

Password Cracking Using Probabilistic Context-Free Grammars

Matt Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek
Department of Computer Science,

Florida State University, Tallahassee, Florida 32306, USA
weir@cs.fsu.edu, sudhir@cs.fsu.edu, breno.demedeiros@gmail.com, wjglodek@gmail.com

 Abstract — Choosing the most effective word-mangling rules
to use when performing a dictionary-based password cracking
attack can be a difficult task. In this paper we discuss a new
method that generates password structures in highest
probability order. We first automatically create a probabilistic
context-free grammar based upon a training set of previously
disclosed passwords. This grammar then allows us to generate
word-mangling rules, and from them, password guesses to be
used in password cracking. We will also show that this
approach seems to provide a more effective way to crack
passwords as compared to traditional methods by testing our
tools and techniques on real password sets. In one series of
experiments, training on a set of disclosed passwords, our
approach was able to crack 28% to 129% more passwords than
John the Ripper, a publicly available standard password
cracking program.

 Index Terms — Computer security, Data security, Computer
crime

1. INTRODUCTION

 Human-memorable passwords remain a common form of
access control to data and computational resources. This is
largely driven by the fact that human memorable passwords
do not require additional hardware, be it smartcards, key
fobs, or storage to hold private/public key pairs.
 Trends that increase password resilience, in particular
against off-line attacks, include current or proposed
password hashes that involve salting or similar techniques
[1]. Additionally, users are often made to comply with
stringent password creation policies. While user education
efforts can improve the chances that users will choose safer
and more memorable passwords [2], systems that allow
users to choose their own passwords are typically vulnerable
to space-reduction attacks that can break passwords
considerably more easily than through a brute-force attack
(for a survey, see [3]).

 To estimate the risk of password-guessing attacks, it has
been proposed that administrators pro-actively attempt to
crack passwords in their systems [4]. Clearly, the accuracy
of such estimates depends on being able to approximate the
most efficient tools available to adversaries. Therefore, it is
an established practice among security researchers to
investigate and communicate advances in password-
breaking: If the most efficient attack is indeed publicly
known, then at least legitimate system operators will not
underestimate the risk of password compromise. Moreover,
password breaking mechanisms may also be used for data
recovery purposes. This often becomes necessary when
important data is stored in encrypted form under a password-
wrapped key and the password is forgotten or otherwise
unavailable. In this paper we describe novel advancements
in password-breaking attacks.
 Some improvements in password retrieval are achieved by
increasing the speed with which the attacker can make
guesses, often by utilizing specialty hardware or distributed
computing [5, 6]. While increasing the speed at which you
can make guesses is important, our focus is to try and reduce
the number of guesses required to crack a password, and
thus to optimize the time to find a password given whatever
resources are available.
 Our approach is probabilistic, and incorporates available
information about the probability distribution of user
passwords. This information is used to generate password
patterns (which we call structures) in order of decreasing
probability. These structures can be either password guesses
themselves or, effectively, word-mangling templates that can
later be filled in using dictionary words. As far as we are
aware, our work is the first that utilizes large lists of actual
passwords as training data to automatically derive these
structures.
 We use probabilistic context-free grammars to model the
derivation of these structures from a training set of
passwords. In one series of experiments, we first trained our
password cracker on a training set of disclosed passwords.
We then tested our approach on a different test set of
disclosed passwords and compared our results with John the
Ripper [11], a publicly available password cracking
program. Using several different dictionaries, and allowing
the same number of guesses, our approach was able to crack
28% to 129% more passwords than John the Ripper. Other
experiments also showed similar results.

Manuscript received November 10, 2008.
This work was supported in part by the U.S. National Institute of Justice
under Grant 2006-DN-BX-K007.
M. Weir is a PhD student in the Computer Science Department at Florida
State University; weir@cs.fsu.edu.
S. Aggarwal is Professor of Computer Science at Florida State University;
sudhir@cs.fsu.edu.
B. de Medeiros works for Google and is a courtesy professor of Computer
Science at Florida State University; breno.demedeiros@gmail.com.
B. Glodek graduated with an M.S. degree in Computer Science from
Florida State University; wjglodek@gmail.com.

2009 30th IEEE Symposium on Security and Privacy

1081-6011/09 $25.00 © 2009 IEEE

DOI 10.1109/SP.2009.8

391

 By training our attacks on known passwords, this approach
also provides us a great deal of flexibility in tailoring our
attacks since we automatically generate probability-valued
structures from training data. For instance, we can train our
password cracker on known Finnish passwords if our target
is a native Finnish speaker.

2. BACKGROUND AND PREVIOUS WORK

 In off-line password recovery, the attacker typically
possesses only a hash of the original password. To crack it,
the attacker makes a guess as to the value of the original
password. The attacker then hashes that guess using the
appropriate password-hashing algorithm and compares the
two hashes. If the two hashes match, the attacker has
discovered the original password, or in the case of a poor
password hashing algorithm, they at least have a password
that will grant them access.
 The two most commonly used methods to make these
guesses are brute-force and dictionary attacks. With brute-
force, the attacker attempts to try all possible password
combinations. While this attack is guaranteed to recover the
password if the attacker manages to brute-force the entire
password space, it often is not feasible due to time and
equipment constraints. If no salting is used, brute-force
attacks can be dramatically improved through the use of pre-
computation and powerful time-memory trade-off techniques
[7, 8].
 The second main technique is a dictionary attack. The
dictionary itself may be a collection of word lists that are
believed to be common sources for users to choose
mnemonic passwords [9]. However, users rarely use
unmodified elements from such lists (for instance, because
password creation policies prevent it), and instead modify
the words in such a way that they can still recall them easily.
In a dictionary attack, the attacker tries to reproduce this
frequent approach to password choice, processing words
from an input dictionary and systematically producing
variants through the application of pre-selected mangling
rules. For example, a word-mangling rule that adds the
number “9” at the end of a dictionary word would create the
guess, “password9”, from the dictionary word “password”.
For a dictionary attack to be successful, it requires the
original word to be in the attacker’s input dictionary, and for
the attacker to use the correct word-mangling rule. While a
dictionary based attack is often faster than brute-force on
average, attackers are still limited by the amount of word-
mangling rules they can take advantage of due to time
constraints. Such constraints become more acute as the sizes
of the input dictionaries grow. In this case, it becomes
important to select rules that provide a high degree of

success while limiting the number of guesses required per
dictionary word.
 Choosing the right word-mangling rules is crucial as the
application of each rule results in a large number of guesses.
This is especially true when the rules are used in
combination. For example, adding a two-digit number to the
end of a dictionary word for a dictionary size of 800,000
words [9] would result in 80,000,000 guesses. Changing the
first letter to be both uppercase and lowercase would double
this figure. Furthermore, in a typical password retrieval
attempt it is necessary to try many different mangling rules.
The crucial question then becomes, which word-mangling
rules should one try and in which order?
 Narayanan and Shmatikov use Markov models to generate
probable passwords that are phonetically similar to words
and that thus may be candidates for guesses [10]. They
further couple the Markov model with a finite state
automaton to reduce the search space and eliminate low
probability strings. The goal of their work, however, is to
support rainbow-based pre-computation (and, subsequently
very fast hash inversion) by quickly finding passwords from
dictionaries that only include linguistically likely passwords.
They thus do not consider standard dictionary attacks.
 Our approach can be viewed as an improvement to the
standard dictionary-based attack by using existing corpuses
of leaked passwords to automatically derive word-mangling
rules and then using these rules and the corpus to further
derive password guesses in probability order. We are also
able to derive more complex word-mangling rules without
being overwhelmed by large dictionaries due to the
assignments of probabilities to the structures.

