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Abstract

Representation learning, especially which by
using deep learning, has been widely applied
in classification. However, how to use lim-
ited size of labeled data to achieve good clas-
sification performance with deep neural net-
work, and how can the learned features fur-
ther improve classification remain indefinite.
In this paper, we propose Horizontal Vot-
ing Vertical Voting and Horizontal Stacked
Ensemble methods to improve the classifica-
tion performance of deep neural networks. In
the ICML 2013 Black Box Challenge, via us-
ing these methods independently, Bing Xu
achieved 3rd in public leaderboard, and 7th
in private leaderboard; Jingjing Xie achieved
4th in public leaderboard, and 5th in private
leaderboard.

1. Introduction

Classification is one of the most important machine
learning tasks. Besides classification algorithms, the
performance of classifier is heavily dependent on the
set of data representations on which they are applied.
Traditionally, data representations are hand-crafted,
with prior knowledge or hypotheses of the human de-
signers. Then the classifiers with the designed repre-
sentations (or features) are trained by fitting the la-
beled data, expected to give a good class prediction
on test data inputs.

However, the increasing size of data in real world and
the variety of learning tasks bring challenges to this
traditional paradigm. Practically, labeled data is rare,
but unlabeled data is always abundant. Although
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there are some less expensive ways to obtain labels, au-
tomatically learning representations from data would
be more efficient. Furthermore, it has been proved
that in some fields automatic representation learning
can work better, even if human feature engineering
is still powerful. In the ICML 2013 Black Box Chal-
lenge1, both labeled and unlabeled data are provided
to players without prior knowledge about what the
data really is. So we resort to deep learning and design
a deep neural network which consists 5 layers of de-
noising auto-encoder and 3 maxout layers, with more
than 16 million parameters in total. We use all the
130 thousand unlabeled data to pre-train the stacked
denoising auto-encoders and fine-tune the huge deep
network with only 1,000 training examples. As the
task is data classification, its natural to ask: how to
use so little labeled data to train a large deep network
with robust classification result? Can the hierarchical
representations in the deep architecture help improve
the performance of classification?

In this work, we describe our method of training deep
neural networks for classification with both labeled
and unlabeled data. We also proposed three methods
called Vertical Voting, Horizontal Voting and Horizon-
tal Stacked Ensemble to improve the classification ac-
curacy and robustness of deep network. Their perfor-
mance and combination strategies are also discussed.

2. Background

A deep neural network applies combined transforma-
tions to input data, and produces representations with
an increasing level of abstraction and complexity. The
architecture of a deep neural network is drawn in Fig-
ure 1. Input data are processed in a deep architec-
ture of transformations, and generate desired output
at the end. Usually, there are pre-training layers on

1http://www.kaggle.com/c/challenges-in-
representation-learning-the-black-box-learning-challenge
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Figure 1. The architecture of deep neural networks. In this
example, the deep network has 5 stacked auto-encoder lay-
ers (h0 - h4) which are represented by a single pre-training
layer for simplicity. Upon them are 3 maxout layers (h5 -
h7) and a softmax layer.

the bottom of the architecture, which are built with
Restricted Boltzmann Machine (RBM) (Smolensky,
1986; Hinton et al., 2006) or auto-encoder (Le Cun,
1987; Bourlard & Kamp, 1988; Hinton & Zemel, 1994)
layers. The layers above them such as sigmoid, tanh,
and maxout (Goodfellow et al., 2013) layers, together
with pre-training layers, are collectively called hidden
layers. At the top is the softmax layer which produces
probabilities for each class as output.

The training of deep neural networks has two phases
(Bengio, 2009). The first phase is layer-wise unsuper-
vised pre-training (Hinton et al., 2006; Bengio et al.,
2007) which makes use of unlabeled data, adjusts the
parameter of pre-training layers, and initializes the
deep neural network to a data-dependent manifold
(Erhan et al., 2009). In the second phase, all param-
eters in the network are fine-tuned under the super-
vision of labeled data. The softmax layer on the top
produces the probabilities of each class for each ex-
ample. An alternative to obtain class prediction is to
train a standard classifier (such as Random Forest or
SVM) with learned data representations (Bengio et al.,
2012).

