP)

(4) Respondign with

tainted data

(6) Loading attack payload

Figure 1. A typical XAS attack on third-party apps

A typical XAS attack is illustrated in Figure 1. The XAS
attack process is described as follows:

Step 1: The attacker injects malicious code into the social

network via web UI or APIs to affect a news feed. The

tainted feed will be displayed to all of the attacker’s friends

on the social network.

Step 2: The victim who is a friend of the attacker on the

social network authorizes the third-party app to access his /

her personal data.

Step 3: The vulnerable application invokes APIs to retrieve

the tainted data from social network.

Step 4: The data with malicious code is sent to the app.

Step 5: The third-party app parses the tainted API responses

and generates HTML responses for the victim.

Step 6: The app sends responses containing malicious code

to the victim’s browser.

Step 7: The attack payload is executed in the victim’s

browser and the victim’s data in social networks is sent to

the attacker.

In the rest of this section, we present five case studies to
demonstrate different types of XAS in real-world web-
based applications.

A. Mash-up Applications

Mash-up apps provide integrated and convenient
management for users’ accounts on different social
networks. We give three instances of powerful second-line
attacks against social networks below.

 Controlling the mash-up app accounts
TweetDeck is one of the most popular mash-up

applications, managing social networks including Twitter,
Facebook, and Foursquare. The Chrome extension version
of TweetDeck is vulnerable to XAS due to its failure to
sanitize the tainted API responses from Facebook and
Foursquare. Specifically, all contents are HTML-escaped
except for the GroupName field from Facebook APIs and
the FirstName and LastName fields from Foursquare APIs.
Although Chrome’s extension architecture is designed with
security considerations [7] [8], script execution
vulnerabilities in Chrome’s extensions still make websites
vulnerable to attack [9] [10].

Figure 2. Injecting POC in Facebook to take over a the TweetDeck

account

By exploiting XAS flaws in the TweetDeck Chrome
extension, the attacker can control the victim’s TweetDeck
username and password which are stored in the LocalStorage
of Chrome. Figure 2 shows the attack process of stealing
TweetDeck accounts. First, the attacker injects malicious
code into the GroupName field in his Facebook profile, as
shown in the upper part enclosed with a red pane in Figure 2.
Second, when another group member accesses the group in
TweetDeck, the code is executed to obtain the account
information and transmit it to the attacker. The proof of
concept to exploit the XAS vulnerability is given as follows:

 Injecting malicious code into visited Web pages via
extension permission vulnerability

We also found that the permission vulnerability in
TweetDeck Chrome extension could be exploited to break
same origin policy and launch XAS attack to control
different social networks. The fragment of manifest file in
TweetDeck Chrome extension is as follows:

"permissions": […"tabs", … "https://*.twitter.com/",
"http://search.twitter.com/", "http://*.tweetdeck.com/",
"https://*.tweetdeck.com/", …. "https://*.facebook.com/", …]
As a result, the extension has the privilege of injecting

code into sites like Twitter and Facebook. Hence, the
attacker can inject malicious JavaScript code into the
victim’s Facebook and Twitter pages via the vulnerable
extension when these websites are logged in at the same time.
This class of attacks indicates that XAS flaws in extensions
can bring second-level XSS attacks to the Web pages that the
vulnerable extensions include in their manifests.

 Collecting social data by harnessing mash-up worms
With further research, we found that some mash-up

applications accessed more data from social networks than
they actually needed. Taking HootSuite as an example, when
we authorized it to connect Facebook, HootSuite was
granted: accessing basic information, profile information,
family & relationships, etc.; managing our pages, our events,
our custom friend lists, etc. Apparently, nearly all kinds of
user data in social networks can be leaked indirectly from
high-profile applications like HootSuite if these apps are
vulnerable to XAS.

Attacker LinkedInFacebook

(4) CARF

(5)Sending the victim's secret

Twitter

(4) CARF

XAS

HootSuite

(4) CARF

(1) Injecting

attack payload
(2) Loadingattack payload

(3) Propagating

Figure 3. A CARF worm against social networks in HootSuite

Vulnerable mash-up apps such as HootSuite can be
viewed as a base for attackers to launch XAS worms and
collect private data from multiple social networks. Since
these worms utilize the API features of the mash-up apps,
we call them CARF (Cross-API Request Forgery) worms.
A typical CARF worm attack against HootSuite is illustrated
in Figure 3. The steps of the attack are depicted as follows:

Step 1: The attacker injects the worm payload into
Facebook.
Step 2: The payload is loaded into HootSuite from the
victim’s Facebook via Event or Group API when the victim

browses his / her social data in HootSuite. Then, the worm
payload will be executed.
Step 3: The worm injects its payload into the victim’s
Facebook page.
Step 4: The worm payload sends requests to all the
integrated social networks to steal the victim’s social secrets.
Step 5: The worm payload sends stolen secrets to the
attacker.

B. Interconnected Services

Some third-party applications play a part in

interconnecting social networks and other services (e.g. mail

services) to become an interrelated eco-system. The

interconnection is often done in two styles. The first is to

provide features from social networks to other services. The

second is to provide stream synchronization of one social

media with another.