3. PROBABILISTIC PASSWORD CRACKING

 Our starting assumption is that not all guesses have the
same probability of cracking a password. For example, the
guess “password12” may be more probable than the guess
“P@$$W0rd!23” depending on the password creation policy
and user creativity. Our goal is thus to generate guesses in
decreasing order of probability to maximize the likelihood
of cracking the target passwords within a limited number of
guesses.
 The question then becomes, “How should we calculate
these probabilities?” To this end, we have been analyzing
disclosed password lists. These lists contain real user
passwords that were accidentally disclosed to the public.
Even though these passwords are publicly available, we
realize they contain personal information and thus treat them
as confidential.
 For our experiments we needed to divide the password
lists up into two parts, a training corpus and a test corpus. If
a password appears in our training corpus, we will not use it

392

in the test corpus. In the case of password lists that were
disclosed in plain-text format, (i.e. prior to any hashing), we
can choose to use the passwords in either the training or the
test corpuses. If a list of password hashes was instead
disclosed, we used the entire list in the test corpus. This is
because we have to crack the password hashes before we can
know what the plain text words were that created them. By
separating the training and test corpuses we can then
compare the effectiveness of our probabilistic password
cracking with other publicly available password cracking
attacks, notably John the Ripper [11], by comparing their
results on the test sets.

3.1 PREPROCESSING

 In the preprocessing phase, we measure the frequencies of
certain patterns associated to the password strings. First we
define some terminology that is used in the rest of the paper.
 Let an alpha string be a sequence of alphabet symbols.
Also let a digit string be a sequence of digits, and a special
string be a sequence of non-alpha and non-digit symbols.
When parsing the training set, we denote alpha strings as L,
digit strings as D, and special strings as S. For example the
password “$password123” would define the simple structure
SLD. The base structure is defined similarly but also
captures the length of the observed substrings. In the
example this would be S1L8D3. See Table 3.1.1 and Table
3.1.2. Note that the character set for alpha strings can be
language dependent and that we currently do not make a
distinction between upper case and lower case.
 The first preprocessing step is to automatically derive all
the observed base structures of all the passwords in the
training set and their associated probabilities of occurrence.

TABLE 3.1.1
Listing of different string types

Data Type Symbols Examples
Alpha String abcdefghijklmnopqrstuvwxyzäö cat
Digit String 0123456789 432
Special String !@#$%^&*()-_=+[]{};’:”,./<>? !!

TABLE 3.1.2
Listing of different grammar structures

Structure Example

Simple SLD

Base S1L8D3

Pre-Terminal $L8123

Terminal (Guess) $wordpass123

 For example, the base structure S1L8D3 might have
occurred with probability 0.1 in the training set. We decided
to use the base structure directly in our grammars rather than
the simple structure since the derivation of the base structure
from the simple structure was unlikely to be context-free.
 The second type of information that we obtained from the
training set was the probability of digit strings and of special
strings appearing in the training set. To see an example of
this please refer to Table 3.1.3 and Table 3.1.4.

TABLE 3.1.3
Probabilities of one-digit numbers

1 Digit Number of Occurrences Percentage of Total
1 12788 50.7803
2 2789 11.0749
3 2094 8.32308
4 1708 6.78235
7 1245 4.94381
5 1039 4.1258
0 1009 4.00667
6 899 3.56987
8 898 3.5659
9 712 2.8273

TABLE 3.1.4
Probabilities of top 10 two-digit numbers

2 Digits Number of Occurrences Percentage of Total
12 1084 5.99425
13 771 4.26344
11 747 4.13072
69 734 4.05884
06 595 3.2902
22 567 3.13537
21 538 2.97501
23 533 3.94736
14 481 2.65981
10 467 2.58239

 We choose to calculate the probabilities only for digit
strings and special strings since we knew that the corpus of
words, (aka alpha strings), that users may use in password
generation was much larger than what we could accurately
learn from the training set. Note that the calculation of the
digit string and special string probabilities is gathered
independently from the base structures in which they appear.
 Please also note that all the information that we capture of
both types is done automatically from an input file of
training passwords, using a program that we developed.

393

 Referring to Table 3.1.2 again, the pre-terminal structure
fills in specific values for the D and S parts of the base
structure. Finally, the terminal structure fills in a specific set
of alphabet letters for the L parts of the pre-terminal
structure. Deriving these structures is discussed next.

3.2 USING PROBABILISTIC GRAMMARS

 Context-free grammars have long been used in the study
of natural languages [12, 13, 14], where they are used to
generate (or parse) strings with particular structures. We
show in the following that the same approach is useful in the
automatic generation of password guesses that resemble
human-created passwords.
 A context-free grammar is a defined as G = (V, Σ, S, P),
where: V is a finite set of variables (or non-terminals), Σ is a
finite set of terminals, S is the start variable, and P is a
finite set of productions of the form (1):

α → β (1)
where α is a single variable and β is a string consisting of
variables or terminals. The language of the grammar is the
set of strings consisting of all terminals derivable from the
start symbol.
 Probabilistic context-free grammars simply have
probabilities associated with each production such that for a
specific left-hand side (LHS) variable all the associated
productions add up to 1. From our training set, we first
derive a set of productions that generate the base structures
and another set of productions that derive terminals
consisting of digits and special characters. In our grammars,
in addition to the start symbol, we only use variables of the
form Ln,Dn, and Sn, for specified values of n. We call these
variables alpha variables, digit variables and special
variables respectively. Note that rewriting of alpha variables
is done using an input dictionary similar to that used in a
traditional dictionary attack.
 A string derived from the start symbol is called a
sentential form (it may contain variables and terminals). The
probability of a sentential form is simply the product of the
probabilities of the productions used in its derivation. In our
production rules, we do not have any rules that rewrite alpha
variables; thus we can “maximally” derive sentential forms
and their probabilities that consist of terminal digits, special
characters and alpha variables. These sentential forms are
the pre-terminal structures.
 In our preprocessing phase, we automatically derive a
probabilistic context-free grammar from the training set. An
example of such a grammar is shown in Table 3.2.1. Given
this grammar, we can furthermore derive, for example, the
pre-terminal structure:

S → L3D1S1 → L34S1 → L34! (2)

with associated probability of 0.0975. The idea is that pre-
terminal structures define mangling rules that can be directly
used in a distributed password cracking trial. For example, a
control server could compute the pre-terminal structures in
order of decreasing probability and pass them to a
distributed system to fill in the dictionary words and hash
the guesses. The ability to distribute the work is a major
requirement if the proposed method is to be competitive
with existing alternatives. Note that we only need to store
the probabilistic context-free grammar and that we can
derive the pre-terminal structures as needed. Furthermore,
note that fairly complex base structures might occur in the
training data and would eventually be used in guesses, but
the number of base structures is unlikely to be
overwhelming.

