
1

Hybrid Dataflow/von-Neumann Architectures
FAHIMEH YAZDANPANAH, CARLOS ALVAREZ-MARTINEZ,

DANIEL JIMENEZ-GONZALEZ, YOAV ETSION, Member, IEEE,

Abstract—General purpose hybrid dataflow/von-Neumann architectures are gaining attraction as effective parallel platforms. Although
different implementations differ in the way they merge the conceptually different computational models, they all follow similar principles:
harness the parallelism and data synchronization inherent to the dataflow model, yet maintain the programmability of the von-Neumann
model. In this paper, we classify hybrid dataflow/von-Neumann models with two different taxonomies: one based on the execution
model used for inter and intra block execution, and the other based on the integration level of both control and dataflow execution
models. The paper reviews the basic concepts of von-Neumann and dataflow computing models, highlights their inherent advantages
and limitations, and motivates the exploration of a synergistic hybrid computing model. Finally, we compare a representative set of
recent general purpose hybrid dataflow/von-Neumann architectures, discuss their different approaches, and explore the evolution of
these hybrid processors.

Index Terms—Dataflow Architectures, von-Neumann Model, Parallel Processors, Hybrid Systems, Scheduling and Task Partitioning

F

1 INTRODUCTION

POWER-EFFICIENCY is today one of the main challenges in
the computer architecture. One of the trends to overcome

this challenge is the use of homogeneous and heterogeneous
multi-core architectures that help to: (1) use more power-
efficient cores, and (2) exploit the existing parallelism on the
applications. This multi-core architectures, conventionally, are
based on the von-Neumann (traditional control flow) comput-
ing model, which is inherently sequential because of its use of
a program counter and an updateable memory. Nevertheless,
the von-Neumann computing model can exploit some limited
instruction level parallelism (ILP), data level parallelism (DLP),
and thread level parallelism (TLP). However, DLP and TLP
should be explicitly expressed by the programmer and/or
compiler, and ILP is limited by the sequential execution of the
instructions.

The dataflow model is a recurrent alternative to the von-
Neumann execution model. The dataflow computing model is
known to overcome the limitations of the traditional control
flow model by fully exploiting the parallelism inherent in
programs. In the dataflow model, the operands trigger the
execution of the operation to be performed on them. In other
words, dataflow architectures use the availability of data to
fetch instructions rather than the availability of instructions
to fetch data. Unlike the von-Neumann model, the dataflow
model is neither based on memory structures that require inher-
ent state transitions, nor does it depend on history sensitivity
and program counter to sequentially execute a program. These
properties allow the use of the model to represent maximum
concurrency to the finest granularity, and facilitate dependency
analysis among computations.

In this sense, the dataflow model holds the promise of an ele-
gant execution paradigm with the ability to exploit the inherent
parallelism available in applications. Furthermore, this model is

• F. Yazdanpanah, C. Alvarez-Martinez, and D. Jimenez-Gonzalez are with
the Universitat Politècnica de Catalunya (UPC) and Barcelona Supercom-
puting Center (BSC), Barcelona 08034, Spain.
E-mail: {fahimeh,calvarez,djimenez}@ac.upc.edu

• Y. Etsion is with the Electrical Engineering and Computer Science Depart-
ments, Technion – Israel Institute of Technology, Haifa 32000, Israel
E-mail: yetsion@tce.technion.ac.il

self-scheduled and more power-efficient than the control flow
model, which shows inefficiencies [42], [52], [57]. However,
although the benefits of the dataflow have been known for
a long time, this model has not yet been fully exploited for
commercial systems. In fact, implementations of the model
have failed to deliver the promised performance because the
dataflow model has some inefficiencies and limitations. One
significant problem of the dataflow model is its inability to
effectively manage data structures, memory organizations and
traditional programming languages.

Therefore, in order to increase the performance and power
efficiency of multi-core systems, those systems can be designed
as hybrid architectures that combine the dataflow and von-
Neumann models of computation. The convergence of the
dataflow and control flow execution models allows for the
incorporation of conventional control flow execution into the
dataflow approach, or exploiting a dataflow approach in von-
Neumann architectures. This alleviates the inefficiencies as-
sociated with both methods. Hybrid dataflow/von-Neumann
models, therefore, bind the power of the dataflow model for
exposing parallelism together with the execution efficiency of
the von-Neumann model in order to overcome the limitations
of both models. While different hybrid implementations differ
in the way they merge the two conceptually different execution
models, they all follow similar principles.

The objective of this paper is to provide a better under-
standing of the evolution of the hybrid models and their main
characteristics. We classify them with two taxonomies: one
based on the execution model used for inter and intra block
execution, and the other based on the integration level of
both the control flow and the dataflow models. Using those
taxonomies, we classify a representative set of recent (works
on 2000 year or later) general purpose hybrid models, not
presented on other dataflow surveys [101], [109], [110] to the
best of our knowledge, summarize their main features, and
compare their benefits and issues. However, in order to have
a complete historical point of view, we also describe some
of the previous main contributions on hybrid models. On the
other hand, to keep the length of this survey at bay, software
frameworks and specific purpose dataflow accelerators are left
beyond the scope of the paper.

The rest of the article is organized as follows: Section 2
discusses the von-Neumann (control flow) computing model.

0000–0000/00$00.00 c© 20xx IEEE

2

Section 3 overviews the dataflow computing model as well
as different dataflow architectures. Section 4 presents hybrid
dataflow/von-Neumann models, and classifies them with two
taxonomies. In Section 5, we describe some recent general
purpose hybrid dataflow/von-Neumann architectures. A com-
parison and discussion on main features of recent hybrid
architectures and their common trends are done in Section 6.
Finally, we conclude in Section 7.

2 THE VON-NEUMANN COMPUTING MODEL

The von-Neumann computation model [128] is the most com-
mon and commercially successful model to date. The main
characteristic of this model is a single separate storage structure
(the memory) that holds both program and data. Another
important characteristic is the transfer of control between
addressable instructions, using a program counter (PC). The
transfer is either implicit (auto-increment of PC) or through
explicit control instructions (jumps and branches, assignment to
PC). That is the reason the von-Neumann model is commonly
referred to as control flow model.

A key tenet of the model is the set of memory semantics
it provides in which loads and stores occur in the order in
which the PC fetched them. Enforcing this order is required to
preserve true (read-after-write), output (write-after-write), and
anti (write-after-read) dependences between instructions.

Also, the serial execution of instructions is a hallmark of the
von-Neumann architecture. However, this simplistic sequen-
tial execution along with data, control and structural hazards
during the execution of instructions may be translated into an
under-utilization of the hardware resources. In that sense, ex-
ploiting parallelism at different granularities: instruction level
parallelism (ILP), data level parallelism (DLP), and thread
level parallelism (TLP), is a mechanism to increase hardware
resources utilization.

Pipelined (IBM Stretch 1959 [13]) and superscalar [3] proces-
sors that try to process several instructions at the same time are
the most common examples of ILP. Arguably the most notable
class of superscalar processors is that of the dynamically sched-
uled Out-of-Order processors [92] that maintain a window of
pending instructions dispatching them in dataflow manner. In
all these processors, parallelism is further enhanced using a set
of techniques such as register renaming, branch prediction and
speculative execution, that are used in addition to dynamically
dispatching independent instructions, in parallel, to multiple
functional units (see details in Section 5.1). Another way of
exploiting ILP is that of the very long instruction word (VLIW)
processors [37]. The explicitly parallel instructions sets for
VLIW enable the compiler [32] to statically express instruc-
tion independence in the binary code, reducing the necessary
hardware support for dynamically managing data and control
hazards in Out-of-Order processors.

Architectures with DLP apply a single operation to multiple,
independent data elements. Probably the most common exam-
ples of DLP are the single instruction multiple data (SIMD)
extensions. SIMD extensions are mechanisms that statically
express parallelism in the form of a single instruction that oper-
ates on wide, multi-element registers (a method that is some-
times referred to as sub-word parallelism). These extensions
appeared in supercomputers such as the Thinking Machines
CM-1 [56] and CM-2 [20], and are now ubiquitous in all general
purpose processors. A derivative of SIMD processors, known
as the single instruction multiple thread (SIMT) architecture, is
nowadays common in graphics processing units (GPUs) [87].

Finally, TLP architectures, or multi-threading, is applied by
executing parallel threads on separate processing units. Never-
theless, some architectures utilize this coarse-grain parallelism
to hide memory latencies and improve the utilization of hard-
ware resources by interleaving multiple threads on a single
physical processor. This technique is known as simultaneous
multi-threading (SMT) [124], [130] and has been implemented
in large machines such as HEP [112] and Tera [5] (as well as
many others [2], [76], [129]). SMT has even made it to consumer
products, starting with the Pentium 4 [81] and Power 5 [18]
processors. However, despite all these efforts, effective utiliza-
tion of parallel von-Neumann machines is inherently thwarted
by the need to synchronize data among concurrent threads.
Thread synchronization and memory latencies were identified
by Arvind and Iannucci [8] as the fundamental limitations of
multiprocessors.

The need for efficient data synchronization has grave pro-
grammability implications, and it has put emphasis on the
cache coherency and consistency in shared-memory machines,
particularly as the number of processing units continuously
increase [15]. Transactional memory architectures [54] aim to
somewhat alleviate that problem by providing efficient and
easy-to-use lock-free data synchronization. Alternatively, spec-
ulative multithreading architectures exploit TLP dynamically
scheduling the threads in parallel [114], as Out-of-Order archi-
tectures for instructions, masking the synchronization issues.
Experience shows that multithreaded control flow machines are
feasible, though some doubt their scalability due to two major
issues that limit their parallel processing capabilities: memory
latency and synchronization.

In summary, improvements of memory system, ILP, DLP
and TLP significantly reduce the memory latency issue of
von-Neumann architectures but those are still limited by the
execution in control flow manner. On the other hand, the
dataflow architectures can overcome this limitation thanks to
the exploitation of the implicit parallelism of programs [8], [24].

3 THE DATAFLOW COMPUTING MODEL

The dataflow computing model represents a radical alternative
to the von-Neumann computing model. This model offers
many opportunities for parallel processing because it has nei-
ther a program counter nor a global updatable memory, i.e.,
the two characteristics of the von-Neumann model that inhibit
parallelism. Due to these properties it is extensively used as
a concurrency model in software and as a high-level design
model for hardware.

The principles of dataflow were originated by Karp and
Miller [66]. They proposed a graph-theoretic model for the
description and analysis of parallel computations. Soon later,
in the early 1970s, the first dataflow execution models were
developed by Dennis [27] and Kahn [65]. Dennis originally
applied the dataflow idea to the computer architecture design
while Kahn used it in a theoretical context for modelling
concurrent software.

The dataflow model is self-scheduled since instruction se-
quencing is constrained only by data dependencies. More-
over, the model is asynchronous because program execution
is driven only by the availability of the operands at the inputs
to the functional units. Specifically, the firing rule states that an
instruction is enabled as soon as its corresponding operands are
present, and executed when hardware resources are available.
If several instructions become fireable at the same time, they
can be executed in parallel. This simple principle provides the

3

potential for massive parallel execution at the instruction level.
Thus, dataflow architectures implicitly manage complex tasks
such as processor load balancing, synchronization, and accesses
to common resources.

A dataflow program is represented as a directed graph,
referred to as a dataflow graph (DFG). This consists of named
nodes and arcs that represent instructions and data depen-
dencies among instructions respectively [25], [67]. Data values
propagate along the arcs in the form of packets, called tokens. A
DFG can be created at different computing stages. For instance,
it can be created for a specific algorithm used for designing
special-purpose architectures (common for signal processing
circuits). However, most dataflow-based systems convert a
high-level code into DFG at compile time, decode time, or
even during execution time, depending on the architecture
organization. Unlike control flow programs, binaries compiled
for a dataflow machine explicitly contain the data dependency
information.

In practice, real implementation of the dataflow model
can be classified as static (single-token-per-arc) and dy-
namic (multiple-tagged-token-per-arc) architectures. The first
dataflow architecture [29] followed the static model. This ap-
proach allows at most one token to reside on any arc. This
is accomplished by extending the basic firing rule as follows:
A node is enabled as soon as tokens are present on its input
arcs and there is no token on any of its output arcs [30]. To
implement the restriction of having at most one token per arc
and to guard against non-determinacy, extra reverse arcs carry
acknowledge signals from consuming to producing nodes [30].

The implementation of the static dataflow model is simple,
but since the graph is static, every operation can be instantiated
only once and thus loop iterations and subprogram invocations
can not proceed in parallel. Figure 1-a shows an example of
static dataflow graph for computing a loop which is executed
N times sequentially (note that in this figure, the graph for
controlling iteration of the loop is not illustrated). Despite this
drawback, some machines were designed based on this model,
including the MIT Dataflow Architecture [29], [31], DDM1 [26],
LAU [96], and HDFM [125].

The dynamic dataflow model tries to overcome some of
the deficiencies of static dataflow by supporting the execu-
tion of multiple instances of the same instruction template,
thereby supporting parallel invocations of loop iterations and
subprogram. Figure 1-b shows the concurrent execution of
different iterations of the loop. This is achieved by assigning
a tag to each data token representing the dynamic instance
of the target instruction (e.g. a1, a2, ...). Thus, an instruction
is fired as soon as tokens with identical tags are present
at each of its input arcs. This enabling rule also eliminates
the need for acknowledge signals, increases parallelism, and
reduces token traffic. Dynamic dataflow machines employ
two types of control instructions: Data-steering instructions and
Tag management instructions. Data-steering instructions explicitly
guide data values to the correct path after a branch, which
is a control flow instruction. Each live value requires its own
data-steering instruction [27]. Tag management instructions are
inserted into tagged-token dataflow programs to differentiate
between multiple dynamic instances of named program values
(e.g. variables in simultaneously executing iterations of a loop).
Notable examples of this model are the Manchester Dataflow
Machine [51], the MIT Tagged-Token [7], DDDP [71] and PIM-D
[63].

The dynamic dataflow can execute out-of-order, bypassing

any token that requires complex execution and that delays the
rest of the computation. Another noteworthy benefit of the
tagged-token model is that little care must be taken to ensure
that tokens remain in order.