 Webmail and gadget services

As displayed in Figure 4, malicious JS code is previously

injected into a feed’s Description field on the attacker’s

Facebook wall. When the victim opens an email from or to

the attacker, Rapportive will load the evil code via Facebook

APIs. The code subsequently launches a CSRF attack in the

context of the victim’s session to control his or her Gmail

account. Although Gmail itself is secure enough, the XAS

vulnerability introduced by third-party applications can

compromise it.

Figure 4. An XAS attack in Gmail

Similar to Rapportive, many gadgets are developed to

deliver news feeds from social networks to iGoogle or Gmail.

We probed eight gadgets for potential XAS: three for

Facebook, three for Twitter, one for Flickr, and one for

Renren. Surprisingly, except for one Facebook gadget (link:

http://facebookiggadget.appspot.com/), the others were all

vulnerable to XAS owing to their direct display of the

insecure data from social networks. By abusing the social

features, the unique characteristics of XAS or the implicit

trust between users and Google services, attackers can

launch malicious attacks (e.g. phishing and theft of private

data) stealthily via XAS flaws in these vulnerable gadgets

[11]. The only difference from the case of Rapportive is that

the affected party is third-party gadgets.

 Stream synchronization services

There are many stream synchronization services such as

ifttt.com, facebook.involver.com and tarpipe.com. For

example, photo streams in Flickr can be synchronized to

Facebook via a third-party online application named “Flickr

for Pages” (facebook.involver.com). We found XAS

vulnerability in this application framed in Facebook.

Attackers can exploit the XAS flaws to conduct phishing

attacks, spoofing for malware attacks [12], or sharing photos

abusively. API-based applications not only provide a new

channel to leak social media data, but also breach the firm

safeguards established for Internet services.

C. Desktop Applications

Social APIs also have led to the bloom of third-party
desktop applications. Pokki is a desktop application running
Web extensions on Windows. It’s built on Chromium
sandboxing, WebKit and V8 JavaScript engine. Insecure
APIs lead to XAS in Pokki’s extensions for Facebook,
Tumblr, Gmail, Instangram, etc.

Figure 5. XAS attack on Pokki’s extension for Tumblr

Figure 5 depicts a XAS attack on Pokki’s extension for
Tumblr. The attacker first injects malicious code via
Tumblr’s webpage. Then the XAS vulnerability in Pokki’s
extension for Tumblr invokes the execution of the code. For
all extensions in Pokki, cross-origin XMLHttpRequest is
supported and LocalStorage is used to store data retrieved by
extensions. As a result, although sandbox is used, attackers
can still steal the victim’s privacy data even when the
victim’s system cannot be accessed.

D. Third-party Mobile Clients

More and more third-party mobile applications are
designed for social networks while mobile devices are
becoming smarter and more prevailing. We probed nine
Twitter mobile Web applications including its official mobile
version, and found six of them as listed in TABLE I were
vulnerable to XAS caused by directly displaying the tainted
data from Twitter’s Search or List APIs.

TABLE I. NINE TWITTER MOBILE WEB APPLICATIONS

Vulnerable Not Vulnerable

m.slandr.net

dabr.co.uk

m.tweete.net

twetmob.com

itweet.net

www.tweetree.com

mobile.twitter.com

twittme.mobi

www.twittermobile.net

A recent report [13] has highlighted the growing use of
mobile devices to connect with social networks and that it’s
becoming a preferred method for cyber criminals to spread
malware. These vulnerable third-party mobile social apps
will likely be opportunities to boost the trend.

E. Social Networks

XAS attacks also occur within social networks
themselves. In total, there are at least four potential situations
to lead to XAS vulnerabilities in the context of social
networks. We analyze them one by one hereafter.

 Insecure internal APIs
Several social networks employ internal APIs to

contribute to their own functionality. Foursquare loads user
data to Web pages on the server side via JSONP (JSON
Padding) generated by internal APIs. The common ground
for them is that user-input data is HTML-escaped on the
client side. We refer to this API invoking as static loading of
API responses. The scripts quoted in the JSONP are treated
as valid code to be executed due to error-tolerant HTML
document parsing of browsers. Therefore, Foursquare
suffers from XAS since tainted user data is encapsulated in
the JSONP directly. A static JSONP loading of API
responses is like:

<script type="text/javascript">//<![CDATA[

fourSq.tiplists.setupHistoryPageListControls
([{"id":"v4e90699293adc15b620c2632","todo":false,"done":true,"visit
edCount":1,"venue":
{"id":"4e90699293adc15b620c2632","name":"{name}","contact":
{},"location":{"address":"<script>alert(document.domain);</script>",
"crossStreet":"<script>alert(document.domain);</script>",
"lat":44.3,"lng":37.2,"city... ...}}]);

In this case, social networks suffer for their own
vulnerable APIs. These vulnerabilities are unequivocally
harmful to social networks without any mitigating factors.

 Less safeguards taken for APIs than Web UI
So far, less attention has been paid to the security of

RESTful APIs than web interfaces. According to our
examination, Tumblr and Renren were vulnerable to XAS.
Testing on Tumblr APIs, we found that two functional APIs
Text and Video had XAS vulnerabilities. However, posting
text or videos via Web interfaces was not vulnerable. For
another example, user-input data from blog.addBlog API in
Renren was displayed without HTML-escaping, resulting in
XAS vulnerability in Renren. Similarly, posting blogs from
the Web interface caused no problem.