TABLE 3.2.1
Example probabilistic context-free grammar

LHS RHS Probability
S → D1L3 S2D1 0.75
S → L3D1S1 0.25
D1 → 4 0.60
D1 → 5 0.20
D1 → 6 0.20
S1 → ! 0.65
S1 → % 0.30
S1 → # 0.05
S2 → $$ 0.70
S2 → ** 0.30

 The order in which pre-terminal structures are derived is
discussed in Section 3.3. Given a pre-terminal structure, a
dictionary is used to derive a terminal structure which is the
password guess. Thus if you had a dictionary that contained
{cat, hat, stuff, monkey} the previous pre-terminal structure
L34! would generate the following two guesses (the terminal
structures), {cat4!, hat4!}, since those are the only dictionary
words of length three.
 There are many approaches that could be followed when
substituting the dictionary words in the pre-terminal
structures. Note that each pre-terminal structure has an
associated probability.
 One approach to generating the terminal structures is to
simply fill in all relevant dictionary words for the highest
probability pre-terminal structure, and then choose the next
highest pre-terminal structure, etc. This approach does not
further assign probabilities to the dictionary words. The
naturalness of considering this approach is that we are
leaning only lengths of alpha strings but not specific
replacements from the training set. This approach thus
always uses pre-terminal structures in highest probability

394

order regardless of the input dictionary used. We call this
approach pre-terminal probability order.
 Another approach is to assign probabilities to alpha
strings in various ways. Without more information on the
likelihood of individual words, the most obvious technique
is to assign the alpha strings a probability based on how
many words of that length appear in the dictionary. If there
are 10 words of length 3, then the probabilities of each of
those words would be 0.10. We call this approach terminal
probability order. Note that in this case each terminal
structure (password guess) has a well-defined probability.
The probability however is based in part on the input
dictionary which was not learned during the training phase.
We also considered other approaches for assigning
probabilities to alpha strings. For instance it is possible to
assign probabilities to words in the dictionary based on other
criteria such as observed use, frequency of appearance in the
language, or knowledge about the target.
 An approach related to pre-terminal probability order is to
use the probability of the pre-terminals to sample a pre-
terminal structure and then fill in appropriate dictionary
words for the alpha strings. Notice that in this latter case,
we would not use a pre-terminal necessarily in highest
probability order, but the frequency of generating terminals
over time would match this pre-terminal probability. We
call this approach pre-terminal sampled order.
 In this paper, we will only consider results using pre-
terminal probability order and terminal probability order.
We remark that the terminal order uses the joint probability
determined by treating the probabilities of pre-terminal
structures and of the dictionary words that are substituted in
as independent.
 It should be noted that we use probabilistic context-free
grammars for modeling convenience only; since our
production rules derived from the training set do not have
any recursion, they could also be viewed as regular
grammars. In fact, this allows us to develop an efficient
algorithm to find an indexing function for the pre-terminal
structures, as discussed in the next section. The grammars
that we currently automatically generate are unambiguous
context-free grammars.

3.3 EFFICIENTLY GENERATING A “NEXT” FUNCTION

 In this section we consider the problem of generating
guesses in order of decreasing (or equal) probability and
describe the algorithm. For pre-terminal probability order,
this means in decreasing order of the pre-terminal structures.
For terminal probability order, this is the probability of the
terminal structures. However, the “next” function algorithm
is the same in both cases except that for the terminal
probability order, the initial assignment of probabilities to

the starting pre-terminal structures includes the probabilities
of the alpha variables. In Section 3.4, we outline the proof
of correctness of the algorithm.
 First note that it is trivial to generate the most probable
guess. One simply replaces all the base structures with their
highest probability terminals and then selects the pre-
terminal structure with the highest probability. Note that for
terminal probability order, the alpha strings in the base
structure are also assigned a probability. For example, using
the data in Table 3.2.1, the highest probable pre-terminal
structure would be 4L3$$4. Since there are only 1589 base
structures generated by our largest training set, this is not
difficult. However, a more structured approach is needed to
generate guesses of a rank other than the first.
 To optimize the total running time of the algorithm, it is
useful if it can operate in an online mode, i.e. it calculates
the current best pre-terminal structure and outputs it to the
underlying (also distributable) password cracker. On the
other hand, also for performance reasons, at any particular
stage the algorithm should only calculate those pre-terminal
structures that might be the current most probable structure
remaining, taking into consideration the last output value.
Referring to Fig. 3.3.1, we would like to generate the pre-
terminal structures L35! and L34% (nodes 7 and 6) only after
L34! (node 2) has been generated.

Fig. 3.3.1. Generating the “Next” Pre-terminal Structures for the
Base Structures in Table 3.2.1 (partial tree shown).

 One approach that is simple to describe and implement is
to output all possible pre-terminal structures, evaluate the
probability of each, and then sort the result. Unfortunately
this pre-computation step is not parallelizable with the
password cracking step that follows (i.e., it is not an online
algorithm).
 Originally when we were still trying to see if using
probabilistic grammars was worth further investigation, we

395

created a proof of concept program that took this approach.
Unfortunately in addition to the problems described above,
it also resulted in over a hundred gigabytes of data that we
had to generate and then sort before we could make our first
password guess. As you can imagine, this does not lend itself
to a real world application.
 Our actual solution adopts as its main data structure a
standard priority queue, where the top entry contains the
most probable pre-terminal structure. In the following, we
denote by the index of a variable in a base structure to mean
the position in which the variable appears. For example, in
the base structure L3D1S1 the variable L3 would be assigned
an index of 0, D1 an index of 1, and S1 an index of 2. Next,
we order all terminal values, (such as the numbers 4, and 5
for D1) in priority order for their respective class. That way
we can quickly find the next most probable terminal value.
 The structure of entries in the priority queue can be seen
in Table 3.3.2. They contain a base structure, a pre-terminal
structure, and a pivot value. This pivot value is checked
when a pre-terminal structure is popped from the priority
queue. The pivot value helps determine which new pre-
terminal structures may be inserted into the priority queue
next. The goal of using pivot values is to ensure that all
possible pre-terminal structures corresponding to a base
structure are put into the priority queue without duplication.
 More precisely, the pivot value indicates that the pre-
terminal structures to be next created from the original base
structure are to be obtained by replacing variables with an
index value equal to or greater than the popped pivot value.
Let’s look at an example based on the data in Table 3.2.1.
Initially all the highest probability pre-terminals from every
base structure will be inserted into the priority queue with a
pivot value of 0. See Figure 3.3.1 and Table 3.3.2.

