
Partial Type Signatures for Haskell

Extended Version with Proofs of the Theorems

Thomas Winant1, Dominique Devriese1, Frank Piessens1, and Tom Schrijvers2

1 KU Leuven firstname.lastname@cs.kuleuven.be
2 UGent tom.schrijvers@ugent.be

Abstract. Strong type systems can be used to increase the reliability
and performance of programs. In combination with type inference the
overhead for the programmer can be kept small. Nevertheless, explicit
type signatures often remain needed or useful. In languages with standard
Hindley-Milner-based type systems, programmers have a binary choice
between omitting the type of a value or function (and rely on type infer-
ence) or explicitly providing the type entirely; there are no intermediate
options. Some proposals for partial type signatures exist, but none sup-
port features like local constraints and GHC’s non-generalisation of local
bindings. Therefore we propose and motivate a practical form of partial
type signatures that can be used with present-day Haskell. We formally
describe our proposal as an extension of the OutsideIn(X) system and
we prove some of its properties. We have developed a (not yet complete)
implementation for the GHC Haskell compiler. We find that our design
fits naturally in both the OutsideIn(X) formalism and the compiler.
Our wildcards map nicely to HM unification variables and our generali-
sation rules are carefully designed to align with existing behaviour.
This is the extended version of a paper submitted to the PADL sympo-
sium. It is identical to that paper except for two appendices containing
proofs of our main theorems.

1 Introduction

Static type checking can help catch errors at compile-time and provide useful
information for compiler optimisations. Through the use of type inference, pro-
grammers are not required to provide explicit type signatures for all values in
a program. Nevertheless, explicit signatures can still be needed or useful: type
signatures provide a form of machine-checked documentation, they can be used
to make general inferred types more specific, and help to verify whether the
program corresponds to a programmer’s intentions.

Haskell’s overloaded math operators exemplify the need for type signatures:

let harmonic x y = 2
1
x+ 1

y

in print (harmonic 3 2)

Under Haskell’s defaulting, x and y are interpreted as floating point numbers
leading to the inexact output 2.4000000000000004. The exact output 12

5 is pro-
duced with the signature harmonic ::Rational → Rational → Rational . Without
defaulting, an ambiguous type variable would make a type signature mandatory.

Additionally, type inference is fundamentally limited. It is impossible to infer
types for all programs that are typeable in more complex type systems (see
e.g. [1, §23.6]). Consider the following Haskell program.

foo x = (x [True,False], x [’a’, ’b’])

test = foo reverse

This program is rejected by Haskell’s type checker, because of the Damas-Milner
rule that a lambda-bound argument (like x) must have a monomorphic type. x
could be assigned the type [Bool] → [Bool], or [Char] → [Char], but not
∀a.[a]→ [a], see e.g. [2]. With a correct signature, the program is accepted:

foo :: (∀a.[a]→ [a])→ ([Bool], [Char])
foo x = (x [True,False], x [’a’, ’b’])

Haskell, like many other programming languages provides a binary, all-or-
nothing choice when it comes to type signatures: either the programmer writes
the whole signature or none at all. Nevertheless, in many of the situations where
type signatures are needed or useful, it suffices to pin down certain parts of the
type. Providing the full type is unneeded and sometimes tedious or distracting.
For example, when types are intended to document the code or to make its
inferred type more specific, this is often only needed for one argument of a
function or for the monad in which a computation runs, but not its result type.
For example, only the type of foo’s argument cannot be inferred, but its result
type can. In cases where we want or need to specify only a part of a type, it can
be beneficial to not specify the rest. That remainder can be boilerplate, tedious
or obscure the intention of the type signature. Not providing this information
can save the programmer some thought and work, especially if the uninteresting
bits of the type are unknown or prone to frequent change during development.

For such cases, partial type signatures can specify a type only partially and
leave the rest for the type inferencer to decide. For foo, we could use:

foo :: (∀a.[a]→ [a])→
foo x = (x [True,False], x [’a’, ’b’])

This partial signature specifies that foo is a function and defines the polymorphic
type of foo’s first argument. The result type is unspecified, as indicated by a
type wildcard (written). Similarly, for the harmonic example, it would suffice
to write the shorter signature harmonic :: Rational → .

At this point, we should mention some partial workarounds for the lack of
partial signatures in Haskell. foo could for example use a pattern type signature:

foo (x :: ∀a.[a]→ [a]) = ...

However, such a solution only applies if the parts of the type we want/do not
want to specify happen to coincide with the type of one or more input variables
and the rest. Expression type signatures similarly provide a partial solution.
Another way to simulate partial type signatures uses explicitly typed identity
functions in the implementation; we could write foo for example as follows:

foo = (id :: ∀b.(∀a.[a]→ [a])→ b) (λx → (x [True,False], x [’a’, ’b’]))

A downside is that foo’s implementation is obscured with computationally in-
significant code and Kiselyov has proposed to place such code in fake clauses [3]:

foo x | False = (id :: (∀a.[a]→ [a])→ b) x
foo x = (x [True,False], x [’a’, ’b’])

A combinator library supports this technique [4]. These workarounds are gener-
ally poorly legible, cumbersome to use (e.g. requiring lambda functions instead
of left-hand-side patterns) and limited (e.g. only a lower bound on type con-
straints). Their existence does prove the need for actual partial type signatures.

We propose and study a form of partial type signatures in the context of
a language with HM-based type inference. Our partial type signatures extend
normal signatures with type wildcards (). During type inference, such wildcards
can be instantiated to arbitrary types, e.g. the type → can be instantiated
to Int → (Bool → Int) or (Int → Bool) → String . They map nicely to the
unification variables used internally by most type inferencers.

In the context of HM-based type inference, we take care to properly interact
with the type generalisation that is performed to achieve let-polymorphism. If
(part of) the type instantiating a wildcard is not restricted by type inference, a
HM-style type inferencer will quantify over it. Consider the following program.

bar :: →
bar = True

From the return value True, the type checker learns that the second wildcard
in the partial signature of bar must be instantiated to Bool . However, the first
wildcard remains open. In this case, type generalisation will infer bar ’s principal
type ∀a.a → Bool , like when the type signature is omitted entirely.

A second, related challenge is dealing with constraints, for example type class
constraints (e.g. ∀a.Num a ⇒ a) and equality constraints (e.g. (Fun1 a ∼ (b →
b)) ⇒ a → b) supported by GHC. Our partial signatures allow the inference
of additional constraints if and only if the type contains an extra-constraints
wildcard, written as an underscore just before the double arrow: ⇒ a → b. For
example, the signature → b (without an extra-constraints wildcard) forbids
types with additional constraints like Num b ⇒ Int → b. That type can be
allowed explicitly with the signature ⇒ → b. Only one extra-constraints
wildcard can be present and allows any number of constraints to be added.