Besides the above cases, microblog services t.163.com
and t.sohu.com are exposed to XAS due to missing HTML-
escaping for certain APIs: statuses/retweet/:id in t.163.com
and direct_messages/new and account/update_profile in
t.sohu.com. These flaws can only be exploited via flawed
APIs rather than corresponding web interfaces.

As we see, these cases indicate that social networks make
inconsistent treatments on user-input data from different
channels: RESTful APIs and traditional Web interfaces.
RESTful APIs turn out to be weaker on security than Web
interfaces.

 More controllable fields
While invoking APIs, third-party applications may

manipulate some input fields which do not exist in traditional
Web interfaces of social networks. As a result, these input
fields look like overlooked areas of security during
development. We noted that the message field in Renren API
-checkins.checkin - could be manipulated to bring about

XAS. The XAS payload was executed in the context of
Renren profile and home page.

Figure 6. XAS attack in t.qq.com

Figure 6 describes a XAS attack on t.qq.com. The upper
part enclosed with a red pane is a post injected with XAS
payload in the title field via API api/t/add_music. When the
victim clicks the Music link, the payload will be executed
stealthily. We gave a POC in the lower part enclosed with a
red pane, writing “TencentWeibo Hacked!” and highlighting
it.

 Incorrect API response
Generally, a legal API response is supposed to be in the

format of JSON or XML. However, several exceptions exist
in actual deployment. t.sohu.com, for example, returned their
API response in a HTML format. In the case of t.qq.com, it
did return a JSON-formatted API response to its users but
the Content-Type header was set as “text/html” instead of
“application/json”. As a consequence, an evil third-party
application could add unsanitized code into the responses of
t.sohu.com and t.qq.com based on OAuth protocol, and the
malicious code would be then parsed in the victim’s browser
as HTML files.

Attacker Victim (SNS) Social Network Exploiting App

(4)Payload reflected

XAS

(5)Stealing secret

(2)Redirecting to the vulnerable API

(1)Authorization process

(3) Invoking the API

 (with attack payload)

Figure 7. An XAS attack based on OAuth in social networks

The complete attacking process is depicted in Figure 7. A
third-party application (exploiting application) is needed to
trick victims to complete the OAuth process for a successful
XAS exploit. In this type of XAS, a redirected request to
vulnerable API is needed. APIs with incorrect response
format include api/statuses/home_timeline, api/private/recv
and api/private/send in both t.sohu.com and t.qq.com.

F. The Features of XAS

Based on the instances illustrated, we concluded the
following new features and potential exploiting conditions
for XAS in social ecosystems:

 Malicious code transmitted through RESTful APIs. In
order to exploit XAS vulnerabilities, malicious code is
transmitted via RESTful APIs either from social networks to
third-party applications or in reverse. As a result, it’s more
complicated to launch XAS than traditional XSS.

 Inherited social relationship. All the XAS
vulnerabilities can be exploited based on the social
relationship of users in social networks, regardless in social
networks or third-party applications. In third-party apps,
social relationship is inherited from connected social
networks and can be harnessed by attackers.

 Not limited by same-origin policy (SOP). Social
networks are able to provide APIs to third-party applications
without same-origin limitation. This is because invoking
APIs is generally accomplished in two modes: making
requests on (1) the server side rather than the client side or (2)
the client side with Access-Control-Allow-Origin
mechanism. Hence, XAS attacks in third-party apps can
affect connected social networks directly although most
websites are still protected by SOP.

 Affect multiple parties. APIs interconnect multiple
parties and SOP does not exist between these parties.
Therefore, XAS in third-party applications, especially mash-
ups, is more destructive and can affect multiple parties
including third-party applications and integrated social
networks.

III. XAS DETECTION TOOL

To systematically analyze the security implications of
XAS flaws, we designed a tool automatically detecting XSS
vulnerabilities in social APIs. In this section, we present the
overview of our tool and describe challenges in our
implementation.

A. Design Overview

Almost all social network APIs are RESTful. A RESTful
API is represented by a unique URI. JSON and XML are the
principal data formats of social API responses. These
formats are more normalized than HTML. Generally, the
supported operations of social API include four standard
HTTP methods: POST, GET, PUT and DELETE.

TABLE II. AN EXAMPLE OF NORMALIZED API ENTRIES

Auth_Method = OAuth2.0 CallMethod = POST
API_Provider = dev.facebook.com ParamsCount = 1
API_Key = 191742207560268 Param0 = msg
API_Secret = af6ddd003cc0e2de697ace0406d4dfc8 Type0 = String
Response_Format = JSON Initial_value0 = Test
Scope = publish_stream, create_event, … DoTest0 = true
Authorization_URI = https://www.facebook.com/dialog/oauth
Access_Token_URI= https://graph.facebook.com/oauth/access/token
API_ URI=https://graph.facebook.com/***/comments?message=Test

We implemented a tool to assist us in identifying API

flaws. The architecture of our XAS detection tool is
portrayed in Figure 8. Our tool is composed of two units:
configuration and detection. The goal of the configuration
unit is to convert raw API entries into normalized API
entries. Raw API entries only contain API URI and invoking
methods. They are manually extracted from API documents

in platforms of social networks. An example of normalized
API entries is given in TABLE II. The normalized API
entries contain all the indispensable information used for
detection unit.

In the detection unit, identification of API flaws is based
on regular expression matching. The detection unit first
injects test vectors which are valid JavaScript code to the
API parameter when invoking configured Web APIs. When
the responses are received, the tool analyzes whether the
responses contain tainted user-input data or are ill-formed.