TABLE 3.3.2
Initial Priority Queue

Base Struct Pre-Terminal Probability Pivot Value
D1L3S2D1 4L3$$4 0.188 0
L3D1S1 L34! 0.097 0

 Next, the top entry in the priority queue will be popped.
The pivot value will be consulted, and child pre-terminal
structures will be inserted as part of new entries for the
priority queue. These pre-terminal structures are generated
by substituting variables in the popped base structure by
values with next-highest probability. Note that only one
variable is replaced to create each new candidate entry.
Moreover, this replacement is performed (as described
above) for each variable with index equal to or greater than
the popped pivot value. The new pivot value assigned to
each inserted pre-terminal structure is equal to the index

value of the variable that was substituted. See Fig. 3.3.1 and
Table 3.3.3 to see the result after popping the top queue
entry. Also see Appendix 1.

TABLE 3.3.3
Priority queue after the first entry was popped

Base Struct Pre-Terminal Probability Pivot Value
L3D1S1 L34! 0.097 0
D1L3S2D1 4L3**4 0.081 2
D1L3S2D1 5L3$$4 0.063 0
D1L3S2D1 4L3$$5 0.063 3

 In this instance, since the popped pivot value was 0, all
index variables could be substituted. L3 was not incremented
since there were no values to fill in for it, as the alpha strings
are handled by the password cracker in a later stage. Both of
the D1 structures and S2 were replaced, resulting in three new
pre-terminal structures being inserted into the queue with
pivot values of 0, 2 and 3. Notice that when the priority
queue entry corresponding to the 2rd row of Table 3.3.3 is
popped, it will not cause a new entry to be inserted into the
priority queue for its first D1 or its S2 structure. This is
because 4L3**4’s pivot value is equal to 2, which means that
it cannot replace the first D1 structure with an index value of
0. As for the S2 structure, since ‘**’ is the least probable
terminal variable, there is no next-highest replacement rule
and this entry will simply be consumed.
 Observe that the algorithm is guaranteed to terminate
because it processes existing entries by removing them and
replacing them with new ones that either (a) have a higher
value for the pivot or (b) replace the base structure variable
in the position indicated by the pivot by a terminal that has
lower probability than the current terminal in that position. It
can moreover be easily ascertained that the pre-terminal
structures in the popped entries are assigned non-increasing
probabilities and therefore the algorithm can output these
structures for immediate use as a mangling rule for the
underlying distributed password cracker.
 This process continues until no new pre-terminal
structures remain in the priority queue, or the password has
been cracked. Note that we do not have to store pre-
terminal structures once they are popped from the queue,
which has the effect of limiting the size of the data structures
used by the algorithm. In section 4.5, we discuss the space
complexity of our algorithm in detail in the context of our
experimental results.
 The running time for the current implementation of our
next algorithm for generating guesses is extremely
competitive with existing password cracking techniques. On
one of our lab computers, (MaxOSX 2.2GHz Intel Core 2
Duo) it took on average 33 seconds to generate 37781538
unhashed guesses using our method. Comparatively, the

396

popular password cracking tool John the Ripper [11]
operating in wordlist mode took 28 seconds to make the
same number of guesses. If we expand the number of
guesses to 300 million, our technique took on average 3
minutes and 23 seconds to complete, while John the Ripper
operating in incremental (brute-force) mode took 2 minutes
and 55 seconds. Note that the vast majority of time (often
weeks) taken in cracking passwords is spent in generating
the hashes from those guesses and not in the generation of
the actual guesses themselves. Because of this, even an extra
minute or two spent generating guesses would be minor, and
thus the running times of these two methods are essentially
identical.

3.4 PROOF OF CORRECTNESS OF THE NEXT FUNCTION

 Property P1: pre-terminal structures are output in non-
increasing probability order.

Proof that P1 holds:
1. Remember that the priority queue is initialized with one

entry per base structure, and that the entry contains the
pre-terminal structure with maximum probability for
that base structure. These entries can be easily
constructed by simply replacing the highest likelihood
terminal values for all the non-alpha variables in each
base structure.

2. Remember that the processing of an entry in the priority
queue results in its removal and output, and (possibly)
in the insertion of new entries. For convenience of
description, we call these new entries “the children” and
the removed entry “the parent”. Recall that children
never contain pre-terminal structures of strictly higher
probability than the pre-terminal structure contained in
the parent.

 For the sake of contradiction, assume that P1 does not
hold, i.e., that at some step of processing, an entry x is
output of strictly higher probability than a previously output
entry y. That is:

Prob(x) > Prob(y) and y is removed and output before x.

 First let's argue that x had a parent entry z. Indeed, if x has
no parent, then it was inserted in the priority queue during
the algorithm initialization (when the highest probability
pre-terminal structure for each base structure was inserted).
But that means that x was in the priority queue at the step
where y was output, in violation of the priority queue
property. This contradiction implies that x had a parent z.
 Without loss of generality, we can also assume that x is
the first value produced by the algorithm that violates P1.

Consequently, when z was output, it did not violate this
property, and since:

Prob(z) >= Prob(x) > Prob(y),

it follows that z must have been output (and processed)
before y. That means that x was inserted in the priority queue
prior to y's removal, again in violation of the priority queue
property. This final contradiction concludes the proof.
 Note that by meeting the following conditions we can
fully prove the required correctness of the next function:
• No duplicate pre-terminal structures are entered into the

priority queue.
• All possible pre-terminal structures resulting from base

structures are eventually entered into the priority queue.

 Due to space requirements we do not include a proof of
these conditions but it follows from our use of the pivot
values.

4. EXPERIMENTS AND RESULTS

4.1 DESCRIPTION OF PASSWORD LISTS

 For the research in this paper we obtained three password
lists to try different cracking techniques against. All three
lists represent real user passwords, which were compromised
by hackers and subsequently publicly disclosed on the
Internet. As stated before, we realize that while publicly
available, these lists contain private data; therefore we treat
all password lists as confidential. If you wish a copy of the
list please contact the authors directly. Due to the moral and
legal issues with distributing real user information, we will
only provide the lists to legitimate researchers who agree to
abide by accepted ethical standards.
 The first list, hereafter referred to as the “MySpace List”,
was originally published in October 2006. The passwords
were compromised by an attacker who created a fake
MySpace login page and then performed a standard phishing
attack against the users. The attacker did not secure the
server they were collecting passwords upon which allowed
independent security researchers to obtain copies of the
passwords. One of these researchers, (not affiliated with any
university), subsequently posted his copy of the list on the
Full-Disclosure mailing list [15]. While multiple versions of
the MySpace list exist, owing to the fact that different
researchers downloaded the list at different times, we choose
to use the version posted on Full-Disclosure which contained
67042 plain text passwords. Please note that not all of these
passwords represent actual user passwords. This is because
some users recognized that it was a phishing attack and
entered fake, (and often vulgar), data. For our test we did not

397

attempt to purge these fake passwords due to the difficulties
in distinguishing between fake and real passwords.
 The second list will be referred to as the SilentWhisper
list. This list contains 7480 plain text passwords and was
originally from the website www.silentwhisper.net. A hacker
compromised the site via SQL injection, and due to a feud
with the site owner, subsequently posted the list to bittorrent.
As a special note, these later passwords were extremely
basic. Only 3.28% of the passwords contained both letters
and numbers, and only 1.20% of them contained both letters
and special characters. A grand total of two of the passwords
contained letters, numbers and special characters. We
included this list though as it does represent the passwords
many users choose.
 The final list will be referred to as the “Finnish List”. This
list was obtained by a hacker group via SQL injection
attacks and the results were subsequently posted on the
internet [16]. This list actually contains the passwords from
many different sites that were compromised; most of them
based in Finland, hence the name. This list contains 15699
passwords in plain text and an additional 22733 unique
MD5 password hashes. It is important to note that the plain
text passwords and the hashed passwords represent different
user bases as they came from separate compromised sites. In
fact, it appears that each set, (both the MD5 and plaintext
lists), are composed of several lists from distinct websites
that were broken into.

