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1 Introduction

Large market participants (LMPs) must often execute trades while keeping
their intentions secret. Sometimes secrecy is required before trades are completed
to prevent other traders from anticipating (and exploiting) the price impact of
their trades. This is known as “front-running”. In other cases, LMPs with pro-
prietary trading strategies wish to keep their positions secret even after trading
because their strategies and positions contain valuable information. LMPs in-
clude hedge funds, mutual funds, and other specialized market players.

However order information is leaked, or why it is sought, front-runners who
exploit the LMP’s order information extract value from markets at the expense
of the LMP. Thus, hedge funds and other firms take great pains to hide their
intentions, even generating “noise” trades to hide their intended positions from
other traders [2]. We present trading schemes that disguise an LMP’s intentions
and positions from any other entity, including the brokers that the LMP interacts
with.

Various studies [13, 12] have shown abnormal price behavior and significant
negative price impact from information leakage prior to a block trade execution.
Thorpe and Parkes [16, 17] discuss cryptographic and security research on ex-
changes and how information can be exploited in financial markets. But, existing
research generally proposes new infrastructures or protocols, for which adoption
is notoriously difficult. We take a simpler approach. Our specific contributions
are: (1) to propose a general model underlying the design of trading strategies
that leak no information, (2) to study major scenarios in the market and design
associated algorithms that require no changes to the existing trading infrastruc-
ture, and (3) to prove those algorithms leak no information in those scenarios.
These algorithms can serve as building blocks for more challenging real-world
scenarios beyond our present scope. Though our approach is algorithmic, we are
not concerned with volume-weighted algorithmic trading. See [4], [5] and [11] for
a review of the literature and for insights into the study of automated trading.

We next discuss existing trading infrastructure, define three types of adver-
saries, and present ways they can extract information from orders placed by the
LMP. In Section 3, we describe the model for information leakage and address
the needed properties for an efficient trading strategy. Section 4 introduces differ-
ent trading strategies that disguise the intention and holdings of the LMP from
exploiters. We evaluate their defensive performance against each of the three



types of “exploiters”. Given the available space, our presentation gives only the
basic ideas. Detailed mathematical explanations of various information leaks, as
well as theorem statements and proofs, can be found in the full paper [18].

2 Preliminaries

Existing trading infrastructure and exploiters
Brokers include brokers, dealers, and broker-dealers. Shares are units of

any security, including equities, bonds, currencies, or derivatives. One can long
or short any of the shortable securities represented through brokers. Each trans-
action is for a nonzero integer number of shares; although LMPs typically trade
in increments of at least 100 shares. When a trade is executed, the symbol and
quantity is publicly reported by the exchange. Typically, only the broker involved
in the trade knows the identity of the LMP and whether the LMP was the buyer
or seller. From weakest to strongest, the categories of exploiters are:

1. Curious Observers are able to see trades printed as they are executed and/or
the prices and sizes of orders (requested trades) as they are quoted. With
sufficient intelligence and experience, curious observers may be able to guess
the identity and intention of the LMP.

2. Individual Curious Brokers are able to see trade orders by the LMP before
they are executed. A corrupt or careless broker can leak the LMP’s intentions
for exploitation by broker insiders or external agents. Using multiple brokers,
the LMP can limit the information a single curious broker can extract.

3. Colluding Curious Brokers are able to see trade orders by the LMP and
can share their information with each other. If all brokers used by the LMP
are curious and collude, any benefits resulting from splitting trades across
different brokers would be lost. However, all brokers used by the LMP must
collude in order to yield complete knowledge.

In all our strategies the LMP places a set of orders for an asset d at one
or more brokers in order to yield a net purchase or sale of d. Using minimal
resources, we want to prevent reasonably capable exploiters from guessing the
net order. Strategies must also stay completely effective even when exploiters
are aware that the LMP is using them. We focus primarily on the following
scenarios:

– Multiple brokers with one trader (nB1T): There is only one trader repre-
sented in the market, the LMP. This trader can interact with many brokers.

– Single broker with multiple traders (1BmT): Only one broker handles trades,
for the LMP and possibly for other market participants.

– Multiple brokers with multiple traders (nBmT): Multiple traders and multiple
brokers can trade simultaneously, the most general scenario.