Open Platforms of
Social Networks

Configuration Unit

API Parameter
Configuring

Basic Parameter
Configuring

Detection Unit

Open Authorization (OAuth)

Identifying API Flaws

Normalized
API Lists

Raw API
Lists

HTTP

Extracting APIs from
open documents

Figure 8. Architecture overview of our tool identifying Web API flaws

Our tool identified tainted API responses according to
the following three rules:

(1) If the API response contains the JavaScript code we
inject as API parameters, the response will be identified
as tainted. (The JavaScript code we inject into the
parameters of the API request is called test vector. The
code is chosen randomly from our previously created file
containing XSS testing vectors.) In other words, if the
test vectors occur in the API response, the response is
tainted.
(2) If the API response contains simple-escaped test
vectors in which the character “/” is converted into “\/”
and “"” into “\"”, the response is identified as tainted, too.
This is because such escaping doesn’t interfere with
those responses which could cause potential XAS in
third-party applications. For instance, injected vector
“<script>alert(/xas/);</script>” is escaped into
“<script>alert(\/xas\/);<\/script>” in an API response, and
the escaped vector will be unescaped automatically after
that API response is parsed in third-party applications.
(3) If the API response contains the Unicoded or the
Hex-encoded form of the test vectors like
“\u003Cscript\u003E alert(131425);
\u003C\/script\u003E” and “\x3c iframe onload=alert
(/xas/)>\x3e”, the response is also identified as tainted.
Although Unicoded or Hex-encoded test vectors cannot
be executed directly, the tainted API response can still
potentially affect third-party applications since the
encoded JavaScript code will be decoded implicitly when
third-party applications parse the API response.
Our tool also identified ill-formed API responses,

containing two aspects: (1) Content-Type Header is
incorrectly configured, e.g. “Content-Type: text/html”; (2)

the response is in HTML format rather than expected JSON
or XML.

B. Implementation Challenges

When identifying the flaws of these social APIs, we

needed to address the following challenges in the

implementation of our fuzzing tool:

 URI path parameters

The supported types of parameters in social APIs are GET

query parameters, POST parameters and URI path

parameters (e.g. “:id” is a parameter in this Twitter API:

http://api.twitter.com/1 /statuses/:id/retweeted_by/ids.json).

URI path parameters in the APIs of different social networks

have diverse styles. We designed a regular expression

“(/:\w+(-\w+)*)[/|\?|\.]” to match all the potential URI path

parameters based on our analysis over all the tested social

APIs.

 Rate limiting
Most social networks only allow third-party applications

to invoke APIs for limited times in a specific interval, and it
is even stricter before applications are verified formally.

In our study, regular expressions of HTML-escaped
vectors are used to identify whether injected test vectors in
any API response are sanitized. If so, our tool would skip the
current API parameter and go to the next. This mechanism is
effective to control the rate of API calls.

We configured tested APIs from each social network
before detecting the API flaws. For each configured API,
there are two levels: for each parameter of API, (1) API_URI,
Call_Method and Parameter_Count are the first level, (2)
and the four-tuple {Namei, Typei, Initial_valuei, DoTesti} is
the second level. DoTesti is the test flag marking whether
parameters are tested or not. The possible values for test
flags are true or false. This configuration allows us to avoid
unnecessary API calls, e.g. “type” usually represents the
response type of APIs and makes no sense in our experiment.

In addition, the following principles are completed in the
configuration step of tested APIs to assure that all initial
values of API parameters are valid:

(1) Assign a random value for parameters according to
the marked type of API documents, and check
whether these parameters are independent and free
from any other constraints.

(2) Generate valid values for dependent parameters by
calling proper independent APIs. Dependent
parameters are generated by social networks, for
example, the ID of a blog in Facebook is dependent
on Facebook system.

According to the principles, valid API calls can be
guaranteed to a great extent and the rate of API invoking can
be kept under the limitation.

 Multiple OAuth versions
Authentication and authorization mechanisms are

adopted to protect social networks and their users’ security
and privacy. OAuth 1.0a [15], OAuth 1.0 [16] and OAuth
2.0 [17] are the principal adopted protocols. Social networks
may deploy different versions of OAuth. Hence, we needed

to integrate all three OAuth protocols in our tool to test APIs
validly.

IV. RESULTS AND ANALYSIS

In our experiment, we tested APIs in the following
eleven popular social networks: Twitter, Facebook,
Foursquare, LinkedIn, Flickr, Tumblr, Renren, Weibo,
t.qq.com, t.163.com and t.sohu.com. The social networks
were selected since they had millions of registered users and
provided a sample for different categories of social network
services (e.g. friendship, location-based service, etc.). In this
section, we summarized the results of APIs’ security
properties testing and provided evidence to illustrate the
prevalence of XAS. We also analyzed the root causes of
XAS.

A. Results

Commonly, there are two ways to escape user inputs.
One is to escape user inputs when they are sent to the server
and then stored in sanitized form in the database. The other
is to store user inputs as they are and to escape them when
they are displayed. The latter must be done by third-party
websites. We mark these two HTML-escaping methods as
Scheme I and Scheme II respectively for convenience.