The main disadvantage of the dynamic model is the extra
overhead required to match tags on tokens. To reduce the
execution time overhead of matching tokens, dynamic dataflow
machines require expensive associative memory implementa-
tions [51]. One notable attempt to eliminate the overheads
associated with the token store is the Explicit Token Store (ETS)
[23], [55]. The idea is to allocate a separate memory frame for
every active loop iteration and subprogram invocation. Since
frame slots are accessed using offsets relative to a frame pointer,
the associative search is eliminated. To make that concept prac-
tical, the number of concurrently active loop iterations must be
controlled. Hence, the condition constraint of k-bounded loops
was proposed [10], which bounds the number of concurrently
active loop iterations. The Monsoon architecture [90] is the
main example of this model.

The dataflow model holds the promise of an elegant execu-
tion paradigm with the ability to exploit inherent parallelism
available in applications. However, implementations of the
model have failed to deliver the promised performance due
to inherent inefficiencies and limitations. For one, the static
dataflow is unable to effectively uncover large amount of
parallelism in typical programs. On the other hand, dynamic
dataflow architectures have been limited by prohibitive costs
linked to associative tag lookups, both in terms of latency,
silicon area, and power consumption.

Another significant problem is that dataflow architectures are
notoriously difficult to program because they rely on special-
ized dataflow and functional languages. Dataflow languages
are required in order to produce large dataflow graphs that
expose as much parallelism to the underlying architecture.
However, these languages have no notion of explicit com-
putation state, which limits the ability to manage any non-
degenerate data structures. To overcome these limitations, some
dataflow systems include specialized storage mechanisms that
preserve the single assignment property, such as the I-structure
[9]. Nevertheless, these storage structures are far from generic
and their dynamic management complicates the overall design.

In contrast, imperative languages such as C, C++, or Java
explicitly manage machine state through load/store operations.
This modus operandi decouples the data storage from its
producers and consumers, and thereby conceals the flow of
data and makes it virtually impossible to generate effective
(large) dataflow graphs. Furthermore, the memory semantics of
C and C++ support arithmetic operations on memory pointers,
which results in memory aliasing — where different semantic
names can refer to the same memory location. Memory aliasing
cannot be resolved statically, thus further obfuscating the flow
of data from between producers and consumers. Consequently,

For (i=1 to N)

 Si = (ai×bi)+ (ci×di)

 (a) (b)

…

 itr.1 itr.2 … itr.N

×

S1

×

+

 a1 b1 c1 d1

×

S2

×

+

a2 b2 c2 d2

×

SN

×

+

 aN bN cN dN

N
 tim

es

Ack.

Signal

Operand

×

S

×

+

a b c d

Fig. 1. DFG of a loop using (a) the static dataflow model and (b)
the dynamic dataflow model.

4

dataflow architectures do not effectively support imperative
languages.

In summary, the dataflow model is effective in uncovering
parallelism, due to the explicit expression of parallelism among
dataflow paths and the decentralized execution model that
obviates the need for a program counter to control instruction
execution. Despite these advantages, programmability issues
limit the usefulness of dataflow machines. Moreover, the lack
of a total order on instruction execution makes it difficult
to enforce the memory ordering that imperative languages
require. Although this section has presented key features and
characteristics of the dataflow model and its limitations, a
complete survey of the model is beyond the scope of this paper.
For further reference, we refer the interested reader to more
complete literature on the subject [85], [115], [126].

4 HYBRID DATAFLOW/VON-NEUMANN MODELS

The inherent limitations of both dataflow and von-Neumann
execution models motivate the exploration of a convergent
model that can use synergies to leverage the benefits of both
individual models.

Therefore, the hybrid models try to harness the parallelism
and data synchronization inherent to dataflow models, while
maintaining existing programming methodology and abstrac-
tions that are largely based on von-Neumann models. While
different hybrid implementations differ in the way they merge
the two conceptually different models, they all follow similar
principles.

Most notably, hybrid models alleviate the inefficiencies as-
sociated with dataflow model either by increasing the basic
operation granularity, or by limiting the size of the DFG. Addi-
tionally, they incorporate control flow abstractions and shared
data structures. As a result, different hybrid architectures em-
ploy a mix of control flow and dataflow instruction scheduling
techniques, using different partial scheduling methods. Also,
in the hybrid models, nodes of a DFG vary between a single
instruction (fine-grain) to a set of instructions (coarse-grain).

Another important aspect in which the benefits of hybrid
models are most evident is that of their memory models.
Hybrid models combine single assignment semantics, inherent
to dataflow, with consistent memory models that support ex-
ternal side-effects in the form of load/store operations. This
relieves one of the biggest (if not the biggest) restriction of
pure dataflow programming: the inability to support a shared
state, and specifically shared data structures [85]. Therefore,
hybrid models are capable to execute imperative languages.
As a result, combining dataflow and von-Neumann models
facilitates designing efficient architectures that benefit from
both computing models, while the remaining question is the
best granularity-parallelism trade-off.

4.1 Evolution of Hybrid Architectures until 2000

The first idea of combining dataflow and control flow arose
in early of 1980s [64], [99], [112], [123]. That combining idea
included data and memory structure management (e.g., Multi-
threaded Monsoon (MT. Monsoon) [91]), self-scheduling and
asynchronous execution to simplify thread synchronization
(e.g., HEP [64], [112]; Tera [5]; MT. Monsoon [91]), and the
ability of executing both conventional and dataflow programs
in the same machine [8], [15]. Some hybrid models [15], [61]
even included a program counter to a dataflow architecture in

order to execute sequential instructions in control flow man-
ner. In the same direction, other studies explored the threaded
dataflow model [101], [109], in which partial data subgraphs are
processed as von-Neumann instruction streams. In particular,
given a dataflow graph (program), each subgraph that exhibits
a low degree of parallelism is identified and transformed into
a sequential thread of instructions. Such a thread is issued
consecutively by the matching unit without matching further
tokens except for the first instruction of the thread. Data passed
between instructions in the same thread is stored in registers
instead of being written back to memory. These registers may
be referenced by any succeeding instruction in the thread. This
improves single-thread performance because the total number
of tokens needed to schedule program instructions is reduced,
which in turn saves hardware resources. In addition, pipeline
bubbles caused by runtime overhead associated with token
matching are avoided for dyadic (two-operand) instructions
within a thread. Two threaded dataflow execution techniques
can be distinguished: (1) direct token recycling technique,
which allows cycle-by-cycle instruction interleaving of threads
in a manner similar to multithreaded von-Neumann computers
(e.g. MT. Monsoon architecture), and (2) consecutive execution
of the instructions of a single thread technique (e.g. Epsilon
[47], [48] and EM-4 [6] architectures). In the second technique,
the matching unit is enhanced with a mechanism that, after
firing the first instruction of a thread, delays matching of
further tokens in favor of consecutive issuing of all instructions
of the started thread. In addition, some architectures based on
threaded dataflow use instruction pre-fetching and token pre-
matching to reduce idle times caused by unsuccessful matches.
EM-4 [6], EM-X [72] and RWC-1 [108] are examples of this kind
of architectures, which are also referred as macro-dataflow [78].

Up until the late 80s and early 90s the common wisdom was
that fine-grain execution was much more suited at masking
network and memory latencies than a coarse-grain one; and
obviously would achieve a much better load leveling across
processors and hence faster execution. However, it has been
demonstrated that coarse-grain is as suited to exploit paral-
lelism as fine-grain [83], [86], [122]. On one hand, Gao’s group
[40], [59], [121] was the first to develop a coarse-grain data
flow simulator and compiler from scratch and report on very
extensive evaluations of very complex applications. On the
other hand, Najjar’s group [14], [35], [36], [85], [102] focused
on modifying the Sisal compiler [1] in two ways: (1) generate
coarse-grained data flow code from a fine-grained one, and (2)
generate coarse-grained data flow code from scratch using the
Sisal compiler.

In addition to the coarsening of nodes in the DFG, another
technique for reducing dataflow synchronization frequency
(and overhead) is the use of complex machine instructions,
such as vector instructions. With this instructions, structured
data is referenced in block rather than element-wise and can be
supplied in bursts introducing, also, the ability to exploit par-
allelism at the sub-instruction level. This technique introduces
another major difference with conventional dataflow architec-
tures: tokens do not carry data (except for the values true
or false). Data is only moved and transformed within the
execution stage. Examples of such machines are Stollman [43],
ASTOR [133], DGC [35], [36], and Sigma-1 multiprocessor [132].

In parallel, the Out-of-Order model [60], [92], that emerged
in the late 80s, incorporated the dataflow model to extract
ILP from sequential code. This approach has been further
developed by Multiscalar [114] and thread level speculation

5

(TLS) [98], [103] that can be viewed as coarse-grain versions of
Out-of-Order.

Efforts have been done to survey hybrid models up to 2000
year [101], [109], [110] and dataflow multithread models [28],
[62], [69], [78]. However, a comprehensive survey describing
recent (since year 2000) hybrid architecture has been lacking, to
the best of our knowledge. Hence, the main focus of this paper
is on classifying recent hybrid dataflow/von-Neumann archi-
tectures, that mainly have tried to improve the conventional
architectures exploiting dataflow concepts in several aspects
[33], [68], [77], [105], [118] or utilize dataflow approach as
accelerators [45], [84], [127]. Most of those recent works are
classified and compared in the following sections.

4.2 Taxonomy Based on Block Execution Semantics
The inherent differences between dataflow and von-Neumann
execution models seemingly puts them on two ends of a spec-
trum that can accommodate a wide variety of hybrid models.
However, under our point of view, the coarsening of the basic
operation granularity, from a single instruction to a block of
instructions, together with the inter- and intra-block execu-
tion semantics, enables us to partition the spectrum into four
different classes of hybrid dataflow/von-Neumann: Enhanced
Control Flow, Control Flow/Dataflow, Dataflow/Control Flow and
Enhanced Dataflow class. This taxonomy is based on whether
they employ dataflow scheduling inside and/or between code
blocks. Block is defined in base of the boundary between where
the two scheduling models (inter and intra-block scheduling)
are mainly applied. This way, the number of instructions in a
block (block granularity) depends on the specific model. Figure
2 illustrates inter- and intra-block scheduling of conventional
organizations of hybrid dataflow/von-Neumann architectures.

 (a) (b) (c) (d)

 . . .

PC

PC+

1

.

.

.

PC2

PC2+1

.

.

.

PC1

PC1+1

.

.

.

PC3

PC3+1

.

.

.

PC4

PC4+1

.

.

.

PC5

PC5+1

.

.

.

 . . .

PC

PC+N

.

.

.

PC

PC+1

.

.

.

PC+N-1

PC+N

PC+N+1

.

.

.

Fig. 2. Inter- and intra-block scheduling of organizations of hy-
brid dataflow/von-Neumann architectures. a) Enhanced Control
Flow, b) Control Flow/Dataflow, c) Dataflow/Control Flow, and d)
Enhanced Dataflow. Blocks are squares and big circles.

4.2.1 Enhanced Control Flow Class
Models in this class schedule blocks in control flow manner,
whereas the instructions within a block are scheduled in a
mixed approach of control flow and dataflow manner. Figure
2-a) illustrates the organization of this class.

The main example of this class is the Out-of-Order (restricted
dataflow) model [60], [92]. The Out-of-Order model, as an
extension of superscalar processors, incorporates the dataflow
model only in the issue and dispatch stages to extract ILP from
sequential code. It is also referred to as local dataflow or micro
dataflow architecture [101], [109], [110].

4.2.2 Control Flow/Dataflow Class
Models in this class schedule the instructions within a block in
dataflow manner, whereas blocks are scheduled in control flow
manner (Figure 2-b). This method is used in RISC dataflow

architectures, which support the execution of existing software
written for conventional processors.

Main examples of this class are TRIPS [105], [106], Tartan
[84], Conservation cores (C-Cores) [127], DySER [45] and other
architectures that rely on domain specific dataflow accelerators.
TRIPS was a new design that tried to overcome the foreseen
limitations of large cores’ architectures by adding new layers of
flexibility to the hardware. Explicit dataflow execution within
blocks was a necessary way to improve fine-grain ILP while
keeping hardware complexity at bay. TRIPS unifies dataflow
and von-Neumann into a single execution model. However,
other architectures in this class, essentially use dataflow to
accelerate parts of the code (hyperblocks in Tartan; kernels in
C-Cores; phases in DySER). Their decision on which parts of
the code to accelerate is mostly static while TRIPS uses dynamic
scheduling decisions to map hyperblocks to dataflow cores.
Tartan, C-Cores and DySER use profiling to determine the parts
of the code to be accelerated in a dataflow unit (or units),
mapped on a reconfigurable hardware coupled to a classical
von-Neumann processor. Unlike Tartan and C-Cores, DySER
also supports reconfigurations at runtime. This behavior allows
the DySER architecture to capture a significant percentage of
computation from a single application as multiple accelerated
phases can be mapped to the same accelerator.

4.2.3 Dataflow/Control Flow Class
Models in this class employ dataflow rules between blocks
and control flow scheduling inside the blocks (Figure 2-c).
Under these restrictions, blocks are issued by the matching
unit, and token matching needs only to be performed on a
block basis. As a result, the total number of tokens needed
to schedule program instructions is reduced, which in turn
saves hardware resources. A block may be a set of sequential
instructions, where data is passed between instructions using
register or memory (coarse-grain dataflow models [101], [109],
[110]), a complex machine instruction, or a combination of
both strategies. Main examples of coarse-grain dataflow models
are: Star-T (*T) [89], TAM [22], ADARC [117], EARTH [58],
[121], P-RISC [88], MT. Monsoon [91], Pebbles [102], SDF1 [68],
DDM [77], and Task Superscalar [33]. Sigma-1 multiprocessor
[132] is the main example for complex machine instructions,
and Stollman [43], ASTOR [133] and DGC [35], [36] are exam-
ples of the combination of coarse-grain and complex machine
instructions.