In a GHC ticket discussion, Peyton Jones has argued the usefulness of an
extra-constraints wildcard based on the following example (where the wildcard
would be instantiated to (Num a,Show a)) [5]:

f :: ⇒ [a]→ String
f xs = show (sum xs)

We also allow multiple references to a wildcard within a signature using
named wildcards (written as e.g. a). In the following example, we use them to
shorten a tedious type signature.

isMeltdown :: NukeMonad param1 param2 Bool

unlessMeltdown :: nm ()→ nm ()

unlessMeltdown c = do m ← isMeltdown
if m then return () else c

To make our proposal precise, we give a formal account based on Vytiniotis
et al.’s OutsideIn(X) formalism [6]. We define natural and algorithmic typing
rules and prove their correspondence. Additionally, we prove that our new rules
generalise the old ones for signatures without wildcards and that a partial signa-
ture f :: ⇒ has the same effect as no signature at all. Such correspondences
are important for consistency and to align with users’ expectations.

We have an implementation of our proposal in the Glasgow Haskell Compiler,
but it is not yet complete at the time of writing. Our current version correctly
unifies wildcards with concrete types, but unifying with open types, generalisa-
tion and the extra-constraints wildcard are not yet working as we intend. We
hope to finish our modifications in the coming months.

Contributions The idea of partial type signatures is not novel. Several languages
support them in some form or other [7,8] and they have been proposed for Haskell
several times before [9,10]. Dijkstra [11] and Sulzmann and Wazny [12,13] have
detailed proposals for Haskell-like languages. Still, we believe that ours is the
first rigorous formalisation of partial type signatures for a HM-style inference
that supports all the features of present-day Haskell. Specifically, we support
local constraints (that arise e.g. from pattern matching on GADTs) and align
with GHC’s non-generalisation of local bindings.

More specifically, our contributions are the following:

– A formalised proposal for partial type signatures, including generalisation,
in a Hindley-Milner-style type inference system. Our work plugs into the
constraint-based type inference approach OutsideIn(X) [6], currently em-
ployed by the de facto standard Haskell compiler GHC.

– We align our partial type signatures with the OutsideIn(X) policy that let
should not be generalised.

– We formally show that the new typing rules generalise the existing rules for
signatures without wildcards and for omitted signatures.

– A (not yet complete) implementation in the GHC Haskell compiler.

Outline In Section 2, we describe our additional syntax, both informally and
formally. Formal rules for handling wildcard syntax are listed in Section 3. We
extend OutsideIn(X) typing rules to support wildcards in Section 4. Local
bindings with partial type signatures are described in Section 5. We prove the
correspondence of our rules to the standard ones for the uninformative signa-
ture ⇒ and for signatures without wildcards in section 6. We discuss our
implementation in Section 7, related work in Section 8 and conclude in Section 9.

This extended version is identical to the submitted version except for the two
appendices which contain the proofs of our formal results, which are omitted from
the submitted version for space reasons.

Term variables ∈ x, y, z, f, g, h
Type variables ∈ a, b, c
Named wildcards ∈ a, b, c
Data constructors ∈ K

ν ::= K | x
Programs prog ::= ε | f = e, prog |

f :: σ = e, prog
Expressions e ::= ν | λx . e | e1 e2 |

case e of {K x→ e}
Type schemes σ ::= ∀a .Q⇒ τ
Type schemes with wildcards σ ::= ∀a .Q⇒ τ

Constraints Q ::= ε | Q1 ∧Q2 | τ1 ∼ τ2 | D τ | . . .
Constraints with wildcards Qw ::= Q | Qw

1
∧Qw

2
| τ1 ∼ τ2 | D τ | . . .

Constraints with extra con-
straints wildcard

Q ::= Qw | Qw ∧ _

Monotypes τ, υ ::= tv | Int | Bool | [τ] | T τ | . . .
Monotypes with wildcards τ , υ ::= τ | | a | [τ] | T τ
Type environments Γ ::= ε | (ν :σ), Γ
Free type variables ftv(·)
Top-level axiom schemes Q ::= ε | Q ∧ Q | ∀a .Q⇒ Q
Unification variables ∈ α, β, γ, ω,. . .
Unifiers θ, ϕ ::= [α 7→ τ]
Unification or rigid (skolem) variables tv ::= α | a
Algorithm-generated constraints C ::= Q | C1∧C2 | ∃α . (Q⊃C)
Free unification variables fuv(·)
Named wildcards nwc(·)

Fig. 1. Wildcard syntax extension of [6, Fig. 1, page 12 and Fig. 5, page 17]

2 Wildcard syntax

In the introduction we already gave an informal account of the wildcard syn-
tax we support. We quickly reiterate and formalise the syntax of wildcards as
an extension of the syntax in OutsideIn(X) [6]. Figure 1 contains the formal
definitions with additions and changes highlighted in grey.

First of all, type wildcards can take the place of monotypes, e.g. f :: → . For
type inference, they are translated to unification variables (see Section 3.2). By
convention, we write unification variables that arise from wildcards as ω1, ω2, · · · .

A wildcard in a constraint is called a constraint wildcard, e.g. Eq ⇒ . A
wildcard occurring as a constraint is an extra-constraints wildcard, e.g. ⇒ .
When it is present, any number of constraints may be added to the type during
inference. Because one extra-constraints wildcard can be instantiated to any
number of constraints, more than one such wildcard would be pointless. For
clarity, we allow only one and require that it comes last in the list of constraints.

Additionally, we support named wildcards, e.g. a → a. All instances of
a named wildcard within a partial type signature must unify with the same
type. Named wildcards are particularly useful to express constraints on wildcard

types, e.g. Eq a ⇒ a or (a ∼ b) ⇒ a → [b]. Although syntactically similar,
named wildcards should not be confused with type variables: they can unify with
concrete types. Only when not unified with concrete types, they are generalised
over and behave like type variables.

In Figure 1 we provide variants of type schemes (σ), constraints (Q), and
monotypes (τ) that can contain wildcards, respectively σ, Q, and τ . A distinc-
tion between constraints with wildcards (Qw) and constraints with [an] extra-
constraints wildcard (Q) is made to enforce that the extra-constraints wildcard
can occur at most once and must come last.

3 Wildcard instantiation and desugaring

Before we introduce the adapted typing rules, we formalise the relation between
wildcards and types. To this end, we define two judgments: the wildcard instan-
tiation judgment and the wildcard desugaring judgment. They are employed in
Section 4 by the natural and algorithmic typing rules respectively and the latter
should be understood as an algorithmic version of the former.

3.1 Wildcard instantiation

The wildcard instantiation judgment Q ; τ þ Q ; τ can be read as “The wildcards
in constraints Q and monotype τ can be instantiated to obtain constraints Q
and monotype τ”. Each wildcard in Q and τ corresponds to a concrete type
or a type variable in Q and τ . Remember that Q and τ can contain wildcards,
whereas Q and τ cannot. This judgment will be used by the adapted typing rules
to instantiate a partial type signature to a type signature without wildcards.

