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Summary Reverse Code Engineering (RCE) is, loosely speak-
ing, the process of analyzing a piece of code in order to
understand it. RCE is often used to analyze proprietary, bi-
nary programs, and in the last few years this research area has
evolved a lot. In this article, we survey and structure the area
of reverse code engineering. We focus on different techniques
to recover both the control and data flow of a given binary pro-
gram, for which no source code is available. Furthermore, we
also discuss analysis techniques for malicious software (short:
malware), which is commonly protected to resist analysis. We
present the current state of the art of such protection tech-
niques, while dividing them into active and passive measures.
Our survey focusses on reverse engineering of binary native
code for the Intel/AMD x86 architecture, and we thus disre-
gard analysis of byte-code like Java or .NET. Nevertheless, most
of the techniques presented in this article can be transferred
to other architectures and operating system as well. ���
Zusammenfassung Reverse Code Engineering (RCE) ist die

Analyse von Binärprogrammen mit dem Ziel, deren Seman-
tik zu verstehen. Traditionell wird dabei vor allem proprietäre
Software untersucht, für die kein Sourcecode verfügbar ist.
In letzter Zeit hat es jedoch eine enorme Ausweitung auch
auf andere Einsatzgebiete gegeben. In diesem Bericht wer-
den die verschiedenen Bereiche und Einsatzgebiete vorgestellt
und eine Strukturierung vorgenommen. Dabei wird im er-
sten Teil auf die verschiedenen Methoden zur Rückgewinnung
von Kontroll- und Datenfluss unbekannter Software eingegan-
gen. Im zweiten Teil werden ausführlich die verschiedenen
Schutzmaßnahmen behandelt, die von Programmen einge-
setzt werden, um sich einer solchen Analyse zu entziehen.
Der Fokus liegt dabei in der Analyse von Binärcode für die
Intel/AMD x86 Architektur. Daher wird das Gebiet der heuti-
gen Bytecode-Sprachen wie Java or .NET vernachlässigt. Die
vorgestellten Methoden und Verfahren lassen sich jedoch prob-
lemlos auch auf andere Hardware- und Software-Architekturen
übertragen.

Keywords D [Software]; reverse code engineering, program analysis, software protection ��� Schlagwörter RCE,
Programm Analyse, Schutz der Software

1 Introduction
The term engineering generally refers to a constructive
process, in which hardware/software systems are built
and brought into operation for commercial or private
purposes. Many such systems exist today for which we do
not have access to the details of their construction pro-
cess, for example because of lost documentation or legal
requirements (intellectual property protection). This has
promoted the advent of a corresponding deconstructive
process commonly known as Reverse Engineering (RE)
or simply reversing. In general, reverse engineering refers

to the process of “analyzing a subject system to identify
the system’s components and their interrelationships and
create representations of the system in another form or
at a higher level of abstraction” [16]. While the term
originally was introduced with respect to hardware de-
vices and machines, nowadays it usually relates to reverse
code engineering or protocol/fileformat reversing [12; 22;
25; 26; 44; 77; 85; 88]. Protocol reverse engineering tries to
recover the structure of a secret network protocol. Sim-
ilarly, fileformat reverse engineering tries to reconstruct
non public file specifications from raw data files.
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In the past, RE has often been associated with shady
and illegitimate uses in the context of software piracy.
This bad image is probably due to public advertising and
legal campaigns of large companies trying to protect their
intellectual property. Today, there are an increasing num-
ber of totally legitimate applications of RE, such as closed
source auditing, vulnerability research and the analysis of
malware. Famous examples for successful applications of
RE include the recovery and recreation of the original
IBM BIOS, which empowered the enormous success of
the IBM PC compatible computers, the reversing of the
Microsoft SMB/CIFS protocol which lead to the develop-
ment of Samba [77], the disclosure of the Sony Rootkit by
Russinovich [66], and the recent reversing of the Stuxnet
worm [32].

These successes have given rise to an active academic
research community that, however, is still conceptually
dispersed and therefore hard to enter. In this article, we
attempt to lower the entrance barrier to RE research by
surveying and structuring this exciting research area. We
focus on techniques to recover the control and data flow
of programs for which no source code is available and
which, in the case of malware, often are further protected
to resist the analysis. More specifically, we concentrate
our survey around RE of binary native code for the In-
tel/AMD x86 architecture. We therefore disregard RE of
byte-code like Java or .NET. Nevertheless, most of the
techniques discussed in the following can be transferred
to other architectures and operating system as well. We
also disregard the legal aspect of RE, a research area of
its own.