Figure 3 shows a further decomposition of this class based
on the number of cores and number of instructions in a block
(i.e., size of block) targeted by every specific model, as well as
the year in which it was first published. Figure 3-a depicts the
relationship between core granularity and the proposed archi-
tectures’ publication year. First hybrid designs tend to have few
number of cores, while recently proposed architectures tend to
use a larger number of cores. Figure 3-b shows the variance in
core granularity in hybrid design. Architectures with a larger
number of cores typically use fewer number of instructions per
block, and designs with fewer number of cores tend to use
larger blocks (with more than 1000 instructions per block).

4.2.4 Enhanced Dataflow Class
Models in this class use dataflow firing rules both for in-
structions inside the blocks, and for the blocks themselves.

1. Please note that here SDF is acronym for scheduled dataflow, as
opposed to synchronous dataflow (SDF) [79]. The latter is a dataflow
based execution model for signal processing algorithms and does not
include any von-Neumann properties.

6

(a)

(b)

P-RISC

Pebbles

P-RISC

#inst. /block

TSS SDF

DDM

TAM
ADARC

*T

EARTH

cores

Large

(>100)

Medium

Few

 (<20)

Basic block(<100) Block Hyper block(>1000)

Pebbles

year

TSS

SDF
DDM

TAM ADARC

*T

cores

Large

(>100)

Medium

Few

 (<20)

 1985 1990 1995 2000 2005 2010

EARTH

M.Monsoon

M.Monsoon

Fig. 3. Different architectures of Dataflow/Control Flow class (a)
number of cores and year, (b) number of cores and size of blocks

Effectively, this class consists of two-level dataflow models (Fig-
ure 2-d) utilizing some concepts of the von-Neumann model
(e.g., storage management) to add the abilities of running
imperative languages and managing data structures. Cedar [75]
and WaveScalar [118], [120] are main examples of this class.

4.2.5 Comparison of Hybrid Classes
Every one of the four classes presents advantages and draw-
backs. Enhanced Control Flow class machines can very naturally
execute control flow codes and uncover more ILP than the
strict von-Neumann models. However, as the actual technology
only allows them to address small to medium block sizes, the
amount of parallelism that they can expose is typically limited
(some architectures such as like Kilo-instruction Processors [21]
try to overcome this problem targeting much larger block sizes).

Control Flow/Dataflow class machines try to overcome the
limitations of the previous class by forcing the pure dataflow
execution of the instructions inside a block. These models
attempt to statically expose ILP at the block level, deferring
memory operations to inter-block synchronization. Indeed, the
Control Flow/Dataflow general strategy has shown a great poten-
tial in both performance and power savings [45], [84], although
it presents the same problems as the previous class (e.g.,
smaller block sizes than desirable for fully exploiting dataflow
advantages at ILP level).

For their part, Dataflow/Control Flow class models have taken
advantage of the recent growth in the number of parallel
hardware structures in cores, chips, machines and systems. As
models in this class address parallelism at a coarse grain they
can exploit all these resources more effectively than conven-
tional (von-Neumann) models while retaining the program-
ming model inside the blocks.

Finally, Enhanced Dataflow class models are a complete re-
thinking of the execution problem. Because they do not use
a program counter, they face several difficulties to execute
conventional codes and manage memory organizations and,
therefore, need more hardware resources to be effectively used.

On the other hand, Enhanced Dataflow class models can be
viewed as an addition of both Dataflow/Control Flow and Control
Flow/Dataflow classes, and in this sense, they present great
potential.

4.3 Taxonomy Based on Execution Model

Hybrid models can also be classified from an execution model
point of view; unified-hybrid models versus accelerator models.
In an unified-hybrid architecture, a program must be executed
using both dataflow and control flow scheduling since both
models are intimately bound in the architecture. Although
the majority of the models presented belong to this group,
it presents some drawbacks. The additional hardware needed
by the interconnection and synchronization mechanisms (e.g.,
hardware of Out-of-Order architectures) leads to more com-
plexity and power consumption. Furthermore, as every pro-
gram should be executed with the same hybrid scheduling
schema, they are not able to adapt to specific cases where a
pure dataflow or von-Neumann model would be better.

On the other hand, in accelerator based architectures, the
decision on which parts of the code to accelerate is mostly static
(made by the programmer or compiler, and sometimes based
on profiling). In addition, a whole program may be executed
without the use of the accelerator.

Within this category, another subdivision can be done based
on the type of the accelerator: dataflow inside von-Neumann
based architectures and von-Neumann inside dataflow based
architectures. Tartan, C-Cores and DySER are architectures that
use dataflow to accelerate kernels (or hyperblocks) and thus
belong to the former group. Sigma-1 multiprocessor and all
the other dataflow architectures that use complex instructions
belong to the later.

As in both cases the selected and accelerated parts are exe-
cuted with a specifically designed hardware, those architectures
can achieve big performance improvements and power savings
on these parts.

5 EXAMPLES OF RECENT HYBRID DATAFLOW/VON-
NEUMANN ARCHITECTURES

In this section, we describe recent examples of hybrid
dataflow/von-Neumann architectures for each of the above
mentioned taxonomy classes, in chronological order.

Out-of-Order (restricted dataflow) architectures [60], [92],
[113] are presented for Enhanced Control Flow class. Although
Out-of-Order appeared before 2000, we have included it be-
cause its popularity, significant contribution to the class and
to better highlight how the introduction of dataflow execution
into an otherwise control flow model can dynamically extract
parallelism. TRIPS [105], [106], WaveScalar [118], [120] and Task
Superscalar [33], [34] are presented for Control Flow/Dataflow,
Enhanced Dataflow, and Dataflow/Control flow classes respectively.
DySER [45], although is also an architecture of Control Flow/Data
flow class as TRIPS, has been included as a recent representation
of a whole range of architectures that use dataflow or control
flow accelerators inside an otherwise pure control flow or
dataflow processor.

There are other relevant architectures that have been in-
cluded in the supplementary file due to space constraints. For
instance, MT. Monsoon and Sigma-1 multiprocessor are very
relevant, but non-recent, representations of Dataflow/Control
flow class architectures. And, in the case of Sigma-1, it is also
an example of the accelerator model class. Also, DDM and

7

SDF architectures are relevant and recent Data flow/Control Flow
architectures that have been included in the supplementary file.

Main characteristics of all mentioned architectures are de-
scribed and discussed in Section 6.

5.1 Out-of-Order Execution Model

The Out-of-Order architecture (Restricted Dataflow) [60], [92],
[113] is a fine-grain hybrid architecture that belongs to the
Enhanced Control Flow class. The Out-of-Order architecture is
also referred to as local dataflow or micro dataflow architecture
[101], [109].

Execution Model
Out-of-Order processors employ dataflow principles to extract
instruction level parallelism (ILP) and optimize the utilization
of the processor’s resources. The processor relies on hardware
mechanisms that determine dynamically data dependencies
among the instructions in the instruction window. In other
words, in this paradigm, a processor executes instructions in
an order governed by the availability of input data, rather than
by their original order in a program2. In doing so, the proces-
sor can both extract ILP and hide short data fetch latencies
by processing subsequent instructions that are ready to run.
Each instruction window of Out-of-Order processor is a block
granularity for the intra-block scheduling.

Architecture Organization
Figure 4 illustrates the general scheme of the Out-of-Order
execution pipeline. Instructions are fetched in order, decoded
and placed, after register renaming, into a pool of pending
instructions (the instruction window) and the reorder buffer.
The reorder buffer saves the program order and the execution
states of the instructions. To increase the effective instruction
window size, those architectures rely in branch prediction and
speculation. As a a result, they require complex checkpointing
mechanisms to recover from branch mis-predictions and mis-
speculated executions (not shown in the Figure).

Dispatch and Issue determine the out of order and dataflow
execution of the microprocessor. The matching of the exectuable
instructions in the microprocesor is restricted to the pending
instructions of the instruction window. Therefore, the matching
hardware can be restricted to a small number of instructions
slots. In addition, because of the sequential program order, the
instructions in this window are likely to be executable soon.

Once the instructions are executed, they are retired to perma-
nent state machine (memory) in source program order (commit
in the Figure). Another advantage of those architectures is its
sequential execution of the instructions, exploiting the spatial
locality of the program. That locality allows to employ a mem-
ory hierarchy that stores the instructions and data, potentially
executed in the next cycles, close to the executing processor.

Implementation Examples
Arguably the first machine of Out-of-Order execution was the
CDC 6600 (1964), which used a scoreboard to resolve conflicts.
The IBM 360/91 (1966) introduced Tomasulo’s algorithm, sup-
porting full Out-of-Order execution. In 1990, the first Out-of-
Order microprocessor appeared, the POWER1, but its Out-of-
Order execution was limited to floating point instructions.

As mentioned above, Out-of-Order microprocessors have
an instruction window that is restricted to a sequence of

2. The memory accesses are done in order

Issue (Dispatch)

 Execute

Finish

O
u

t-o
f-O

rd
er

In
-O

rd
er

In

-O
rd

er

Matching

Unit

ReOrder

Buffer (ROB)

FU FU

FU

FU

FU

FU

Fetch

Decode

Commit

Branch

Predictor

Reservation Stations

Issue Queue

Fig. 4. The Out-of-Order execution pipeline

instructions. Thread-level speculation (TLS) processors can be
seen as an extension of Out-of-Order hybrid dataflow/von-
Neumann architecture that increases the instruction window
and potentially uncover more ILP. Thread-level speculation is
a technique which empowers the compiler to identify potential
parallel threads, despite uncertainty as to whether those threads
are actually independent [116]. TLS allows to speculatively
execute those threads in parallel, while squashing and re-
executing any thread that suffers dependence violations. There-
fore, the instruction window is the addition of the sequence
of instructions of all non-speculative and speculative threads
executing in parallel, potentially larger than the Out-of-Order
processor’s instruction window.

Thread creation, and the mechanism for buffering specula-
tive state and tracking data dependences between speculative
threads, are important features of the different TLS approaches.
Some of them are implemented entirely in software [50], [98],
[104], others in hardware [4], [80], [103] and others are a
combination of software and hardware [17], [38], [44], [53], [73],
[74], [97], [134]. Two relevant works are the LRPD test [98]
(software-only support) and the Multiscalar architecture [114].
LRPD test allows the compiler to parallelize loops without
fully disambiguating all memory references, and applies only
to array-based codes. Disambiguation is done with the use of
shadow arrays to detect any cross-iteration Read-after-Write
dependence. Multiscalar architecture was the first complete
evaluation of an architecture designed specifically for support-
ing TLS. The compiler statically performs the distribution of the
instructions among tasks (potential speculative threads). Ad-
dress resolution buffer (ARB) [39], forward and release bits, and
CFG (control flow graph) information are the mechanisms used
for tracking control and data dependences between speculative
threads.

5.2 TRIPS
TRIPS (Tera-op, Reliable, Intelligently adaptive Processing Sys-
tem) [105], [106] was designed at University of Texas at Austin
as a grid architecture that implements the EDGE (Explicit Data
Graph Execution) ISA [16], [105], [111]. It is an example of
Control Flow/Dataflow class models.

Execution Model
TRIPS combines control flow execution across hyperblocks of
code consisting of up to 128 instructions with a dataflow exe-
cution inside them. In TRIPS, a hyperblock is equivalent to the
block granularity. This scheme enforces conventional memory
semantics across hyperblocks and so it allows imperative code
(as C or Fortran) to be executed without major modifications.

8

The TRIPS architecture is fundamentally block oriented. The
compiler is responsible for statically scheduling each block of
instructions onto the computational engine such that inter-
instruction dependences are explicit. Therefore, the compiler
role is key on the final performance of the application [19]. Each
block has a static set of state inputs, and a potentially variable
set of state outputs that depends upon the exit point from the
block. At runtime, the basic operational flow of the processor
includes fetching a block from memory, loading it into the
computational engine, executing it to completion, committing
its results to the persistent architectural state if necessary, and
then proceeding to the next block.

TRIPS has a block-atomic execution mode, and direct com-
munication for instructions within a block. On one hand, block-
atomic execution means a block of instructions must be fetched
and executed as though it was a single unit providing interrup-
tions at block level. On the other hand, direct communication
implies that instructions within a block can directly send values
to dependent instructions within the same block. This behavior
allows the architecture to have very large windows (up to 1024
instructions) that execute in dataflow order.

TRIPS provides three modes of execution that enable poly-
morphous parallelism: Desktop-morph (D-morph), Thread-level
morph (T-morph) and Stream-level morph (S-morph). Each of
these modes is aimed at exploiting one of the three types
of parallelism: instruction level parallelism (ILP) in D-morph
mode, thread level parallelism (TLP) in T-morph mode, and
data level parallelism (DLP) in S-morph mode. How TRIPS
works in these different modes is explained in detail in the
next subsection.

TRIPS

Core

TRIPS

Core

TRIPS

Core

TRIPS

Core

In
te

r
fa

c
e
 M M M M

M M M M

M M M M

M M M M

In
te

r
fa

c
e
 M M M M

M M M M

M M M M

M M M M

In
te

r
fa

c
e
 M M M M

M M M M

M M M M

M M M M

In
te

r
fa

c
e
 M M M M

M M M M

M M M M

M M M M

Memory Bank

In
te

r
fa

c
e
 M M M M

M M M M

M M M M

M M M M

I-Cache-M

I-Cache-0

I-Cache-1

I-Cache-2

I-Cache-3

Next Block

Predictor

Register File

Block

Control

L
2

 C
ach

e

DCache-0 LSQ0

DCache-1 LSQ1

DCache-2 LSQ2

DCache-3 LSQ3

TLB MHU

Control

Router

Inst. 127 Operands

Inst. 1 Operands

Inst. 0 Operands

. . .

Processing Element

In
st. B

u
ffer

Fig. 5. The TRIPS architecture (Figure based on [105], [106]).
DJG: to be changed by the adapted figure I have sent it to
you

Architecture Organization
TRIPS is a tiled and distributed architecture. Figure 5 shows
the general TRIPS architecture. TRIPS processor consists on
four TRIPS cores and a tiled secondary memory (M tiles in
the Figure 5.a), surrounded by a tiled newtwork (N tiles in the

Figure) that acts as translation agents for determining where to
route memory system requests.

