
Centre de Recherches Mathématiques

CRM Proceedings and Lecture Notes

The Strict !-Groupoid Interpretation of Type Theory

Michael A. Warren

Abstract. Hofmann and Streicher showed that there is a model of the inten-
sional form of Martin-Löf’s type theory obtained by interpreting closed types
as groupoids. We show that there is also a model when closed types are inter-
preted as strict !-groupoids. The non-derivability of various truncation and
uniqueness principles in intensional type theory is then an immediate conse-
quence. In the process of constructing the interpretation we develop some
!-categorical machinery including a version of the Grothendieck construction
for strict !-categories.

1. Introduction

In [10], Hofmann and Streicher established the existence of a model of the
intensional form of Martin-Löf’s type theory [17] using the category Gpd of small
groupoids. This seminal result — and the related observation that the identity
types in this theory form a kind of weak groupoid — is the starting point for
much of the subsequent research relating category theory, homotopy theory and
type theory. Type theoretically, the importance of the groupoid model is that it
establishes the non-derivability of certain type theoretic principles relating to the
identity types.

Recall that in Martin-Löf’s type theory if A is a type and a, b are terms of
type A, then there exists a type A(a, b) called the identity types of A (from a to

b). Under the Curry-Howard correspondence A(a, b) may be thought of as the
proposition which asserts that a and b are equal. The distinguishing feature of
the intensional form of the theory from the extensional form is the absence in
the former of the reflection rule which states that if there exists a term of type
A(a, b), then a = b, where this latter equality is the primitive equality relation of
the theory. Thus, identity types are trivial in the extensional theory. Prior to [10]
it was unknown whether certain principles of a similar character to the reflection
rule were in fact derivable. For example, it was unknown whether there could be
more than one distinct “identity proof”. I.e., whether f = g when f, g : A(a, b).
This principle is referred to as uniqueness of identity proofs in the literature and
it is refuted in the groupoid model. (Note that in ibid the principle of uniqueness
of identity proofs really only refers to uniqueness up to propositional equality, but
the groupoid model refutes both of these principles.) For in the groupoid model, a

2000 Mathematics Subject Classification. Primary 03B15, 18D05.

c�0000 (copyright holder)

1

2 M. A. WARREN

(closed) type A is interpreted as a groupoid [[A]], a term a : A is interpreted as an
object of [[A]] and the identity type A(a, b) is interpreted as the (discrete) groupoid
consisting of all arrows [[a]] // [[b]] in [[A]]. Thus, any groupoid G containing a pair
of distinct parallel arrows refutes the uniqueness of identity proofs.

Although the groupoid model is useful for refuting certain type theoretic prin-
ciples such as uniqueness of identity proofs, it fails to adequately exhibit higher-
dimensional structure of the identity types. E.g., although the reflection rule is re-
futed the corresponding rule which asserts that all identity types of identity types
are trivial is valid in the model since identity types are interpreted as discrete
groupoids. I.e., the rule

p : A(a, b)(f, g)

f = g : A(a, b)

is valid. At the time Hofmann and Streicher conjectured that it should be possible
to obtain models which would refute such “truncation principles” by interpreting
types as some kind of higher-dimensional groupoids. It is the aim of this paper to
show that this is indeed the case. In particular, we construct a model of intensional
type theory which extends the original groupoid model by using strict !-groupoids.
As such, this is the first known model of intensional type theory (aside from the
syntactic model) which is truly higher-dimensional. In the terminology of [1] the
model refutes all of the truncation rules TRn.

The interpretation of type theory using !-groupoids directly extends the orig-
inal groupoid interpretation. Contexts � are interpreted as small !-groupoids [[�]]
and types � ` A in context are interpreted as morphisms (of !-categories)
[[�]] // !-Gpd. A term � ` a : A is interpreted as a section of the projectionR
[[A]] // [[�]] where

R
[[A]] denotes the (!-categorical version of the) Grothendieck

construction of [[A]]. For a closed type A, the identity type A(a, b) is then in-
terpreted as the !-groupoid which has as objects arrows [[a]] // [[b]] in [[A]]. As
in the groupoid model, the dependent sums and products are given by left- and
right-adjoints, respectively, to suitable reindexing functors.