3. Vertical Voting, Horizontal Voting
and Horizontal Stacked Ensemble

We proposed a series of methods to improve the per-
formance of classification. These methods are Vertical
Voting, Horizontal Voting and Horizontal Stacked En-

Algorithm 1 Vertical Voting

Input: training data X, test data x, target y, neu-
ral network N , max epoch E, objective epoch e, se-
lected hidden layers Ω = {ω1, . . . , ωn}, classification
algorithm set A
Initialize SGD trainer for N
Initialize a list Preds = [ ]
Initialize iteration = 0
repeat

Use X and y to do one epoch back-propagation
training on N
iteration = iteration + 1
if iteration = e then

Input X and x into N , get X and x’s rep-
resentation pairs set R in each layer ωi ∈ Ω:
R = {(Xω1

, xω1
), . . . , (Xωn

, xωn
)}

for each pair rj ∈ R do
Train classifier c using an algorithm a ∈ A,
with training data Xωj

and y
Add c’s probabilistic prediction vector pωj

on
xωj

to Preds
end for

end if
until iteration > E
Pred =

∑pωi
∈Preds

pωi
pωi

Output: argmax(pred)

semble.

3.1. Vertical Voting

The softmax layer generates predictions by using the
top level data representation. All the lower level rep-
resentations are discarded. However, lower level rep-
resentations of data may contribute to classification
themselves. For example, word is a kind of low level
data representation. Some words can be strongly in-
dicative for a topic, but they may lost when deep neu-
ral network parsing the sentence into a high level repre-
sentation. To help classification, we propose a method
called Vertical Voting. This method ensembles a se-
ries of classifiers whose inputs are the representation
of intermediate layers. A lower error rate is expected
because these features seem diverse.

The procedure of Vertical Voting method is shown in
Algorithm 1.

3.2. Horizontal Voting

If appropriate network architecture and learning rate
are chosen, the error rate of classification would first
decline and then tend to be stable with the training
epoch grows. But when size of labeled training set is
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too small, the error rate would oscillate, as shown in
the validation set curve Figure 2. Although dropout
(Hinton et al., 2012) helps a little, it is still overfit. So
it is difficult to choose a “magic” epoch to obtain a
reliable output. To reduce the instability, we put for-
ward a method called Horizontal Voting. First, net-
works trained for a relatively stable range of epoch are
selected. The predictions of the probability of each la-
bel are produced by standard classifiers with top level
representation of the selected epoch, and then aver-
aged.

The procedure of Horizontal Voting is shown in Algo-
rithm 2.

Figure 2. Learning curve of a deep network. 90% of the
training set is kept for training and 10% is for validation.

Algorithm 2 Horizontal Voting

Input: training data X, test data x, target y, neu-
ral network N , max epoch E, selected epoch range
(L,H)
Initialize SGD trainer for N
Initialize iteration = 0
Initialize a list Preds = [ ]
repeat

Use X and y to do one epoch back-propagation
training on N
iteration = iteration + 1
if iteration > L and iteration < H then

Put x into N , get softmax output vector predi
Add predi to Preds

end if
until iteration > E
Pred =

∑predi∈Preds
predi

predi
Output: argmax(pred)

Algorithm 3 Horizontal Stacked Ensemble

Input: training data X, test data x, target y, neu-
ral network N , max epoch E, selected epoch range
(L,H), classification algorithm set A
Initialize SGD trainer for N
Initialize iteration = 0
Initialize a list Predsx = [ ]
Initialize a list PredsX = [ ]
repeat

Use X and y to do one epoch back-propagation
training on N
iteration = iteration + 1
if iteration > L and iteration < H then

Put x into N , get softmax output vector predi
Add predi to Predsx
Put X into N , get softmax output vector predi
Add predi to PredsX

end if
until iteration > E
Reshape H−L−1 softmax output vectors in PredX
to a single feature vector FX into a single vector of
(H − L− 1)× num of classes dimension
Reshape H−L−1 softmax output vectors in Predx
to a single feature vector Fx into a single vector of
(H − L− 1)× num of classes dimension
Train classifier c by using an algorithm a ∈ A, use
training data FX and y
Put Fx into c, get final prediction Pred
Output: argmax(pred)

3.3. Horizontal Stacked Ensemble

Sergey Yurgenson suggested a non-linear horizontal
ensemble method2 for shallow neural network, which
has significantly improved the accuracy of classifica-
tion. This method can be extended to deep neural
networks. Similar to the horizontal voting method in
section 3.2, it takes the output of networks within a
continuous range of epoch. The following step is sim-
ilar to Stacked Generalization method. All these out-
puts are collected to form a new feature space for clas-
sification.