Each of the TRIPS cores is implemented using five unique
tiles: one global control tile (GT), 4x4 execution tiles (ET), four
register tiles (RT), four data tiles (DT), and five instruction
tiles (IT), as shown in Figure 5.b. Each tile only interacts
with its immediate neighbours through microarchitectural net-
works (micronets). Micronets have roles such as transmiting
operands between instructions, distributing instructions from
the instruction tiles to the execution tiles, or communicating
control messages from the program sequencer [107]. The major
processor core micronetwork is the operand network (OPN),
that handles transport of all data operands along ETs, DTs, GTs,
and RTs.

Global Control Tile contents the blocks’ PC running in the
TRIPS core, the instruction cache tag arrays, the I-TLB, and
the next-block predictor. The GT handles TRIPS block man-
agement, including prediction, fetch, dispatch, completion de-
tection, flush (on mispredictions and interrupts), and commit.
In addition, GT is used to set up the control register that
configure the processor into different speculation, execution,
and threading modes. GT also maintains the state of all in-
flight blocks (maximum 8) running in the ETs of the TRIPS
core. When a block finishes, the block predictor (tournament
local/ghsare predictor based) provides the predicted address
of the next target block. The block is fetched and loaded into
the execution units’ reservation stations.

Each execution unit consists of a fairly standard single-issue
pipeline, a bank of 128 reservation stations (instructions and
two operands per instruction), an integer unit, a floating point
unit, and operand router (shown in Figure 5.c). When a reser-
vation station contains a valid instruction and a pair of valid
operands, the node can select the instruction for execution.
After execution, the node can forward the result to any of the
operand slots in local or remote reservation stations within the
ALU array (4x4 ETs’ ALUs). The nodes are directly connected
to their nearest neighbors, but the routing network can deliver
results to any node in the array.

Instructions are statically placed into the locations of the ET,
and executed in dataflow manner using the direct instruction
communication between intra-block producers and consumers,
specified by the TRIPS ISA. Therefore, the instructions are
statically placed at compile time and dynamically issued at
runtime.

Instruction Cache is also tiled into five banks to increase the
memory bandwidth. Each IT acts as a slave of the GT which
holds the single tag array, and can hold a 128-byte chunk, for
a total of 640 bytes (128x5) for the maximum-size block. There
is one instruction bank per row of ETs, and a additional one to
issue fetches to values from registers for injection into the ALU
array.

Register file is divided in four 32-register banks (tiles) that
are nodes of the OPN micronet, allowing the compiler to
place critical instructions that read and write from/to a given
bank close to that bank. There are a total of 128 registers for
the four threads that can run in parallel. Each bank has two
read ports and one write port, and contains a write queue
and a read queue. Those queues allow to have write-to-read
forwarding and renaming capabilities. The registers file holds
a portion of the architectural state. Thus, values passed between
hyperblocks, where direct instruction communication is no
possible, are transmitted through the register file.

Primary memory is also divided in four data tiles (DT).

9

Each DT holds one L1 data cache bank, a load/store queue, a
dependence predictor (for previous stores), one-entry back side
coalescing write buffer, a data TLB, and a MSHR that supports
up to 16 requests for up to four outsanding cache lines. It can be
accessed by any ALU through the local grid routing network.

Some of those hardware resources can be configured, using
the GT, to operate differently depending on the mode: D-
morph, T-morph and S-morph. For instance, the reservation
stations can be managed differently depending on the execution
mode. A physical frame is formed by the reservation stations
with the same index accros all of the execution unit nodes (e.g.
combining the first slot for all nodes in the grid forms frame
0). Frames that contain one hyperblock form an architectural
frame (A-frame). Thus, direct instruction communication is
only possible within a A-frame.

In D-morph, all the frame space of a TRIPS core can be
used, as it was a large, distributed, instruction issue window,
by only one thread allowing it to achieve maximum ILP. In
addition, in order to increase the potential ILP, the hardware
fills empty A-frames with speculatively mapped hyperblocks,
predicting which hyperblock will be executed next, mapping it
to an empty A-frame, and so on. The A-frames are treated as
a circular buffer where the first is non-speculative, and the rest
are speculative. When the non-speculative A-frame finishes,
first speculative A-frame becomes the non-speculative first A-
frame of the cicular buffer.

In T-morph, the frame space is statically partitioned so that
each thread can have its own frame space partition. Within each
thread, speculation is also used but extra prediction registers
are needed, as block control state for each of the hardware
threads.

In S-morph, only one thread can be run and no speculation
is done. Instead, inner loops of a streaming application are
unrolled to fill the reservation stations within multiple A-
frames fused in a super A-frame. In this case, to reduce the
power and instruction fetch bandwidth overhead of repeated
fetching of the same code block across inner-loop iterations,
the S-morph employs mapping reuse, in which a block is kept
in the reservation stations and used multiple times. In this
case, the L2 cache memory can be configured to be used as
a stream register file (SRF) [106], so that direct data array
access and DMA transfer capabilities are allowed. Otherwise,
the secundary memory works as a non-uniform cache access
(NUCA) on-chip memory system.

Implementation Examples
Some studies have been done on different aspect of TRIPS.
Sankaralingam et al. [107] describe the control protocols in the
TRIPS processor. They detail each of the five types of reused
tiles that compose the processor, the control and data networks
that connect them, and the distributed microarchitectural pro-
tocols that implement instruction fetch, execution, flush, and
commit. They also describe the physical design issues that arose
when implementing the microarchitecture in a 170M transistor,
130nm ASIC prototype chip composed of two 16-wide issue
distributed processor cores and a distributed 1MB non-uniform
cache access (NUCA) on-chip memory system.

Gratz et al. [49] presented design, implementation and evalu-
ation of the TRIPS on-chip network (OCN) which is a wormhole
routed, 4x10 2D mesh network with four virtual channels. It
provides a high bandwidth, low latency interconnect between
the TRIPS processors, the L2 cache banks and the I/O units.
They discussed the tradeoffs made in the design of the OCN,

in particular, why area and complexity were traded off against
latency. A full evaluation of a real TRIPS ASIC prototype and
an EDGE compiler [41] demonstrates that the TRIPS machine
is feasible. The work also shows that TRIPS is competitive with
a Pentium 4 system in the number of cycles needed to execute
an application. It is an impressive outcome for a new machine
fully developed in an academic environment.

TFlex is another architecture based on the EDGE ISA. It is an
implementation of the composable lightweight processor (CLP)
[70] which are proposed to eliminate the problem of fixed-
granularity processors, and consist of multiple simple, narrow-
issue processor cores that can be aggregated dynamically to
form more powerful single-threaded processors. TFlex adds
four capabilities to TRIPS in a distributed fashion: I-cache
management, next-block prediction, L1 D-cache management,
and memory disambiguation hardware. Robatmili et al. [100]
present a hardware implementation of mapping blocks to a
distributed substrate of composable cores for the TFlex.

5.3 WaveScalar

WaveScalar [118], [120], is an example of the Enhanced Dataflow
class. It is a dynamic, general purpose, decentralized super-
scalar dataflow architecture that is product of a research per-
formed in the University of Washington. WaveScalar is also the
name of the dataflow instruction set and the execution model.

Execution Model

WaveScalar execution model is basically a dataflow model
enhanced to support imperative languages. The key tenet of
the Wavescalar execution model is that programs execute in
waves, that are sets of connected instructions of the program
graph. The wave name may come after the way data flows
from the initial instruction to the subsequent ones in parallel.

Formally, a wave is a connected, directed acyclic portion of
the control flow graph with a single entrance. The WaveScalar
compiler partitions an application into maximal waves and
adds wave management instructions. In fact, waves are similar
to hyperblocks, but they can contain control flow joins and
are generated using loop unrolling to make them larger (all
instructions within a wave are partially ordered, so waves can
not contain loops). In order to allow instructions to operate on
different dynamic waves, all data elements travel with their
wave number that increases as the data goes out of a wave
and enters a new one (or the same) using a special waveadvance
instruction.

Therefore, in order to execute an imperative program in
Wavescalar, it is compiled into an special code that contains the
dataflow graph (i.e. the wave) and also the memory order. An
example of the memory order problem is illustrated in Figure 6.
Assume that the Load instruction must execute after the Store
instruction to ensure correct execution because the two memory
addresses are identical. In a pure dataflow graph this implicit
dependence between the two instructions (the dashed line in
the Figure 6) can not be expressed.

However, Wavescalar supports a wave-ordered memory
mode in which the compiler annotates memory access instruc-
tions within each wave to encode the ordering constraints
between them forming a chain of memory instructions. There-
fore, a memory request can only be executed if the previous
request in the chain and all memory requests from the previous
wave have already been executed. In order to be successful,
the compiler must ensure that there is a complete chain of

10

memory operations along every path through a wave. So, if
there are no memory operations in one of the paths of a branch,
a MemNop instruction must be inserted in that path to maintain
the chaining. Also, in order to increase the parallelism (i.e. in
loops), non-dependent memory accesses can also be annotated
with an additional ripple number that allow loads to execute
in parallel and even out of order if all previous stores have
finished.

By implementing wave-ordered memory, a total ordering
of memory instructions can be achieved with little dynamic
overhead. This feature, alongside indirect jumps for object link-
ing, allows traditional von-Neumann models of computation to
execute just as fast — if not faster — on the dataflow architec-
ture. Its main advantage is that it is a dataflow hardware that
runs programs written in standard programming languages,
by efficiently providing the sequential memory semantics that
imperative languages require.

In addition to wave-ordered memory, a second memory
scheme in WaveScalar (standard data firing rule mode), allows
the programmer to omit any unnecessary ordering and inter-
twine memory operations into the program graph by using
the standard data firing rule. The unordered memory scheme
introduces a new store instruction, store-unordered-ack, that
returns zero to signify when it has completed. Using this value
as an input arc to other instructions enforces memory ordering
while providing greater flexibility to the programmer.

Both wave-ordered and unordered memory can be used
interchangeably within the same program or even within the
same wave to take advantage of fine-grain (unordered) and
coarse-grain (wave-ordered) threads, resulting in significant
performance improvements [118], [120].

Figure 6 should be modified. The code should read:
A[j+k]=x; y=A[i];

A[i+k] = x;

Y = A[i]

load

store

+ +

+

x k j A i

Fig. 6. Dataflow graph and wave-ordered memory (Figure based
on [120])

Architecture Organization
To execute WaveScalar programs, a scalable, tile-based proces-
sor architecture called WaveCache has been designed. Figure
7 shows the WaveScalar architecture. Each basic processing
element (PE) is a five-stage (Input, Match, Dispatch, Execute,
and Output), dynamically scheduled execution pipeline. In
WaveScalar, pairs of PEs are coupled into pods sharing ALU
results via a common bypass network. Four pods (8 PEs)
are grouped into a domain that communicate over a set of
pipelined buses. Four domains (32 PEs) form a cluster
supported by conventional memory hierarchy. To build larger
machines, multiple clusters can be connected by a 2D mesh
interconnection network.

Wave-ordered memory lies in the WaveCache’s store buffers
(one per cluster), which are responsible for implementing the
wave-ordered memory interface that guarantees correct mem-
ory ordering.

To reduce the communication costs, the PEs are con-
nected through a hierarchical interconnection infrastructure.

C
lu

ste
r

In
p
u

t M
a
tch

 D
isp

a
tch

 E
xecu

te O
u

tp
u
t

S
elect q

u
eu

e

 Matching

table

L
 2

L

 2

L
 2

L 2 L 2 L 2

D-Cache

Net

Store

Buffers

PE PE PE

PE PE PE

PE

PE

PE PE PE

PE PE PE

PE

PE

D-Cache D-Cache

D-Cache

Domain Pod

PE PE PE

PE PE PE

PE

PE

PE PE PE

PE PE PE

PE

PE

Fig. 7. The WaveScalar architecture (Figure based on [118],
[120]).

WaveScalar’s hierarchical interconnect plays an important role
in overall scalability. Swanson et al. [119] have studied the area-
performance trade-offs for WaveScalar.

The placement scheme of the instructions of a program
has a compile-time and a runtime component. The compiler
is responsible for grouping instructions into segments. Those
segments have up to 64 instructions. As a program executes,
the WaveCache maps the program’s instructions onto its array
of PEs, placing a whole segment of instructions at the same
PE. The instructions remain at their PEs for many invocations,
and as the working set of instructions changes, the WaveCache
removes unused instructions and maps new ones in their place.
The instructions communicate directly with one another over a
scalable, hierarchical on-chip interconnect, obviating the need
for long wires and broadcast communication.

Implementation Examples
The only implementation of WaveScalar is WaveCache.
WaveScalar uses a regular native DEC compiler for converting
source code to Alpha binary, and a binary translator is used for
translating an Alpha binary to a WaveScalar binary. Petersen
et al. [95] present and analyze three compiler optimizations
for wavescalar C compiler that significantly reduce control
overhead with minimal additional hardware. The basis of
the solution lies in recognizing that overhead instructions are
relatively simple to implement in hardware and can generally
execute in parallel with computation. Hence, the microarchitec-
ture can be tuned to execute overhead instructions in parallel
with computation instructions. Merzulo et al. [82] proposed
the transactional WaveCache to expliot speculative execution
of memory operations. Pei et al. [93] exploited speculative
multithreading (SpMT) based on WaveScalar.

5.4 Task Superscalar

Task Superscalar [33], [34] is a task-based dataflow architecture
which generalizes the operational flow of dynamically sched-
uled Out-of-Order processors. It was designed at Barcelona Su-
percomputing Center (BSC) and belongs to the Dataflow/Control
Flow class. The Task Superscalar combines the effectiveness

11

of Out-of-Order processors in uncovering parallelism together
with the task abstraction, thereby provides a unified manage-
ment layer for CMPs, which effectively employs processors as
functional units.

Execution Model

The Task Superscalar processor combines dataflow execution of
tasks with control flow execution within the tasks (i.e., the block
granularity is a task). As ILP pipelines uncover parallelism in
a sequential instruction stream, similarly, the Task Superscalar
uncovers task level parallelism among tasks generated by a se-
quential thread. Utilizing intuitive programmer annotations of
task inputs and outputs, the Task Superscalar pipeline dynam-
ically detects inter-task data dependencies, identifies task-level
parallelism, and executes tasks out-of-order. That design thus
enables programmers to exploit many-core systems effectively,
while simultaneously simplifying programming model.