In the following, we put RE into the broader context
of program analysis in Sect. 2. We then cover the different
RE approaches and techniques in Sect. 3 and, in Sect. 4,
take a detailed look at the countermeasures against RE
taken by protected software.

2 Brief Introduction to Program Analysis
Reverse Engineering is strongly related to program analy-
sis [55], which tries to statically predict approximations
about the run-time behavior of a program or its reach-
able states. One of its requirements is computability and,
hence, often under- or over-approximations are used. It
is mainly used to support compiler optimization, perform
automated program verification and assist in security re-
search. Its main fields are control flow analysis, data flow
analysis, and type recovery.

When observing the control flow, it is examined which
code can be reached from or leads to which other parts
of the program. In data flow analysis one is interested in
the dependency and relationship between different data
structures. Often the semantics of the used operations on
the data are not considered and only data propagation
is observed. On machine level the CPU only operates on
integer and float values. Therefore, all complex data struc-
tures have to be mapped onto those atomic data types
during compilation. Recovering the original data struc-

tures is essential for understanding the analyzed program
and, hence, performed during data type recovery. The
data type for memory access has to be identified, e. g., by
observing the access patterns [2; 71], inferring from the
prototypes of called functions [43], or by applying unsu-
pervised machine learning methods on memory images
of running processes [24].

An essential model used in program analysis are Con-
trol Flow Graphs (CFG). Their nodes consist of basic
blocks, which constitute sequentially executed instruc-
tions and have exactly one single entry and one exit
node. The connecting edges represent the control flow
between them and, thus, two nodes are connected if there
is a branch from one to the other. Besides the CFG also
Call Graphs (CG) are used, in which the nodes represent
different functions of an application and the edges the
calls between them. Constructing such graphs is a non-
trivial task for executables that are only available in binary
form. In a first step the program has to be disassembled,
i. e., the particular machine instructions and encodings
have to be resolved. This is exceedingly complicated on
CISC architectures, since those often use a variable length
instruction set and the instruction boundaries have to be
determined first. In a second step the function boundaries
have to be identified, which is impeded by overlapping
and cross-jumping functions as well as by optimization
techniques that improve computing performance by se-
lectively placing frequently used function chunks near
to each other. A further problem are indirect branches,
since their effective destination is not known. Data flow
techniques can determine their possible destinations, e. g.,
Value Set Analysis (VSA) [2] can be applied to statically
compute the set of possible values that a certain memory
location or register may contain during runtime.

Another related structure is the Program Dependence
Graph (PDG), which comes in different forms, e. g., Code
Dependence Graph (CDG) or Data Dependence Graph
(DDG). CDGs and DDGs are used for mapping numer-
ous program analysis problems to the realm of graph
theory. One powerful related method is slicing [8; 41; 86],
in which program complexity is reduced by eliminat-
ing all instructions that do not affect the reaching of
a particular program state. Modern slicing techniques are
based on PDGs and constitute a reachability problem.
In backward slicing one wants to know what variables
or operations influence the value of a variable at one
given statement. In forward slicing it is verified which
variables or statements are affected by a variable value
at some given point. Traditionally slicing was restricted
to one-procedure programs, but newer techniques allow
inter-procedural slicing as well [38; 41; 61]. Differential
slicing [39] takes two different runs of the same binary
into account and compares them towards their different
input values. By that, the input and control flow differ-
ences can be identified that distinguish the runs. Finally,
dynamic slicing [42] reduces the complexity by taking the
concrete values from one particular run into account.
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Hence, several conditional statements can be ignored and
removed from the graph since the tested variable values
are known.

3 State of the Art in Reverse Engineering
While fundamental limits of program analysis arise from
the undecidability of the halting problem [78] and Rice’s
theorem [62], RE suffers from additional problems be-
yond that. First of all, when reversing programs, the
source code normally is not available. Even if it is at
hand, it cannot be trusted due to compiler optimiza-
tions [3] and, therefore, the assembly output has to be
taken into account. Typical difficulties that complicate
RE of binaries are:
• compilation imposes information loss,
• lack of symbol names and comments,
• compiler optimizations complicate resulting code,
• hardware knowledge is necessary to understand code,
• data structures have become chunks of bytes, and
• programs try to protect from analysis.
In general there are two different approaches: static and
dynamic analysis. Static analysis tries to model all possible
program behaviors and, hence, operates on a high level of
abstraction. For that purpose the program under observa-
tion is not executed, but all examinations are performed
in an abstract way, mostly by using CFG, CG or PDGs. By
that, the analysis is sound and covers all possible program
states, while on the other hand, it is very complex and
time-consuming and may encounter serious problems in
the case of obfuscated and protected binaries.

