
Oracle Pushdown Automata, Nondeterministic

Reducibilities, and the Hierarchy over the
Family of Context-Free Languages

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. We implement various oracle mechanisms on nondetermin-
istic pushdown automata, which naturally induce nondeterministic re-
ducibilities among formal languages in a theory of context-free languages.
In particular, we examine a notion of nondeterministic many-one CFL-
reducibility and carry out ground work of formulating a coherent frame-
work for further expositions. Another more powerful reducibility—Turing
CFL-reducibility—is also discussed in comparison. The Turing CFL-
reducibility, in particular, makes it possible to induce a useful hierarchy
(the CFL hierarchy) built over the family CFL of context-free languages.
For each level of this hierarchy, basic structural properties are proven and
three alternative characterizations are presented. We also show that the
CFL hierarchy enjoys an upward collapse property. The first and second
levels of the hierarchy are proven to be different. We argue that the CFL
hierarchy coincides with a hierarchy over CFL built by applications of
many-one CFL-reductions. Our goal is to provide a solid foundation for
structural-complexity analyses in automata theory.

Keywords: regular language, context-free language, pushdown automa-
ton, oracle, many-one reducibility, Turing reducibility, CFL hierarchy,
polynomial hierarchy, Dyck language.

1 Backgrounds and Main Themes

A fundamental notion of reducibility has long played an essential role in the
development of a theory of NP-completeness. In the 1970s, various forms of
polynomial-time reducibility emerged, most of which were based on models of
multi-tape oracle Turing machine, and they provided a technical means to study
relativizations of associated families of languages. Most typical reducibilities in
use today in computational complexity theory include many-one, truth-table,
and Turing reducibilities obtained by imposing appropriate restrictions on the
functionality of oracle mechanism of underlying Turing machines. Away from
standard complexity-theoretical subjects, we will shift our attention to a theory
of formal languages and automata. Within this theory, we wish to lay out a
framework for a future extensive study on structural complexity issues by pro-
viding a solid foundation for various notions of reducibility and their associated
relativizations.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 514–525, 2014.
c© Springer International Publishing Switzerland 2014



Reducibilities and Hierarchies over CFL 515

Among many languages, we are particularly interested in context-free lan-
guages, which are characterized by context-free grammars or one-way nondeter-
ministic pushdown automata (or npda’s, hereafter). The context-free languages
are inherently nondeterministic. In light of the fact that the notion of nondeter-
minism appears naturally in real life, this notion has become a key to many fields
of computer science. The family CFL of context-free languages has proven to be
a fascinating subject, simply because the languages in CFL behave quite differ-
ently from the languages in the corresponding nondeterministic polynomial-time
class NP. For instance, whereas NP is closed under any Boolean operation (pos-
sibly) except for complementation, CFL is not even closed under intersection.
This non-closure property is caused by the lack of flexibility in a use of its mem-
ory storage on an underlying model of npda. On the contrary, a restricted use
of memory helps us prove a separation between the first and the second levels of
the Boolean hierarchy {CFLk | k ≥ 1} built over CFL by applying alternatingly
two operations of intersection and union to CFL [13]. Moreover, we can prove
that a family of languages CFL(k) composed of intersections of k context-free
languages truly forms an infinite hierarchy [7]. Such an architectural constraint
sometimes becomes a crucial issue in certain applications of pushdown automata.

A most simple type of well-known reduction is probably many-one reduction
and, by adopting the existing formulation of this reducibility, we intend to bring
a notion of nondeterministic many-one reducibility into context-free languages
under the name of many-one CFL-reducibility. We write CFLA

m to denote the
family of languages that are many-one CFL-reducible to oracle A. Notice that
Reinhardt [8] earlier considered many-one reductions that are induced by non-
deterministic finite automata (or nfa’s), which use no memory space. We wish
to build a hierarchy of language families over CFL using our new reducibility
by immediate analogy with constructing the polynomial(-time) hierarchy over
NP. For this purpose, we choose npda’s rather than nfa’s. Owing mostly to a
unique architecture of npda’s, our reducibility exhibits quite distinctive features;
for instance, this reducibility in general does not admit a transitivity property.
(For this reason, our reducibility might have been called a “quasi-reducibility”
if the transitive property is a prerequisite for a reducibility notion.) As a con-
sequence, the family CFL is not closed under the many-one CFL-reducibility
(namely, CFLCFL

m �= CFL). This non-closure property allures us to study the
family CFLCFL

m[k] whose elements are obtained by the k-fold application of many-
one CFL-reductions to languages in CFL. As shown in Section 3.1, the language
family CFLCFL

m[k] turns out to coincide with CFLCFL(k)
m .