Architecture Organization

The high-level operational flow of the Task Superscalar is
illustrated in Figure 8. A task generator thread resolves the
inter-task control path and sends non-speculative tasks to the
pipeline frontend for dependency decoding. The task window
can consist of tens of thousands of tasks, which enables it
to uncover large amounts of parallelism [34]. The pipeline
asynchronously decodes the task dependencies, generates the
data dependency graph, and schedules tasks as they become
ready. Finally, ready tasks are sent to the execution backend,
which consists of a task scheduler and a queuing system.

As shown in Figure 8, the frontend employs a tiled design,
and is managed by an asynchronous point-to-point protocol.
The frontend is composed of four module types: pipeline gate-
way, task reservation stations (TRS), object renaming tables (ORT),
object versioning tables (OVT).

The gateway is responsible for controlling the flow of tasks
into the pipeline including allocating TRS space for new tasks,
distributing tasks to the different modules, as well as stalling
the task generator thread whenever the pipeline fills. TRSs
store the in-flight task information and track the readiness of
task operands. Inter-TRSs communication is used to register
consumers with producers, and notify consumers when data
is ready. The TRSs store the meta-data of all in-flight tasks
and their parameters, and thereby effectively embed the task
dependency graph. In this graph, nodes are tasks and arcs are
dependencies between tasks.

Superscalar equivalents:

Register Renaming Table

Physical Register File

(Only meta-data)

Reservation Station

Task Scheduler

Processor Processor Processor Processor

Frontend

(Task Window)

Backend

(Queuing System)

Worker Processors

Task Generator Thread

ORT ORT ORT ORT

OVT OVT OVT OVT

TRS TRS TRS TRS

TRS TRS TRS TRS

Pipeline Gateway

Ready Queue

Fig. 8. The Task Superscalar architecture (Reprint from
[34]).DJG: Superscalar equivalents should be OoO equivalents
since they are for OoO execution explanation

The ORTs map parameters to the most recent task accessing
the same memory object, and thereby detect object depen-
dencies. Storing all data users (either producer or consumer),
rather than only storing real data for producers, facilitates
TRS consumer chaining. The OVTs track live operand versions,
created whenever a new data producer is decoded. Each OVT is
associated with exactly one ORT. The functionality of the OVTs
is similar to a physical register file, but only for maintaining
operand meta-data. Effectively, the OVT manages data anti-
and output-dependencies, either through operand renaming, or
by chaining different output operands and unblocking them in-
order by sending a ready message when the previous version
is released.

Figure 8 also shows the Out-of-Order components equivalent
to the Task Superscalar modules. In Out-of-Order processors,
dynamic data dependencies operates by matching each input
register of a newly fetched instruction (consumer), with the
most recent instruction that writes data to that register (pro-
ducer). The instruction is sent to a reservation station to wait
until all its inputs become available. Hence, the reservation sta-
tions effectively store the instruction dependency graph, which
consists of all in-flight instructions. In the Task Superscalar,
the mechanism of decoding tasks identifies all possible effects
a task may have on the shared processor state, so producers
and consumers are identified correctly. Moreover, tasks are
decoded in-order to guarantee correct ordering of producers
and consumers, and specifically, that the decoding of a task
producing a datum updates the renaming table, before any task
consuming the datum performs a lookup.

Implementation Examples

Etsion et al. [33] presented a design for a distributed Task
Superscalar pipeline frontend which can be embedded into
virtually any many-core fabric, and manages it as a Task
Superscalar multiprocessor. The Task Superscalar architecture
uses StarSs programming model [11], [94]. This programming
model supports Out-of-Order execution of tasks, by enabling
programmers to explicitly expose task side-effects, using an-
notating operands of kernel functions as input, output, or
inout. The model can thus decouple the execution of the thread
generating the tasks, from their decoding and execution. At
runtime, whenever the task generator thread reaches a call site
to one of the kernels, task creation code (injected by a source-
to-source compiler) packs the kernel code pointer and all the
operands, and writes them to the task pipeline.

Yazdanpanah et al. [131] presented a FPGA-based prototype
of the Task Superscalar architecture. The implemented hard-
ware is based on a tiled design that can operate in parallel
and is easily scalable to manage hundreds of cores in the same
way that Out-of-Order architectures manage functional units.
The prototype operates at near 150Mhz and can maintain up
to 1024 in-flight tasks, managing the data dependencies in few
cycles.

5.5 DySER

DySER (Dynamically Specialized Execution Resource) [45], [46]
is an architecture based on dataflow accelerators that belongs
to the Control Flow/Dataflow class. It was designed at the Uni-
versity of Wisconsin-Madison as the hardware substrate of the
dynamically specialized execution (DySE) model.

12

Execution Model
DySER integrates dataflow accelerators (DySER block) into
a control flow processor’s pipeline as functional units. To
achieve this goal, the program is explicitly partitioned by the
compiler (profile-guided to determine common path trees of
control flow) into phases (i.e. program sections). After that,
for each phase, the compiler determines its kernels and tries
to accelerate them using the DySER block. The DySER block
is basically a big reconfigurable functional unit composed by
different arithmetic units whose connections are reconfigured
at runtime creating specialized dataflow blocks that can be
pipelined. The model hinges on the assumption that only a
few dataflow blocks are active during a given phase of an
application and they are invoked several times. Thus, setting
up the static routes once amortizes the execution of the DySER
unit over many invocations.

To be able to execute each kernel within a phase with a
pure dataflow accelerator, kernels are divided into a load-back
slice and a computation slice. A load-back slice includes all the
memory accesses, while a computation slice consists of com-
putation operations without memory accesses that are grouped
and executed in the dataflow accelerator. With this separation
between slices, the usual processor’s memory disambiguation
optimizations can proceed unhindered. Therefore, in DySER,
these computation slices are the block granularities for the
intra-block scheduling.

To take better profit of the reconfigurable unit, when the con-
trol flow execution reaches a program phase, the DySER block
is dynamically configured (specialized for the phase). Fur-
thermore the execution model allows multiple DySER blocks,
where each block is configured differently. With multiple
DySER blocks, the next block can be predicted and configured
before its inputs are produced by the processor. The large
granularity of the phases allows easy predictability.

Architecture Organization
Figure 9 illustrates the DySER attached to a processor pipeline.
The DySER block consists of a circuit-switched network of
heterogeneous functional units. The functional units (FUs)
form the basic computation fabric. Each FU is connected to
four neighbor switches from where it gets data and control
input values and injects outputs. Each FU also includes a
configuration register that specifies which function to perform,
and one data register and one status register for each input
switch. The status registers indicate the validity of values in
the data registers. The data registers match the word-size of
the machine. The switches (Ss) contain data and status registers,
and include a configuration register which specifies the input
to output port mappings.

DySER

FETCH DECODE EXECUTE MEMORY WRITEBACK

D
y

S
E

R
 In

p
u
t In

terface

I-Cache
Execution

Pipeline
Decode

D-Cache

Register

File D
y

S
E

R
 O

u
tp

u
t In

terface

S S

S S

S S

FU

S

S

S

FU

FU FU

Fig. 9. Processor pipeline with DySER (Reprint from [45])
DySER blocks are configured by writing into configuration

registers at each functional unit and switch. After configura-
tion, the switches in the DySER block form a circuit-switched
network that creates explicit hardware paths from inputs to the
functional units, between functional units, and from functional
units to outputs. The functional units are configured to perform
the operation that is needed to execute the desired dataflow
graph. The idea is that for a given application phase, DySER
blocks are configured once and re-used many times.

The basic execution inside a DySER block is dataflow driven
by values arriving at a functional unit. When the valid bits
for both left and right operands are set, the functional unit
consumes those inputs, and a fixed number of cycles later
produces the output, writing into the data and status register
of the output switch.

All the inputs to a DySER block are fed through a logical
FIFO, which delivers register inputs and memory values. Each
entry specifies a switch and a port. As a DySER block uses
circuit-switched routing, this effectively decides where the
value will be delivered in the block. Outputs follow a similar
procedure. Each port in the output switches corresponds to one
possible DySER block output. Since for each output port, the
DySER produces outputs in order, no FIFOs are required on the
output side. When values arrive at the output ports, an output
interface writes them to the corresponding register or memory.

DySER can be easily integrated into conventional in-order
and Out-of-Order pipelines as an accelerator. Integration with
an in-order pipeline is simple and the DySER block interfaces
with the instruction fetch stage for obtaining the configuration
bits, the register file stage and the memory stage of the pipeline.
A state machine must be added to the instruction cache to read
configurations bits for a DySER block and send them to the
input interface of that DySER block.

DySER integration with an Out-of-Order pipeline requires
more careful design. The processor views DySER as a functional
unit but the input ports should be exposed to the issue logic
to ensure two send operations are not executed out-of-order.
Since loads can cause cache misses, when a load executes in
the processor, the corresponding input port is marked busy in
the input buffers. When the data arrives from the cache, the
input port is marked ready, which prevents subsequent loads
values from entering the DySER block earlier.

Implementation Examples

Govindaraju et al. [45] implemented the DySER block in Verilog
and synthesized it using Synopsys compiler with a 55nm
standard cell library. They developed path-tree, a program
representation for application phases, in order to find the
most frequently executed basic blocks for mapping on DySER.
For evaluating DySER, they developed extensions to the GCC
toolchain which operates on the SPARC backend and performs
path-profiling and DySER mapping. Benson et al. [12] described
the integration of DySER into a commercial processor designing
an FPGA prototype based on the OpenSPARC T1 processor
called OpenSPlySER. Govindaraju et al. [46] studied challenges
for DySER on data parallel workloads.

6 DISCUSSION OF THE RECENT HYBRID MODELS

This section highlights the main features of recent hybrid
architectures, compares and discusses them, and shows their
common trends. Table 1 introduces the main features of the
architectures described in Section 5 and in the supplementary
file, sorted by the year the architecture appeared.

13

TABLE 1
Comparison of the recent hybrid dataflow/von-Neumann architectures

 SIGMA-1 Out-of-Order
MT.

Monsoon
DDM SDF TRIPS Wavescalar

Task

Superscalar

DySER

 (w/ inorder GPP)

Year 1982 1985 1991 2000 2001 2003 2003 2010 2011

ISA RISC RISC / CISC RISC RISC / CISC

RISC (Preload/

store +
computation)

EDGE WaveScalar RISC / CISC
RISC /CISC +

Ultra-wide insts.

Main features
Vector

processing

Out-of-order
instruction

execution

ETS, MT

Decoupled

non-blocking,

CacheFlow
policy (prefetching)

Decoupled
non-blocking

multithreading

Polymorphous

(multiple parallelism
modes), memory

ordering, branch

prediction

Wave-ordered and

unordered memory,

hierarchically
interconnection

Out-of-order

task execution

Profiling based

detection of ultra-wide
insts. compiler support

to execute them on

DySER blocks

Core

Granularity

SIGMA-1 PE

and SE
PE agnostic

Monsoon

PE
PE agnostic

Simple

processor

1 TRIPS processor =

4x4 ALU (TRIPS core)

5 stage dynamically

scheduled pipeline
PE agnostic

DySER block: 8x8 FU /

GPP: PE gnostic

Scalability
> 100 PEs,

>100 SEs
~ 10 FUs > 1000PEs ~ 100 PEs ~ 100 PEs ~ 100 PEs > 1000 FUs >> 100 PEs < 10 DySER Blocks

Parallelism

level

ILP, DLP,

TLP

ILP, DLP, TLP

(dual threaded)
TLP TLP TLP ILP, TLP, DLP TLP, ILP TLP

ILP, DLP, TLP (dual

threaded)

Block

Granularity
Vector length

Instruction
Window

size

Thread
(basic

block)

BB size (code

block, more than

one thread, in TSU
graph memory)

BB size, <128-inst.

blocks

(27 (15 in EP) up
to 51 (39 in EP))

128-inst.

block (EDGE)

Up to 64 insts. per

PE cache, any

number of insts. in
a wave

Task size (any

size) > 10K

Equivalent to

few hundreds of

ISA insts.

Inter-block

Scheduling
Dataflow Control flow Dataflow

Dynamic dataflow
(dependencies

specified in

programs)

Static dataflow
(programmer/

compiler)

Static control

flow (compile time)

Dynamic dataflow
(dependencies

detected at

execution time)

Dynamic

dataflow

(dependencies
specified in

programs)

Control flow

Intra-block

Scheduling

Static control

flow

Hybrid control

flow / dataflow

Control

flow
Control flow

Control flow
(scheduled

dataflow)

Static dataflow

(compile time)

Dynamic dataflow

(execution time)
Control Flow

Static Dataflow

(compile time)

Inter-block

Communication

Direct inter-

connection

Register /cache

/memory

Register /

memory
Cache

Frame memory

and registers
Registers

Memory /direct

interconnection
Memory

Register /memory

/ FIFO

Intra-block

Communication
Register

Register /cache
/memory

Register /
memory

Register / memory Register
Memory / direct
interconnection

Memory / direct
interconnection

Register /
memory

Direct interconnection

Examples SIGMA-1 Many
MT.

Monsoon

D2NOW, Flux,

DDM-VMc
SDA TRIPS, TFlex WaveCache

Task

Superscalar
DySER

6.1 Main Features

Out-of-Order, DDM, Task Superscalar and DySER are based
on RISC/CISC ISA. DySER, in addition, has the ultra-wide
instructions, used to run part of the program in the recon-
figurable DySER blocks. SDF is based on a RISC ISA defined
for the execution and synchronization processors. MT.Monsoon
is based on CISC ISA. TRIPS and WaveScalar are based on
dataflow ISAs: EDGE ISA and WaveScalar ISA, respectively.

The main feature of Out-of-Order is the dataflow execution
of a sequential instruction stream. ETS and multithreading
are main features of MT.Monsoon architecture. For DDM the
main feature is the introduction of the CacheFlow policy,
that implies the execution of a DDM thread (basic block of
instructions - BB) only if its data is already placed in the
cache. Decoupling computation and synchronization, and non-
blocking threads are also main features of SDF and DDM.
However, the computation in the DDM is carried out by an
off-the-shelf processor while in the SDF it is carried out by a
custom designed processor. Another difference is that in SDF
data is preloaded in registers while in DDM data is pre-fetched
in the cache. Polymorphism is one of the main features of
TRIPS providing three modes of execution for exploiting one
of the three types of parallelism ILP, TLP and DLP. The main
feature of the WaveScalar is the wave-ordering execution. In
the wave-ordered memory of WaveScalar, memory instructions
are annotated with extra information that orders them relative
to other instructions of a block. The main feature of Task
Superscalar is Out-of-Order task execution. DySER architecture
introduces the idea of generic dataflow accelerators integrated
in a general purpose processor through ultra-wide instructions.
Those generic dataflow accelerators are dynamically configured
at execution time.