Relation to other work. There has been much recent work on relating
Martin-Löf’s type theory to homotopy theory and higher-dimensional category the-
ory and we will now briefly summarize the relation of the current paper to other
such work. First, following a suggestion by Moerdijk, it was shown in [2] that inten-
sional type theory (at least the fragment containing identity types and dependent
sums) can be interpreted in weak factorization systems and Quillen’s model cate-
gories which satisfy certain coherence conditions. It was then shown by Gambino
and Garner [6] that there is a weak factorization system in the category of contexts.
It was also shown, by van den Berg and Garner [4] and independently by Lumsdaine
[16], that the identity type construction gives rise to weak !-groupoids in the sense
of Batanin and Leinster [3, 15]. Garner [7] has also introduced a “two-dimensional”
type theory which is a form of intensional type theory and he has proved that it
is sound and complete with respect to a semantics valued in the 2-categories (as
such, these theories necessarily satisfy the corresponding truncation rule). In [1] the
homotopy theory of the category of groupoids and a fortiori homotopy 1-types is
related to the homotopy theory of the 1-truncated form of intensional type theory.

We would also like to mention the recent work of Lafont, Métayer and Wory-
tkiewicz [13] in which they describe a model structure on the category of strict

!-GROUPOID INTERPRETATION 3

!-categories which corresponds to the “natural” or “folk” model structure on the
category of small categories. Ultimately we would like to be able to relate their
work to the model constructed here. In particular, one should be able to use ex-
ponentiation by the !-groupoid interval I — which is the co-!-groupoid object in
!-Cat with exactly two 0-cells, two invertible 1-cells between them, two invertable
2-cells between those, and so forth — to interpret identity types. (In the setting of
ordinary 1-dimensional groupoids this kind of construction has been studied in [27]
and related results on cocategory objects were obtained in [28].) Exponentiation
by I has been studied by Métayer [18] and is used in [13] for the construction of
path objects in the model structure. In order to develop such an approach using I
it appears to be necessary to generalize also the notion of split fibration to higher-
dimensions. The notion of Grothendieck 2-fibration has been studied by Hermida
[8] and, for 2-groupoids, by Moerdijk and Svennson [19]. However, we are unaware
of similar work in higher-dimensions.

Summary of the paper. In Section 2 we recall some basic facts and defini-
tions concerning !-categories. In Section 3 we extend the familiar Grothendieck
construction to the setting of !-categories and functors A : C // !-Cat. This con-
struction is crucial since it allows us to interpret context extension and it provides
the data necessary for the interpretation of open terms. In Section 4 we introduce
the notion of !-groupoid with which we will be concerned. We also describe a
“dual” version of the Grothendieck construction. For !-groupoid valued functors
there is an induced functor ¬ relating the Grothendieck construction and its dual
which we will require in order to interpret identity types and dependent products.
In Section 5 we finally describe the interpretation of identity types. For closed
types A and terms a and b of type A the identity type A(a, b) is easily described
as the !-groupoid which has as objects arrows a // b and with (n+ 1)-cells given
by (n + 2)-cells of A bounded in dimension 0 by a and b. However, in order to
most e�ciently prove the soundness of the elimination rule for identity types it is
necessary to give an interpretation of the corresponding open identity type. This is
essentially a fibred version of the foregoing type, but is considerably more involved
in the case of !-groupoids than it was for groupoids. Section 6 is concerned with
the proof of the soundness of the introduction and elimination rules for identity
types. Finally, the main results of the paper (the soundness theorem and its con-
sequences) are collected in Section 7. Appendix A contains a summary of the rules
governing identity types, dependent products, and dependent sums in the theory
considered in this paper. Appendix B contains a brief description of the comma !-
categories featuring in the description of the universal property of the Grothendieck
construction and the proof that the Grothendieck construction does indeed possess
the correct universal property.