In contrast to static analysis, dynamic analysis has its
origin in program testing and profiling and takes actual
data values from one or more program executions into
account. Since concrete values are at hand, no abstrac-
tion and approximation has to be used. Nevertheless, no
complete view of an application can be generated, since
only a subset of all possible execution paths is observed.
To that end, dynamic analysis is incomplete. One special
form of dynamic analysis is behavior analysis, in which
the executable is seen as a black box and only its runtime
effects on the environment are observed, e. g., what files
have been created or what processes have been started.
Though this kind of analysis only gives a very high level
view of a binary, it often is helpful and sufficient.

3.1 Static Analysis
Prior to any static analysis, the executable binary file
has to be disassembled, e. g., the raw byte stream has
to be transformed into valid assembler instructions and
(unformatted) data regions. Two different disassembling
algorithms are used mainly nowadays: linear sweep and
recursive traversal. Linear sweep algorithms start with the
first byte of the code section and consecutively analyze
each successive instruction. The method is simple and
fast, but it has some serious drawbacks which arise due
to variable instruction size and data or garbage that is
embedded into the code stream. It easily happens that

this algorithm erroneously interprets data as code and,
accordingly, propagates disassembling errors throughout
all the following regular instructions. Recursive traversal
addresses this problem by not using a strictly sequential
approach, but by starting to disassemble at the known
code entry-points and recursively following each branch-
instruction. By that, only valid code is observed and
unaligned instructions or embedded data do not disturb
the process. The main disadvantage of this method is the
assumption that each jump target can be identified by
static analysis, which is not always possible, e. g., for indi-
rect calls. An improvement to this algorithm is speculative
disassembly which tries to also parse the left out gaps be-
tween the reachable code regions, using linear sweep for
that. Most of the popular RE tools use recursive traversal,
e. g., IDA Pro [69] or OllyDbg [89], but there also exist
established tools that use linear sweep, e. g., WinDbg [48]
or the GNU tool objdump [9].

Decompilation [18; 52] tries to reconstruct high level
language source code from assembly. During that, all
hardware related features that have been introduced dur-
ing compilation have to be removed and all high level
control and data structures have to be recovered. In
general, this reversal process of compilation is not pos-
sible, but often usable and helpful approximations can be
achieved. Problems arise through the fact that compila-
tion is a lossy process. Not only comments and symbol
names are stripped, but also optimization techniques are
applied that make it impossible to reconstruct the original
high level structures. If a program can be decompiled
correctly, the result normally does not match the original
source code. Instead, a semantically equivalent program
is retrieved. Hex-Rays [68] is a powerful general purpose
decompiler which creates C-like pseudocode as output.
There also exist language-specific tools like DeDe [27] for
Delphi and VBDecompiler [73] for Visual Basic programs.

One other significant problem in static analysis is
the unavailability of concrete runtime memory or reg-
ister values [49]. Accordingly, program analysis has to
over-approximate them, which may be either unsolvable
or does not reveal any useful information at all. One
popular method to counter this drawback is symbolic exe-
cution [20], a technique originally used in program testing
for generating test cases with a high code coverage. Pro-
gram execution is simulated while all input variable values
are substituted by symbolic ones and for each conditional
branch a different execution is forked. Accordingly, all
possible execution paths are traversed and for each one
a symbolic representation of the path condition is created.
Klee [13] is a popular tool for symbolic execution that is
frequently used in security auditing.

3.2 Dynamic Analysis
Dynamic analysis involves the actual execution of an
observed binary. For several reasons this often is not
performed on a real machine, but with the help of an
emulator or a Virtual Machine (VM). For instance in case
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of malware analysis, the analyzing host may get infected
with malicious content through the analysis, which is not
desirable in most cases. Furthermore, the utilization of
an emulated/virtualized machine offers enhanced con-
trolling and monitoring capabilities.

The most powerful actual tool for dynamic analy-
sis is the debugger. State of the art debuggers are
OllyDbg [89], Immunity Debugger [37] (OllyDbg plus
a powerful Python interface), WinDbg [48] and gdb [57].
In the past one very popular tool has been SoftIce [23],
but it is no longer supported and maintained for newer
operating systems and has been unofficially replaced by
Syser [76] nowadays. A debugger places an additional in-
teraction layer between the underlying operating system
and the debugged application, the so called debugee. By
that, it becomes possible to pause and resume the moni-
tored process, to single step through its code, or to view
and modify the CPU state and the memory content. For
that purpose a debugger application either utilizes special
debugging APIs offered by the operating system or it uses
custom methods to control execution of the debugee and
access its runtime context appropriately. Depending on
how deep the debugger is integrated into the operating
system, it either allows to debug usermode processes only
or it also enables to debug kernel-mode applications and
the operating system itself. In the latter case normally
a remote debugging session is used, in which two different
hosts are required: the debugged one, which requires spe-
cial OS extensions, and the debugging one that executes
the debugger.