The computational core granularity varies from any pro-
cessing element (PE) or core size in the case of DDM, Task
Superscalar and Out-of-Order processors to a small SDF core.

MT.Monsoon uses its PE as core granularity. Each TRIPS proces-
sor consists of 16 ALUs (the basic core of TRIPS). DySER blocks
consists on 8x8 FUs circuit-switched networks. The scalability
also varies from more than 1000 PEs in the case of MT. Monsoon
and much more than 100 PEs in the case of the Task Superscalar
down to less than 10 DySER blocks in the DySER architecture.

6.2 Comparison and Discussion
6.2.1 Enhanced Control Flow Class
Out-Of-Order architectures (restricted dataflow architectures)
are the main representation of Enhanced Control Flow class.
Out-of-Order processors support ILP, DLP, and TLP in the form
of dual threaded cores. The number of instructions of a block
(block granularity) is that of the instruction window, created
at runtime. Out-of-Order processors use cache, memory and
registers to communicate data between the blocks. Also, Out-of-
Order processors use hybrid control flow/dataflow intra-block
scheduling and the same communication mechanisms than for
inter-block communication.

The main difference between dynamic dataflow architectures
and restricted dataflow pipelines is that the latter are designed
to dynamically reconstruct the dataflow graph from a sequen-
tial instruction stream. The success of such reconstruction, relies
on the ability to view a window of sequential code without
control instructions, is largely attributed to accurate branch
prediction and speculative execution. However, such processors
are also susceptible to the prohibitive costs of branch mis-
prediction that require unrolling the execution of the wrongly
predicted paths. This operation is especially costly in deeply
pipelined microprocessors. On the other hand, the restricted
size of the instruction window limits the number of in-flight in-
structions and thus, to some extent, avoids the scalability issues
associated with token stores in dynamic dataflow processors.

Nevertheless, the ILP achieved by Out-of-Order microproces-
sors is limited by the size of the instruction window and the

14

amount of parallelism available in the instruction stream. In this
sense, thread level speculation (TLS) may increase ILP by using
speculative thread execution and a large instruction window.
Indeed, thanks to the fact that each processor or processing
unit only works with a limited part (i.e., instructions of thread)
of the large instruction window, the complexity of concurrently
monitoring the instruction issue of all the pending instructions,
the data dependency cross check complexity among the in-
structions, and the overall branch miss-prediction are reduced.
Unlike dataflow models, TLS does not require large waiting-
matching store, but, it may suffer from costly checkpointing of
memory accesses, squashing and re-executing threads.

6.2.2 Control Flow/Dataflow Class
Main representation of this class, TRIPS, presents a major
effort to rethink the computation of conventional codes, while
trying to overcome the limitations of architectures based on big
cores — that is, large communication delays inside ever grow-
ing control structures. The key is dataflow execution inside
128-instruction hyperblocks (intra-block dataflow scheduling)
because it allows large instruction windows to be executed
with reasonable hardware resources. That intra-block schedul-
ing is static and defined at compile time. TRIPS uses direct
interconnection and also memory for intra-block communi-
cation. For inter-block communication, TRIPS uses registers.
Furthermore, when not enough ILP is available, TRIPS can
use its polymorphous nature that allows different modes of
execution. Therefore, it can also exploit DLP or TLP through
loop-unrolling or parallel thread execution. On the other hand,
commercial processors can obtain similar performance results
by exploiting TLP through simultaneous multithreading, and
DLP through SIMD instructions [41]. Indeed, small Out-of-
Order instruction windows are sufficient to efficiently extract
the available ILP in conventional codes. Therefore, TRIPS can
be seen as an efficient architecture that obtains similar results
as classical processors with a different approach.

Another group of processors within this class use, inside
an otherwise classical von-Neumann processor, a dataflow
accelerator statically defined by the compiler. Within dataflow
accelerators, DySER stands out because it is general purpose
and presents some amount of runtime reconfiguration. De-
signed with power-efficiency in mind, the DySER execution
model is based on the idea that a limited number of dataflow
accelerators are enough to capture highly reused sections of the
applications. TRIPS and DySER differ in that the former unifies
dataflow and von-Neumann into a single execution model and
the latter essentially use dataflow to accelerate parts of the code.

DySER architecture can also support ILP, DLP, and TLP in the
form of dual threaded cores. It supports DLP and TLP based on
the general purpose processor (GPP) that it incorporates and
the DySER blocks integrated with the GPP. For DySER, a block
is a part of the program up to hundreds of GPP ISA instruc-
tions. Unlike TRIPS, DySER uses FIFOs to communicate input
data with the DySER block, and static dataflow intra-block
scheduling and direct interconnection is provided. Therefore,
DySER requires profiling analysis of applications in order to
pre-define the instructions that are going to be accelerated with
the use of the DySER blocks. Once those sets of instructions are
defined, the DySER execution model dynamically reconfigures
the switched-network of functional units on the DySER block
for each phase of the application. This dynamic reconfiguration
provides area efficiency (rather than dynamically arbitrated
networks) and programmability, although it requires compiler

support and a phase predictor that tries to reconfigure the
DySER block before it is needed to hide the reconfiguration
time. The need of profiling and the limited amount of runtime
adaptability are the main disadvantages of this subclass. On
the other hand they can obtain significant improvements in
both performance and power efficiency over von-Neumann
approaches, specially for computation intensive kernels.

6.2.3 Dataflow/Control Flow Class
In these architectures, blocks are scheduled in dataflow manner
while control flow scheduling is used within the blocks. There-
fore, models in this class tend to provide specific support only
to TLP. In particular, DDM and Task Superscalar perform dy-
namic dataflow inter-block scheduling, based on dependencies
specified on the program, using cache and memory respectively
for inter-block communication. SDF performs static dataflow
inter-block scheduling and uses frame memory and registers
for inter-block communication. DDM/SDF block is equivalent
to a BB, being up to 128 instructions in the case of a SDF block.
Task Superscalar may have blocks of any size.

This large class can be further divided in two groups re-
garding the size of the blocks: small and large. The size of the
blocks of DDM and SDF models tends to be small, a decision
that allows large amount of parallelism to be discovered and
executed but also increases the cost of the synchronization.
In the case of DDM, this characteristic makes the thread
scheduling unit as important as the workstation duplicating
the number of necessary processing elements. Another key
point of this model is that in order to be efficient, it needs
more information about the program than the classical control
flow model. Programs should thus be annotated either by the
compiler or by the programmer, which increases the complexity
of the toolchain needed to develop new applications. Unlike
DDM, SDF executes the instructions within a block in-order,
obtaining less ILP but allowing the execute processor of its
architecture to be simpler and smaller. Another characteristic
of the SDF paradigm is that, although it can take profit of
annotated code, it can execute actual code as is, automatically
extracting the available parallelism.

Task Superscalar is another instance of Dataflow/Control
Flow class architectures, but in this case, the blocks were de-
signed to be as large as desired. The Task Superscalar pipeline
is designed as a generalization of Out-of-Order processors to
the task-level. Nevertheless, its scalability goals, which target
dynamically managing very large graphs consisting of tens of
thousands of nodes, require an alternative design to that of Out-
of-Order processors. This redesign is the result of Out-of-Order
pipelines’ use of reservation stations and bypass networks,
whose operation is similar to that of associative token stores
and are known not to scale.

The designers of the Task Superscalar pipeline thus opted
for a distributed structure that, through careful protocol design
that ubiquitously employ explicit data accesses, practically
eliminates the need for associative lookups. The benefit of this
distributed design is that it facilitates high levels of concurrency
in the construction of the dataflow graph. These levels of
concurrency trade off the basic latency associated with adding a
new node to the graph with overall throughput. Consequently,
the rate in which nodes are added to the graph enables high
task dispatch throughput, which is essential for utilizing large
manycore fabrics.

In addition, the dispatch throughput requirements imposed
on the Task Superscalar pipeline are further relaxed by the

15

use of tasks, or von-Neumann code segments, as the basic
execution unit. The longer execution time of tasks compared
to that of instructions means that every dispatch operation
occupies an execution unit for a few dozen microseconds, and
thereby further amplifies the design’s scalability.

The main disadvantage of models in this class is the need
for annotating the actual codes in order to be able to extract
a significant amount of parallelism from them. In this sense it
can be observed in the designs of the programming models a
trend towards simplifying the annotations as much as possible.
Another common trend of this class is the increasing in both
the number of processing elements and the size of the blocks.

6.2.4 Enhanced Dataflow Class
WaveScalar is the main example of the Enhanced Dataflow
class. WaveScalar supports ILP and TLP. Unlike DySER and
TRIPS, which need compiler support, WaveScalar performs dy-
namic dataflow intra-block scheduling since the dependences
are detected in execution time. WaveScalar, as TRIPS, uses
memory and direct interconnection for intra-block communica-
tion. For inter-block communication, WaveScalar uses memory
and direct interconnection. A WaveScalar block is equivalent
to a wave of instructions, although every PE caches up to 64
instructions, called segments.

The fact that WaveScalar is the only example of a mainly
dataflow architecture able to execute imperative codes explains
by itself the difficulties of such challenge. On the other hand
this uniqueness makes WaveScalar present a very interesting set
of properties. Probably the main characteristic of this model is
that it was designed with Moore’s Law in mind to profit from
the increase in transistor density and count. Therefore, ideally
the whole application would be mapped to the PEs at the same
time and, in this scenario (i.e. using kernels), it is expected to
clearly outperform Out-of-Order processors [118]. However, to
achieve this goal the processor should have a larger number of
PEs than what is possible to date. In the meantime, the need
for "loading and discarding" instructions in the PEs along the
program execution is one of its main bottlenecks. On the other
hand, it is expected that as technology evolves this problem
would diminish and the WaveScalar architecture would offer an
approach than can benefit from the increasing transistor count,
while keeping power consumption at bay.

6.3 Common Trends
In addition to individual features of the discussed classes,
they share common properties and advantages. Moreover, they
face similar challenges in their design. Recent hybrid archi-
tectures can handle imperative programming languages and
data structures, as well as memory operations. This fact makes
them stand out amongst other hybrid dataflow/von-Neumann
architectures. It seems scheduling and memory management
are key challenges in the design of hybrid architectures. One
common theme among these architectures is their attempt to
improve traditional processors, using dataflow principles at
various levels, in order to increase the capability of providing
high levels of parallelism and performance. As the matter of
fact, several features of the dataflow model such as static single
assignment, register renaming, dynamic scheduling and Out-
of-Order instruction execution, I-structure-like synchronization
and non-blocking threads are used in modern processor ar-
chitectures and compiler technology. Moreover, many studies
on hybrid models replace large, centralized processor cores
with many simpler processing elements. In fact, all of these

architectures, except WaveScalar, are von-Neumann machines,
rely on a program counter between blocks (inter-block) or
inside blocks (intra-block), and with some concepts of dataflow
scheduling. WaveScalar eliminates both the program counter
and the register file and relies completely on the dataflow
program graph, allowing the arcs between waves to define
interactions between them.

The hybrid architectures discussed in this paper were devel-
oped as general purpose processors, although some of them
may have not achieved their goals as they failed to deliver
the expected performance. Some of the hybrid architectures
have limited scalability (e.g., Out-of-Order processors). In other
cases, performance improvement was less than expected (e.g.,
TRIPS), while some of the hybrid architectures rely on new
programming models (e.g., Task Superscalar and DDM). Most
of them are not focused on power saving, although some
dataflow based accelerators integrated with general purpose
processors have been designed for energy efficiency such as
C-Cores, Tartan and DySER.

7 CONCLUSIONS

This work surveys the recent general-purpose hybrid
dataflow/von-Neumann architectures. To this end, we review
the benefits and drawbacks of the von-Neumann and the
dataflow computing models. Then, we present the common
characteristics of the different hybrid models classifying
them with two different taxonomies that allow to better
understand their features. After that, we describe, compare
and discuss a representative set of recent general-purpose
hybrid dataflow/von-Neumann models. Finally, we present
an insight discussion that tries to find the trends of the next
generation hybrid architectures.

Nowadays, the majority of current computer systems are
based on the von-Neumann model. Such processors use a
program counter to sequence the execution of instructions of
a program and global updatable memory. Consequently, the
von-Neumann machines have two fundamental limitations:
memory latencies and thread synchronization. The dataflow
model has no program counter and global updatable memory
so that dataflow architectures have the potential for exploiting
all the parallelism available in programs. Since instructions
in the dataflow models do not impose any constraints on
sequencing except real data dependencies in programs, the
dataflow model is asynchronous and self-scheduled.

However, although the dataflow model has been investi-
gated since 1970s, no commercially viable global pure dataflow
system has been implemented. The amount of parallelism
discovered by the model becomes an implementation issue due
to token matching and memory resources limitations. In theory,
the dataflow model offers better performance and power effi-
ciency than the von-Neumann model. The main reasons are the
parallelism inherent to this model and that there is no overhead
on pipeline control structures and temporary state (i.e., register
file). Nevertheless, the efficient parallel programming of the
dataflow architectures is difficult due to the fact that dataflow
and functional languages do not easily support data structures,
and they are not popular. On the other hand, imperative
languages cannot be compiled to dataflow architectures, mainly
because of issues associated with memory semantics.

Research on modern microprocessor architectures revealed
the advantages of dataflow concepts in the use of instruction
level parallelism. Indeed, in order to build efficient dataflow
based machines, the dataflow model has to exploit some

16

concepts from the von-Neumann computing model. Similarly,
most von-Neumann based architectures borrow concepts and
mechanisms from the dataflow world to simplify thread syn-
chronization and tolerate memory latency. As a result, the
dataflow and von-Neumann models are not orthogonal, but are
at two ends of a continuum. Combination, or even unification
of von-Neumann and dataflow models is possible and pre-
ferred to treating them as two unrelated, orthogonal computing
paradigms. Recent dataflow research incorporates more explicit
notions of state into the architecture, and von-Neumann models
using many dataflow techniques improve the latency hiding
aspects of modern multithreaded systems.