We further discuss another more powerful reducibility in use—Turing CFL-
reducibility based on npda’s. This reducibility introduces a hierarchy analo-
gous to the polynomial hierarchy: the hierarchy {ΔCFL

k , ΣCFL
k , ΠCFL

k | k ≥ 1}
built over CFL, which we succinctly call the CFL hierarchy, and this hierar-
chy turns out to be quite useful in classifying the computational complexity
of formal languages. As quick examples, two languages Dup2 = {xx | x ∈
{0, 1}∗} and Dup3 = {xxx | x ∈ {0, 1}∗}, which are known to be outside of
CFL, fall into the second level ΣCFL

2 of the CFL hierarchy. A simple matching



516 T. Yamakami

language Match = {x#w | ∃u, v [w = uxv] } is also in ΣCFL
2 . Two more lan-

guages Sq = {0n1n2 | n ≥ 1} and Prim = {0n | n is a prime number }
belong to ΣCFL

2 and ΠCFL
2 , respectively. A slightly more complex language

MulPrim = {0mn | m and n are prime numbers } is a member of ΣCFL
3 . The

first and second levels of the CFL hierarchy are easily proven to be different. Re-
garding the aforementioned language families CFL(k) and CFLk, we can show
later that the families CFL(ω) =

⋃
k≥1 CFL(k) and BHCFL =

⋃
k≥1 CFLk

belong to ΣCFL
2 ∩ ΠCFL

2 of the CFL hierarchy. In Section 4.1, we show that

CFLCFL(ω)
m is located within ΣCFL

3 . Despite obvious similarities between their
definitions, the CFL hierarchy and the polynomial hierarchy are quite different
in nature. Because of npda’s architectural restrictions, “standard” techniques of
simulating a two-way Turing machine, in general, do not apply; hence, we need
to develop new simulation techniques for npda’s.

In this paper, we employ three simulation techniques to obtain some of the
aforementioned results. The first technique is of guessing and verifying a stack
history to eliminate a use of stack, where a stack history roughly means a series of
consecutive stack operations made by an underlying npda. The second technique
is applied to the case of simulating two or more tape heads by a single tape
head. To adjust the different head speeds, we intentionally insert extra dummy
symbols to generate a single query word so that an oracle can eliminate them
when it accesses the query word. The last technique is to generate a string
that encodes a computation path generated by a nondeterministic machine. All
the techniques are explained in details in Sections 3.1–3.2. Those simulation
techniques actually make it possible to obtain three alternative characterizations
of the CFL hierarchy in Section 4.2.

Topics excluded from this extended abstract are found in its full version avail-
able at arXiv:1303.1717.

2 Preparation

Given a finite set A, the notation |A| expresses the number of elements in A.
Let N be the set of all natural numbers (i.e., nonnegative integers) and set
N

+ = N−{0}. For any number n ∈ N
+, [n] denotes the integer set {1, 2, . . . , n}.

The term “polynomial” always means a polynomial on N with coefficients of
nonnegative integers. In particular, a linear polynomial is of the form ax + b
with a, b ∈ N. The notation A−B for two sets A and B indicates the difference
{x | x ∈ A, x �∈ B} and P(A) denotes the power set of A. The Kleene closure Σ∗

of Σ is the infinite union
⋃

k∈N
Σk. Similarly, the notation Σ≤k is used to mean

⋃k
i=1 Σ

i. Given a language A over Σ, its complement is Σ∗ − A, which is also
denoted by A. We use the following three class operations between two language
families C1 and C2: C1 ∧ C2 = {A ∩B | A ∈ C1, B ∈ C2}, C1 ∨ C2 = {A ∪B | A ∈
C1, B ∈ C2}, and C1 − C2 = {A − B | A ∈ C1, B ∈ C2}, where A and B must be
defined over the same alphabet. For a use of track notation [ xy], see [9].

As our basic computation models, we use the following types of finite-state
machines: one-way deterministic finite automaton (or dfa, in short) with λ-moves



Reducibilities and Hierarchies over CFL 517

and one-way nondeterministic pushdown automaton (or npda) with λ-moves,
where a λ-move (or a λ-transition) is a transition of the machine’s configurations
in which a target tape head stays still. Whenever we refer to a write-only tape,
we always assume that (i) initially, all cells of the tape are blank, (ii) a tape
head starts at the so-called start cell, (iii) the tape head steps forward whenever
it writes down any non-blank symbol, and (iv) the tape head can stay still only
in a blank cell. Therefore, all cells through which the tape head passes during
a computation must contain no blank symbols. An output (or outcome) along a
computation path is a string produced on the output tape after the computation
path is terminated. We call an output string valid (or legitimate) if it is produced
along a certain accepting computation path. When we refer to the machine’s
outputs, we normally disregard any invalid strings left on the output tape on
a rejecting computation path. REG, CFL, and DCFL stand for the families
of all regular languages, of all context-free languages, and of all deterministic
context-free languages, respectively.

3 Natural Reducibilities

A typical way of comparing the computational complexity of two formal lan-
guages is various forms of resource-bounded reducibility. Such reducibility is also
regarded as a relativization of its underlying language family. We refer the reader
to [2] for basics of computational complexity theory.

3.1 Many-One Reductions by Npda’s

Our exposition begins with an introduction of an appropriate form of nondeter-
ministic many-one reducibility whose reductions are operated by npda’s.