4.2 EXPERIMENT SETUP AND PROCEDURES

 In the current implementation of our probabilistic
password cracking guess generator, (written in C), our
program is trained on an existing password list. Then once it
is given an input dictionary it can generate password guesses
based on either the pre-terminal probability or the terminal
probability of the password structures. It is important to note
that the training need only be done once to generate the
grammar that will be used. This means that any group can
create many different targeted grammars and then distribute
them to the end users of the password cracking program.
The end user would use input dictionaries of their choosing
to crack passwords. Note that the storage requirement of a
grammar is likely to be significantly less than the storage
requirements of a typical input dictionary. Section 4.5
discusses space requirements in greater detail. This
distinction between training and operation, and the small
size of the base grammar generated means that our method is
highly portable.
 Our program currently outputs these guesses to stdout.
This gives us the flexibility to use our guesses as input to
various other password cracking programs. For instance, to
test against a test set of plaintext passwords, we can simply

check for an exact match, and record how many guesses
were necessary before the first match could be found. For
password lists that are hashed, such as the Finnish list, we
piped the guesses generated by our program into the popular
password cracking program John the Ripper [11].
Essentially this allows us to use our program’s word-
mangling rules without having to code our own hash
evaluator.
 As a comparison against our probabilistic password
cracking technique, we decided to use John the Ripper’s
default word-mangling rules. These word-mangling rules
are as close to an industry standard as we could find, and
represent the approach most people would take when
performing a dictionary-based password cracking attack. At
its core, both our probabilistic password cracking guess
generator and John the Ripper operating in wordlist mode
are dictionary based attacks. When comparing the two
methods, we ensure both programs use the same input
dictionaries when trying to crack a given password set. In a
dictionary-based attack, the number of guesses generated is
finite, and determined by the size of the dictionary and the
type of word-mangling rules used. To reflect this, unless
otherwise specified, we limited the number of guesses our
probabilistic password generator was allowed to create
based on the number of guesses generated by the default
John the Ripper rule set. This is because our program can
generate many more rules than what is included in the
default John the Ripper configuration and thus would create
more guesses given the chance. By ensuring both methods
are only allowed the same number of guesses, we feel we
can fairly compare the two approaches.
 To use our method, we have to train our password cracker
on real passwords. To do this, we needed to separate our
password lists into training lists and test lists. As a special
note, if a password was used to train our method we made
sure we did not include it in any of our test lists. We created
two different training lists to train our probabilistic password
cracker. The first list was created from the MySpace
password list. We divided the MySpace password list into
two parts, a training list and a test list. The MySpace training
list contained a total of 33561 passwords. For the second
training list, we used all of the plaintext passwords from the
Finnish list. This contained a total of 15699 passwords. We
used all the Finnish plaintext passwords since we used the
Finnish hashed passwords for the test set. We did not create
a training list from the SilentWhisper set due to its small size
and the fact that we would need to have passwords left over
to test against.
 We then designated all passwords not in the training set as
the test set. These passwords are never trained against, and
are used solely to gauge the effectiveness of both our
probabilistic password cracker and John the Ripper on real

398

world passwords. Just as in standard machine learning
research, our goal is by keeping these two groups, (training
and testing), separate so we can avoid overtraining our
method and provide a more accurate estimation of its
potential. In summary, the three test lists we used were the
MySpace test list containing 33481 plaintext passwords, the
SilentWhisper list which contained 7480 plaintext passwords
and the Finnish test list which contained 22733 unique MD5
password hashes.
 One final note; a password was considered ‘cracked’ if
the program generated a guess that matched the password in
the test list.

4.3 DESCRIPTION OF INPUT DICTIONARIES

 Due to the fact that both our password cracker and John
the Ripper in wordlist mode operate as a dictionary attack,
they both require an input dictionary to function. We choose
a total of six publicly available input dictionaries to use in
our tests. Four of them, “English_lower”, “Finnish_lower”,
“Swedish_lower” and “Common_Passwords” were obtained
from John the Ripper’s public web site [11]. As a side note,
the word “lower” refers to the fact that the dictionary words
are stored as all lower case. Additionally we used the input
dictionary “dic-0294” which we obtained from a popular
password-cracking site [9]. This list was chosen due to the
fact that we have found it very effective when used in
traditional password crackers. Finally, we created our own
wordlist “English_Wiki” which is based on the English
words gathered off of www.wiktionary.org. This is a sister
project of Wikipedia, and it provides user updated
dictionaries in various languages.
 Each dictionary contained a different number of
dictionary words as seen in Table 4.3.1. Due to this, the
number of guesses generated by each input dictionary when
used with John the Ripper’s default mangling rules also
varied as can be seen by Fig. 4.3.2.

Table 4.3.1
Size of Input Dictionaries

Dictionary Name Number of Dictionary Words

Dic-0294 869228

English_Lower 444678

Common_Passwords 816

English_Wiki 68611

Swedish_Lower 14555

Finnish_Lower 358963

Fig. 4.3.2. Number of Password Guesses Generated by JtR

4.4 PASSWORD CRACKING RESULTS

 Our first test, pictured in Fig. 4.4.1, shows the results of
training our Probabilistic Password Cracker on the MySpace
training list. Three different cracking techniques are used on
the MySpace test list. The first is the default rule set for John
the Ripper. The second technique is our Probabilistic
Password Cracker using the pre-terminal probabilities of its
structures. Once again, the pre-terminal probabilities do not
assign a probability value to the dictionary words. The third
technique is our Probabilistic Password Cracker using the
probabilities of the terminals (guesses). Recall that in this
case, we assign probabilities to dictionary words and extend
our probabilistic context-free grammar to terminal strings.
Once again, the number of guesses allowed to each run is
shown in Fig. 4.3.2.

Fig. 4.4.1. Number of Passwords Cracked. Trained on the
MySpace Training List. Tested on the MySpace Test List

 As the data shows, our password cracking operating in
terminal probability order performed the best. Using it, we
achieved an improvement over John the Ripper ranging from

399

28% to 129% more passwords cracked given the same
number of guesses. Additionally, when we used the pre-
terminal order, in all cases but one we also achieved better
results than John the Ripper, though less then what we
achieved using terminal probability order.
 The next question would be how does our probabilistic
method work when trained on a different data set? The same
test as above was run on the MySpace test list, but this time
we used the Finnish training list to train our password
cracker. The results are shown in Fig. 4.4.2.