The procedure of Horizontal Stacked Ensemble
method is shown in Algorithm 3.

4. Models and Experiments

The Black Box dataset provided by ICML 2013 Rep-
resentation Learning Challenge is used. This dataset

2http://www.kaggle.com/c/challenges-in-
representation-learning-the-black-box-learning-
challenge/forums/t/4674/models?page=2
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provides 1,000 labeled training examples, 10,000 test
examples halved to public and private test, together
with 135,735 unlabeled data for algorithms to exploit.
The data is in 1,875 dimension, and is required to be
divided to 9 classes. No prior knowledge can help since
the data is human unreadable.

The deep neural network is chosen as the key for this
challenge, and 6 models are designed. Model 1 is a sin-
gle traditional shallow neural network and model 2 is
a deep neural network. Model 2 is used as benchmark
for the following models to test the efficiency of our
methods, and explore the strategies of method combi-
nation. The models are described below. All of the
experiments share same learning rate and momentum.

Most of the models are trained with open-source tools
Theano (Bergstra et al., 2010), PyLearn2 (Warde-
Farley et al., 2011) and scikit-learn (Pedregosa et al.,
2011).

4.1. Model 1: Shallow neural network
(without pre-training)

Model 1 is a traditional shallow neural network with-
out pre-training layers. The 1000 labeled data is
the input of 3 maxout layers and a softmax layer.
The number of neurons is 1875(input)-1500-1500-1500-
9(output).

4.2. Model 2: Deep neural network with
unsupervised pre-training

Model 2(see Figure 1 for the architecture) add un-
supervised pre-training layers to model 1. 5 denois-
ing auto-encoder layers are used to take advantage of
more than 130 thousand unlabeled data. The number
of neurons is 1875(input)-1500-1000-1500-1200-1500-
1500-1500-1500-9(output).

4.3. Model 3: Deep neural network with
Vertical Voting

Model 3 adds Vertical Voting to Model 2 to test its
effectiveness. Representations in the 3 maxout layers
(h5-h7 in Figure 1) vote for the prediction.

4.4. Model 4: Deep neural network with
Horizontal Voting

In model 4, Horizontal Voting is introduced to the
network in model 2. Deep neural networks that are
trained from 651 to 850 epoch are averaged.

4.5. Model 5: Deep neural network combined
Horizontal and Vertical Voting

Model 5 implements both Vertical Voting and Horizon-
tal Voting based on Model 2. For every training epoch,
Random Forest’s prediction given by 3 hidden layers
(h5-h7 in Figure 1) are Vertically Voted. The process
is repeated over the network of 651 to 850 epoch, then
the 200 predictions are Horizontally combined.

4.6. Model 6: Deep neural network with
Horizontal Stacked Ensemble

The model 6 introduces Horizontal Stacked Ensemble
to Model 2. Also, 200 networks which are trained for
651 to 850 epoch are ensembled .

5. Results and Discussion

This section shows the result of each model, and dis-
cusses their performance. The gap in classification ac-
curacy between model 1 and model 2 shows the con-
tribution of pre-training layers. When compared with
model 2, results of model 3 and model 4 may prove
the effectiveness of the Vertical and Horizontal Voting
respectively. In model 5 we can test the performance
of both Voting methods. Model 6 and model 4 use
different ensemble method and their performances can
be compared.

5.1. Model 1 and Model 2

The classification of model 1 and model 2 are imple-
mented with softmax function. The classification accu-
racy is shown in Table 3. Pre-training layers contribute
to 20.19% and 19.09% score of model 2 in public and
private test set respectively.

5.2. Model 3

Following the Vertical Voting method, Random For-
est(with nestimates = 500) provides predictions for rep-
resentations generated by hierarchical layers (h5-h7) of
the network. The classification accuracy of each pre-
diction and the voted version are shown in the row
1-2 of Table 1. Note that the representation in h7 is
classified by Random Forest here, while processed by
softmax in model 2. The row 3-4 of Table 1 shows the
performance of Vertical Voting in another deep net-
work, where the top maxout layer (h7) is replaced by
a rectified linear layer.