The rules of the judgment are shown in Figure 2. The rule NamedWc re-
quires monotypes υ that are substituted by the named wildcards in Q and τ .
We then delegate to two subjudgments that instantiate the unnamed wildcards
in respectively Qw and τ . The rule ExtraWc states that an extra-constraints
wildcard can be instantiated to an arbitrary conjunction of constraints Qres ,
which can consist of zero or more constraints. Remember that Q can contain an
extra-constraints wildcard and Qw cannot.

The first subjudgment τ þt τ instantiates wildcards in a monotype to con-
crete types or type variables. The rule TyWc states that a type wildcard can be
instantiated to any monotype τ . A monotype without wildcards is instantiated
to itself (TyNoWc) and there is a congruence rule for type constructor appli-
cations (TyApp). Note that function types: (→), tuples: (,), lists: [], . . . are all
treated as type constructor applications.

The second subjudgment Qw þc Q instantiates wildcards in constraints to
concrete types or type variables. Constraints without wildcards need no further
wildcard instantiation (ConNoWc). A conjunction of constraints is handled
recursively in ConConj. A type-class constraint can also contain wildcards
(ConTc), which will be instantiated using the previously described subjudg-
ment. Type wildcards in equality constraints are handled in ConEq.

Q ; τ þ Q ; τ

_a = nwc(τ) ∪ nwc(Qw) [_a 7→ υ]Qw þc Q [_a 7→ υ]τ þt τ

Qw ; τ þ Q ; τ
NamedWc

Qw ; τ þ Q ; τ

Qw ∧ _ ; τ þ Q ∧ Qres ; τ
ExtraWc

τ þt τ

_ þt τ
TyWc

τ þt τ
TyNoWc

∀i . τ i þt τi

T τ i þt T τ i
TyApp

Qw þc Q

Q þc Q
ConNoWc

Qw

1
þc Q1 Qw

2
þc Q2

Qw

1
∧Qw

2
þc Q1 ∧Q2

ConConj

∀i . τ i þt τi

D τ i þc D τ i
ConTc

τ1 þt τ1 τ2 þt τ2

τ1 ∼ τ2 þc τ1 ∼ τ2
ConEq

Fig. 2. Natural wildcard instantiation judgment rules

3.2 Wildcard desugaring

We also define an algorithmic variant of the wildcard instantiation judgment,
the wildcard desugaring judgment. Instead of instantiating wildcards to concrete
types or type variables as the wildcard instantiation judgment does, the wildcard
desugaring judgment replaces them by fresh unification variables in order to
participate in OutsideIn(X)’s type inference.

The wildcard desugaring judgment Q ; τ þa Q ; τ ; extra can be read as: re-
placing all the wildcards in Q and τ with fresh unification variables, gives us
Q, τ , and extra. This last boolean output parameter indicates whether the con-
straints contained an extra-constraints wildcard or not, e.g. the first underscore
in ⇒ . If and only if extra = true, extra constraints can be generated.

The rules of this judgment are shown in Figure 3. As their structure resembles
the structure of the rules of the wildcard instantiation judgment, we shall only
highlight the differences.

If Q contains an extra-constraints wildcard, extra will be true (AExtraWc).
Subsequently, or if it did not contain such a wildcard, the named wildcards in
Qw and τ are collected and replaced with fresh unification variables ω1, ω2, . . . in
the rule ANamedWc. Note that multiple occurrences of a named wildcard are
replaced with the same unification variable. Unnamed wildcards in τ and Qw are
desugared separately by two subjudgments τ þt

a τ and Qw þc
a Q respectively.

The only difference with the corresponding wildcard instantiation subjudgments
is that in the rule ATyWc, a wildcard is replaced with a fresh unification variable
instead of a monotype τ .

Q ; τ þa Q ; τ ; extra

_a = nwc(τ) ∪ nwc(Qw) ω fresh

[_a 7→ ω]Qw þc
a Q [_a 7→ ω]τ þt

a τ

Qw ; τ þa Q ; τ ; false
ANamedWc

Qw ; τ þa Q ; τ ; false

Qw ∧ _ ; τ þa Q ; τ ; true
AExtraWc

τ þt
a τ

ω fresh

_ þt
a ω

ATyWc
τ þt

a τ
ATyNoWc

∀i . τ i þt
a τi

T τ i þt
a T τ i

ATyApp

Qw þc
a Q

Q þc
a Q

AConNoWc
Qw

1
þc

a Q1 Qw

2
þc

a Q2

Qw

1
∧Qw

2
þc

a Q1 ∧Q2
AConConj

∀i . τ i þt
a τi

D τ i þc
a D τ i

AConTc
τ1 þt

a τ1 τ2 þt
a τ2

τ1 ∼ τ2 þc
a τ1 ∼ τ2

AConTc

Fig. 3. Algorithmic wildcard desugaring judgment rules

4 Typing rules

When checking a partial type signature, the wildcards are unified with concrete
types if necessary, otherwise they are replaced with fresh universally quantified
type variables, i.e. the type is generalised. If an extra-constraints wildcard is
present, additional constraints may be generated and added to the annotated
constraints. We formalise this by adapting the OutsideIn(X) typing rules [6].

4.1 Natural typing rules

Figure 4 shows the three top-level natural typing rules in [6]: Empty, the base
case, Bind, for definitions without a type signature, and BindA, for definitions
with a signature. It also shows the new rule BindPA which replaces BindA.
Changes in BindPA w.r.t. BindA are greyed. The rules refer to the constraint
entailment judgment Q Q, which should be read as: “the axioms Q imply Q”.

Compared to BindA, BindPA supports partial type signatures. It is ex-
tended with the premise Q ; τ þ Q ; τ , i.e. Q and τ are instantiated to Q and τ
(see Section 3.1). Additional type variables that were not present in the partial
type signature but arose from the generalisation of the type, are captured in b,
and also universally quantified over in the final type of the top-level definition.

4.2 Constraint solver

Before discussing the new top-level algorithmic typing rules, which make use
of OutsideIn(X)’s constraint solver, we shall briefly describe the constraint

Q ;Γ ` prog
ftv(Γ) = fuv(Q) = ∅

Q ;Γ ` ε Empty

Q1 ;Γ ` e : τ a = ftv(Q) ∪ fuv(τ) Q∧Q Q1

Q ;Γ, (f :∀a .Q⇒ τ) ` prog
Q ;Γ ` f = e, prog

Bind

Q1 ;Γ ` e : τ a = ftv(Q) ∪ fuv(τ) Q∧Q Q1

Q ;Γ, (f :∀a .Q⇒ τ) ` prog
Q ;Γ ` f::∀a .Q⇒ τ = e, prog

BindA

Q ; τ þ Q ; τ Q1 ;Γ ` e : τ a] b = ftv(Q) ∪ fuv(τ)

Q∧Q Q1 Q ;Γ, (f :∀ab .Q⇒ τ) ` prog
Q ;Γ ` f::∀a .Q⇒ τ = e, prog

BindPA

Fig. 4. Natural top-level typing rules, adapted from [6, Fig. 4, p. 15]

solver [6, Section 5.5, p. 41]. The OutsideIn(X) type inference system is in
fact parameterised by a constraint domain X. For present-day Haskell, X would
be instantiated to a constraint domain that contains type-class and equality
constraints (and Vytiniotis et al. present a concrete solver for this X [6]), but the
OutsideIn(X) typing rules and algorithms are designed to support alternative
domains as well. In this text, we keep X abstract. We will only describe the form
of the constraint solver, not the implementation, which is specific to X.