Our “reduction machine” is essentially a restricted version of “pushdown
transducer” or “algebraic transduction” (see, e.g., [1]). Here, we define this
notion in a style of “oracle machine.” An m-reduction npda M is a standard
npda equipped with an extra query tape on which the machine writes a string
surrounded by blank cells starting at the designated start cell for the purpose
of making a query to a given oracle. We treat this query tape as an output
tape, and thus the query-tape head must move to a next blank cell when-
ever it writes a non-blank symbol. Formally, an m-reduction npda is a tuple
(Q,Σ, {|c, $}, Θ, Γ, δ, q0, Z0, Qacc, Qrej), where Θ is a query alphabet and δ is of
the form: δ : (Q − Qhalt) × (Σ̌ ∪ {λ}) × Γ → P(Q × Γ ∗ × (Θ ∪ {λ})), where
Qhalt = Qacc∪Qrej and Σ̌ = Σ∪{|c, $}. There are two types of λ-moves. Assum-
ing (p, τ, ξ) ∈ δ(q, σ, γ), if σ = λ, then the input-tape head stays still (or makes
a λ-move); in contrast, if τ = λ, then the query-tape head stays still (or makes
a λ-move). Since repetitions of λ-moves potentially produce extremely long out-
put strings, we should require the following termination condition for M . Recall
that, as a consequence of Greibach’s normal form theorem, all context-free lan-
guages can be recognized by λ-free npda’s (i.e., npda’s with no λ-moves) whose
computation paths have length O(n), always ending in certain halting states,



518 T. Yamakami

where n is its input size. The runtime of O(n) is truly significant for languages
in CFL. Likewise, we assume that, for any m-reduction npda, all computation
paths should terminate (reaching halting inner states) within O(n) time.

A language L over alphabet Σ is many-one CFL-reducible to another
language A over alphabet Θ if there exists an m-reduction npda M =
(Q,Σ, {|c, $}, Θ, Γ, δ, q0, Z0, Qacc, Qrej) such that, for every input x ∈ Σ∗, (1)
along each computation path p ∈ ACCM (x), M produces a valid query string
yp ∈ Θ∗ on the query tape and (2) x is a member of L iff there is a computa-
tion path p ∈ ACCM (x) satisfying yp ∈ A. For simplicity, we also say that M
reduces (or m-reduces) L to A. With the use of this new reducibility, we make
the notation CFLA

m (or CFLm(A)) express the family of all languages L that
are many-one CFL-reducible to A, where the language A is customarily called
an oracle. Given an oracle npda M and an oracle A, the notation L(M,A) (or
L(MA)) denotes the set of strings accepted by M relative to A. For a class C of
oracles, CFLC

m (or CFLm(C)) denotes the union
⋃

A∈C CFL
A
m.

Likewise, we define the relativized language family NFAA
m (or NFAm(A)) using

“nfa’s” as m-reduction machines instead of “npda’s.” To be more precise, an m-
reduction nfa M for NFAA

m is a tuple (Q,Σ, {|c, $}, Θ, δ, q0, Qacc, Qrej), where δ
is a map from (Q−Qhalt)× (Σ̌ ∪ {λ}) to P(Q× (Θ ∪ {λ})). We also impose an
O(n) time-bound on all computation paths of M .

Making an analogy with “oracle Turing machine” that functions as a mecha-
nism of reducing a language to another given target language A, we want to use
the term “oracle npda” to mean an npda that is equipped with an extra write-
only output tape (called a query tape) besides a read-only input tape. As noted
before, we explicitly demand every oracle npda to terminate on all computation
paths within O(n) steps.

We will use an informal term of “guessing” when we refer to a nondeterministic
choice (or a series of nondeterministic choices). For example, when we say that
an npda M guesses a string z, we actually mean that M makes a series of
nondeterministic choices that cause to produce z.

Example 1. As the first concrete example, setting Σ = {0, 1}, let us consider
the language Dup2 = {xx | x ∈ Σ∗}. This language is known to be non-
context-free; however, it can be many-one CFL-reducible to CFL by the fol-
lowing M and A. An m-reduction (or oracle) npda M nondeterministically pro-
duces a query word xR�y (with a special symbol �) from each input of the form
xy using a stack appropriately More formally, a transition function δ of this
oracle npda M is given as follows: δ(q0, |c, Z0) = {(q0, Z0, λ)}, δ(q0, $, Z0) =
{(qacc, Z0, �)}, δ(q0, σ, Z0) = {(q1, σZ0, λ)}, δ(q1, σ, τ) = {(q1, στ, λ), (q2, στ, λ)},
δ(q2, λ, τ) = {(q2, λ, τ)}, δ(q2, λ, Z0) = {(q3, Z0, �)}, δ(q3, λ, Z0) = {(q3, Z0, σ)},
and δ(q3, $, Z0) = {(qacc, Z0, λ)}, where σ, τ ∈ Σ. A CFL-oracle A is defined as
{xR�x | x ∈ Σ∗}; that is, the oracle A checks whether x = y from the input xR�y
using its own stack. In other words, Dup2 belongs to CFLA

m, which is included
in CFLCFL

m . Similarly, the non-context-free language Dup3 = {xxx | x ∈ Σ∗}
also falls into CFLCFL

m . For this case, we design an m-reduction npda to produce
xR�y�yR�z from each input xyz and make a CFL-oracle check whether x = y = z



Reducibilities and Hierarchies over CFL 519

by using its stack twice. Another language Match = {x#w | ∃u, v [w = uxv] },
where # is a separator not in x and w, also belongs to CFLCFL

m . These examples
prove that CFLCFL

m �= CFL.