Normally debugging is an interactive process and,
hence, debuggers offer an integrated disassembler to dis-
play the instructions at the current instruction pointer
or particular memory addresses. The user can place
BreakPoints (BP) at particular instructions to make the
debugger suspend execution when those are reached. In
general there exist two different types: software BPs and
hardware BPs. A software BP is realized by overwriting
the operation to break at with a specific software interrupt
instruction, e. g., int 0x03. When this is executed, the
running process will pause and control is delegated to
the attached debugger. In order to resume execution, the
debugger has to remove the interrupt instruction and
replace it with the original one. Hardware BPs are im-
plemented in a different way. The instructions of the
debugee are not modified, but the address to halt at is
placed into some special debug register of the CPU. On
the x86/64 architecture at most four different hardware
breakpoints are available at any time. One remarkable
advantage of hardware BPs is the ability to further spec-
ify the trigger conditions. For each one a combination of
read, write and execute triggers can be specified. Accord-
ingly, they can be used as data breakpoints as well. One
different way to implement data breakpoints is by using
guard pages. Every memory access to such a page triggers
an exception that can be catched by the debugger. Ob-
viously, this works on a much coarser granularity, since

any single byte on the corresponding page will trigger
the exception, while hardware BPs can use byte, word
and double word (dword) granularity for the specified
address.

Another important debugging technique is tracing,
which can be realized on different granularity levels, e. g.,
on instruction, on branch or on function call. The first
case is called single stepping and all processors offer native
support for that. Since full instruction traces – even of
simple programs – are very large, often a coarser gran-
ularity is used. In case of branch tracing one is only
interested in the particular execution path, i. e., in the
edges of the CFG and CG and not in the internals of each
basic block. Branch tracing can be realized with the help
of debugger extensions or by hardware support [79]. An
even coarser tracing perspective is the function call level,
i. e., only the transitions of the CG are monitored. This
kind of tracing can be used to quickly get an overview of
the called system services and delivers a high-level view
of an unknown application’s behavior.

Especially in malware analysis behavior monitoring is
very helpful. Therefore, several behavior analysis tech-
niques and tools have evolved in the last years [30].
Depending on if the analysis is performed on a real [87]
machine, a virtualized [6] or an emulated [1] one, the
required data about function calls is gathered in different
ways.

On a real machine, either hooking, OS-specific call-
back routines or binary instrumentation is used. Hooking
is the redirection of control (or data) flow to a user-
supplied target. During function call monitoring it is
used to redirect execution to a custom hook function
each time the hooked function is called. Inside the hook
function different actions may be taken: the call param-
eters are observed, the hooked function is called or its
effect are simulated, and afterwards the result value may
be observed or modified. This all happens transparently,
such that the caller does not notice that a hook was in
place. There exist different techniques to actually imple-
ment hooking. One of them is to overwrite a function
pointer in the import or export table, in the vtable of
objects, or in the system service table. Another method
is inline hooking [82], in which the first instructions of
the target function are overwritten with an unconditional
jump. Since the original operations are destroyed by that,
they first have to be saved somewhere. To that purpose
a trampoline function is created that consists of the saved
original instructions followed by a jump to the remain-
ing untouched code of the hooked function. By that, the
trampoline realizes the same semantics as the originally
hooked function. There exist many further alternative
ways to redirect function calls, e. g., by using proxy li-
braries or by placing breakpoints at the target function
prologues.

Another contemporary related technique is binary in-
strumentation. Here, additional code is inserted into an
application in order to observe or modify its behavior.
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Static instrumentation approaches exist for a long time
now [19]. With those a binary is modified before it is ex-
ecuted. Newer dynamic methods [11; 46; 54; 80] perform
the transformation during runtime when a code block is
executed for the first time and, thus, are able to overcome
the drawbacks of static methods like difficulties with in-
direct branches.

When using a full system emulator or a virtual machine
for analysis, the technique of virtual machine introspec-
tion (VMI) [35] can be applied. It enables to monitor
and control a VM from the outside, normally without
being noticed from the inside. Today many virtualiz-
ers/emulators offer VMI support, e. g., QEMU [7; 74],
Xen [5] and Ether [28].