Hybrid architectures exploit the benefits of dataflow while
preserving von-Neumann capabilities and imperative lan-
guages, in order to have a high performance and low power
architectures. We found that most studies of hybrid designs
exploit dataflow concepts in von-Neumann based architectures,
particularly in superscalar and VLIW systems, to increase the
capability of providing high levels of parallelism. On the other
hand, some architects of the hybrid models have attempted to
increase the efficiency of dataflow based architectures by using
some ideas of von-Neumann models.

Designing a general-purpose architecture is a common goal,
and all hybrid architectures discussed in this paper were de-
veloped as general-purpose processors. Moreover, it is also
clear that modern hybrid architectures are designed to have
the ability of handling imperative programming languages
and data structures as well as memory organizations. Another
observed trend is that architects of recent hybrid models have
attempted to replace centralized processors by several simpler
processing elements, as scheduling and memory management
pose key challenges in their designs. It can be observed an
increase in the number of processing elements. Also it can
be observed that all the architectures try to use the dataflow
principles at the level (ILP, DLP or TLP) envisioned by its
designers with the most potential parallelism. At the same time,
the von-Neumann scheduling is maintained at the other levels
to keep the needed resources at bay.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Science and
Technology of Spain and the European Union (FEDER funds)
under contract TIN2007-60625, by the Generalitat de Catalunya
(contract 2009-SGR-980), and by the European FP7 project
TERAFLUX id. 249013.The authors wish to thank Mark Oskin
for his insightful comments on earlier drafts of this document.

REFERENCES

[1] “J. mcgraw and s. skedzielewski, "sisal - streams and iteration in
a single assignment language reference manual (version 1. 0)",
livermore national laboratory, livermore, ca, 1983.”

[2] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz, “APRIL:
A processor architecture for multiprocessing,” in Intl. Symp. on
Computer Architecture, 1990, pp. 104–114.

[3] T. Agerwala and J. Cocke, “High performance reduced instruc-
tion set processors,” IBM T.J. Watson Research Center Technical
Report RC12434, Tech. Rep., 1987.

[4] H. Akkary and M. A. Driscoll, “A dynamic multithreading
processor,” in Intl. Symp. on Microarchitecture, 1998, pp. 226–236.

[5] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
field, and B. Smith, “The Tera computer system,” in Intl. Symp.
on Supercomputing, 1990, pp. 1–6.

[6] Arvind, L. Bic, and T. Ungerer, “Evolution of dataflow comput-
ers,” in Advanced Topics in Data-Flow Computing, J.-L. Gaudiot and
L. Bic, Eds. Prentice Hall, 1991.

[7] Arvind and D. E. Culler, “Dataflow architectures,” in Annual
Review of Computer Science vol.1, 1986, pp. 225–253.

[8] Arvind and R. A. Iannucci, “Two fundamental issues in multi-
processing,” in 4th International DFVLR Seminar on Foundations of
Engineering Sciences on Parallel Computing in Science and Engineer-
ing, 1988, pp. 61–88.

[9] Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: Data
structures for parallel computing,” ACM Trans. on Programming
Languages and Systems, vol. 11, no. 4, pp. 598–632, 1989.

[10] P. Barahona and J. R. Gurd, “Simulated performance of the
Manchester multi-ring dataflow machine,” in Parallel Computing
’85, 1985, pp. 419–424.

[11] P. Bellens, J. Perez, R. Badia, and J. Labarta, “CellSs: A program-
ming model for the Cell BE architecture,” in Supercomputing, 2006.

[12] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam, “Design, integration
and implementation of the DySER hardware accelerator into
OpenSPARC,” in Intl. Symp. on High Performance Computer Ar-
chitecture, 2012, pp. 1–12.

[13] E. Bloch, “The engineering design of the stretch computer,” in
IRE-AIEE-ACM (Eastern) computer conference, 1959, pp. 48–58.

[14] W. Bohm, W. Najjar, B. Shankar, and L. Roh, “An evaluation of
coarse grain dataflow code generation strategies,” in Programming
Models for Massively Parallel Computers, 1993, pp. 63–71.

[15] R. Buehrer and K. Ekanadham, “Incorporating data flow ideas
into von Neumann processors for parallel execution,” IEEE Trans.
Comput., vol. 36, no. 12, pp. 1515–1522, 1987.

[16] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R.Moore, J. Burrill, R. G. McDonald, W.Yoder, and
the TRIPS Team, “Scaling to the end of silicon with EDGE
architectures,” IEEE Computer, vol. 37, no. 7, pp. 44–55, 2004.

[17] M. Cintra, J. F. Martínez, and J. Torrellas, “Architectural support
for scalable speculative parallelization in shared-memory mul-
tiprocessors,” in Intl. Symp. on Computer Architecture, 2000, pp.
13–24.

[18] J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. Plass,
J. Dawson, P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee,
M. Goulet, J. Wagoner, N. Schwartz, S. Runyon, G. Gorman,
P. Restle, R. Kalla, J. McGill, and S. Dodson, “Design and imple-
mentation of the POWER5 TM microprocessor,” in annual Design
Automation Conference, 2004, pp. 670–672.

[19] K. Coons, X. Chen, S. K. Kushwaha, D. Burger, and K. McKinley,
“A Spatial Path Scheduling Algorithm for EDGE Architectures,”
SIGPLAN Not., vol. 41, no. 11, pp. 129–140, 2006.

[20] T. M. Corp., “Connection machine model CM-2 technical sum-
mary,” Thinking Machines Corp. Technical Report TR89-1, Tech.
Rep., 1989.

[21] A. Cristal, O. J. Santana, F. Cazorla, M. Galluzzi, T. Ramirez,
M. Pericas, and M. Valero, “Kilo-instruction processors: Over-
coming the memory wall,” IEEE Micro, vol. 25, no. 3, pp. 48–57,
2005.

[22] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. Eicken,
“TAM: A compiler controlled threaded abstract machine,” Journal
of Parallel & Distributed Computing, vol. 18, no. 3, pp. 347–370,
1993.

[23] D. E. Culler and G. M. Papadopoulos, “The explicit token store,”
Journal of Parallel & Distributed Computing, vol. 10, no. 4, pp. 289–
308, 1990.

[24] D. E. Culler, K. E. Schauser, and T. Eicken, “Two fundamental
limits on dataflow multiprocessing,” in Proceeding IFIP WG 10.3
Conf. on Architecture and Compilation Techniques for Medium and
Fine Grain Parallelism, 1993.

[25] A. L. Davis and R. Keller, “Data flow program graphs,” IEEE
Computer, vol. 15, no. 2, pp. 26–41, 1982.

[26] L. Davis, “The architecture and system method of DDM1: A
recursively structured data driven machine,” in Intl. Symp. on
Computer Architecture, 1978, pp. 210–215.

[27] J. B. Dennis, “First version of a data flow procedure language,” in
Programming Symposium, ser. Lecture Notes in Computer Science,
B. Robinet, Ed. Springer Berlin/Heidelberg, 1974, vol. 19, pp.
362–376.

[28] J. B. Dennis and G. R. Gao, “Multithreaded architectures: Princi-
ples, projects, and numbers,” School of Computer Science, McGill
University, Montreal, Quebec, CA, Tech. Rep., 1994.

[29] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a
basic data-flow processor,” in Intl. Symp. on Computer Architecture,
1975, pp. 126–132.

[30] J. B. Dennis, “Data flow supercomputers,” IEEE Computer, vol. 13,
no. 11, pp. 48–56, 1980.

[31] ——, “The varieties of data flow computers,” in Advanced com-
puter architecture, 1986, pp. 51–60.

[32] J. R. Ellis, “Bulldog: a compiler for VLIW architectures (parallel
computing, reduced-instruction-set, trace scheduling, scientific),”
Ph.D. dissertation, Yale University,New Haven, CT, USA, 1985.

[33] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia,
E. Ayguade, J. Labarta, and M. Valero, “Task superscalar: An out-
of-order task pipeline,” in Intl. Symp. on Microarchitecture, 2010,
pp. 89–100.

17

[34] Y. Etsion, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta,
and M. Valero, “Task superscalar: Using processors as functional
units,” in Hot Topics in Parallelism, 2010.

[35] P. Evripidou and J. L. Gaudiot, “A decoupled graph/computation
data-driven architecture with variable-resolution actors,” in Intl.
Conf. on Parallel Processing, 1990, pp. 405–414.

[36] ——, “The USC decoupled multilevel dataflow execution
model,” in Advanced topics in data-flow computing, J.-L. Gaudiot
and L. Bic, Eds. Prentice Hall, 1991, pp. 347–379.

[37] J. A. Fisher, “Very long instruction word architectures and the
ELI-512,” SIGARCH Comput. Archit. News, vol. 11, no. 3, pp. 140–
150, 1983.

[38] M. Frank, C. A. Moritz, B. Greenwald, S. Amarasinghe, and
A. Agarwal, “SUDS: Primitive mechanisms for memory depen-
dence speculation,” Cambridge, UK, Tech. Rep., 1999.

[39] M. Franklin and G. S. Sohi, “ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE Transactions on
Computers, vol. 45, pp. 552–571, 1996.

[40] J.-L. Gaudiot, T. DeBoni, J. Feo, W. Böhm, W. Najjar, and P. Miller,
“The Sisal model of functional programming and its implementa-
tion,” in Intl. Symp. on Parallel Algorithms / Architecture Synthesis,
1997, pp. 112–.

[41] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz,
M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J. Burrill,
S. W. Keckler, D. Burger, and K. S. McKinley, “An evaluation of
the TRIPS computer system,” in Intl. Conf. on Arch. Support for
Programming Languages & Operating Systems, 2009, pp. 1–12.

[42] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for
managing thread context in throughput processors,” in Intl.
Symp. on Computer Architecture, 2011, pp. 235–246.

[43] E. Gluck-Hiltrop, M. Ramlow, and U. Schurfeld, “The Stollman
dataflow machine,” in Lect. Notes Comput. Sc., 1989, pp. 433–457.

[44] S. Gopal, T. N. V. James, E. Smith, and G. S. Sohi, “Speculative
versioning cache,” in Intl. Symp. on High Performance Computer
Architecture, 1998, pp. 195–205.

[45] V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically
specialized datapaths for energy efficient computing,” in Intl.
Symp. on High Performance Computer Architecture, 2011.

[46] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “DySER: Unifying functionality
and parallelism specialization for energy-efficient computing,”
IEEE Micro, vol. 32, pp. 38–51, 2012.

[47] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. Holmes, “The Ep-
silon dataflow processor,” in Intl. Symp. on Computer Architecture,
1989, pp. 36–45.

[48] V. G. Grafe and J. Hoch, “The EPSILON-2 multiprocessor sys-
tem,” Journal of Parallel & Distributed Computing, vol. 10, no. 4,
1990.

[49] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger, “Im-
plementation and evaluation of on-chip network architectures,”
in Intl. Conf. on Computer Design, 2006, pp. 477–484.

[50] M. Gupta and R. Nim, “Techniques for speculative run-time
parallelization of loops,” in Supercomputing, 1998.

[51] J. R. Gurd, C. C. Kirkham, and I. Watson, “The Manchester
prototype dataflow computer,” Comm. ACM, vol. 28, no. 1, pp.
34–52, 1985.

[52] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov,
B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Un-
derstanding sources of inefficiency in general-purpose chips,” in
Intl. Symp. on Computer Architecture, 2010, pp. 37–47.

[53] L. Hammond, M. Willey, and K. Olukotun, “Data speculation
support for a chip multiprocessor,” in Intl. Conf. on Arch. Support
for Programming Languages & Operating Systems, 1998, pp. 58–69.

[54] M. Herlihy and J. E. B. Moss, “Transactional memory: archi-
tectural support for lock-free data structures,” in Intl. Symp. on
Computer Architecture, 1993, pp. 289–300.

[55] J. Hicks, D. Chiou, B. S. Ang, and Arvind, “Performance studies
of Id on the Monsoon dataflow system,” Journal of Parallel &
Distributed Computing, vol. 18, no. 3, pp. 273–300, 1993.

[56] D. Hillis, “The connection machine,” Ph.D. dissertation, Depart-
ment of Electrical Engineering and Computer Science (EECS),
MIT, 1988.

[57] S. Hong and H. Kim, “An integrated GPU power and perfor-
mance model,” in Intl. Symp. on Computer Architecture, 2010, pp.
280–289.

[58] H. H. J. Hum, O. Maquelin, K. B. Theobald, X. Tian, X. Tang, G. R.
Gao, P. Cupryky, N. Elmasri, L. J. Hendren, A. Jimenez, S. Krish-
nany, A. Marquez, S. Merali, S. S. Nemawarkarz, P. Panangaden,
X. Xue, and Y.Zhu, “A design study of the EARTH multiproces-
sor,” in Intl. Conf. on Parallel Arch. & Compilation Techniques, 1995,
pp. 59–68.

[59] H. H. J. Hum, O. Maquelin, K. Theobald, X. Tian, G. Gao, and
L. Hendren, “A study of the EARTH-MANNA multithreaded
system,” Parallel Programming, vol. 24, no. 4, pp. 319–348, 1996.

[60] W. Hwu and Y. N. Patt, “HPSm, a high performance restricted
data flow architecture having minimal functionality,” in Intl.
Symp. on Computer Architecture, 1986, pp. 297–306.

[61] R. A. Iannucci, “Toward a dataflow/von neumann hybrid archi-
tecture,” in Intl. Symp. on Computer Architecture, 1988, pp. 131–140.

[62] R. A. Iannucci, G. R. Gao, R. H. H. Jr., and B. Smith, Multithreaded
Computer Architecture: A Summary of the State of the Art. Kluwer
Academic Publishers, 1994.

[63] N. Ito, M. Sato, E. Kuno, and K. Rokusawa, “The architecture
and preliminary evaluation results of the experimental parallel
inference machine PIM-D,” in Intl. Symp. on Computer Architec-
ture, 1986, pp. 149–156.