Example 2. The language Sq = {0n1n2 | n ≥ 1} belongs to CFLCFL
m . To see this

fact, let us consider the following oracle npda N and oracle A. Given any input
w, N first checks if w is of the form 0i1j. Simultaneously, N nondeterministically
selects (j1, j2, . . . , jk) satisfying (i) j = j1+ j2+ · · ·+ jk and (ii) j1 = j2, j3 = j4,
. . ., and N produces on its query tape a string w′ of the form 0i�1j1�1j2� · · · �1jk .
The desired oracle A receives w′ and checks if the following two conditions are
all met: (i’) j2 = j3, j4 = j5, . . . and (ii’) i = k by first pushing 0i into a stack
and then counting the number of �. Clearly, A belongs to CFL. Therefore, Sq is
in CFLA

m, which is included in CFLCFL
m . A similar idea proves that the language

Comp = {0n | n is a composite number } belongs to CFLCFL
m . In symmetry,

Prim = {0n | n is a prime number } is a member of co-(CFLCFL
m ), where co-C

denotes the complement of language family C, namely, co-C = {A | A ∈ C}.
A Dyck language L over alphabet Σ = {σ1, σ2, . . . , σd} ∪ {σ′

1, σ
′
2, . . . , σ

′
d} is a

language generated by a deterministic context-free grammar whose production
set is {S → λ|SS|σiSσ

′
i : i ∈ [d]}, where S is a start symbol. For convenience,

denote by DY CK the family of all Dyck languages.

Lemma 1. CFLCFL
m = CFLDCFL

m = CFLDYCK
m .

Proof Sketch. We first claim that (1) CFL = NFADYCK
m and (2) CFLA

m =
CFLm(NFAA

m) for any oracleA. The first claim (1) can be seen as a different form
of Chomsky-Schützenberger theorem. To show (1), we employ a simple but useful
technique of guessing a correct stack history (namely, a series of popped and
pushed symbols along a halting computation path) and verifying its correctness.
With an appropriate encoding method, we can claim that a stack history is
correct iff its encoding belongs to a ceratin fixed Dyck language. Whenever an
oracle npda tries to either push down symbols into its stack or pop up a symbol
from the stack, instead of using an actual stack, we write down an encoded
series of those symbols on a write-only query tape and then ask an oracle to
verify that the series indeed encodes a correct stack history. We skip (2) due
to the page limit. By combining the claims (1)–(2), it follows that CFLCFL

m =
CFLm(NFADYCK

m ) ⊆ CFLDYCK
m . �

Given each number k ∈ N
+, the k-conjunctive closure of CFL, denoted

CFL(k) in [12], is defined recursively as follows: CFL(1) = CFL and CFL(k+1) =
CFL(k) ∧CFL. These language families truly form an infinite hierarchy [7]. For
convenience, we set CFL(ω) =

⋃
k∈N+ CFL(k). Hereafter, we will explore basic

properties of CFLCFL(k)
m .

The lack of the transitivity property of the many-one CFL-reducibility ne-
cessitates an introduction of a helpful abbreviation of a k-fold application of
the reductions. For any given oracle A, we recursively set CFLA

m[1] = CFLA
m

and CFLA
m[k+1] = CFLm(CFLA

m[k]) for each index k ∈ N
+. Given any language

family C, the notation CFLC
m[k] denotes the union

⋃
A∈C CFL

A
m[k].



520 T. Yamakami

Theorem 1. For every index k ∈ N
+, CFLCFL(k)

m = CFLCFL
m[k].

Proof Sketch. When k = 1, it holds that CFLCFL
m[1] = CFLCFL

m = CFLCFL(1)
m .

Next, we will show that, for every index k ≥ 2, CFLCFL
m[k] ⊆ CFLCFL(k)

m holds. We
are focused on the most important case of k = 2. This case follows from the claim

that CFL
CFL(r)
m[2] ⊆ CFLCFL(r)∧CFL

m for every index r ∈ N
+. Let L ∈ CFLB

m and

B ∈ CFLA
m for a certain set A ∈ CFL(r). Let M1 and M2 be two oracle npda’s

witnessing L ∈ CFLB
m and B ∈ CFLA

m, respectively. Consider the following oracle
npda N . Given input x, N simulates M1 on x in the following way. Whenever
M1 tries to write a symbol, say, b on a query tape, N simulates, using an actual
stack, several steps (including all consecutive λ-moves) of M2 that can be made
during reading b. By simulating M2, N aims at producing an encoded stack
history y of M2 (on the upper track of a tape) and a query word z (on the lower
track). Since the tape heads of M2 on both input and query tapes may move
in different speeds, we need to adjust their speeds by inserting a series of fresh
symbol, say, � between symbols of the stack history and the query word. For
this purpose, it is useful to introduce a terminology to describe strings obtained
by inserting �. Assuming that � �∈ Σ, a �-extension of a given string x over Σ is
a string x̃ over Σ ∪ {�} satisfying that x is obtained directly from x̃ simply by
removing all occurrences of � in x̃. For instance, if x = 01101, then x̃ may be
01�1�01 or 011��01�. N actually produces [ yz̃] on the query tape. An appropriate

oracle in CFL(r)∧CFL can check its correctness. Thus, L ∈ CFLCFL(r)∧CFL
m . �

An immediate consequence is that CFLCFL(ω)
m =

⋃
k∈N+ CFLCFL

m[k].