We have already seen the natural constraint entailment relation Q Q. On
the algorithmic side, the constraint solver (Figure 5) has the following signature.

Q ;Qgiven ;αtch
Ì
solv

Cwanted Qresidual ; θ

The inputs in this signature are:

– Q: the top-level axiom scheme. In a concrete setting, it will contain for
example class instances or reduction rules of type functions, but we will
leave it abstract. It does not change during type-checking.

– Qgiven : the given constraints that arise from type annotations (or pattern
matching),

– αtch : the touchable unification variables that the solver is allowed to instan-
tiate, and

– Cwanted : the constraints to be solved.

The outputs are:

– Qresidual : residual constraints that the solver has not been able to solve, and
– θ: a substitution mapping unification variables to types, with dom(θ) ⊆ αtch .

Vytiniotis et al. keep the constraint solver abstract, but require certain prop-
erties of it. It is required to be sound and yield guess-free solutions, two formal
properties (specified in terms of the natural constraint entailment relation)
that we do not go into further. We will however require the solver to support a
somewhat larger form of inputs. In the next section, we explain this further.

4.3 Wildcards in constraints

We have chosen to allow both named and unnamed wildcards in constraints.
Nevertheless, it is important to point out a limitation of such wildcards in our
system. The OutsideIn(X) infrastructure will never apply unification to two
constraints. Consider the following example

h :: Eq ⇒ a → a → Bool
h = (≡)

In this case, h’s implementation generates the wanted constraint Eq a, which
one might expect to be unified with Eq , so that the wildcard is instantiated
with type a, but this is not what happens. The OutsideIn(X) constraint solver
does not unify the given constraint Eq with the wanted constraint Eq a. In
general, it will never unify one constraint with another; the algorithm will only
instantiate wildcards a in constraints C if

– a is a named wildcard also mentioned in the non-constraint part of the
signature and it is instantiated during unification with the inferred type.

– The instantiation follows semantically from the constraint, i.e. C ⊃ a ∼

In OutsideIn(X), unifying the non-constraint part of a signature with the in-
ferred part happens through the generation of equality constraints, so in this
sense the first case is comprised in the second. As a result, for h we get an error
that the constraint Eq a cannot be solved from given constraints Eq .

Nevertheless, this limitation does not mean that wildcards in constraints are
useless. Consider the following example:

f :: Monad m ⇒ m Bool

For this signature, m can either be unified with a concrete type constructor like
Maybe for which there is a Monad instance or be generalised to a universally
quantified monad m. Similarly, we can say something like

g :: (a,) ∼ F b ⇒ b → a

This signature states that g is a function whose domain type is mapped by type
function F to a tuple whose first element is its range type.

Formally, the choice to allow wildcards in constraints implies that we have
to drop an invariant of the constraint solver. For the constraint entailment re-
lation Q ;Qgiven ;αtch

Ì
solv

Cwanted Qresidual ; θ, Vytiniotis et al. mention two in-
variants that should hold: αtch#fuv(Qgiven) and dom(θ)#fuv(Qgiven), i.e. the free
unification variables in Qgiven should not be unified. This means that the given
constraints Qgiven are not allowed to contain unification variables that the solver
can instantiate. In order to support wildcards in constraints, it is required to
remove this restriction and we propose to do so. Although the proofs about the
concrete constraint solver in the second part of Vytiniotis et al.’s paper [6] rely
upon this restriction, we conjecture that this is a technical restriction that can
be remedied.

Contrary to the behaviour of wildcards in the non-constraint part of a signa-
ture, some of the behaviour of wildcards in constraints we just discussed could be

Q ;Γ Ì prog Q ;Γ Ì ε
Empty

Γ Ì e : τ C Q ; ε ; fuv(τ) ∪ fuv(C) Ì
solv

C Q ; θ a fresh
α = fuv(θτ) ∪ fuv(Q) Q ;Γ, (f :∀a . [α 7→ a](Q⇒ θτ)) Ì prog

Q ;Γ Ì f = e, prog
Bind

Γ Ì e : υ C Q ;Q ; fuv(υ) ∪ fuv(C) Ì
solv

C ∧ υ ∼ τ ε ; θ
Q ;Γ, (f :∀a .Q⇒ τ) Ì prog

Q ;Γ Ì f::∀a .Q⇒ τ = e, prog
BindA

Q ;Qgiven ;αtch
Ì
solv

Cwanted Qresidual ; θ

Fig. 5. Top-level algorithmic rules, taken from [6, Fig. 12, page 39]

Γ Ì e : υ C Q ; τ þa Q ; τ ; extra

Q ;Q ; fuv(υ) ∪ fuv(C)∪ fuv(τ,Q) Ì
solv

C ∧ υ ∼ τ Qres ; θ

extra ∨ (Qres = ε) β = fuv(θτ) ∪ fuv(θQ ∧Qres) b fresh

Q ;Γ, (f :∀ab .[β 7→ b](θQ∧Qres ⇒ θτ)) Ì prog

Q ;Γ Ì f::∀a .Q⇒ τ = e, prog
BindPA

Fig. 6. New top-level algorithmic rule, adapted from Fig. 5

unexpected by programmers. Because of this, one might consider the possibility
to disallow both named and unnamed type wildcards in constraints, but we have
chosen not to do this. We think the limitations of wildcards in constraints can
be explained to the user and our examples show that they can be useful despite
the limitations.

4.4 Algorithmic typing rules

In addition to the new top-level natural typing rule BindPA, we also adapt
the top-level algorithmic typing rules. The original top-level algorithmic typing
rules are shown in Figure 5. As wildcards can only occur in a type signature,
only the rule BindA that handles declarations with a type annotation, has to be
adapted. The adapted rule is presented in Figure 6, with changes w.r.t. BindA
highlighted in grey.

The BindPA rule works as follows. We start with the first expression: the
type υ of e is inferred using the constraint generation judgment from [6] while
generating the constraints C. The wildcards in Q and τ are replaced with fresh
unification variables with the wildcard desugaring judgment we defined earlier.
The extra output parameter indicates whether we are allowed to infer extra
constraints.