Fig. 4.4.2. Number of Passwords Cracked. Trained on the Finnish
Training List. Tested on the MySpace Test List

 As the results show, the terminal probability order once
again performed the best, though not as well as it did when it
was trained on the MySpace data. This time the
improvement ranged from 11% to 96% more passwords
cracked compared to John the Ripper. A surprising result to
us was that when we used Pre-Terminal Probability Order, it
did not result in a noticeable improvement over John the
Ripper’s default rule set. In fact, in two of the test cases it
actually performed worse.
 Next we ran the same tests by training our Probabilistic
Password Cracker on the MySpace training list, and then
running it against the SilentWhisper test list. The results can
be seen in Fig. 4.4.3. As expected, in this case the default
John the Ripper word-mangling rules performed slightly
better. This is due to the relative simplicity of the
SilentWhisper test set. Since our probabilistic method had
been trained on more complex passwords, it spent much of
its time generating guesses using advanced mangling rules,
vs. John the Ripper which exhausted the simple mangling
rules, (such as just use the dictionary word), first. This does
show a limitation of our probabilistic method as it does need
to be trained on passwords of similar complexity as the
passwords it is trying to crack. That being said, in all of the
test runs with the exception of the one using the
English_Lower dictionary, our method operating in terminal

probability order performed competitively with John the
Ripper.

Fig. 4.4.3. Number of Passwords Cracked. Trained on the
MySpace Training List. Tested on the SilentWhisper Test List

 To round things out, we then evaluated our probabilistic
method by training it on the Finnish training set and then
attacking the Finnish test set. Please note that the Finnish
training set and the Finnish test set were gathered from
separate websites. Thus for this experiment, even though the
users share a common language, we trained and then tested
our password cracker against different user bases. Due to the
time it takes to audit these passwords since they are hashed,
we only performed this test with John the Ripper’s default
rule set and our method operating in terminal probability
order. The results can be seen in Fig. 4.4.4.

Fig. 4.4.4. Number of Passwords Cracked. Trained on the Finnish
Training List. Tested on the Finnish Test List

 While the results were not as dramatic as compared to
cracking the MySpace list, we still see an improvement
ranging from 17% to 29% over John the Ripper in all but
one of the test cases. Considering that we had no previous

400

knowledge of how the passwords in the test set compared in
complexity to the passwords in the training set, this is still a
fairly significant improvement. What this means is that we
were able to train our password cracker on one user base and
then use is successfully against another group which we
knew nothing about except for their native language.
 Looking back through the previous tests as shown in Fig.
4.4.1 through Fig. 4.4.4, one thing we noticed was that our
probabilistic method performed significantly worse when it
used the English_Lower dictionary compared to the results it
obtained using the other input dictionaries. For example,
let’s consider the test, Fig 4.4.1, where we trained our attack
on the MySpace training set, and tested it against the
MySpace test set. If we exclude the run that used the
English_Lower dictionary, the average improvement of our
method using terminal probability order compared to John
the Ripper was 90%. The improvement on the run which
used the English_Lower dictionary was 28%. The other tests
show similar results. We are still investigating why our
attacks do not perform as well with this dictionary. Despite
its name, the English_Lower dictionary seems to be
comprised mostly of “made up” words, such as ‘zoblotnick’,
and ‘bohrh’. Our current assumption is that the presence of a
large number of nonsense words throws off our method in
two different ways. First our program wastes time trying
these nonsense words. Second, when operating in terminal
probability order, a large number of essentially “junk” words
can make what should be a highly probable structure have a
lower probability, and thus not be tried as soon. We still
need to investigate this more thoroughly.
 The next test we ran was to evaluate how the size of the
training list affected our probabilistic password cracker. To
investigate this we used training lists of various sizes
selected from the original MySpace training list. The size of
these lists is denoted by the number after them, aka the
MySpace20K list contains twenty thousand training
passwords. For reference, the MySpaceFull list contains all
33,561 training passwords from the MySpace training list.
We were concerned about sampling bias as the lists became
shorter, (such as containing only 100 or 500 passwords). To
address this, for all training sets containing less than one
thousand passwords we trained and then ran each test twenty
five times with a different random sample of passwords
included in the training list each time. We then averaged the
results of the 25 different runs. All the tests to measure the
effect of the training list size used Terminal Probability
Order and were run against the MySpace Test List. The
results can be seen in Fig. 4.4.5. For comparison, John the
Ripper’s performance is the left-most value, and training sets
increase in size from left to right for each input dictionary.
 It was surprising that even when our password cracker
was trained on only 10,000 passwords, our Probabilistic

Method performed only slightly worse than when it was
trained on 33,561 passwords. What was more surprising was
that our password cracker performed comparable to John the
Ripper even when it was trained on only 100 input
passwords. We expect that given a longer run (aka allowing
our password cracker to generate more guesses), the effect
of having a larger training set will become more pronounced
as it will generally provide the password cracker more base
structures as well as digit and symbol strings to draw upon.
Also, we expect that the larger training set would better
reflect more accurate probabilities of the underlying base
structures and replacement values.

Fig. 4.4.5. Number of Passwords Cracked. Trained on different
sized MySpace Training Lists. Tested on the MySpace Test List
using Terminal Order Probability

 In all the previous tests we limited our probabilistic
method to the number of guesses generated by the default
rule set of John the Ripper. One last test we wanted to run
was to see how our probabilistic method performed if we let
it continue to run over an extended time. The following Fig.
4.4.6 shows the number of passwords cracked over time
using our probabilistic method operating in terminal
probability order. Please note, while John the Ripper exited
after making 37,781,538 guesses, we continued to let our
program operate until it made 300,000,000 guesses. Also
note that our Probabilistic Password Cracker was still
creating guesses when we stopped it. We choose
300,000,000 just as a benchmark number. The results are
shown in Fig. 4.4.6.
 These results match with the previous test on this data set,
as seen in Fig. 4.4.1, in that given the same number of
guesses our password cracker operating in terminal
probability order cracks 68% more passwords than John the
Ripper. As you can see in Fig. 4.4.6 though, the rate at
which our method cracks passwords does slow down as
more guesses are made. This is to be expected as it tries
lower and lower probability password guesses.

401

Fig. 4.4.6. Number of Passwords Cracked Over Time. Trained on
the MySpace Training List. Tested on the MySpace Test List

 We decided to run the test in Fig. 4.4.6 again, but this
time have John the Ripper switch to brute-force after
exhausting all of its word-mangling rules. We feel this
would best simulate an actual password cracking session,
(aka exhaust a dictionary attack and then resort to brute-
force) using John the Ripper. Please note that John the
Ripper uses Markov models in its brute-force attack to first
try passwords phonetically similar to human generated
words. It creates the conditional probability based not only
on letters, but also on symbols and numbers as well. As a
third experiment, we also ran a pure brute-force attack
without using John the Ripper’s rules first. The results of
these tests are shown in Fig. 4.4.7.