3.2 Turing Reducibility by Npda’s

We define a notion ofTuring CFL-reducibility using a model of npda with a write-
only query tape and three extra inner states qquery , qno, and qyes that represent
a query signal and two possible oracle answers, respectively. More specifically,
when an oracle npda enters qquery , it triggers a query, by which a query word is
automatically transferred to an oracle, a query tape becomes blank, and its tape
head instantly returns to the start cell. When the oracle returns its answer, either
0 (no) or 1 (yes), it automatically sets the oracle npda’s inner state to qno or qyes,
respectively. Such a machine is called a T-reduction npda (or just an oracle npda
as before) and it is used to reduce a language to another language. To be more
precise, an oracle npda is a tuple (Q,Σ, {|c, $}, Θ, Γ, δ, q0, Z0, Qoracle, Qacc, Qrej),
where Qoracle = {qquery , qyes, qno}, Θ is a query alphabet and δ has the form:
δ : (Q−Qhalt∪{qquery})×(Σ̌∪{λ})×Γ → P((Q−{qyes, qno})×Γ ∗×(Θ∪{λ})).

Unlike many-one CFL-reductions, a T-reduction npda’s computation depends
on a series of oracle answers. Since such an oracle npda, in general, cannot
implement an internal clock to control its running time, certain oracle answers
may lead to an extremely long computation, and thus the machine may recognize
even “infeasible” languages. To avoid such a pitfall, we need to demand that, no
matter what oracle is provided, its underlying oracle npda M must halt on all
computation paths within O(n) time, where n refers to input size.



Reducibilities and Hierarchies over CFL 521

Similarly to CFLA
m and CFLC

m, we introduce two new notations CFLA
T and

CFLC
T . An associated deterministic version is denoted DCFLC

T . A simple rela-
tionship between the Turing and many-one CFL-reducibilities is exemplified in
Proposition 1. To describe the proposition, we need a notion of the Boolean
hierarchy over CFL, which was introduced in [13] by setting CFL1 = CFL,
CFL2k = CFL2k−1 ∧ co-CFL, and CFL2k+1 = CFL2k ∨ CFL. For simplicity,
we denote by BHCFL the union

⋃
k∈N+ CFLk. Notice that CFL �= CFL2 holds

because co-CFL ⊆ CFL2 and co-CFL � CFL.

Proposition 1. CFLCFL
T = CFLCFL2

m = NFACFL2
m .

Proof Sketch. We wish to demonstrate that (1) CFLCFL
T ⊆ CFLCFL2

m , (2)
CFLCFL2

m ⊆ NFACFL2
m , and (3) NFACFL2

m ⊆ CFLCFL
T . If all are proven, then

the proposition immediately follows. We will show only (1) and (3).
(1) We start with an arbitrary language L in CFLA

T relative to a certain
language A in CFL. Take a T -reduction npda M reducing L to A, and let MA

be an npda recognizing A. Hereafter, we will build a new m-reduction npda N1

to show that L ∈ CFLCFL2
m . On input x, the machine N1 tries to simulate M

on x by running the following procedure. Along each computation path, before
M begins producing the ith query word on a query tape, N1 guesses its oracle
answer bi (either 0 or 1) and writes it down onto its query tape. While M writes
the ith query word yi, N1 appends yi� to bi. When M halts, N1 produces a query
word w of the form b1y1�b2y2� · · · �bkyk�, where k ∈ N. Let L2 be a collection of
those w’s such that, for every index i ∈ [k], if bi = 1 then yi ∈ A. Similarly, let
L3 be a collection of those w’s such that, for every index i ∈ [k], if bi = 0 then
yi ∈ A. It is not difficult to verify that N1 m-reduces L to L2 ∩ L3.

Next, we want to claim that L2 and L3 are in CFL. This claim leads to a
conclusion that L is included in CFLL2∩L3

m ⊆ CFLm(CFL∧co-CFL) = CFLCFL2
m .

Obviously, L2 is in CFL. To see that L3 ∈ CFL, let w = b1y1�b2y2� · · · �bkyk�. If
w ∈ L3, then there exists an index i ∈ [k] such that bi = 0 and yi ∈ A. This last
property can be checked by running MA sequentially on each yi and emptying
its stack after each run of MA. Thus, L3 is in CFL.

(3) Choose an oracle A in CFL2 and consider an arbitrary language L in
CFLA

m. Furthermore, take two languages A1, A2 ∈ CFL for which A = A1 ∩A2.
Let M be an oracle nfa that recognizes L relative to A. Notice that M has no
stack. We will define another oracle npda N as follows. On input x, N first
marks 0 on its query tape and start simulating M on x. Whenever M tries
to write a symbol σ on its query tape, N writes it down on a query tape and
simultaneously copies it into a stack. After M halts with a query word, say, w,
N makes the first query with the query word 0w. If its oracle answer is 0, then N
rejects the input. Subsequently, N writes 1 on the query tape (provided that the
tape automatically becomes blank), pops the stored string wR from the stack,
and copies it to the query tape. After making the second query with 1wR, if its
oracle answer equals 1, then N rejects the input. When N has not entered any
rejecting state, then N finally accepts the input. The corresponding oracle B is
defined as {0w | w ∈ A1} ∪ {1wR | w ∈ A2}. It is easy to see that x ∈ L if