Two motivating trading strategies and why they leak information
To hide the net order we first consider a simple approach where the LMP



Stock Shares through Broker A Shares through Broker B Net LMP volume traded

ATK +500k −500k 0
SXL −300k +400k +100k

Table 1. An example of disguising true trading intentions using two brokers.

uses two brokers and places an order with each one so that neither broker indi-
vidually learns about the net order. This simple strategy still allows brokers to
extract some knowledge. For example in Table 1, Broker A observes that a large
ATK trade has gone through Broker B when Broker B prints the block trade
after execution. Broker A is not sure whether the LMP is involved in the trade
with Broker B, or the sign of the LMP’s trade through Broker B. But, A knows
that his large client has traded one of three net positions: 500k, 500k + 500k
= 1M, or 500k - 500k = 0. Similarly, broker A knows his client’s net trade for
SXL is 100k, -700k, or -300k shares. Because the number of possible cases is low,
Broker A can analyze each scenario and deduce the best exploitation strategy.
For example, a block trade price that is closer to the bid than to the offer is
more likely to be seller-initiated [10].

Another simple strategy is to use a single broker but multiple registered
traders. An LMP might create several registered trading agents that are not
known to be associated with the LMP but trade on its behalf. Thus we could
produce the exact same structure as Table 1 except that now instead of a single
trader using Broker A and Broker B, we have Trader A and Trader B, both
responsible for the same book of the LMP, trading through a single broker. The
broker cannot tell from what he sees if he is dealing with one LMP shopping
two blocks or two LMPs. This defends against collusion, unlike the two-broker
system. But, if the broker links the two pseudonymous traders together, then he
will know everything about their intentions going forward. We can combine the
two solutions so that each pseudonymous trader is splitting orders across multiple
brokers. This gains both the advantages and the overhead of both approaches.

3 Defining “information leak”

A rigorous definition of “information leak” is needed to understand both
the potential threats from exploitation for the LMP and the desired properties
of the trading strategies we are seeking. Here we provide just a sketch of such
definitions and refer the reader to the full paper [18]. We propose in this section
three types of information leak (or rather its absence) so as to formalize the
notion: zero information leak, ε-information leak, and full space strategy.

Our inspiration is Goldwasser et al.’s [9] notion zero knowledge. Roughly,
transmitting a piece of information is zero-knowledge if the universe of computa-
tions the recipient can perform does not change after receiving the information.

Definition 1. (Efficient algorithms for zero information leak) Let (Ω,F ,Pr) be
a probability space that represents all possible intended positions of an LMP and



the corresponding a priori distribution over these positions. Let ω be a random
sample from Ω. A trading algorithm A is said to be perfect-zero-knowledge with
respect to exploiters if the following two conditions hold:

– A can generate an execution plan in polynomial time (wrt a reasonable rep-
resentation of Ω) that ends with the LMP holding exactly ω shares.

– The exploiters are able to generate the distribution on the random variable
M on their own without seeing the signal ω.

A natural relaxation of zero information leak is to allow ε information leak.
The definition is essentially the same as this except that exploiters can generate a
random variable with a statistical difference1 fromM of at most ε. One may think
of the difference between perfect zero knowledge and statistical zero knowledge
[7] to understand the motivation for this relaxation in security definition.

Finally, we propose another way to ensure sufficient noise that an adversary
is unable to eliminate any possible values from Ω. Specifically we require that
Pr[ω |M = p] > 0 for all q and all ω such that Pr[ω] > 0.

Definition 2. (Efficient algorithms for full space strategy) Let (Ω,F ,Pr) be a
probability space that represents all possible intended positions of an LMP and
the corresponding prior over these positions. Wolog, assume that Pr[ω] > 0 for
any ω. Let ω be a random sample from Ω. A trading algorithm A is said to give
a full space strategy with respect to exploiters if the following two conditions
hold:

– A can generate an execution plan in polynomial time (w.r.t. a reasonable
representation of Ω) that ends with the LMP holding exactly ω shares.

– For any message M observed by the exploiters, Pr[ω |M ] > 0 for any ω ∈ Ω.

Although there are more refined notions of knowledge, e.g., that quantify
the exact number of bits leaked by a system [8], it is unclear how the amount
of leaked information relates to the financial cost of the information. A single
leaked bit information can have great value (the sign of an order issued by an
insider), but other times even a large information leak may be harmless.

4 Trading strategies

In this section. we design and analyze trading strategies to counter various
adversaries in various markets, and in progressively more challenging scenarios.

Multiple brokers with one trader (nB1T)
In order to defend against the three types of exploiters mentioned, we first

build our strategies using a single trader and n orders placed with n different
brokers. We call this the nB1T platform. We start with nB1T strategies for the
LMP against curious observers (the weakest). The following sign flipping game
is closely related to a trading strategy that leaks no information:

1 the statistical difference between two discrete random variables X and Y is defined
as

∑
i |Pr[X = i]− Pr[Y = i]|



Definition 3. (Sign Flipping Game) Given an interval [−q, q], find a set of
numbers T = {t1, t2, ..., tn} such that

∑
i ti = q and

(1) for any integer x ∈ [−q, q] ∩ Z there exists a set of numbers a1, a2, ..., an ∈
{−1, 1}, ti ∈ Z such that x = a1 · t1 + a2 · t2 + ...+ an · tn,
(2) The number n is a function of q. The value of n should be as small as possible.