Figure 4.4.7. Number of Passwords Cracked Over Time. Trained
on the MySpace Training List. Tested on the MySpace Test List

 One thing we learned from this data is that it may be
effective to pause our probabilistic method after around 100
million guesses and switch to a brute-force attack using a
small keyspace for a limited time before resuming our

probabilistic attack. This would allow us to quickly crack
any short passwords our method may have missed. After a
period of time though, brute-force becomes completely
infeasible due to the length of the passwords and the size of
the keyspace. We expect that even the low probability
guesses generated by our cracker are better than a
completely random guess which would result from a pure
brute-force approach against a large keyspace. Therefore,
the more passwords you can crack before having to solely
rely upon brute-force attacks, the more advantageous it is.
Because of this, the large number of rules, (possibly
billions), that our method automatically generates is another
major advantage of our approach.

4.5 SPACE COMPLEXITY RESULTS

 In this section we focus on the space complexity related to
generating our password guesses. We first discuss the space
complexity of storing the grammar as this is what would be
distributed to the end user once the password cracker has
been trained.
 Since the grammar is generated from the training set, the
size of the grammar is dependent on the size of this set. To
distribute this grammar we need to save the set of S-
productions (grammar rules with the start symbol S on the
left hand side) that give rise to the base structures and their
associated probabilities. See Figure 3.2.1. Consider a
training set of j passwords each of maximal length k. At
worst each password could result in a unique base structure
resulting in O (j) S-productions. Similarly the number of Di-
productions and Si-productions depend on the number of
unique digit strings and special strings, respectively, in the
training set. This could result in a maximum of O(jk) unique
productions. Finally, the number of L-productions (rewriting
an alpha string using a dictionary word) depend on the input
dictionary chosen. For a dictionary of size m, the maximum
number of L-productions is simply O(m). In practice, we
expect the grammars to be highly portable with many fewer
production rules than the worst case. See Table 4.5.1.

Table 4.5.1
Size of the Stored Grammar

Training Set
& Size

of Base
Structures

Number of
 Si-productions

Number of
Di-productions

MySpace10k 820 79 2405

MySpace20k 1216 108 3377

MySpace
(33,561)

1589 144 4410

Finnish
(15,699)

736 49 1223

402

 We next consider the space complexity of an actual
password cracking session. Using the grammar, for each
base structure, we generate pre-terminal structures, using the
“next” function that are pushed and popped from the priority
queue as described in Section 3.3. The space complexity of
this algorithm is the maximum size of the priority queue. It
should be clear that this is worst case O(n) where there are n
possible pre-terminals generated. We do not expect that the
worst case is actually sublinear. In practice, the maximum
size of the priority queue has not been an issue in our
experiments to date. Table 4.5.2 shows the total number of
pre-terminals generated to create a specified number of
password guesses. The space requirement is shown by the
maximume size of the priority queue. Figure 4.5.3 shows
the size of the priority queue as a function of the passwords
generated when trained on the MySpace training sets.

Table 4.5.2
Space Cost using Dic-0294

Training Set Total Pre-
Terminals
Generated

Maximum
Size of
Queue

Password
Guesses
(millons)

MySpace10k 28,457 1,274 50

MySpaceFull 14,661 1,688 50

Finnish 19,550 4,753 50

MySpace10k 174,165 4,642 500

MySpaceFull 109,453 3,691 500

Finnish 1,567,911 138,187 500

MySpace10k 470,949 9,946 1,000

MySpaceFull 193,963 6,682 1,000

Finnish 4,324,913 299,933 1,000

Figure 4.5.3 Size of the Priority Queue over Time, using Dic-0294
as the Input Dictionary

 All tests were run using terminal probability order and
using the dictionary Dic-0294. Note that in terminal
probability order while the specific L-production is not
expanded in the priority queue, its probability is taken into
account when pushing and popping the pre-terminal
structures. The input dictionary thus can cause differences
in how the priority queue grows.
 We finally consider the maximum number of pre-
terminals and password guesses that could possibly be
generated by our grammar. Consider as an example a base
structure that takes the form S1L8D3. A pre-terminal value
might take the form $L8123, and a final guess, (terminal
value), might take the form $password123. To find the total
number of possible pre-terminal values for this base
structure, one simply needs to examine the total possible
replacements for each string variable in the base structure.
Using this example, and assuming there are 10 S1-production
rules and 50 D2-production rules, then the total number of
pre-terminals that may be generated by S1L8D3 is 500.
 To find the total number of password guesses we simply
expand this calculation by factoring in the number of
dictionary words that can replace the alpha string. In the
above example, if we assume there are 1,000 dictionary
words of length 8, then the total number of guesses would be
500,000. See Table 4.5.4 for the total search space
generated by each given training set and input dictionary.

Table 4.5.4
Total Search Space

Training
Set

Input Dictionary Pre-
Terminals
(millions)

Password
Guesses
(trillions)

MySpaceFull dic-0294 34,794,330 >100,000,000

MySpaceFull English-Wiki 34,794,330 >100,000,000

MySpaceFull Common_Passwords 34,785,870 36,000

Finnish dic-0294 578 >100,000,000

Finnish English-Wiki 578 10,359,023

Finnish Common_Passwords 506 6

 To explain the results of Table 4.5.4 further, note the
number of pre-terminals generated can be dependent on the
input dictionary, since if a Li-production exists where no
dictionary word matches it, (for example the dicionary does
not contain any words of length 9), then the base structure
containing the Li-production is discarded for that password
cracking run. Also, we found that the total number of pre-
terminals were mostly driven by a few base structures that
contained a large number of Di and Si-productions, for
example S1D3S2D3S1D4. Likewise the number of terminals,
(final password guesses), was dominated by a few base
structures that contained many Li-productions such as:

403

L1S1L1S1L1S1L1S1L1S1L1S1L1S1. This was made worse by
the fact that in our code we did not remove duplicate
dictionary words. For example we would have 52 L1
replacements from the input dictionary “dic-0294” even
though we lowercased all input words before using them.
This is because by not removing duplicates we had two
instances of every single letter of length 1.
 That being said, the advantage of our method is that these
highly complex base structures will generally not be utilized
until late in the password cracking session due to their
corresponding low probabilities. Therefore, we would not
expand them in our priority queue until all the more
probable guesses have been generated first.