It is worth mentioning that we assume familiarity on the part of the reader
with Martin-Löf’s type theory and we refer the reader to [17, 20, 24, 25, 9, 5, 11]
for further details. There is also a brief survey of intensional type theory contained
in [1] which includes a summary of the kinds of truncation principles which are
refuted by the model.

Acknowledgements. The results of the present paper originally occur in the
author’s Ph.D. thesis [27] and I thank my thesis supervisor Steve Awodey for nu-
merous insightful comments and discussions of this work. I also thank the other

4 M. A. WARREN

members of my thesis committee — Nicola Gambino, Alex Simpson and Thomas
Streicher — for discussion of and comments on this work. The anonymous referee
also provided a number of useful comments and suggestions. Finally, I thank Pieter
Hofstra, Peter LeFanu Lumsdaine and Phil Scott for useful conversations regarding
this material.

2. Generalities on !-categories

In this section we recall the definition of strict !-categories and !-groupoids, fix
notation and recall several useful facts about these structures. We refer the reader
to [22, 23, 26, 15] for further details regarding the theory of strict !-categories.

2.1. !-categories, functors and transformations. Just as categories are
(directed) reflexive graphs equipped with the additional structure given by identities
and composition, so too n-categories are reflexive n-globular sets with additional
structure and !-categories are reflexive globular sets with additional structure. Here
we recall that reflexive globular sets A are the (unbounded) higher-dimensional
analogues of reflexive graphs and, as such, consists of sets An graded by non-
negative integers n together with source, target and identity functions

A0 A1

||

s

A0 A1bb

t

A0 A1i // A1 A2

||

s

A1 A2bb

t

A1 A2i // A2 · · ·
||

s

A2 · · ·
bb

t

A2 · · ·i //

such that the globular identities

s � s = s � t,
t � t = t � s,

and the equations

s � i = 1A
n

= t � i

are satisfied. A (strict) !-category consists of a reflexive globular set A and, for all
p � 0 and n > 0, composition functions

An ⇥A
p

An

⇤
p

// An,

where An ⇥A
p

An is the pullback

An Ap
s(n�p)

//

An ⇥A
p

An

An

✏✏

An ⇥A
p

An An
// An

Ap

t(n�p)

✏✏

with

`k := ` � ` � · · · � `| {z }
k-times

,

for any k � 0 and ` = s, t. This data is required to satisfy the following conditions:

!-GROUPOID INTERPRETATION 5

(Domain and Codomain Laws):

`(g ⇤p f) =

8
>>><

>>>:

`(g) ⇤p `(f) if p < (n� 1)

=

(
s(f) if ` = s

t(g) if ` = t
if p = (n� 1).

for ` = s, t.
(Associativity Laws): Each operation ⇤p is associative.
(Unit Laws): Given f in An,

i(n�p)
�
t(n�p)(f)

�
⇤p f = f = f ⇤p i(n�p)

�
s(n�p)(f)

�
.

(Interchange Laws): Given q < p < n and f, g, h, k in An such that the
composites (y ⇤q x), (k ⇤q h), (h ⇤p f) and (k ⇤p g) are defined,

(k ⇤p g) ⇤q (h ⇤p f) = (k ⇤q h) ⇤p (g ⇤q f),

and

i(g) ⇤q i(f) = i(g ⇤q f).

Sometimes we refer to composition ⇤0 along 0-cells as horizontal composition. Given
two n-cells f and g, if s(f) = s(g) and t(f) = t(g), then we say that f and g are

parallel (to one another). For example, if f and g are n-cells such that (g ⇤p f) is
defined, then s(n�p)(f), s(n�p)(g), t(n�p)(f) and t(n�p)(g) are all parallel. When
no confusion will result we often omit mention of identity maps. E.g., if f : x // y
is a 1-cell and ↵ : g +3 h is a 2-cell with s(g) = y, we denote ↵ ⇤0 i(f) by ↵ ⇤0 f .