If either scheme is deployed, the attack of XAS will be
prevented. However, since the HTML-escaping tasks of the
two schemes are undertaken by different parties (i.e. the
social network and the third-party application separately), the
inconsistency in handling the escaping often occurs and
leads to potential XAS attacks on third-party applications.
For instance, Twitter deployed Scheme I to most of its APIs
and Scheme II to its Search and List APIs. If a third-party
application using Twitter did not deploy Scheme II, user
inputs via Search or List APIs would not be escaped.

Figure 9. The ratios for adoped HTML-escape schemes in tested APIs

The number of sites adopting different HTML-escape
schemes for tested APIs in terms of JSON response format is
provided in Figure 9. Twitter, Flickr, t.qq.com and t.163.com
employ inconsistent HTML-escape schemes in the same
response format and Scheme I is the principal one. Facebook,
Foursquare, LinkedIn, Tumblr, Renren and Weibo only
employ Scheme II and thus all their APIs respond the same
as user-input data without HTML-escape. Only t.sohu.com
solely adopts Scheme I. Interestingly, some social networks
deploy inconsistent HTML-escape schemes for different API

response format, and e.g. Facebook and Renren adopts
Scheme I for API responses in XML while adopting Scheme
II for those in JSON.

On one hand, the inconsistent deployment of Scheme I
and Scheme II leads to XAS attacks on third-party
applications. On the other hand, incorrect API responses as
mentioned in Section II.E may cause XAS attacks on Social
Network itself. XAS attacks on both social networks and
third-party apps will affect the security and privacy of users
in social networks.

TABLE III. API FLAWS AND VALID HTML TAGS DISCOVERED

 Twitter Facebook Foursquare LinkedIn t.qq.com

The

API

Flaws

ISSRF √ × × × √

ISDRF × √ - × ×

ICT √ √ × × √

ICF √ × × × ×

 VHT <p>, <a> <p> - - <a>

 Tumblr Renren Weibo Flickr
t.163.c

om

t.sohu.co

m

The

API

Flaws

ISSRF × √ × √ √ ×

ISDRF - √ √ × × ×

ICT × √ × √ √ √

ICF × × × × √ √

 VHT - <p> - <a> <a> -

ISSRF: Inconsistent HTML-escape Schemes for the Same Response

Format ISDRF: Inconsistent HTML-escape Schemes for Different Response

Format (JSON and XML). ICT: Incorrect Content-Type in API responses.

ICF: Incorrect Content Format in API responses. VHT: Valid HTML Tags
in normal API responses (VHT is not a flaw but a feature of tested APIs).

“√” denotes the corresponding flaw exists. “×” denotes the

corresponding flaw doesn’t exist. “-” for the API flaws denote XML

response format is not supported. “-” for VHT denotes no valid HTML

tags exist in the normal API responses.

With the results of our experiment, we summarized the

flaws relating to all the tested APIs in TABLE III. We
divided all the API flaws we tested into four categories,
namely, Inconsistent HTML-escape Schemes for the Same
Response Format (ISSRF), Inconsistent HTML-escape
Schemes for Different Response Format (ISDRF), Incorrect
Content-Type in API responses (ICT), and Incorrect Content
Format in API responses (ICF). The abbreviations are
explained below TABLE III. Flaws of ISSRF and ISDRF are
caused by the inconsistent deployment of Scheme I and
Scheme II. Meanwhile, flaws of ICT and ICF are caused by
incorrect API responses.

The statistics in TABLE III indicate that all or part of
APIs in all tested social networks respond with tainted data
without HTML-escaping. Furthermore, certain APIs in
Twitter, t.163.com and t.sohu.com respond in HTML format
when an invalid parameter is provided. Fortunately, the APIs
in Twitter and t.163.com are not vulnerable to XAS because
API responses in Twitter don’t include any user-input data
and API responses in t.163.com encapsulate the HTML-
escaped user-input data. APIs provided by Facebook, Twitter,
Flickr, Renren, t.qq.com, t.163com, t.sohu.com are all
configured with incorrect Content-Type, including text/html,
text/javascript and text/plain.

In addition, we found that all the tested APIs in the social
networks allowed certain simple valid HTML tags in their
normal responses. In our statistics, only two HTML tags

were used: <a> and <p>. In other words, all third-party
applications we tested added <a> and <p> tags to their
HTML responses to users.

B. Prevalence of XAS

The analysis clearly indicates that a new challenge has
arisen for online social eco-systems: APIs have extended the
attack surface of social networks to third-party applications,
and the security and privacy of users in social networks face
threats from API channels due to poor design,
implementation and invoking of Web APIs. In order to
confirm the prevalence of XAS vulnerabilities in real world,
we examined 143 web-based applications for the eleven
tested social networks. These examined applications all met
a condition that users’ data in social networks was stored or
retrieved and displayed on them via APIs.

TABLE IV. THE RATIOS OF XAS FLAWS DUE TO DIFFERENT CAUSES IN

EXAMINED APPLICATIONS

 Twitter Facebook Foursquare LinkedIn t.qq.com

Scheme I - - - - 1/15

Scheme II 13/21 17/19 7/8 8/9 9/15

API

Response
- - - - 1/15

 Tumblr Renren Weibo Flickr
t.163.c

om

t.sohu.

com

Scheme I - - - - 1/11 4/11

Scheme II 3/5 11/12 17/21 9/11 5/11 -

API

Response
- - - - - 1/11

“-” denotes the website does not contain corresponding flaws of a

certain cause. “A/B” denotes the ratio of XAS flaws due to a certain

cause where “B” represents the total number of third-party applications

we checked in the website and “A” represents the number of third-party

applications containing XAS flaws of a certain cause.