Intuitively, for our nB1T strategy, n in the sign flipping game is the number
of brokers the LMP interacts with, and Ω = [−q, q] is the range of net position
the LMP wants to hold. By buying or selling volume ti with broker i, he can
construct every possible desired net trading volume, x, bounded between −q
and q. Unsigned traded volumes TL = {|aiti|} are printed among other traded
volumes W0 that do not involve the LMP. Observer identification of TL from
TL ∪W0 depends on market liquidity and other factors. An LMP is always able
to set a larger q at the cost of higher transaction costs. When the security
parameter q is fixed, a natural goal is to minimize the number of brokers used.

Now, suppose the LMP wishes to buy x ∈ [−q, q] shares (negative x notated
as selling) of a product. She would then be able to execute a sequence of orders
t1, t2, ..., tn to each of the brokers such that x = t1 + t2 + ...+ tn.

From an observer’s point of view, he only sees the sequence |t1|, |t2|, ..., |tn|.
If he does not have information of the LMP’s intention a priori, the observer can
only attempt to extract knowledge by going through all combinations of the signs
for all ti. Therefore, the LMP’s strategy should make the following set as large
as possible: S = {a1|t1|+ a2|t2|+ ...+ an|tn| : a1, ..., an ∈ {−1, 1}}. A necessary
requirement for a zero-information-leak trading strategy is that [−q, q] ⊆ S. Our
first goal is to construct T = {t1, t2, ..., tn} with minimum possible n such that
S fully covers [−q, q]. We can find a T with |T | = dlog2 qe + 2 that satisfies
the first requirement of the sign flipping game. In fact this is nearly optimal in
that any set T that satisfies the first requirement of the sign flipping game will
have |T | ≥ dlog2 qe+ 1. Further, there exist on the nB1T platform both efficient
strategies that leak zero information and full space strategies against curious
individual brokers. Proofs of these and related results are in the full paper [18].

The above strategies no longer work against curious individual brokers who
do not collude. For example, in our analysis [18] of efficient strategies for the
sign flipping game, curious broker bn, knowing q and seeing the sign an of an
order of size q/2, would know that the LMP is intending to buy from the range
[−q, 0] if an = −1 or [1, q] if an = 1. If instead we are less efficient, splitting
trades across more brokers, or less complete, making some of the intermediate
values unreachable, then we can prevent any one broker from knowing this much
about the LMP’s position. We will revisit this observation below.

There are also efficient ε-information-leak strategies for the curious bro-
ker market. When 1/ε is a constant or a polynomial in n, the strategy has a
Ω(poly(n)) expansion. See the full paper for rigorous statements and details.

Countering collusion
The above nB1T strategic platform does not yield strong defense against

curious colluding brokers: they can share knowledge with each other, including



the identity of the LMP and the sets ai and ti. If colluders know the total number
of brokers used and can find all of them, the value x can be trivially extracted.

Even if n is not known or not all n brokers collude, certain possible values
for x can be eliminated: Suppose, for example, the LMP uses two sets of brokers
R = {b1, b2, ..., bn} and R′ = {b′1, b′2, ..., b′n}, and that R∩R′ = ∅. Let B = R∪R′.
Suppose brokers Bc ⊂ B collude and share the information Tc ⊂ T and Ac ⊂ A
with each other, and let J be the set of indices corresponding to colluding brokers.
With enough colluders they can learn significant information. For example, if∑

j∈J ajtj >
∑

i6∈J |aiti|, colluding brokers would know that 1 ≤ x ≤ q.
To maximize the collusion resistance for a given n, it is clearly optimal to

split q uniformly across all n brokers. In other words, every broker is used to
trade q/n shares, either buying or selling. (Let some brokers be allowed to receive
no order when n is odd to hide a zero position.) This of course leaks n (easily
countered by randomization). Also, note that, even if n is known, the colluding
brokers Bc can never learn more than their proportion of the LMP’s position.

Single broker with multiple traders (1BmT)
To defend against broker collusion, we now examine utilizing m registered

trading agents (hereafter referred to as traders) by the LMP to create the desired
net position. The mathematics behind this 1BmT platform is very similar to the
nB1T strategy: Simply substitute m traders placing orders at one broker in place
of one trader at n brokers (where m = n). The same theorems hold for 1BmT
as for nB1T. In practice, the additional redundant positions held by the traders
add ongoing carrying and transaction costs. Also, changing brokers, especially
in a developed market, is generally easier than changing registered traders.