On the second line, the invocation of the constraint solver has been slightly
modified. The free unification variables in τ and Q, introduced during the wild-
card desugaring, are added to the set of touchable unification variables that

Γ Ì e1 : τ1 C1 Γ, (x :τ1) Ì e2 : τ2 C2

Γ Ì let x = e1 in e2 : τ2 C1 ∧ C2
Let

Γ Ì e1 : τ C1 Γ, (x :τ1) Ì e2 : τ2 C2

Γ Ì let x :: τ1 = e1 in e2 : τ2 C1 ∧ C2 ∧ τ ∼ τ1
LetA

σ1 = ∀a .Q1 ⇒ τ1 Q1 6= ε or a 6= ε Γ Ì e1 : τ C
β = (fuv(τ) ∪ fuv(C))− fuv(Γ) C1 = ∃β . (Q1 ⊃ C ∧ τ ∼ τ1)

Γ, (x :σ1) Ì e2 : τ2 C2

Γ Ì let x ::σ1 = e1 in e2 : τ2 C1 ∧ C2
GLetA

Γ Ì e : τ C

σ1 = ∀a .Q
1
⇒ τ1 Γ Ì e1 : τ C Q

1
; τ1 þa Q1 ; τ1 ; false

Q1 6= ε or a 6= ε or fuv(τ1) ∪ fuv(Q1) 6= ∅
β = ((fuv(τ) ∪ fuv(C))− fuv(Γ))∪ fuv(τ1) ∪ fuv(Q1)

C1 = ∃β . (Q1 ⊃ C ∧ τ ∼ τ1) Γ, (x :∀a .Q1 ⇒ τ1) Ì e2 : τ2 C2

Γ Ì let x ::σ1 = e1 in e2 : τ2 C1 ∧ C2
GLetPA

Fig. 7. Constraint generation for local let-bound definitions, taken and adapted from
[6, Fig. 13, page 40]

the constraint solver is allowed to instantiate. We also capture the residual con-
straints, which were not allowed in the previous version of the rule, in Qres . Now
they are allowed, but only if extra is true.

In the next step, we collect the remaining free unification variables in θτ and
θQ ∧ Qres . These unification variables were not instantiated to concrete types
while solving the constraints and so we generalise over them. They are replaced
with fresh, universally quantified type variables, b. The residual constraints, i.e.
the extra constraints that have not been solved by the constraint solver, are
added to the annotated constraints.

Exercise to the reader: apply the rule BindPA to the following example.

f :: ⇒ → → Bool →
f x y b = x ≡ y ∧ b

Theorem 1 (Algorithm soundness). If Q ;Γ Ì prog then Q ;Γ ` prog in a
closed top-level Γ .

5 Typing of local definitions

Advanced type system features like GADTs have a profound impact on a type
system. Crucially, the clean and simple principal typing property that the HM
system satisfies is no longer valid (see e.g. [6]). This makes type inference a harder
problem and Vytiniotis et al. present one possible way out. They advocate the
policy that the types of local (unannotated) definitions should not be generalised,
with the slogan “Let should not be generalised”.

For partial type signatures of local definitions, we align with the policy to not
generalise local definitions. Next, we present the adapted typing rules for local
definitions, but we omit natural typing rules as the required changes are minimal.
The existing algorithmic rules and our adapted rule are shown in Figure 7.

The rule LetA applies to definitions with an annotated monomorphic type,
GLetA for polymorphic type signatures and Let for definitions without a sig-
nature. The rule Let is remarkably simple, because it applies the NoGen policy
of not generalising the inferred type at all. Our adapted typing rule GLetPA
extends this policy to partial type signatures.

The GLetPA rule applies to local bindings with a partial type signature,
either polymorphic or monomorphic. It first desugars the partial type signature.
The extra parameter must be false, i.e. we forbid an extra-constraints wildcard,
since the NoGen policy forbids additional constraints. We verify that the type
signature was indeed partial by requiring free unification variables in the desug-
ared type and constraints. Next, the set of unification variables allowed to unify,
i.e. the touchables, is extended with those resulting from the wildcards in the
desugared τ1 and Q1. Solving the implication constraint should unify them, fix-
ing the definition’s actual type. The local binding, annotated with the desugared
type, is added to the environment to type check the body e2. Following the No-
Gen policy, no generalisation is performed.

The example foo shows the effect of not generalising in GLetPA.

foo = let g :: →
g x = x
h :: Eq a ⇒ a → a → Bool
h x y = x ≡ y

in (g True, g ’v’, h True True, h ’a’ ’b’)

Instead of being quantified over, the free unification variables in the type of g
unify with the Bool type at the first call of g . Thus, g ’s type is Bool → Bool . As
g is also called with a Char argument, the program will be rejected. Similarly,
the unification variable for the named wildcard a in h’s type is not generalised.
Instead, it unifies with the Bool type, producing the type Eq Bool ⇒ Bool →
Bool → Bool for h.

6 Alignment with existing rules

Partial type signatures are a generalisation of the binary choice between a full
signature or none at all. Using wildcards, partial type signatures can mix anno-
tated and inferred types. To demonstrate that partial type signatures truly are
a generalisation of the existing inference, we prove two properties.

First, partial type signatures are a conservative extension: the adapted typing
rules are equivalent to the original rules for signatures without wildcards.

Second, definitions without a type signature are equivalent with definitions
with a partial type signature of the form ⇒ . More formally: the BindPA
rule (Figure 6) can be used to type check a definition f = e without a type

signature by treating it as if it had the partial type signature f :: ⇒ = e. The
following AltBind rule simply transforms definitions without a type signature
into definitions with the equivalent partial type signature:

Q ;Γ Ì f:: _⇒ _ = e, prog

Q ;Γ Ì f = e, prog
AltBind

Theorem 2. Given a program prog in which every definition f has either a type
signature without wildcards, i.e. f :: ∀a .Q⇒ τ = e, or no type signature at all,
i.e. f = e. If Q ;Γ Ì prog, using Bind, BindA, and Empty (Figure 5), then
Q ;Γ Ì prog, using AltBind, BindPA (Figure 6), and Empty (Figure 5).

These properties show that our proposal aligns well with the existing be-
haviour of type inference. This is not just theoretically important, but also shows
that our proposal is natural and unsurprising for existing users.

7 Implementation and extensions

We have developed an implementation of our proposal in the de facto stan-
dard Haskell compiler GHC. GHC’s inferencer is based on the OutsideIn(X)
type inference system. As a result, our proposal fits relatively nicely into the
compiler’s inference infrastructure. Nevertheless, GHC’s actual inferencer is (un-
avoidably) more complex than Vytiniotis et al.’s elegant theory, notably when
it comes to the inference and generalisation of mutually recursive blocks and
higher-rank types. Hence, our prototype currently implements only part of our
theoretical development. More specifically, it correctly unifies wildcards with
closed types, but does not yet support unifying with open types, generalisation
and extra-constraints wildcards. The prototype code is available for download at
http://github.com/mrBliss/ghc. We still intend to check and ensure compat-
ibility with the ScopedTypeVariables [14] and ConstraintKinds [15,16]
extensions, but we expect no major problems there.