As shown in TABLE IV, 107 examined applications are

vulnerable to XAS. In t.qq.com, we checked fifteen third-
party applications in total and one of them were vulnerable
to XAS because t.qq.com stored user data without HTML-
escape (Scheme I was not deployed to some APIs). Nine out
of fifteen were found vulnerable to XAS since these nine
third-party applications did not escape user inputs on some
APIs (Scheme II was not deployed to some APIs). Another
third-party application for t.qq.com could be leveraged to
cause XAS due to the incorrect API response.

C. Analysis

From the results of our experiment, we argue that it’s
better for social networks than third parties to take principal
responsibility for XAS mitigation. Users’ data in social
networks are shared via APIs to numerous third-party
applications and any tainted data via APIs, from social
networks to third-party applications or in reverse, is apt to
cause XAS vulnerabilities if missing sanitization in any party.
Scheme I and Scheme II are the common two ways to escape
user inputs. As shown in TABLE IV, when only Scheme I is
deployed, XAS is less likely to occur. (Theoretically, when
Scheme I is deployed, XAS will be prevented. However, in
the actual deployment of Scheme I, social networks often
miss escaping a number of APIs and thus XAS still occurs.)
On the contrary, when only Scheme II is deployed, we

detected XAS vulnerabilities in the majority of our examined
third-party applications. Consequently, the deployment of
Scheme I makes a better contribution in blocking XAS than
the deployment of Scheme II. In other words, if social
networks deploy Scheme I for all their APIs in any response
format, it is expected that XAS flaws will be reduced
significantly, since the sanitized data is ready for all the
third-party developers and they can dedicate themselves to
the features of their apps.

Actually, APIs in social networks which employ Scheme
II are still likely to cause XAS flaws in third-party
applications even when developers pay attention to sanitizing
of API insecure responses. There are four major reasons for
these XAS flaws:

 Data in some API responses may include diversified
fields which comprise a single post. These fields are
generally a share post, an album feed, etc. When
sanitizing these fields separately, third-party developers
are apt to overlook certain fields. Two Facebook
iGoogle Gadgets and Gmail are exposed to XAS flaws
mainly due to these insecure fields.

 In third-party applications, some required fields (e.g.
user name and group name in social networks) are
likely to be treated as credible items without any
sanitization.

 In practice, some social networks embed certain HTML
tags into API responses for decorating data simply,
such as <a>. However, this makes third-party
developers confused when sanitizing the API responses.

 Social networks make inconsistent treatments on user-
input data from different channels: APIs and traditional
Web interfaces, such as the cases illustrated in the
second case of Section II.E.

In the cases of inconsistent HTML-escape schemes,
another two reasons also contribute to XAS vulnerabilities:

 As shown in Figure 9, Scheme II is always considered
as an additional sanitization method by social networks.
This implies that only few APIs respond with tainted
data so that third-party developers are prone to consider
all the responses from APIs as being sanitized.

 Even when user inputs are carefully sanitized at input
time, social networks can suffer from XAS attacks
because API is also an input channel where HTML-
escaping sanitization at input time is likely to be missed.

Based on the above findings and analysis, we were
convinced that little attention had been paid to XAS
vulnerabilities and more threats were unearthed in the wild.

V. MTIGATION MEASURES

As an extended version of XSS, it is more complicated to
mitigate XAS than XSS. Traditional XSS defenses based on
browser-web application collaboration, such as
BLUEPRINT [19], DSI [20] and Noncespaces [21], were
only suitable for the first case in Section II.E, but not
effective for other types of XAS attacks because more than
one part was affected. Besides, some server-side schemes
[22] [23] [24] may not be feasible to mitigate XAS because

there were too many third-party apps for popular social
networks. There were also some client-side solutions, such
as Noxes [25], Spectator [26] and MPP [33], which could
contribute to detecting XAS attacks in client-side. In this
section, we recommended some preliminary measures to
mitigate XAS in social networks and third-party applications.

A. For Social Networks

The following rules provide suggestion for developers of
Web APIs to prevent XAS attacks:

(1) All the API responses should be set with proper
Content-Type headers: “application/json;charset=utf-8” for
JSON responses and “text/xml;charset=utf-8” for XML
responses.

(2) All the API responses should have consistent data
format whatever user-input data is provided to API
parameters, rather than responses in HTML format for
invalid API invoking.

(3) User-input data from APIs should be sanitized in the
same way as data from Web UI.

(4) Data should be loaded dynamically on the client side
rather than statically on the server side via JSONP if APIs
are used in social networks.

(5) All the user-input data of all the APIs should be
handled with Scheme I regardless of the API response
formats if possible.

B. For Third-Party App Developers

HTML-escape of API responses appears to be subtle in
third-party applications. However, according to our statistics
in TABLE III only two simple HTML tags <a> and <p>
were used in responses of some APIs. This means that the
application developers can apply a white list to replace
dangerous characters with HTML-escaped ones before
parsing API responses. The process of our mitigation
measure contains two steps:

(1) The characters “<”, “>” and their valid encoding
expressions (including the Hex-encoded and Unicoded ones)
in API responses are all HTML-escaped.

(2) The tags in the white list are once again unescaped to
meet the intention of normal API responses.