One serious drawback of dynamic analysis is its re-
striction to only one execution path. Newer methods try
to address this problem with multi path execution [50] or
dynamic symbolic execution [74]. The idea is to execute
all possible paths by forking parallel executions at branch
points. The exponential size of the resulting execution
trees lead to a path explosion effect. Therefore, selective
symbolic execution [17] tries to confine on only a few
significant branches to reduce the necessary space and
runtime complexity and regain computability.

While most of the presented methods in this section
aim at observing the control flow of a monitored applica-
tion, data tainting is a current technique used to monitor
the data flow instead. It enables the analyst to track the
usage and influence of specific variables. To that end,
labels can be assigned to specific variables or memory
locations and each time those are used the label is propa-
gated to the affected destination variable. The tainting can
be done with static analysis or based on memory accesses
during runtime [53]. Especially when tracking the flow
of sensitive information, this technique empowers one to
easily detect malicious code on an infected system [29].

4 Reverse Engineering Countermeasures
Anti-analysis protections originally have their roots
in copy-protection mechanisms used against software
piracy, but nowadays are also heavily used for malware
and software that is concerned about security or theft of
intellectual property. Since all protections can be bro-
ken [4], the aim often is not to render the analysis
impossible, but at least to make it as hard as possible and
to hide essential data within the irrelevant. Especially for
malware the winning of time is crucial to reach maximum
infection before an AntiVirus (AV) signature is available.

The different methods to protect a binary can be di-
vided into passive and active measures. The passive ones
try to disturb or complicate the static analysis approach,
while the active measurements aim at the dynamic analy-
sis process.

4.1 Passive Protection Measures
As already explained in Sect. 1 code optimizations [51]
pose a real problem for RE and, hence, are heavily

used for obfuscation as well. The problem with code
transformations in general is that the originally used high-
level-structures get harder to recover. This ranges from
reduced readability of particular instruction sequences,
e. g., when branchless coding, frame pointer omissions or
function chunking is applied, to total decoupling from the
initial instruction order, e. g., for utilizing CPU pipelin-
ing, optimizing branch prediction and speculative reads.

While code optimizations normally have a construc-
tive aim, i. e., to improve the performance of a given
application, code obfuscation techniques solely are used
for protection and often even decrease computing speed.
They try to prohibit program analysis by disguising the
code semantics and data structures.

One main concept behind control flow concealment
is the inability to predict the effective targets of indi-
rect branches. If these cannot be determined during static
analysis, the control and data flow remains (partially)
unknown without actually executing the application. But
even then, only those branch targets for the specific run
will be known. In such cases a def-use-analysis can be per-
formed to resolve the targets of the indirect branches. For
each used variable target, the effective definition of that
very value has to be determined. This imposes a strong
dependency between control and data flow, i. e., they be-
come co-dependent [84]. In order to further complicate
the identification of branch targets aliases are used, which
are different symbols for the same memory location. This
is an effective method, since precise alias detection in
presence of pointers and recursive data structures is un-
decidable [84].

Another important concept are opaque predicates, i. e.,
boolean expressions that are non-trivial to compute and
always evaluate to a-priori known values, which are in-
dependent from the inputs. An extension to this are
opaque constants [49], which resolve to arbitrary values
and not only to true or false. Obviously, the reasoning
in both cases is to harden the analysis. With the help
of these constructs conditional branches can be placed
into the binary that are never taken during runtime. The
instructions at those branch targets contain junk code
or unaligned/overlapping instructions [21] in order to
confuse disassembly. Since most CISC architectures have
variable size instruction sets and instructions do not have
to be memory aligned, it is possible that two (or more)
instructions share the same bytes and – depending on the
address at which execution starts – different operations
are performed. As an effect all following instructions are
disassembled differently, depending on the used disas-
sembly start address.

Most contemporary disassemblers use recursive traver-
sal and one weakness of this method is that it relies on
static determination of all branch targets. Another weak
point is expecting each branch target to contain valid code
and each call operation to eventually return. These as-
sumptions can be exploited to disturb the disassembling.
One method is to remove all branches and delegate them

57



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Special Issue

through one or more dedicated branch functions [45]. For
further complicating the analysis, the branch targets are
dynamically calculated, most effectively by using aliasing
pointers and opaque predicates.