5. FUTURE RESEARCH

 There are several areas that we feel are open for
improvement in our approach with using probabilistic
grammars for password cracking. As stated earlier in section
3.2, we are currently looking into different ways to do
insertion of dictionary words into the final guess that take
into account the size of the input dictionary. As can been
seen in Figures 4.4.1 – 4.4.5, there was a definite advantage
to using terminal probability order vs. pre-terminal
probability order with our probabilistic password cracker.
Currently we determine the probability of dictionary words
of length n by assigning a probability of 1/k if there are k
words of length n in the input dictionary. There are however
many other approaches we could take. Currently the most
promising approach seems to be the use of several input
dictionaries with different associated probabilities. This way
one might have a small highly probable dictionary, (aka
common passwords), and a much larger dictionary based on
words that are less common.
 Another point where we have identified room for future
improvement is modifying the base structures to more
accurately portray how people actually create passwords.
For example, we could add another category, ‘U’, to
represent uppercase letters as currently our method only
deals with lowercase letters. Also we could add another
transformation to the base structure that would deal with
letter replacement, such as “replace every ‘a’ in the
dictionary word with an ‘@’.” Since we are using a context-
free grammar, this would be fairly straightforward. All we
need to do is create a new production rule that deals with
letter replacement. The harder part would be identifying
those transformations during the training phase. We are
currently looking into several ways to efficiently identify
those transformations such as checking the edit distance
between known passwords and a dictionary file.
 It may also be useful to add probability smoothing or
switch to a Bayesian method in the training stage. This

would allow our generator to create password guesses of a
structure or containing a terminal value that was not present
in the training set. For example, currently if the number ‘23’
does not appear in the training set, our method will never use
it. Ideally we would like it to try this terminal value, but at a
reduced probability compared to values found in the training
set. The ultimate goal would be to allow our method to
automatically switch between dictionary based attacks and
targeted brute-force attacks based upon their relative
probability of cracking a password. For example, it might try
some word-mangling rules, then brute-force all words of
length four, before returning back to trying additional word-
mangling rules.
 There also exists more research to be performed on
verifying the performance of this method if it is trained and
tested against password lists from different sources.

6. CONCLUSION

 Our experiments show that using a probabilistic context
free grammar to aid in the creation of word-mangling rules
through training over known password sets is a promising
approach. It also allows us to quickly create a ruleset to
generate password guesses for use in cracking unknown
passwords. When compared against the default ruleset used
in John the Ripper, our method managed to outperform it by
cracking 28% - 129% more passwords, given the same
number of guesses, based on training and testing on the
MySpace password set. Our method also did very well
when trained on the Finnish training set and tested on the
MySpace test set. Our approach is expected to be most
effective when tailoring one's attack against different sources
by training it on passwords of a relevant structure. For
example, if it is known that the target password was
generated to satisfy a strong password policy (such as
requiring it to be 8 characters long and containing numbers
and special characters) the algorithm could be trained only
on passwords meeting those requirements. We have also
shown that we can quickly and manageably generate
password guesses in highest probability order which allows
us to test a very high number of rulesets effectively.
 We feel that our method might successfully help forensic
investigators by doing better than existing techniques in
many practical situations. Our work can also provide a more
realistic picture of the real security (or lack of the same)
provided by passwords. We expect that our approach can be
an invaluable addition to the existing techniques in password
cracking.

404

REFERENCES

[1] U. Manber. A simple scheme to make passwords based on
one-way functions much harder to crack. Computers & Security
Journal, Volume 15, Issue 2, 1996, Pages 171-176. Elsevier.
[2] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password
Memorability and Security: Empirical Results. IEEE Security and
Privacy Magazine, Volume 2, Number 5, pages 25-31, 2004.
[3] R. V. Yampolskiy. Analyzing User Password Selection
Behavior for Reduction of Password Space. Proceedings of the
IEEE International Carnahan Conferences on Security Technology,
pp.109-115, 2006.
[4] M. Bishop and D. V. Klein. Improving system security via
proactive password checking. Computers & Security Journal,
Volume 14, Issue 3, 1995, Pages 233-249. Elsevier.
[5] G. Kedem and Y. Ishihara. Brute Force Attack on UNIX
Passwords with SIMD Computer. Proceedings of the 3rd USENIX
Windows NT Symposium, 1999.
[6] N. Mentens, L. Batina, B. Preneel, I. Verbauwhede. Time-
Memory Trade-Off Attack on FPGA Platforms: UNIX Password
Cracking. Proceedings of the International Workshop on
Reconfigurable Computing: Architectures and Applications.
Lecture Notes in Computer Science, Volume 3985, pages 323-334,
Springer, 2006.
[7] M. Hellman. A cryptanalytic time-memory trade-off. IEEE
Transactions on Information Theory, Volume 26, Issue 4, pages
401-406, 1980.
[8] P. Oechslin. Making a Faster Cryptanalytic Time-Memory

Trade-Off. Proceedings of Advances in Cryptology (CRYPTO
2003), Lecture Notes in Computer Science, Volume 2729, pages
617-630, 2003. Springer.
[9] A list of popular password cracking wordlists, 2005, [Online
Document] [cited 2008 Oct 07] Available HTTP
http://www.outpost9.com/files/WordLists.html
[10] A. Narayanan and V. Shmatikov, Fast Dictionary Attacks on
Passwords Using Time-Space Tradeoff, CCS’05, November 7–11,
2005, Alexandria, Virginia
[11] John the Ripper password cracker, [Online Document] [cited
2008 Oct 07] Available HTTP http://www.openwall.com
[12] J.E. Hopcroft and J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison Wesley, 1979.
[13] L. R. Rabiner, A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition, Proceedings of the
IEEE, Volume 77, No. 2, February 1989
[14] N. Chomsky. Three models for the description of language.
Information Theory, IEEE Transactions on, 2(3):113–124, Sep
1956.
[15] Robert McMillan, Phishing attack targets Myspace users,
2006, [Online Document] [cited 2008 Oct 07] Available HTTP
http://www.infoworld.com/infoworld/article/06/10/27/HNphishing
myspace 1.html.
[16] Bulletin Board Announcement of the Finnish Password List,
October 2007, [Online Document] [cited 2008 Oct 07] Available
HTTP http://www.bat.org/news/view_post?postid=40546&page=1
&group.

APPENDIX 1

PSEUDO CODE FOR THE NEXT FUNCTION

//The probability calculation depends on if pre-terminal or terminal probability is used
//New nodes will be inserted into the queue with the probability of the pre-terminal structure acting as the priority value
For (all base structures) { //first populate the priority queue with the most probable values for each base structure
 working_value.structure = most probable pre-terminal value for the base structure
 working_value.pivot_value = 0
 working_value.num_strings = total number of L/S/D strings in the corresponding base structure
 working_value.probability = calculate_probability(working_value.structure)
 insert_into_priority_queue(priority_queue, working_value) //higher probability == greater priority
}
working_value = Pop(priority_queue) //Now generate password guesses
while (working_value!=NULL) {
 Print out all guesses for the popped value by filling in all combinations of the appropriate alpha strings.
 For (i=working_value.pivot_value; i<working_value.num_strings;i++) {
 insert_value.structure=decrement(working_value.structure,i); //get next lower probability S or D structure at pivot value ‘i’
 if (insert_value.structure!=NULL) {
 insert_value.probability = calculate_probability(insert_value.structure);
 insert_value.pivot_value = i
 insert_value.num_strings = working_value.num_strings
 insert_into_priority_queue(priority_queue,insert_value)
 }
 }
 working_value = Pop(priority_queue)
}

405