A (strict !-)functor F : C // B between !-categories is a map of globular sets
which preserves all composition and identities. We often refer to !-functors simply
as functors when it is understood that we are dealing with !-categories. The
category of small !-categories and functors between them is denoted by !-Cat.
Just as the category Cat of small categories and functors between them is monadic
over the category of directed graphs, so too !-Cat is monadic over the category of
globular sets (cf. [15] for an explicit description of the monad). Indeed, !-Cat is a
cartesian closed category with all (small) limits and colimits. Henceforth we often
denote !-categories by C,B, Clearly every !-category is also an n-category, for
1 n and similarly for !-functors.

Given functors F,G : C //
//B between !-categories C and B, a natural transfor-

mation ↵ : F +3 G consists of an assignment of 1-cells ↵x : Fx // Gx for objects
x of C such that the following (somewhat schematic) diagram commutes:

Fx Gx
↵

x //

Fy Gy
↵

y

//

Fx

Fy
⇧⇧

Fx

Fy
⇡⇡

F ⇠

Gx

Gy
⇧⇧

Gx

Gy
⇡⇡

G⇠

for every k-cell ⇠ bounded by 0-cells x and y (see Section 2.2 for an explanation of
the notation employed here). I.e., if ⇠ is any k-cell, for k � 1, such that sk⇠ = x

6 M. A. WARREN

and tk⇠ = y, then

↵y ⇤0 F ⇠ = G⇠ ⇤0 ↵x.(2.1)

Passing up one dimension, suppose we are given functors F and G as above together
with natural transformations ↵ and � from F to G. Then, a modification or 2-

transformation ' : ↵ +3 � consists of an assignment of 2-cells 'x : ↵x
// �x of

B parameterized by objects x of C subject to the condition that, for any arrow
f : x // y of C, the following diagram commutes:

Fx Gx

↵
x

&&

Fx Gx

�
x

88

Fy Gy

↵
y

&&

Fy Gy

�
y

88

Fx

Fy

Ff

✏✏

Gx

Gy

Gf

✏✏

'
x↵◆

'
y↵◆

I.e.,

'y ⇤0 Ff = Gf ⇤0 'x(2.2)

for f : x // y an arrow of C.
It is possible to generalize inductively to higher-dimensional transformations.

In particular, assuming we have defined n-transformations, for n � 2, in such a
way that the obvious boundary conditions are satisfied a (n+ 1)-transformation
from an n-transformation � to a n-transformation � consists of a family of n-cells
 x : �x +3 �x in B parameterized by objects x of C such that, whenever f : x // y
is an arrow in C, the naturality condition

 y ⇤0 Ff = Gf ⇤0 x(2.3)

is satisfied. With these definitions it is straightforward to verify that the following
more general naturality conditions are also satisfied:

Lemma 2.1. If ⇠ is a k-cell of C bounded by 1-cells f, g : x //
// y and ' is a

(n+ 1)-transformation bounded by functors F,G : C // B, then

'y ⇤0 F ⇠ = G⇠ ⇤0 'x.

With !-functors and these higher-dimensional transformations !-Cat itself ex-
hibits the combinatorial structure of an !-category.

Proposition 2.2. The category !-Cat is a large !-category with (n+ 1)-cells
given by n-transformations.

2.2. Notation and conventions. It will be convenient to introduce some
conventions governing diagrams in higher-dimension. In particular, we will often
want to describe the various boundaries of m-cells ' in !-categories. In particular,
we may wish to indicate diagrammatically the n-cells bounding such a ' even when
m > n + 2 so that drawing the details of the diagram would be cumbersome. As

!-GROUPOID INTERPRETATION 7

such, we will instead often include diagrams such as the following:

a b

f

""
a b

g

<<'

where a and b are n-cells and ' is an m-cell for m > n + 2. Such diagrams are
oriented from “top-to-bottom” unless otherwise stated. I.e., the diagram indicates
that

sm�n�1(') = f, and

tm�n�1(') = g.