Another popular way to obscure the control flow is
the usage of exception handlers, since those allow implicit
control transfer and impose the problem to determine the
currently active handler in case of a triggered exception.
For example, static analysis will only yield an inconspicu-
ous div instruction, but by forcing a division by zero one
can ensure that on execution, an exception is thrown and
control is transferred to the handler currently in place.

Also multi-threading or multiple processes with inter-
process communication can be used to further complicate
understanding the code flow, since it is very hard to com-
prehend timing and synchronization issues and to infer
the execution order of particular code sequences in the
presence of multiple threads.

One essential requirement to understand the behavior
of an application is to identify which system services are
called. In order to hide the revealing names of those
system functions, the import table of an application can
be obfuscated. To that end, the table is either destroyed
or reduced to contain only a few essential entries. Then,
during runtime, the addresses of necessary system func-
tions are obtained without the help of the OS. For further
obfuscation those functions are not referenced by their
name, but located by searching the memory for pre-
calculated hash values.

Runtime packers [56] compress and/or encrypt the
content of executable files, add a small decompress-
ing stub and modify the Entry Point (EP) such that
execution will first invoke the stub to reconstruct the
original binary in memory. While those packers were
invented in times when memory was expensive and band-
width limited, nowadays they are mostly applied solely
to protect a binary from being reversed. Therefore, the
compression is being more and more neglected, and
only encryption and obfuscation is applied. Nevertheless,
they still are called packers and the inverse process of
reconstructing the original file version is called unpack-
ing [10; 36; 40; 47; 58; 65; 75].

One effect of packing a binary is the changing of
its complete content, e. g., every single byte is modi-
fied. This feature was heavily utilized by virus authors
in the past, since AV scanners are no longer able to de-
tect malicious files by simple static signature matching.
As a consequence, the AV companies came up with sig-
natures that detected the constant decompression stubs
instead. Thereupon, the malware scene responded with
Polymorphic code. With that the appearance of the stub
is changed with each infection or propagation, mostly
by reordering the instructions, swapping used registers
and inserting junk code at various places. Metamorphic
code [83] goes one step further by transforming not only
the decoder stub, but the complete file instead. As a result,
there never is any unique form of the original file recon-

structed in memory. Instead, with every single replication
a new (semantically equal) binary is created.

One of the most sophisticated protection scheme is the
application of customized virtual machines. Each time
a binary is protected in this way, a custom instruction
set and a corresponding virtual CPU is created. The
binary is then translated into that instruction set and
combined with code that implements that interpreting
CPU. Enhanced versions of this protection create a new
interpreter and instruction set on each replication. Several
commercial protectors use this technology, e. g., VMPro-
tect, Code Virtualizer and Themida, and it is very hard
and time-consuming to reverse such protected applica-
tions [64; 70].

4.2 Active Protection Measures
Active protection methods try to disturb and misguide
the dynamic analysis. Accordingly, they become active
during runtime. If they detect that the protected file is
under observation, they react in manifold ways. Some
cause a different behavior of the analyzed file in order to
mislead the analyst and conceal its real semantics. Others
try to attack or crash the analyzing host or even to break
out from a controlled analysis environment to do actual
harm to the underlying system. There exist a broad range
of protection techniques from simple to highly sophisti-
cated ones and one commonly used umbrella term for
all of them is anti-unpacking [14; 31; 33]. In order to cat-
egorize them in some meaningful way, we differentiate
between anti-debug, anti-emulation, anti-virtualization
and anti-dump methods. Many of the following described
methods cannot be definitely assigned to one single cate-
gory. In those cases we have tried to choose the category
that fits best.

Anti Debugging
The most intensively used tool for dynamic analy-
sis is the debugger. Hence, detecting and dealing with
them is an essential task for applications that require
protection. There are many different ways to disclose
the presence of an attached debugger, from which
some are generic and others react on debugger-specific
side effects. Since debugging support is an essential
system feature, it is normally integrated into the op-
erating system. Hence, there exist system services that
can be used to query for an active debugger, e. g.,
the Windows API functions IsDebuggerPresent(),
CheckRemoteDebuggerPresent() or NtQuery-
SystemInformation(). Since these system calls
easily can be defeated to hide a running debugger, a more
effective way is to inspect the underlying data structures
directly, e. g., the Process Environment Block
(PEB) which contains the field BeingDebugged or the
DebugPort field of the kernel structure EPROCESS.