8 Related work

Vytiniotis et al. provide a comprehensive overview of work on constraint-based
type systems and type inference for advanced type system features that we do
not repeat here [6], except to discuss aspects related to partial type signatures.
Vytiniotis claim that their presentation is the first one that deals with local
assumptions introduced by type signatures and data constructors, and where
those local assumptions may include type equalities.

The idea of partial type signatures is not new. The topic regularly comes
up on the Haskell community mailing lists. In two 2006 tickets on the Haskell
Prime wiki (where the Haskell community proposes and tracks future language
changes), Malcolm Wallace proposes a form of partial type signatures [10,9]. His

proposal seems similar to ours, but it does not contain a lot of detail. A GHC
feature request has also been logged to request a form of constraint wildcards [5].

The programming language Alice, an extended version of Standard ML fo-
cused on concurrent and constraint programming, also features type wildcards.
From the short paragraph in the online manual [8] on type wildcards, they ap-
pear similar to our partial type signatures (including w.r.t. the generalisation)
but there are no constraint wildcards, as Alice does not have constraints. We
have not found a formal description of Alice’s type wildcards.

The Agda programming language [7] has a dependent type system, that does
not make a strict distinction between types and values. The type system allows
a powerful form of type-level computation, so that type inferencing becomes
harder. On the other hand, terms may appear in types, so that the inferencer
can sometimes infer terms as well. In Agda, any value or type can be replaced by
an underscore, in which case Agda will try to infer the value from the available
type information using a conservative unification-based inference approach that
performs well in practice. Agda’s type inference does not perform any form of
generalisation: if the type checker cannot infer the value of such a meta-variable,
it just reports an error.

Our work was inspired by the partial signatures in Dijkstra and Swierstra’s
Explicit Haskell [11][17, Chapter 10]. They also use wildcards and allow predi-
cate wildcards very similar to our extra-constraints wildcards. However, where
we follow Vytiniotis et al. in using a rather standard form of HM style type gen-
eralisation, Dijkstra and Swierstra use quantifier location inference rules that
differ significantly, both for normal and partial type signatures. They argue that
depending on the structure of the type in which a type variable appears, it should
either be existentially or universally quantified to align with user expectations.
For example, the type a → a is interpreted as ∀a.a → a but (a → a) → Int is
interpreted as (∀a.a → a) → Int , unlike Haskell. In a product type, the vari-
ables are quantified existentially instead of universally, e.g. (a, a) is interpreted
as ∃a.(a, a) and (a, a) → Int as (∃a.(a, a)) → Int . Dijkstra and Swierstra for-
malise Explicit Haskell, but do not prove results like our theorems 1 and 2.

For the Chameleon programming language, Sulzmann and Wazny describe a
form of existential type signatures, supported in addition to standard universal
signatures [12,13]. Type variables in a universal signature f :: a → a are inter-
preted in the same way as Haskell, i.e. as f ::∀a.a → a. However, in an existential
type signature f ::: a → a (note: three colons) the variables are interpreted in
more or less like our named wildcards, so that the signature becomes equivalent
to our f :: a → a. A mixture of existential and universal annotations is not sup-
ported, but can be encoded by nesting an existential annotation in a universal
one. Analogously to the scoped type variables extension, the variables in these
signatures share the same scope.

Both FML [18] and HMF [19] combine the expressiveness of System F, in-
cluding first-class polymorphism, with the convenience of Hindley-Milner type
inference, while remaining a conservative extension of ML and HM respectively.
Both solutions employ partial type annotations to avoid the guessing of poly-

morphic types during type inference. These partial type annotations are similar
to the ones described in our discussions of the scoped type variables Haskell ex-
tension, but without the scoping aspect. Furthermore, they support partial type
annotations of the following form: e :: ∃α . σ, where the free variables α in σ are
locally bound. The annotation should be read as “for some (monomorphic) types
α, the expression e has type σ.” and the α correspond to our named wildcards.
The authors formalised these partial type annotations, including generalisation,
in the context of a HM-based type system. Neither Rémy nor Leijen consider
GADTs or local type assumptions.

9 Conclusion

Partial type signatures are a useful feature that has often been requested and
proposed for Haskell. They bridge the gap between complete type annotations
and none at all. Our proposal pins down the precise behaviour and we formally
prove its well-behavedness. The result fits naturally in both the existing formal
description of GHC’s type inferencer (OutsideIn(X)) and the implementation.
The idea of partial type signatures is not novel, but we believe our proposal is
the first that supports all the features necessary for present-day GHC Haskell,
esp. local constraint assumptions.

References

1. Pierce, B.: Types and programming languages. MIT Press (2002)
2. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference

for arbitrary-rank types. J. Funct. Program. 17(1) (2007) 1–82
3. Kiselyov, O.: Partial signatures (August 2004) Visited on 31/12/2012.
4. Claessen, K., Axelsson, E.: The patch-combinators package. Hackage (2012)
5. Various authors: Infer type context in a type signature. GHC Ticket (2011)
6. Vytiniotis, D., Peyton Jones, S., Schrijvers, T., Sulzmann, M.: OutsideIn(X): Mod-

ular type inference with local assumptions. J. Funct. Program. 21(4-5) (2011)
333–412

7. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University and Göteborg University (2007)

8. Alice development team: Alice manual - extensions to the SML type language
(March 2007) Visited on 30/12/2012.

9. Wallace, M.: Partial type signatures/annotations. Haskell Prime Wiki (Feb. 2006)
10. Wallace, M., et al.: Partial type signatures. Haskell Prime Wiki (Jan. 2006)
11. Dijkstra, A., Swierstra, D.S.: Making implicit parameters explicit. Technical Re-

port UU-CS-2005-032, Universiteit Utrecht (2005)
12. Sulzmann, M., Wazny, J.: Lexically scoped type annotations. manuscript (2005)
13. Wazny, J.: Type inference and type error diagnosis for Hindley/Milner with ex-

tensions. PhD thesis, University of Melbourne (2006)
14. Peyton Jones, S., Shields, M.: Lexically-scoped type variables. (2004)
15. Bolingbroke, M.: Constraint kinds for GHC. online (2011)
16. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,

J.P.: Giving haskell a promotion. In: TLDI. (2012) 53–66

17. Dijkstra, A.: Stepping Through Haskell. PhD thesis, Universiteit Utrecht (2005)

18. Rémy, D.: Simple, partial type-inference for System F based on type-containment.
In: ICFP, ACM (2005) 130–143

19. Leijen, D.: HMF: simple type inference for first-class polymorphism. In: ICFP,
ACM (2008) 283–294

A Modified constraint solver lemma

Because of the changed invariants of the constraint solver judgmentQ ;Qgiven ;αtch
Ì
solv

Cwanted
Qresidual ; θ that we discussed in section 4.3, we need to modify one of the lemmas
employed in OutsideIn(X).

Lemma 1. Assume that Γ Ì e : τ C. Then, for all Cext , if Q ;Qg ;β Ì
solv

C ∧
Cext Qr ; θ then there exists Q such that Q ; θΓ ` e : θτ and Q∧ θQg ∧Qr ` Q.