VI. RELATED WORK

XSS Analysis. Some research on XSS focused on the
sanitization [27] in Web application frameworks and the
trend [28] of XSS. In [27], the authors evaluated the XSS
abstractions in fourteen major commercially-used Web
frameworks and extracted the requirements of XSS
sanitization primitives. Moreover, Ref. [29] [30] [31] were
dedicated to discovering XSS vulnerabilities based on
identifying faulty sanitization procedures and untrusted data.

XSS worms in social networks are another point worth
studying. Analysis [32] and defense [33] related works have
been done over XSS worms. However, there has been no
deep discussion on the security implications associated with
XSS based on Web APIs of social networks.

Web APIs Analysis. APIs are considered powerful
agents for expanding functionalities of social networks.

Hence, APIs and third-party applications based on them are
concerned as another area requiring privacy protection. In
2008, Adrienne Felt et al. [35] addressed the privacy risks
associated with social network APIs by presenting a privacy-
by-proxy design for preserving privacy. In 2009, Kapil
Singh et al. [36] presented a privacy control framework to
control what untrusted third-party applications could do with
the information they received. In addition, Rui Wang et al.
[37] found many serious logic flaws in leading merchant
websites that accepted payments through third-party cashiers.
Those flaws resulted from the complexity for an application
to coordinate its internal states with third-party services via
APIs and the Web client across the Internet. InteGuard [39]
offered the first security protection against logic flaws in
social API, instead of protection against XAS. All the APIs
related works didn’t focus on XAS.

VII. CONCLUSIONS

In this paper, we presented the first comprehensive
analysis on XSS vulnerabilities exploited via Cross-API
Scripting (XAS) and discussed their difference to traditional
XSS attacks. We demonstrated several XAS cases in
different contexts and illustrated new critical threats and
unexpected exploiting opportunities for both server security
and user privacy in social eco-systems.

Furthermore, we designed a tool to assist us in analyzing
the design and implementation flaws of RESTful APIs. In
our experiment, we chose APIs in eleven popular social
networks as well as 143 third-party apps as our test objects.
The results showed that all the social networks suffer from
XAS flaws. According to our findings, we summarized XAS
causes in depth. Finally, we provided preliminary measures
to mitigate XAS for both social networks and third-party
applications.

The interaction among diversified Internet services has
become more and more frequent due to use of RESTful APIs
in social networks. API flaws have brought about new
security challenges to both social networks and other Internet
services. Our contribution to analysis over XAS is limited
and more concerns need to focus on it in the future.

ACKNOWLEDGEMENTS

We thank Charles Reis and the anonymous reviewers for
their suggestions. This work was supported by the National
Natural Science Foundation of China (Grant No. 61272481).

REFERENCES

[1] Roy Thomas Fielding. Architectural Styles and the Design of

Network-based Software Architectures. Doctoral dissertation,

University of California, Irvine, 2000.

[2] Facebook. News on Facebook Platform, 2013.

http://newsroom.fb.com/content/default.aspx?NewsAreaId=137.

[3] Ryan Naraine. Twitter API ripe for abuse by Web worms, 2009.

http://www.zdnet.com/blog/security/twitter-api-ripe-for-abuse-by-

web-worms/3451.

[4] Softpedia.com News. Facebook Mobile API XSS Vulnerability Used

To Launch Spam Worm, 2011. http://cyberinsecure.com/facebook-

mobile-api-xss-vulnerability-used-to-launch-spam-worm/.

[5] Amol Naik. Exploitation of “Self-Only” Cross-Site Scripting in

Google Code, 2011. http://www.exploit-db.com/ download_pdf

/17017/.

[6] Hristo Bojinov, Elie Bursztein and Dan Boneh. XCS: Cross Channel

Scripting and its Impact on Web Applications. In Proceedings of the

16th ACM Conference on Computer and Communications Security

(CCS), 2009.

[7] Adam Barth, Adrienne Porter Felt, Prateek Saxena and Aaron

Boodman. Protecting Browsers from Extension Vulnerabilities. In

Proceedings of the Network and Distributed System Security

Symposium (NDSS), 2010.

[8] Opera. Opera Extensions: Quick Documentation Overview, 2010.

http://dev.opera.com/articles/view/opera-extensions-quick-

documentation-overview/.

[9] Taras Ivashchenko. Web Application Vulnerabilities in Context of

Browser Extensions, 2011. http://oxdef.info/papers/ext/chrome.html.

[10] Lei Liu, Xinwen Zhang, Guanhua Yan and Songqing Chen. Chrome

Extensions: Threat Analysis and Countermeasures. In Proceedings of

the Network and Distributed System Security Symposium (NDSS),

2012.

[11] Robert Hansen and Tom Stracener. Xploiting Google Gadgets:

Gmalware and Beyond. In Black Hat 2008 USA, 2008.

[12] Jason Adriaan. Why Facebook should Police their API, 2011.

http://www.bandwidthblog.com/2011/05/05/why-facebook-should-

police-their-api/.

[13] AVG Community. Threat Report Q1 2012.

http://www.avg.com.au/files/media/avg_threat_report_2012-q1.pdf.

[14] Emanuele Gentili, Alessandro Scoscia and Emanuele Acri. Cross

Application Scripting. Milan Security Summit 2010.