[64] H. F. Jordan, “Performance measurements on HEP- a pipelined
MIMD computer,” in Intl. Symp. on Computer Architecture. ACM,
1983, pp. 207–212.

[65] G. Kahn, “The semantics of a simple language for parallel
programming,” in Proceedings of the IFIP Congress, vol. 74, 1974.

[66] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinacy, termination, queueing,” SIAM Jour-
nal of Applied Mathematics, vol. 14, no. 5, pp. 1390–1411, 1966.

[67] K. M. Kavi, B. Buckles, and U. Bhat, “A formal definition of data
flow graph models,” IEEE Trans. on Computers, vol. 35, no. 11,
pp. 940–948, 1986.

[68] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled dataflow: Execu-
tion paradigm, architecture, and performance evaluation,” IEEE
Transactions on Computers, vol. 50, pp. 834–846, 2001.

[69] C. Kim and J. L. Gaudiot, Dataflow and Multithreaded Architectures.
Wiley, New York, 1997.

[70] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler, “Composable lightweight
processors,” in Intl. Symp. on Microarchitecture, 2007, pp. 381–394.

[71] M. Kishi, H. Yasuhara, and Y. Kawamura, “DDDP — a dis-
tributed data driven processor,” in Intl. Symp. on Computer Ar-
chitecture, 1983, pp. 236–242.

[72] Y. Kodama, H. Sakane, M. Sato, H. Yamana, S. Sakai, and
Y. Yamaguchi, “The EM-X parallel computer: Architecture and
basic performance,” in Intl. Symp. on Computer Architecture, 1995,
pp. 14–23.

[73] V. Krishnan and J. Torrellas, “A chip-multiprocessor architecture
with speculative multithreading,” IEEE Transactions on Computers,
vol. 48, pp. 866–880, 1999.

[74] V. Krishnan and L. J. Torrellas, “The need for fast communication
in hardware-based speculative chip multiprocessors,” in Intl.
Conf. on Parallel Arch. & Compilation Techniques, 1999.

[75] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C. Q. Zhu, A. Vei-
denbaum, J. Konicek, P. Yew, K. Gallivan, W. Jalby, H. Wijshoff,
R. Bramley, U. M. Yang, P. Emrath, D. Padua, R. Eigenmann,
J. Hoeflinger, G. Jaxon, Z. Li, T. Murphy, and J. Andrews, “The
Cedar system and an initial performance study,” in Intl. Symp.
on Computer Architecture, 1993, pp. 213–223.

[76] K. Kurihara, D. Chaiken, and A. Agarwal, “Latency tolerance
through multithreading in large-scale multiprocessors,” in Intl.
Symp. on Computer Architecture, 1991, pp. 91–101.

[77] C. Kyriacou, P. Evripidou, and P. Trancoso, “Data-driven mul-
tithreading using conventional microprocessors,” IEEE Trans. on
Parallel and Distributed Systems, vol. 17, no. 10, pp. 1176–1188,
2006.

[78] B. Lee and A. Hurson, “Dataflow architectures and multithread-
ing,” Computer, vol. 27, no. 8, pp. 27–39, 1994.

[79] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[80] P. Marcuello and A. González, “Clustered speculative multi-
threaded processors,” in Intl. Symp. on Supercomputing, 1999, pp.
365–372.

[81] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, and
M. U. J. A. Miller, “Hyper-threading technology architecture and
microarchitecture,” Intel Technology Journal, vol. 6, no. 1, pp. 1–12,
2002.

[82] L. A. J. Marzulo, F. M. G. Franca, and V. S. Costa, “Transactional
WaveCache: Towards speculative and out-of-order dataflow exe-
cution of memory operations,” in Intl. Symp. on Computer Archi-
tecture & High Performance Computing, 2008, pp. 183–190.

[83] W. M. Miller, W. A. Najjar, and A. P. W. Böhm, “A quantitative
analysis of locality in dataflow programs,” in Intl. Symp. on
Microarchitecture, 1991, pp. 12–18.

[84] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C.
Goldstein, and M. Budiu, “Tartan: evaluating spatial computation
for whole program execution,” in Intl. Conf. on Arch. Support for
Programming Languages & Operating Systems, 2006, pp. 163–174.

[85] W. A. Najjar, E. A. Lee, and G. R. Gao, “Advances in the dataflow
computational model,” Parallel Computing, vol. 25, no. 13-14, pp.
1907–1929, 1999.

[86] S. S. Nemawarkar and G. R. Gao, “Measurement and modeling of
EARTH-MANNA multithreaded architecture,” in Intl. Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommu-
nications Systems, 1996, pp. 109–.

[87] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with cuda,” ACM Queue, vol. 6, no. 2, pp.
40–53, 2008.

[88] R. S. Nikhil, “Can dataflow subsume von neumann computing?”
in Intl. Symp. on Computer Architecture, 1989, pp. 262–272.

18

[89] R. S. Nikhil, G. M. Papadopoulos, and Arvind, “*T: A mul-
tithreaded massively parallel architecture,” in Intl. Symp. on
Computer Architecture, 1992, pp. 156–167.

[90] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit
token-store architecture,” in Intl. Symp. on Computer Architecture,
1990, pp. 82–91.

[91] G. M. Papadopoulos and K. R. Traub, “Multithreading: A revi-
sionist view of dataflow architectures,” in Intl. Symp. on Computer
Architecture, 1991, pp. 342–351.

[92] Y. N. Patt, W. M. Hwu, and M. Shebanow, “HPS, a new mi-
croarchitecture: Rationale and introduction,” in Intl. Symp. on
Microarchitecture, 1985, pp. 103–108.

[93] S. Pei, B. Wu, M. Du, G. Chen, L. A. J. Marzulo, and F. M. G.
Franca, “SpMT WaveCache: Exploiting thread-level parallelism
in wavescalar,” in Congress on Computer Science and Information
Engineering, 2009.

[94] J. Perez, R. Badia, and J. Labarta, “A dependency-aware task-
based programming environment for multi-core architectures,”
in IEEE International Conference on Cluster Computing, 2008, pp.
142–151.

[95] A. Petersen, A. Putnam, M. Mercaldi, A. Schwerin, S. Eggers,
S. Swanson, and M. Oskin, “Reducing control overhead in
dataflow architectures,” in Intl. Conf. on Parallel Arch. & Com-
pilation Techniques, 2006, pp. 182–191.

[96] A. Plas, D. Comte, O. Gelly, and J. Syre, “LAU system archi-
tecture: A parallel data-driven processor based on single assign-
ment,” in Intl. Conf. on Parallel Processing, 1976, pp. 293–302.

[97] M. Prvulovic, M. J. Garzarán, L. Rauchwerger, and J. Torrellas,
“Removing architectural bottlenecks to the scalability of specula-
tive parallelization,” in Intl. Symp. on Computer Architecture, 2001,
pp. 204–215.

[98] L. Rauchwerger and D. Padua, “The LRPD test: Speculative run-
time parallelization of loops with privatization and reduction
parallelization,” in Conf. on Programming Language Design and
Implementation, 1995, pp. 218–232.

[99] J. E. Requa, “The piecewise data flow architecture control flow
and register management,” in Intl. Symp. on Computer Architecture,
1983, pp. 84–89.

[100] B. Robatmili, K. E. Coons, D. Burger, and K. S. McKinley, “Strate-
gies for mapping dataflow blocks to distributed hardware,” in
Intl. Symp. on Microarchitecture, 2008, pp. 23–34.

[101] B. Robic, J. Silc, and T. Ungerer, “Beyond dataflow,” Computing
and Information Technology, vol. 8, no. 2, pp. 89–101, 2000.

[102] L. Roh and W. Najjar, “Design of storage hierarchy in multi-
threaded architectures,” in Intl. Symp. on Microarchitecture, 1995,
pp. 271–278.

[103] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith, “Trace
processors.” in Intl. Symp. on Microarchitecture, 1997, pp. 138–148.

[104] P. Rundberg and P. Stenstrom, “Low-cost thread-level data de-
pendence speculation on multiprocessors,” in Fourth Workshop on
Multithreaded Execution, Architecture and Compilation, 2000.

[105] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP,
and DLP with the polymorphous TRIPS architecture,” in Intl.
Symp. on Computer Architecture, 2003, pp. 422–433.

[106] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. Ran-
ganathan, D. Burger, S. W. Keckler, R. G. Mcdonald, and C. R.
Moore, “TRIPS: A polymorphous architecture for exploiting ILP,
TLP, and DLP,” ACM Trans. on Arch. & Code Optim., vol. 1, no. 1,
pp. 62–93, 2004.

[107] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan,
S. Drolia, M. S. Govindan, P.Gratz, D. Gulati, H. Hanson, C. Kim,
H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, P. Shivaku-
mar, S. W. Keckler, and D. Burger, “Distributed microarchitectural
protocols in the TRIPS prototype processor,” in Intl. Symp. on
Microarchitecture, 2006, pp. 480–491.

[108] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed stream
buffers,” in Intl. Symp. on Microarchitecture, 2000, pp. 42–53.

[109] J. Silc, B. Robic, and T. Ungerer, “Asynchrony in parallel com-
puting: From dataflow to multithreading,” Journal of Parallel &
Distributed Computing, pp. 1–33, 1998.

[110] ——, Processor Architecture: From Dataflow to Superscalar and Be-
yond. Springer-Verlag, 1999.

[111] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder,
D. C. Burger, and K. S. McKinley, “Compiling for EDGE archi-
tectures,” in Intl. Symp. on Code Generation & Optimization, 2006,
pp. 185–195.

[112] B. J. Smith, “Architecture and applications of the HEP multi-
processor computer system.” in Real Time Signal Processing IV,
Proceedings of SPIE, 1981, pp. 241–248.

[113] J. E. Smith and A. R. Pleszkun, “Implementation of precise
interrupts in pipelined processors,” in Intl. Symp. on Computer
Architecture, 1998, pp. 291–299.

[114] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar
processors,” in Intl. Symp. on Computer Architecture, 1995, pp. 414–
425.

[115] V. P. Srini, “An architectural comparison of dataflow systems,”
IEEE Computer, vol. 19, no. 3, pp. 68–88, 1986.

[116] J. G. Steffan, “Hardware support for thread-level speculation,”
Ph.D. dissertation, Computer Science Department,Carnegie Mel-
lon University, Pittsburgh,PA, USA, 2003.

[117] J. Strohschneider, B. Klauer, S. Zickenheimer, and K. Wald-
schmidt, “ADARK: A fine grain dataflow architecture with as-
sociative communication network,” in EUROMICRO Conf., 1994,
pp. 445–450.

[118] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“WaveScalar,” in Intl. Symp. on Microarchitecture, 2003, pp. 291–
302.

[119] S. Swanson, A. Putnam, M. M. Mercaldi, K. Michelson, A. Pe-
tersen, A. Schwerin, M. Oskin, and S. J. Eggers, “Area-
performance trade-offs in tiled dataflow architectures,” in Intl.
Symp. on Computer Architecture, 2006, pp. 314–326.

[120] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam,
K. Michelson, M. Oskin, and S. Eggers, “The WaveScalar architec-
ture,” ACM Trans. on Computer Systems, vol. 25, no. 2, pp. 4:1–4:54,
2007.

[121] K. B. Theobald, “EARTH: An efficient architecture for running
threads,” Ph.D. dissertation, McGill University, Montreal, Que-
bec, CA, 1999.

[122] X.-M. Tian, S. Nemawarkar, G. R. Gao, H. Hum, O. Maquelin,
A. Sodan, and K. Theobald, “Quantitive studies of data-locality
sensitivity on the EARTH multithreaded architecture: prelimi-
nary results,” in Intl. Conf. on High-Performance Computing, 1996,
pp. 362–.

[123] P. Treleaven, R. Hopkins, and P. Rautenbach, “Combining data
flow and control flow computing,” Computer Journal, pp. 207–217,
1982.

[124] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
multithreading: Maximizing on-chip parallelism,” in Intl. Symp.
on Computer Architecture, 1995, pp. 392–403.

[125] R. Vedder and D. Finn, “The Hughes data flow multiprocessor:
Architecture for efficient signal and data processing,” in Intl.
Symp. on Computer Architecture, 1985, pp. 324–332.

[126] A. H. Veen, “Dataflow machine architecture,” ACM Computing
Surveys, vol. 18, no. 4, pp. 365–396, 1986.

[127] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
cores: reducing the energy of mature computations,” in Intl. Conf.
on Arch. Support for Programming Languages & Operating Systems,
2010, pp. 205–218.

[128] J. von Neumann, “First draft of a report on the EDVAC,” Between
the United States Army Ordnance Department and the Univer-
sity of Pennsylvania Moore, School of Electrical Engineering,
Tech. Rep., 1945.

[129] W.-D. Weber and A. Gupta, “Exploring the benefits of multiple
hardware contexts in a multiprocessor architecture: Preliminary
results,” in Intl. Symp. on Computer Architecture. ACM, 1989, pp.
273–280.

[130] W. Yamamoto, M. J. Serrano, A. R. Talcott, R. C. Wood, and
M. Nemirovsky, “Performance estimation of multistreamed, su-
persealar processors,” in Hawaii Intl. Conf. on System Sciences,
1994, pp. 195–204.

[131] F. Yazdanpanah, D. Jimenez-Gonzalez, C. Alvarez-Martinez,
Y. Etsion, and R. M. Badia, “Fpga-based prototype of the task
superscalar architecture,” in Proceedings of the 7th HiPEAC Work-
shop on Reconfigurable Computing, 2013.

[132] T. Yuba, K. Hiraki, T. Shimada, S. Sekiguchi, and K. Nishida,
“The SIGMA-1 dataflow computer,” in Computer Conference on
Exploring technology: today and tomorrow, 1987, pp. 578–585.

[133] E. Zehender and T. Ungerer, “The ASTOR architecture,” in Intl.
Conf. on Distributed Computing Systems, 1987, pp. 424–430.

[134] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for specu-
lative parallelization of partially-parallel loops in DSM multipro-
cessors,” in Intl. Symp. on High Performance Computer Architecture,
1999, pp. 135–.