When running inside a debugger, the runtime envi-
ronment differs in several places. For instance, normally
the parent process of a manually started application is
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different to one started in a debugger. There are ways to
identify specific debuggers by checking the environment
for their known side-effects, e. g., the name of related win-
dows, files or virtual devices. Moreover, a lot of detection
methods are based on exception handling. In the normal
case, an exception handler is called instantly when an
exception is raised. In a debugging session the debugger
first receives a first chance notification and the possibility
to intervene before the exception handler is invoked. Time
measuring can be used to detect this detour through the
debugger. In general, timing attacks are a generic protec-
tion method to cope with all different kinds of analysis
tools. Nearly all active or passive observation methods
somehow interact with the control flow of the analyzed
application or the utilization of the systems facilities, e. g.,
the caching mechanisms. Therefore, always a perform-
ance overhead arises that can be measured and compared
against a base line of native machines.

When using a debugger for program analysis, break-
points are used to stop at certain functions or
instructions. Consequently, many protection schemes try
to either detect or disable those breakpoints. Software
BPs can be detected by scanning for their related instruc-
tion opcodes. Hardware BPs are identified by examining
the corresponding debug registers. Additionally, checksums
can be used to detect code modifications like software
BPs, hooks in place and other code patches. For that
purpose the checksum of a code region is precalculated
at compile time and then compared against the current
memory contents during runtime. A way to circumvent
installed hooks or patches is based on the fact that those
modifications normally are placed only on the first few
instructions of a function. The idea now is to store a copy
of those original first instructions inside the binary itself
and execute this copy before calling the function not
from its entry point, but with an offset that points to the
location directly behind the copied instructions. By that,
possibly modified operations at the function beginning
are skipped.

As an alternative to only detect a debugger, some times
efforts are made to completely prevent the execution of
a binary within such a tool. One way to do so exploits
the fact that there at most can be one debugger per pro-
cess: with self debugging a second process is spawned that
attaches as a debugger to the first one. A more enhanced
version is circular self debugging in which at least three
different processes exist and each one is debugging and
being debugged at the same time.

Another way to prohibit the execution of a binary
on an analysts’ host is to bind the file to one particular
machine. In case of the Rustock.c rootkit this was realized
by encrypting each copy of the sample with some ma-
chine specific hardware value, such that the resulting file
becomes executable only on this specific system [15].

Malformed files can be used to crash particular analy-
sis tools, mostly while they try to parse the file structure.
There have been several flaws that were exploited in the

PE loading process of debuggers, e. g., the usage of spe-
cially crafted table sizes could lead to memory corruption
in OllyDbg.

Other examples of debugger-specific techniques that
exploit implementation flaws are the int 0x2d opera-
tion that can be used to crash SoftIce or a specially crafted
call to OutputDebugString() that does the same to
OllyDbg.

Furthermore, there are ways to break out from the
debugging session and execute malicious code without
the analyst noticing. One method exploits the Thread
Local Storage (TLS) facility of PE files. The TLS offers
several callback functions that can be used to execute
code each time a new thread is created or destroyed and
one of these callbacks is invoked even before the EP.
Another method uses code injection to execute malicious
operations from within other running processes.

Anti Emulation
Emulation is an important technique that is used for
analysis within many AV products. In order to remove
potential existing packer stages, execution of the binary
is emulated for some amount of time until a heuristic
states that the file has completely unpacked. Thereupon
the resulting memory content is searched for known
malware signatures or otherwise related traces. Anti-
emulation techniques utilize the incompleteness of such
emulators in several areas: the instruction set, the sys-
tem services and the system environment, e. g., rarely
used CPU instructions are executed or less utilized APIs
are called. Furthermore, due to performance reasons AV
products always use an upper bound for the amount of
emulated instructions. Therefore, some binaries start ex-
ecution with large or nested loops in order to exceed this
limit to conceal their real semantics. Finally, the generic
all-purpose detection technique Timing can be used to
detect emulators as well.

Anti Virtualization
The term virtualization aggregates multiple techniques
that operate on different abstraction levels, depending
on how much hardware support is used and how much
code is executed on the native CPU. It ranges from
pure software emulation (everything is emulated), over re-
duced privilege set (most of the code is executed natively,
but critical instructions have to be simulated) over to
hardware-assisted virtualization (the CPU offers specific
virtualization support and, hence, all code is executed
natively). Depending on the used technique, different
detection methods can be applied. Those for software
emulation (Hydra, Bochs, QEMU in emulation mode) have
already been discussed in the previous paragraph.