We next consider strategies against the curious individual broker, assuming
he is unable to identify the traders associated with the LMP. Suppose the LMP
places a set of orders {aktk} at the broker via m different traders. Let W0 =
{w1, w2, ..., wz} be the normal market interest seen by the broker; i.e., the set of
orders the broker receives from clients not affiliated with the LMP. The broker
thus sees total market interest Wt = {aktk} ∪ W0. In a very liquid market,
∃wi ∈ W0 3 |wi| = |aktk| for k = 1, ...,m. In this case, the broker cannot
identify any aktk from Wt, and the 1BmT platform does not leak information
to him. This is not so when liquidity is low and the broker knows the LMP is
employing 1BmT, however. For example, if there is no corresponding surge in
activity in the overall market or at other brokers, he can infer that all market
interests may originate from the LMP. Furthermore, if @wi ∈W0 3 |wi| = |aktk|
for some k, aktk can be identified as originating from the LMP. Thus, elements
in the set S can be eliminated, similar to the nB1T platform under collusion.
These potential information leaks on the 1BmT platform in an illiquid market
motivate our next strategy platform.

Multiple brokers with multiple traders (nBmT)
We can extend the above strategies by using n brokers (with index j) and

m traders (with index i), with the security parameter q remaining the same. In
general form, the LMP uses the set of traders {d1, d2, ...dm}, each of the trader
di places orders with a subset of brokers {bi1, bi2, ..., bin}. In total, a maximum



of n ·m orders are placed with a maximum of n ·m unique brokers. In practice,
some of the bij ’s are the same broker. One possibility is to split the net order
x that the LMP wishes to place into m different orders, {a1t1, a2t2, ...amtm},
for m traders as in the sign flipping game in Definition 3. Each trader di can
then place its individual single order aiti, with broker bi1. In this case, the total
number of orders placed is m = dlog2(q)e.

Curious observers cannot see the identities of the traders. Thus, nBmT
would look the same as nB1T to curious observers. So, as under nB1T, the
external observers cannot extract the trade order made by each trader, thus
cannot extract any knowledge about the LMP. Another variant (nBmT2) of this
strategy is to divide x into m sets of orders {a1t1, a2t2, ...amtm} for m traders
according to the sign flipping game. This is detailed in our full paper [18].

We now study the performance of nBmT against curious individual brokers.
Each trader di places its order aiti at a different broker. Let Wi be the set of
orders each broker bi1 receives from his clients not affiliated with the LMP, or
normal market activity. Broker bi1, sees total interest Wti = aiti ∪Wi, and he
cannot identify aiti from Wi since he he does not know that di is affiliated with
the LMP. This case is different from 1BmT because the market activities Wv at
other brokers bv1, v 6= i, are also increasing due to the activity of the LMP in
nBmT. Thus, even in a low liquidity environment, broker bi1 cannot determine
whether the increase in |Wti| is due to the activity of the LMP (the presence of
aiti), or due to increased general market volume (an increase in |Wi|).

Collusion does not benefit brokers if traders {di} are not revealed to be af-
filiated with the LMP. Colluding brokers do not know which orders are affiliated
with the LMP and therefore would act at worst as a single broker in the 1BmT
scenario. Thus, the nBmT strategy can guard against total broker collusion.

5 Conclusions and Future Work

We have examined the problem of placing orders while hiding intention. We
presented models of information leakage, and based on these models, we derived
three classes of strategies against curious observers, individual curious brokers,
and colluding curious brokers.

Though not our current focus, we believe transaction costs of these strategies
can sometimes be reasonable, such as when the notional share price is high
and/or the bid-offer is tight. We estimate these costs in [18]. We hope this class
of intention-disguised algorithmic trading can reduce the profitability of and
incentive for exploiting trade information, and alter market behavior as a whole.
To that end, understanding these costs, and reducing them, is important.
Open Questions and Future Research

We believe that either finding the lower bound of the brokers that need
to be used (in terms of f(n)) or finding a better strategy using fewer brokers
may be possible. Furthermore, the sign of a trade with any one broker may be
inferred by an observer using a trade direction algorithm such as that developed
by Ellis, Michaely and O’Hara [6] or Peterson and Sirri [15]. Our strategies are



unaffected, assuming that all trades are filled in one round. However, realistically,
such trades may take multiple rounds. On the other hand, in practice, there are
also often other market participants trading, thus creating cover noise against
identifying the trades initiated by the LMP. Even in an extremely illiquid market
with no other active trading participants, the orders being worked by brokers are
not synchronous in practice. Therefore, even if a broker with malicious intention
is able to deduce the signs of other brokers, he cannot front run confidently that
he has seen all the relevant trades initiated by the LMP.
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