[15] Mark Atwood, Dirk Balfanz and Darren Bounds, et al.. OAuth Core

1.0 Revision A, 2009. http://oauth.net/core /1.0a/.

[16] E. Hammer-Lahav. RFC 5849, The OAuth 1.0 Protocol, 2010. http://

tools.ietf.org/html/rfc5849.

[17] E. Hammer-Lahav. The OAuth 2.0 Authorization Protocol, 2011.

http:// tools.ietf.org/html/draft-ietf-oauth-v2-22.

[18] XSS (Cross Site Scripting) Cheat Sheet, 2011.

http://ha.ckers.org/xss.html.

[19] Mike Ter Louw, V.N. Venkatakrishnan. BLUEPRINT-Robust

Prevention of Cross-Site Scripting Attacks for Existing Browsers. In

Proceedings of the 30th IEEE Symposium on Security & Privacy,

2009.

[20] Yacin Nadji, Prateek Saxena and Dawn Song. Document Sructure

Integrity: A Robust Basis for Cross-Site Scripting Defense. In

Proceedings of the 16th Annual Network & Distributed System

Security Symposium (NDSS), San Diego, CA, USA, Feb. 2009.

[21] M. Van Gundy and H. Chen. Noncespaces: Using Randomization to

Enforce Information Flow Tracking and Thwart Cross-Site Scripting

Attacks. In Proceedings of the 16th Annual Network & Distributed

System Security Symposium (NDSS), San Diego, CA, USA, Feb. 2009.

[22] Prithvi Bisht, V.N. Venkatakrishnan. XSS-GUARD-Precise Dynamic

Prevention of Cross-site scripting attacks. In Proceedings of the 5th

Conference on Detection of Intrusions and Malware & Vulnerability

Assessment (DIMVA), 2008.

[23] Jin-Cherng Lin and Jan-Min Chen. The Automatic Defense

Mechanism for Malicious Injection Attack. In Proceedings of 7th

International Conference on Computer and Information Technology,

2007.

[24] Martin Johns, Bjorn Engelmann, and Joachim Posegga. XSSDS:

Server-Side Detection of Cross-Site Scripting Attacks. In

Proceedings of the 2008 Annual Computer Security Applications

Conference, 2008.

[25] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad

Jovanovic. Noxes: A Client-Side Solution for Mitigating Cross-Site

Scripting Attacks.In Proceedings of the 21st Annual ACM Symposium

on Applied Computing. New York, USA: ACM, 2006: 330-337.

[26] Benjamin Livshits, Weidong Cui. Spectator: Detection and

Containment of JavaScript Worms. In Proceedings of USENIX 2008

Annual Technical Conference on Annual Technical Conference.

Boston, USA: ACM, 2008: 335-348.

[27] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, et al. A

Systematic Analysis of XSS Sanitization in Web Application

Frameworks. In Proceedings of the 16th European Symposium on

Research in Computer Security (ESORICS), 2011.

[28] Theodoor Scholte, Davide Balzarotti and Engin Kirda. Quo Vadis? A

Study of the Evolution of Input Validation Vulnerabilities in Web

Applications, 2011. http://www.iseclab.org/papers/vuln_fcds.pdf.

[29] Balzarotti, D., Cova, M., Felmetsger, V., et al. Composing Static and

Dynamic Analysis to Validate Sanitization in Web Applications. In

Proceedings of the IEEE Symposium on Security and Privacy, 2008.

[30] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D..

A symbolic execution framework for javascript. In Proceedings of the

2010 IEEE Symposium on Security and Privacy, 2010.

[31] Saxena, P., Hanna, S., Poosankam, P., Song, D.: FLAX: Systematic

discovery of client-side validation vulnerabilities in rich Web

applications. In Proceedings of 17th Annual Network & Distributed

System Security Symposium, 2010.

[32] Mohammad Reza Faghani and Hossein Saidi. Social Networks’ XSS

Worms. In Proceedings of the International Conference on

Computational Science and Engineering, 2009.

[33] Fangqi Sun, Liang Xu, and Zhendong Su. Client-Side Detection of

XSS Worms by Monitoring Payload Propagation. In Proceedings of

the 14th European Conference on Research in Computer Security.

Saint-Malo, France: ACM, 2009: 539-554.

[34] Thomas, K., Grier, C., and Nicol, DM. unFriendly: Multi-Party

Privacy Risks in Social Networks. In Proceedings of the 10th

International Conference on Privacy Rnhancing Technologies, 2010,

Springer- Verlag, pp. 236–252.

[35] Adrienne Felt and David Evans. Privacy Protection for Social

network APIs. In Proceedings of the IEEE Web 2.0 Security and

Privacy Workshop (W2SP), 2008.

[36] Kapil Singh, Sumeer Bhola and Wenke Lee. xBook: Redesigning

Privacy Control in Social network Platforms. In Proceedings of the

18th USENIX Security Symposium, 2009.

[37] Rui Wang, Shuo Chen, XiaoFeng Wang, Shaz Qadeer. How to Shop
for Free Online: Security Analysis of Cashier-as-a-Service Based
Web Stores. In Proceedings of the 32nd IEEE Symposium on Security
& Privacy, 2011.

[38] Luyi Xing, Yangyi Chen, XiaoFeng Wang, Shuo Chen. InteGuard:
Toward Automatic Protection of Third-Party Web Service
Integrations. In Proceedings of 20th Annual Network & Distributed
System Security Symposium, 2013.