522 T. Yamakami

and only if N accepts x relative to B. Since CFL is known to be closed under
reversal, {1wR | w ∈ A2} is context-free, and thus B is a member of CFL. We
then conclude that L ∈ CFLB

T ⊆ CFLCFL
T . �

4 The CFL Hierarchy

4.1 Reducibility and a Hierarchy

Applying Turing CFL-reductions to CFL level by level, we can build a useful
hierarchy, called the CFL hierarchy, whose kth level consists of three language
families ΔCFL

k , ΣCFL
k , and ΠCFL

k . To be more precise, for each level k ≥ 1, we set
ΔCFL

1 = DCFL, ΣCFL
1 = CFL, ΔCFL

k+1 = DCFLT (Σ
CFL
k ), ΠCFL

k = co-ΣCFL
k , and

ΣCFL
k+1 = CFLT (Σ

CFL
k ). Additionally, we set CFLH =

⋃
k∈N+ ΣCFL

k . The CFL
hierarchy can be used to categorize the complexity of typical non-context-free
languages discussed in most introductory textbooks. We will review a few typical
examples that fall into the CFL hierarchy.

Example 3. In Example 1, we have seen the languagesDup2 = {xx | x ∈ {0, 1}∗}
and Dup3 = {xxx | x ∈ {0, 1}}, which are both in CFLCFL

m . Note that,
since CFLA

m ⊆ CFLA
T for any oracle A, every language in CFLCFL

m belongs to
CFLCFL

T = ΣCFL
2 . Therefore, Dup2 and Dup3 are in ΣCFL

2 . In addition, as

shown in Example 2, the language Sq = {0n1n2 | n ≥ 1} is in CFLCFL
m while

Prim = {0n | n is a prime number } is in co-(CFLCFL
m ). Therefore, we conclude

that Sq is in ΣCFL
2 and Prim is in ΠCFL

2 . A similar but more involved example
is the language MulPrim = {0mn | m and n are prime numbers }. It is possible
to show that MulPrim belongs to CFLm(co-(CFLco-CFL

m )), which equals ΣCFL
3 .

Lemma 2. Let k be any integer satisfying k ≥ 1.

1. CFLT (Σ
CFL
k ) = CFLT (Π

CFL
k ) and DCFLT (Σ

CFL
k ) = DCFLT (Π

CFL
k ).

2. ΣCFL
k ∪ΠCFL

k ⊆ ΔCFL
k+1 ⊆ ΣCFL

k+1 ∩ΠCFL
k+1 .

3. CFLH ⊆ DSPACE(O(n)).

Hereafter, we will explore fundamental properties of our new hierarchy. Our
starting point is a closure property under length-nondecreasing substitution,
where a substitution s : Σ → P(Θ∗) is called length nondecreasing if s(σ) �= Ø
and λ �∈ s(σ) for every symbol σ ∈ Σ. We expand s as follows. Define
s(σ1σ2 · · ·σn) = {x1x2 · · ·xn | ∀i ∈ [n](xi ∈ s(σi))} for σ1, σ2, . . . , σn ∈ Σ
and let s(L) =

⋃
x∈L s(x) for language L ⊆ Σ∗. A homomorphism h : Σ → Θ∗

is called λ-free if h(σ) �= λ for every σ ∈ Σ. Note that the condition of length
nondecreasing is necessary because every recursively enumerable language can
be a homomorphic image of a certain language in CFL2 (⊆ ΣCFL

2 ) [3].

Lemma 3. 1. (substitution property) Let k ∈ N
+ and let s be any length-

nondecreasing substitution on alphabet Σ satisfying s(σ) ∈ ΣCFL
k for each

symbol σ ∈ Σ. For any language A over Σ, if L is in ΣCFL
k , then s(L) is

also in ΣCFL
k .



Reducibilities and Hierarchies over CFL 523

2. For each index k ∈ N
+, the family ΣCFL

k is closed under the following opera-
tions: concatenation, union, reversal, Kleene closure, λ-free homomorphism,
and inverse homomorphism.

We will show that the second level of the CFL hierarchy contains BHCFL.

Proposition 2. BHCFL ⊆ ΣCFL
2 ∩ΠCFL

2 .

Proof Sketch. We will show that BHCFL ⊆ ΣCFL
2 . Obviously, CFL1 ⊆ ΣCFL

2

holds. It is therefore enough to show that CFLk ⊆ ΣCFL
2 for every index k ≥ 2.

We first claim that, for every index k ≥ 1, CFL2k =
∨

i∈[k] CFL2 (= CFL2 ∨
CFL2 ∨ · · · ∨CFL2 with k repetitions of CFL2) and CFL2k+1 = (

∨
i∈[k] CFL2)∨

CFL. This can be shown using an idea of [13, Claim 4]. Next, we claim that
CFL2k,CFL2k+1 ⊆ ΣCFL

2 for all indices k ≥ 1. The proof of this claim proceeds
by induction on k ≥ 1. Furthermore, we will prove that BHCFL ⊆ ΠCFL

2 . It is
possible to prove by induction on k ∈ N

+ that co-CFLk ⊆ CFLk+1. From this
inclusion, we obtain co-BHCFL ⊆ BHCFL. By symmetry, BHCFL ⊆ co-BHCFL
holds. Thus, we conclude that BHCFL = co-BHCFL. �

Let us turn our attention to CFL(ω). A direct analysis of each language family
CFL(k) shows that CFL(ω) is included in BHCFL.