This lemma replaces Vytiniotis et al.’s lemma 5.1. The only modification
is that in the conclusion, we apply the produced substitution θ to the given
constraints Qg as well, since given constraints can now also contain unification
variables, produced from wildcards. This change follows from the changes made
in section 4.3 and more background can be found there.

B Proof for Theorem 1

Proof. To prove the soundness of the OutsideIn(X) algorithm, we need to prove
that when a program is well-typed according to the algorithmic typing rules, it
will also be well-typed according to the natural typing rules. The authors of
OutsideIn(X) deemed this proof straightforward [6, Theorem 5.1, p. 44], but
we shall explicitly formulate the proof for the adapted BindPA rule.

We need to prove from:

Γ Ì e : υ C (1)

Q ; τ þa Q ; τ ; extra (2)

Q ;Q ; fuv(υ) ∪ fuv(C) ∪ fuv(τ,Q) Ì
solv

C ∧ υ ∼ τ Qres ; θ (3)

extra ∨ (Qres = ε) (4)

b fresh (5)

β = fuv(θτ) ∪ fuv(θQ ∧Qres) (6)

Q ;Γ, (f :∀ab . [β 7→ b](θQ ∧ Qres ⇒ θτ)) Ì prog (7)

Q ;Γ Ì f :: ∀a .Q⇒ τ = e, prog (8)

the following statements:

Q ; τ þ Q ; τ (9)

Q1 ;Γ ` e : τ (10)

a ∪ b = ftv(Q) ∪ fuv(τ) (11)

Q∧Q Q1 (12)

Q ;Γ, (f :∀ab .Q⇒ τ) ` prog (13)

Q ;Γ ` f :: ∀a .Q⇒ τ = e, prog (14)

First, we appeal to Lemma 2 with [β 7→ b]θ and Qres , from (3) and (6) to attain
(15) (note that θQres = Qres , as dom(θ)#fuv(Qres) [6, p. 20]). Lemma 2 imposes
some conditions on the given Qres and θ, namely dom(θ) ⊇ fuv(τ) ∪ fuv(Q) and
extra ∨ (Qres = ε). The latter is satisfied by (4) and the former is satisfied because
the solver will unify free unification variables from τ and Q, but not necessarily
all free unification variables. The remaining free unification variables in θτ and
θQ are handled by the additional substitution [β 7→ b].

Q ; τ þ [β 7→ b]θ(Q ∧ Qres) ; [β 7→ b]θτ (15)

We then appeal to Lemma 1 as follows: Γ Ì e : υ C (1), then choose
Cext = υ ∼ τ . Given (3), there exists Q1 such that:

Q1 ; θΓ ` e : θυ (16)

Q∧ θQg ∧Qr ` Q1 (17)

In the statements (9) to (14), choose for Q and τ respectively [β 7→ b](θQ∧Qres)
and [β 7→ b]θτ from the statements (1) to (8). Most statements from (9) to (14)
are then directly proved. We now go over the remaining statements. (10) is
proved because θΓ = Γ as Γ is a closed top-level environment. For statement
(13) we rely on induction.

Lemma 2. Assume that Q ; τ þa Q ; τ ; extra. Then, for all θ and Qres, if
dom(θ) ⊇ fuv(τ) ∪ fuv(Q), and extra ∨ (Qres = ε), then Q ; τ þ θQ ∧ Qres ; θτ .

Proof. By induction on the derivation of Q ; τ þa Q ; τ ; extra. We consider cases
corresponding to which rule was used.

– Case ANamedWc. We apply rule NamedWc. For proving [a 7→ ν]τ þt θτ
from [a 7→ ω]τ þt

a τ , we appeal to Lemma 3 as follows. We decorate the
variable names corresponding with those from the lemma with a prime, the
other variables were defined in this case. Let:

• τ = [a 7→ ω]τ .
• τ ′ = τ
• ϕ′ = [ω 7→ ν]
• θ′ = θ \ dom(ϕ′).

Lemma 3 then gives us ϕ′τ ′ þt θ′ϕ′τ ′. ϕ′τ ′ = [ω 7→ ν][a 7→ ω]τ = [a 7→ ν]τ
and θ′ϕ′τ ′ = θ′[ω 7→ ν]τ = θτ , as desired. Analogously for [a 7→ ν]Qw þc θQ,
appealing to Lemma 4, with Qres = ε.

– Case AExtraWc. Apply rule ExtraWc and use the induction hypothesis.
Qres need not be ε as extra = true.

Lemma 3. Assume that τ þt
a τ . Then, for all θ and ϕ, if dom(θ) ⊇ fuv(τ) \

fuv(τ), dom(ϕ) ⊇ fuv(τ), and dom(θ) ∩ dom(ϕ) = ∅, then ϕτ þt θϕτ .

Proof. By induction on the derivation of τ þt
a τ . We consider cases correspond-

ing to which rule was used. The substitution ϕ has as domain the unification
variables that take the place of named wildcards and substitution θ has as do-
main the unification variables that take the place of non-named wildcards.

– Case ATyWc. We have τ = , τ = ω, and want ϕτ þt θϕτ . ϕτ = τ , as
fuv(τ) = ∅, and θϕτ = θϕω results in the monotype τ , because fuv(τ) =
{ω} ⊆ dom(θ). Thus, we can apply rule TyWc: τ þt τ .

– Case ATyNoWc. We have that τ þt
a τ . As τ cannot contain any (free)

unification variables, θϕτ = ϕτ , in which case we can apply rule TyNoWc:
ϕτ þt ϕτ .

– Case ATyApp. We have that T τ i þt
a T τ i. As substitution is distributive

over the application of the type constructor T , we can use the induction
hypothesis and apply rule TyApp.

Lemma 4. Assume that Qw þc
a Q. Then, for all θ and ϕ, if dom(θ) ⊇ fuv(Q)\

fuv(Qw), dom(ϕ) ⊇ fuv(Qw), and dom(θ) ∩ dom(ϕ) = ∅, then ϕQw þc θϕQ.

Proof. By induction on the derivation of Qw þc
a Q. We consider cases corre-

sponding to which rule was used. The substitution ϕ has as domain the unifica-
tion variables that take the place of named wildcards and substitution θ has as
domain the unification variables that take the place of non-named wildcards.

– Case AConNoWc. We have that Q þc
a Q. As Q cannot contain any (free)

unification variables, θϕQ = ϕQ, in which case we can apply rule Con-
NoWc: ϕQ þc ϕQ.

– Case AConConj. We can use the induction hypothesis and apply rule Con-
Conj.

– Case AConTc. Substitution is distributive over the application of the type-
class constraint D . We can apply rule ConTc using Lemma 3.

– Case AConEq. Substitution is distributive over an equality constraint. We
can apply rule ConEq using Lemma 3.