By comparing columns of Table 1, it is observed that
lower level representations do not play that well as
higher level ones as we may had foreseen. However, the
voted predictions in row 1-2 of Table 1 do not have the
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highest accuracy, though the case in row 3-4 meet our
expectation. We have three guesses that may be re-
sponsible for this phenomenon. The first guess is that
representations in different layers of the same network
do not provide good feature diversity. The second is
that since overfitting exists in the deep network itself,
ensembling a series of such models may deteriorate the
performance. And the third is, adjusting the weight of
voting may lead to better result. Validations of these
guesses are beyond the scope of this paper.

5.3. Model 4

To obtain a smoother learning curve, we choose a
learning rate 0.025. Then following the Horizontal
Voting method, a epoch range (650, 850] is chosen.
The classification error rate statistic of the picked 200
examples is listed in Table 2, which indicates a big
oscillation. But by voting the prediction of 200 ex-
amples, the risk brought by a badly chosen epoch is
greatly reduced.

As the Table 3 shows, the result of horizontally vot-
ing achieved 0.68220 in public test set, and 0.67240
in private test set, which is the best score among our
experiments during the challenge. Improvements are
also achieved on networks of different structure. That
shows horizontal Voting method can effectively pro-
duce a better and more robust performance of a deep
neural network.

Table 2. Classification error rate statistic of the 200 exam-
ples, calculated on validation set (10% of the training set).

Min Max Mean Standard Error
0.309999 0.439999 0.375427 0.024364

5.4. Model 5

Model 5 applies both Vertical and Horizontal Voting
method to model 2. Table 3 lists the classification
accuracy of model 5, also make the performance of
each model convenient to compare.

As we have observed in 5.3, the effectiveness of Ver-
tical Voting is not stable. The performance of model
5 is also influenced, if compared with model 4. In
public test set the accuracy improves a little, but in
privacy test set the accuracy decreases. On the other
hand, compared with the result of model 3, model 5
has about 3.58% and 1.58% improvement, which is
brought by Horizontal Voting method.

Serious overfitting is also observed in the model. The
difference of accuracy between public and private test

set is 0.0162. So combining Vertical Voting and Hori-
zontal Voting is not a appropriate strategy, besides it
costs much more computation resources.

5.5. Model 6

Sergey Yurgenson suggests that his non-linear ensem-
ble method achieved a 10% improvement in his shallow
network. In Model 6, the random forest on 200 soft-
max output of deep neural network achieves accuracy
of 0.68540 on public test set, and 0.67440 on private
test set. The improvement is 2.82% and 3.56% com-
pared to Model 2. and the method performs even bet-
ter than model 4. Similar results have been observed
in our other networks using this method, which indi-
cates that this ensemble method really learns some-
thing from probability output of neural network and
adjusts to a better output.

6. Conclusion and Future Work

We focus on the classification problem without prior
knowledge to the data. Using very limited number
of labeled data and massive unlabeled data, we have
achieved a good performance in ICML 2013 Black Box
Leaning Challenge, by exploiting the power of deep
neural networks.

In this work, we propose Vertical Voting, Horizontal
Voting and Horizontal Stacked Ensemble method for
deep neural network and test performance of them. We
find that hierarchical representation in different layers
may not lead to a better classification accuracy as ex-
pected. On the other hand, for representations in hor-
izontal, both linear Horizontal Voting and Horizontal
Stacked Ensemble methods can robustly improve the
performance.

If we were provided with more knowledge about the
data or more labeled training sets, we could have done
more investigations and harvested deeper understand-
ing for the representations in hierarchy. This explo-
ration may be done on other datasets in the future.
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Table 1. Classification accuracy of Random Forest for layer h5-h7, and the voted result. Row 1-2 is for model 3, and row
3-4 is for another deep neural network with Vertical Voting method. The best score of each experiment is in bold.
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Accuracy(public test set) 0.63800 0.67220 0.67000 0.67240
Accuracy(private test set) 0.62760 0.65380 0.65720 0.65960

Table 3. Classification accuracy of model 1-6. The best scores are in bold.

Model 1 model 2 model 3 model 4 model 5 model 6
Accuracy(public test set) 0.55460 0.66660 0.65920 0.68220 0.68280 0.68540
Accuracy(private test set) 0.54680 0.65120 0.65620 0.67240 0.66660 0.67440
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