Proposition 3. 1. CFL(ω) ⊆ BHCFL (thus, CFL(ω) ⊆ ΣCFL
2 ∩ΠCFL

2 ).

2. CFLCFL(ω)
m ⊆ ΣCFL

3 .

Proof Sketch. A key to the proof of the first part of this proposition is the
following claim: for every index k ≥ 1, CFL(k) ⊆ CFL2k+1 holds. The first part

then implies that CFLCFL(ω)
m is included in CFLBHCFL

m . Since BHCFL ⊆ ΣCFL
2 ∩

ΠCFL
2 by Proposition 2, it follows that CFLBHCFL

m is included in CFLm(ΠCFL
2 ),

which is obviously a subclass of CFLT (Π
CFL
2 ) = ΣCFL

3 . �

4.2 Structural Properties

We will further explore structural properties that characterize the CFL hierarchy.
Moreover, we will present three alternative characterizations (Theorem 2 and
Proposition 4) of the hierarchy. Let us consider a situation in which Boolean
operations are applied to languages in the CFL hierarchy. In the following lemma,
the third statement needs an extra attention. As we have seen, it holds that
CFL ∧ CFL = CFL(2) �= CFL. Therefore, the equality ΣCFL

k ∧ ΣCFL
k = ΣCFL

k

does not hold in the first level (i.e., k = 1). Surprisingly, it is possible to prove
that this equality actually holds for any level more than 1.

Lemma 4. Let k ≥ 1.

1. ΣCFL
k ∨ΣCFL

k = ΣCFL
k and ΠCFL

k ∧ΠCFL
k = ΠCFL

k .

2. ΣCFL
k ∧ΠCFL

k ⊆ ΣCFL
k+1 ∩ΠCFL

k+1 and ΣCFL
k ∨ΠCFL

k ⊆ ΣCFL
k+1 ∩ΠCFL

k+1 .

3. ΣCFL
k ∧ΣCFL

k = ΣCFL
k and ΠCFL

k ∨ΠCFL
k = ΠCFL

k for all levels k ≥ 2.



524 T. Yamakami

Lemma 4(3) is not quite trivial and its proof follows from Theorem 2, in which
we give two new characterizations of ΣCFL

k in terms of many-one reducibilities.
For our purpose, we introduce two extra many-one hierarchies. The many-one
CFL hierarchy consists of language families ΣCFL

m,k and ΠCFL
m,k (k ∈ N

+) defined

as follows: ΣCFL
m,1 = CFL, ΠCFL

m,k = co-ΣCFL
m,k , and ΣCFL

m,k+1 = CFLm(ΠCFL
m,k ) for

any k ≥ 1, where the subscript “m” stands for “many-one.” A relativized many-
one NFA hierarchy, which was essentially formulated in [8], is defined as follows

relative to oracle A: ΣNFA,A
m,1 = NFAA

m, ΠNFA,A
m,k = co-ΣNFA,A

m,k , and ΣNFA,A
m,k+1 =

NFAm(ΠNFA,A
m,k ) for every index k ≥ 1. Given a language family C, ΣNFA,C

m,k (or

ΣNFA
m,k (C)) denotes the union

⋃
A∈C Σ

NFA,A
m,k .

Theorem 2. ΣCFL
k = ΣCFL

m,k = ΣNFA
m,k (DY CK) for every index k ≥ 1.

Proof Sketch. The first step toward the proof is to prove two key claims. (1) For
every index k ≥ 1, it holds that ΣCFL

k+1 ⊆ CFLm(ΣCFL
k ∧ΠCFL

k ) ⊆ NFAm(ΣCFL
k ∧

ΠCFL
k ). (2) For any two indices k ≥ 1 and e ≥ k−1, it holds that NFAm(ΣCFL

m,k ∧
ΠCFL

m,e ) ⊆ CFLm(ΠCFL
m,e ).

In the second step, we use induction on k ≥ 1 to prove the theorem. Since
Lemma 1 handles the base case k = 1, it is sufficient to assume that k ≥ 2.
The second equality of the theorem is shown as follows. If k = 1, then the
claim is exactly the same as CFL = NFADY CK

m . In the case of k ≥ 2, assume
that L ∈ CFLA

m for a certain language A in ΠCFL
m,k−1. A proof similar to that

of CFL = NFADYCK
m demonstrates the existence of a certain Dyck language D

satisfying that CFLA
m = NFAB

m, where B is of the form {[ ỹz̃] | y ∈ D, z ∈ A} and
ỹ and z̃ are �-extensions of y and z, respectively. The definition places B into
the language family DCFL∧ΠCFL

m,k−1, which equals ΠCFL
m,k−1 because of k ≥ 2. By

our induction hypothesis, ΠCFL
m,k−1 = ΠNFA

m,k−1(DY CK) holds. It thus follows that

NFAB
m ⊆ NFAm(ΠNFA

m,k−1(DY CK)) = ΣNFA
m,k (DY CK), and therefore we obtain

L ∈ CFLA
m ⊆ NFAA

m ⊆ ΣNFA
m,k (DY CK).