C Proof for Theorem 2

Proof. Induction on the size of prog, using Lemma 5 for definitions with type
signatures without wildcards, and Lemma 6 for definitions without a type sig-
nature.

Lemma 5. For a definition f with a type signature without wildcards, BindPA
(Figure 6) is equivalent with BindA (Figure 5).

Proof. We shall prove that when f has a type signature without wildcards, the
premise as well as the conclusion of BindPA are equivalent with those of BindA.
This implies that the rules are equivalent in the case of a type signature without
wildcards.

The statements in the premise of BindA are:

Γ Ì e : υ C (1)

Q ;Q ; fuv(υ) ∪ fuv(C) Ì
solv

C ∧ υ ∼ τ ε ; θ (2)

Q ;Γ, (f :∀a .Q⇒ τ) Ì prog (3)

From these statements, the conclusion Q ;Γ Ì f :: ∀a .Q ⇒ τ = e, prog can be
proved.

We will begin by proving the equivalence of BindA’s premise with BindPA’s
premise.

BindA and BindPA will both infer the same υ and C in the expression
Γ Ì e : υ C, as the judgment is applied with identical input parameters.
Next, the wildcard desugaring judgment is applied:

Q ; τ þa Q ; τ ; false (4)

Given that Q nor τ contain wildcards, the output parameters of the judgment
will be the same as the input parameters, and extra will be false.

It is impossible for Q and τ to have free unification variables, as they do not
contain wildcards. Thus:

fuv(τ) ∪ fuv(Q) = ∅ (5)

The call to the constraint solver happens with the same input parameters as
the call in (2), resulting in the same output, except for the residual constraints,
which are captured in Qres instead of forced to be ε. However, as extra = false
(4), Qres = ε must be true, which makes the output parameters of both calls to
the solver identical after all.

As there are no free unification variables in τ and Q (5), the substitution θ
will affect Q (6) nor τ , (7).

θQ = Q (6)

θτ = τ (7)

β = fuv(θτ) ∪ fuv(θQ ∧Qres) = fuv(τ) ∪ fuv(Q ∧ ε) = ∅ (8)

Both β and b will be empty, combined with Qres = ε, (6), and (7) results in the
following type for f :

f :∀ab . [β 7→ b](θQ ∧ Qres ⇒ θτ) (9)

f :∀a .Q⇒ τ (10)

This is the same type as the one in (3), thus, we have now proved the equivalence
of the premises.

The conclusions of both rules are also equivalent as the difference between
the rules lies in the fact that BindPA’s conclusion allows for wildcards, of which
we have said that there are none. Thus, the Q and τ in BindPA’s conclusion

can simply be replaced with Q and τ , which makes it equivalent with BindA’s
conclusion.

Lemma 6. For a definition f without a type signature, AltBind (Figure 6) is
equivalent with Bind (Figure 5).

Proof. When f has no type signature, the rule AltBind applies, which requires
a proof of its premise Q ;Γ Ì f :: → = e, prog. To prove this statement, we
apply the BindPA rule, of which the premise consists of the following statements:

Γ Ì e : υ C (1)

Q ; τ þa Q ; τ ; extra (2)

Q ;Q ; fuv(υ) ∪ fuv(C) ∪ fuv(τ) ∪ fuv(Q) Ì
solv

C ∧ υ ∼ τ Qres ; θ (3)

extra ∨ Qres = ε (4)

b fresh (5)

β = fuv(θτ) ∪ fuv(θQ ∧Qres) (6)

Q ;Γ, (f :∀ab . [β 7→ b](θQ ∧ Qres ⇒ θτ)) Ì prog (7)

We shall now prove that for Q = and τ = the premise of Bind is equivalent
with the premise of BindPA. By consequence, Bind will be equivalent with
AltBind for the same values of Q and τ .

The premise of Bind consists of the following statements:

Γ Ì e : τ C (8)

Q; ε; fuv(τ) ∪ fuv(C) Ì
solv

C Q ; θ (9)

a fresh (10)

α = fuv(θτ) ∪ fuv(Q) (11)

Q ;Γ, (f :∀a . [α 7→ a](Q⇒ θτ)) Ì prog (12)

It is clear that (8) and (1) are equivalent. The rule (2) will be applied with
Q = and τ = . The following rules will be applied by the wildcard desug-
aring judgment: AExtraWc (Q = = ε ∧), which results in extra = true,
ANamedWc, which only applies ATyWc and AConNoWc, as there are no
named wildcards present in Qw and τ . ATyWc will replace the type wildcard
with a fresh unification variable ω. AConNoWc is applied because Qw = ε.
This results in the following expression:

Q ; τ þa ε ;ω ; true (13)

In the next step, the constraint solver is called (3). We shall prove that the call
(3) happens with input parameters equivalent with those from the call in (9),
which will result in equivalent output parameters. The first parameter, Q, will
be identical for both calls. The second parameter in (9) is ε, just like in (3), see
(13). The third parameter differs, the fuv(τ) ∪ fuv(C) from (9) will be identical
to the fuv(υ)∪ fuv(C) from (3), but to the latter fuv(τ)∪ fuv(Q) will be added,
namely {ω}. The fourth parameters also differ slightly; in (3) there is an extra
constraint: υ ∼ τ(= ω). These two differing input parameters will only result

in an extra substitution, namely ω 7→ υ. Thus, the substitution θ from (9) is
equivalent to the one from (3). Rule (4) will not require Qres = ε given that
extra = true (13).

We shall now prove that the α (11) are identical to the β from (6). To avoid
confusion between variables from (11) and (6), we shall suffix variables from (11)
with an α-subscript. Given that τ = ω, θ = [ω 7→ υ, θα], and υ = τα, (14) is
true. (15) is true because both Qres and Qα are output parameters of equivalent
invocation of the constraints solver. From (14) and (15) follows (16).

θτ = θω = [ω 7→ υ, θα]ω = θαυ = θατα (14)

Qres = Qα (15)

α = fuv(θατα) ∪ fuv(Qα) = fuv(θτ) ∪ fuv(ε ∧Qres) = β (16)

The final type in (7) will be the following:

f :∀ab . [β 7→ b](θQ ∧ Qres ⇒ θτ) (17)

f :∀b . [β 7→ b](θQ ∧ Qres ⇒ θτ) (18)

f :∀b . [β 7→ b](Qres ⇒ θτ) (19)

f :∀b . [β 7→ b](Qα ⇒ θτ) (20)

f :∀b . [β 7→ b](Qα ⇒ θατα) (21)

f :∀a . [α 7→ a](Qα ⇒ θατα) (22)

In (18), the a disappear because the annotated type (⇒) did not contain
any type variables. In the next line (19), θQ disappears because it is empty (13).
In (20) Qres is replaced by Qα because of (15). After this step, θτ is replaced by
θατα because of (14). As α = β (16), we can replace β in (22) by α, where a and
b are fresh type variables. This is the same type as in (12).

We have now proved that for a definition f without a type signature, Alt-
Bind, which uses BindPA, is equivalent with Bind.