Reduced privilege set virtualizers (VMWare, Xen, Vir-
tualPC, Parallels in traditional mode) have to virtually
duplicate certain low-level CPU facilities that only exist
once on the system. This is realized by intercepting and
simulating each access by the VM. Unfortunately, many
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traditional Instruction Set Architecture (ISA) are not fully
virtualizable, which means there are sensitive instructions
that are not privileged [63]. As a consequence, the host-
ing machine is not informed if such facilities are accessed
by the guest and this fact can be exploited to detect the
virtual environment. For instance, one popular VM de-
tection method is to read out the value of the Interrupt
Descriptor Table Register (IDTR) [67] and compare it
against the known values of native machines. Another
example is to utilize some rarely used Model Specific Reg-
ister (MSR) [59], since those mostly are not simulated.

Detecting hardware-assisted virtual machines (newer
version of Xen, Parallels, Xen, Virtual Box on Intel VT or
AMD-SVM architectures) is a bit more complicated, but
possible as well. All known methods utilize the different
low-level behavior even when running on hardware with
VM support, e. g., timing issues or reduced TLB perform-
ance.

Besides those generic detection methods, there also
exist numerous ways to identify each particular virtualiz-
ing software. One way is to fingerprint the environment
by looking for particular device names, hardware ad-
dresses or running system services. Other methods exploit
backdoor facilities of the various products that normally
are used for guest-to-host communication, e. g., the port
0x5658 in VMWare or the special 0x0f opcodes in
VirtualPC [34].

An issue much more critical than detection is break-
ing out from a virtual machine. There was a flaw in
VMWare’s shared folders implementation [81] that al-
lows an attacker to read and write to arbitrary locations
on the host system from within the virtual machine. By
exploiting this vulnerability it is possible to compromise
the underlying host and control it.

Anti Dumping
Many protected binaries are heavily armored by multiple
stages of encryption, compression and/or code obfusca-
tion. To enable analysis, they first have to be transformed
back into their original unprotected form. One effective
solution for this is to actually execute the binary and
identify the point in time in which the Original Entry
Point (OEP) is called. At that point a memory dump is
saved to disk, since one can assume that all unpacking
stages have been completed. Subsequently, the Imports
have to be reconstructed with the help of the still run-
ning unpacked process to get a valid executable, since
those have been stripped while packing the binary.

In order to prevent memory dumping, several protec-
tion techniques can be applied. One simple method is to
modify or destroy the PE layout once the binary is fully
loaded. Normally, this information is only needed for
mapping a file appropriately into memory, but dumping
an already loaded module back to disk requires it as well.

The method of stolen bytes [72] or stolen functions
destroys essential parts of the binary after storing an en-
crypted version of them within the unpacker stub. When

the binary later on is unpacked, these instructions are
reconstructed in dynamically allocated memory and all
branches to their original location are redirected to that
location. If the binary is dumped, the dynamic mem-
ory regions obviously are ignored, rendering the resulting
dump file invalid.

A related technique removes all branch instruc-
tions from a binary and replaces them by so called
Nanomites [60], e. g., the int 0x03 instruction. When
executing the program, a second process is started that
attaches to the original one as a debugger. Each time
a Nanomite is encountered, the debugger is invoked and
transfers control to the original branch target, depend-
ing on the current context information. The mapping
between context and target destination is stored in the
Nanomite table. To further complicate reconstruction of
the original file, a bunch of fake Nanomites are inserted
into the table and the binary at unreachable code loca-
tions.

Another anti-dumping approach employs guard pages
for realizing page by page en-/decryption [60]. In that case,
the binary is not unpacked in a whole, but each memory
page is decrypted on the fly on its first access. This com-
plicates the dumping process, since there is no point in
time in which there is a complete unpacked version of the
binary in memory, with still having its initial state. One
way to break this method is by intentionally touching each
memory page and enforcing their decryption by that.

5 Outlook
In this work, we have surveyed the current state of the
art in the area of reverse code engineering, and discussed
how software tries to protect itself from such analysis. In
contrary to the public meaning, RE can be applied for
many constructive purposes like vulnerability research
and malware analysis. Recently, there have been many
improvements in control and data flow analysis from
which the analysis process benefits a lot. For example,
techniques like symbolic execution become more and
more scalable and even complex systems can nowadays
be analyzed using such techniques. In contrast, some very
sophisticated protection techniques can be used as coun-
termeasures for reverse code engineering. While already
being known and used for several years now, one of the
most powerful method utilizes virtual machines to pro-
tect software and avoid analysis. Like in many IT security
areas, there is an ongoing cat-and-mouse game between
the analysts and those who want to misguide and inhibit
their efforts. Accordingly, we expect to see various new
protection methods evolving in the future and, as a con-
sequence, appropriate new analysis methods as well.
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