Next, we will establish the first equality given in the theorem. Clearly,
ΣCFL

m,k ⊆ ΣCFL
k holds since CFLA

m ⊆ CFLA
T for any oracle A. Now, we target the

opposite containment. By (1), it follows that ΣCFL
k ⊆ NFAm(ΣCFL

k−1 ∧ ΠCFL
k−1 ).

Since ΣCFL
k−1 = ΣCFL

m,k−1, we obtain ΣCFL
k ⊆ NFAm(ΣCFL

m,k−1 ∧ΠCFL
m,k−1). Note that

(2) implies the inclusion NFAm(ΣCFL
m,k−1 ∧ ΠCFL

m,k−1) ⊆ CFLm(ΠCFL
m,k−1) = ΣCFL

m,k .

In conclusion, ΣCFL
k ⊆ ΣCFL

m,k holds. �

An upward collapse property holds for the CFL hierarchy except for the first
level. Similar to the notation CFLe expressing the eth level of the Boolean hier-
archy over CFL, a new notation ΣCFL

k,e is introduced to denote the eth level of

the Boolean hierarchy over ΣCFL
k . Additionally, we set BHΣCFL

k =
⋃

e∈N+ ΣCFL
k,e .

Lemma 5. (upward collapse properties) Let k be any integer at least 2.

1. ΣCFL
k = ΣCFL

k+1 iff CFLH = ΣCFL
k .

2. ΣCFL
k = ΠCFL

k iff BHΣCFL
k = ΣCFL

k .



Reducibilities and Hierarchies over CFL 525

3. ΣCFL
k = ΠCFL

k implies ΣCFL
k = ΣCFL

k+1 .

From Lemma 5, if the Boolean hierarchy over ΣCFL
k collapses to ΣCFL

k , then
the entire CFL hierarchy collapses. It is not clear, however, that a much weaker
assumption likeΣCFL

k,e = ΣCFL
k,e+1 suffices to draw the collapse of the CFL hierarchy

(for instance, ΣCFL
k+1 = ΣCFL

k+2 ).

Theorem 2 also gives a logical characterization of ΣCFL
k . For convenience, we

define a function Ext as Ext(x̃) = x for any �-extension x̃ of string x.

Proposition 4. Let k ≥ 1. For any language L ∈ ΣCFL
k over alphabet Σ, there

exists another language A ∈ DCFL and a linear polynomial p with p(n) ≥ n for
all n ∈ N that satisfy the following equivalence relation: for any number n ∈ N

and any string x ∈ Σn, x ∈ L if and only if
∃x̃(|x̃| ≤ p(n))∃y1(|y1| ≤ p(n))∀y2(|y2| ≤ p(n))

· · ·Qkyk(|yk| ≤ p(n)) [x = Ext(x̃) ∧ [x̃, y1, y2, . . . , yk]
T ∈ A ],

where Qk is ∃ (∀, resp.) if k is odd (even, resp.) and x̃ is a �-extension of x.

Recall that the first and second levels of the CFL hierarchy are different. It is
possible to prove that the rest of the hierarchy is infinite unless the polynomial
hierarchy over NP collapses.

References

1. Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner, Stuttgart
(1979)

2. Du, D., Ko., K.: Theory of Computational Complexity. John Willey & Sons (2000)
3. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack languages. J. ACM 14,

389–418 (1967)
4. Greibach, S.A.: The hardest context-free language. SIAM J. Comput. 2, 304–310

(1973)
5. Hromkovič, J., Schnitger, G.: On probabilistic pushdown automata. Inf. Com-

put. 208, 982–995 (2010)
6. Ladner, R., Lynch, N., Selman, A.: A comparison of polynomial-time reducibilities.

Theor. Comput. Sci. 1, 103–123 (1975)
7. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free lan-

guages. Math. Systems Theory 7, 185–192 (1973)
8. Reinhardt, K.: Hierarchies over the context-free languages. In: Dassow, J., Kelemen,

J. (eds.) IMYCS 1990. LNCS, vol. 464, pp. 214–224. Springer, Heidelberg (1990)
9. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing

machines. Theor. Comput. Sci. 411, 22–43 (2010)
10. Yamakami, T.: Swapping lemmas for regular and context-free languages. Available

at arXiv:0808.4122 (2008)
11. Yamakami, T.: The roles of advice to one-tape linear-time Turing machines and

finite automata. Int. J. Found. Comput. Sci. 21, 941–962 (2010)
12. Yamakami, T.: Immunity and pseudorandomness of context-free languages. Theor.

Comput. Sci. 412, 6432–6450 (2011)
13. Yamakami, T., Kato, Y.: The dissecting power of regular languages. Inf. Pross.

Lett. 113, 116–122 (2013)
14. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Inf.

Control 10, 189–208 (1967)


	Oracle Pushdown Automata, Nondeterministic Reducibilities, and the Hierarchy over theFamily of Context-Free Languages
	1 Backgrounds and Main Themes
	2 Preparation
	3 Natural Reducibilities
	3.1 Many-One Reductions by Npda’s
	3.2 Turing Reducibility by Npda’s

	4 The CFL Hierarchy
	4.1 Reducibility and a Hierarchy
	4.2 Structural Properties

	References