In the few cases where there is no “top-to-bottom” option available, the cells should
be oriented “left-to-right”. In this section, and throughout this chapter, we will
often be dealing with “hom-!-categories” of the form C(a, b) where C is an !-
category and a, b are parallel cells of C. In this setting, or similar ones, the index
of a composition (� ⇤n �) always refers to the dimension in C and not in C(a, b).

There exists an endofunctor (�)+ on !-Cat called the dimension shift functor

which shifts the dimension of an !-category. Specifically, given an !-category C,
C+ has as objects 1-cells of C and, in general, n-cells of C+ are (n + 1)-cells of C.
Similarly, given !-category C and objects x and y of C, the hom set C(x, y) can be
made into an !-category — which we sometimes denote by C1(x, y) to emphasize
the dimension — by defining 0-cells to be arrows f : x // y and (n+1)-cells to be
n-cells in the obvious way. Similarly, given parallel (n + 1)-cells f, g of C, there is
an !-category Cn+2(f, g) which has 0-cells (n+2)-cells ↵ : f +3 g and so forth. For
parallel n-cells f and g with n � 1, there exists an inclusion functor

C(n+1)(f, g) //
�
Cn(sf, tg)

�+

which sends a (n+ 1)-cell ↵ : f // g to itself, and similarly for higher-dimensional
cells. We will occasionally make use of such functors without giving them an explicit
name.

It will also be convenient to fix notation for dealing with functorsA : C //!-Cat.
Given a small !-category C and a functor A : C // !-Cat we denote by Ax the
category obtained by applying A to an object x of C and, when f : x // y is
an arrow in C, Af : Ax

// Ay denotes the induced functor. We employ similar
notation for higher-dimensional cells. This convention will later allow us to avoid
excessive use of parentheses. When z is any 0-cell of Ax we denote Af (z) by (z.f).
Similarly, by definition A� , for � a (n + 1)-cell with n � 1, is given by a family of
n-cells parameterized by 0-cells of its domain category (say) Ax and we denote by
(z.�) the n-cell

�
A�

�
z
. In many of the constructions given below we will deal with

!-categories having as their cells tuples of cells of other !-categories. Such tuples
will often be abbreviated using “vector” notation ~f .

8 M. A. WARREN

3. The !-Categorical Grothendieck Construction

When dealing with categories, there is, for each C, a monadic adjunction

[C,Cat] Cat/C
rr

L

[C,Cat] Cat/C
R

22?

of 2-categories where the left-adjoint is given by the comma category

L(F) = (F # �),

for F : D // C, and the right-adjoint is given by taking the projection from the
Grothendieck construction

R(G) =

Z
G

⇡ // C,

for G : C // Cat. An analogous situation occurs in the case of !-categories and,
in particular, the 2-category [C,!-Cat] is also monadic over !-Cat/C. The right-
adjoint is again given by an !-categorical version of the Grothendieck construction.
This construction will feature prominently in the interpretation of type theory
since it allows us to interpret the extension of contexts. As in the case of Cat, the
Grothendieck construction

R
A of a functor A : C //!-Cat (or category of elements

of A) can be described (in terms of its universal property) as the coend
Z x

(x # C)⇥Ax,(3.1)

which exists since !-Cat is bicomplete. Here (x # C), like the comma construction
which gives the left-adjoint L, is a lax version of the usual comma category. I.e.,
instead of having as 1-cells commutative triangles, an arrow from an object g : x //y
to h : x // z is a pair (f, f 0) such that f : y // z and

x

y

g

����
��

��
��

�
x

z.

h

��
??

??
??

??
?

y z.
f

//

f 0
+3

The higher-dimensional cells of this !-category will not be necessary for our pur-
poses and are described in Appendix B. Although (3.1) is a convenient description
of the Grothendieck construction of A, it will be useful for our purposes to have
a direct (combinatorial) description of this !-category. It is to this matter which
we now turn. (The verification that the combinatorial description given below of
the Grothendieck construction satisfies the universal property of the coend (3.1) is
contained in Appendix B.)

3.1. Combinatorial description of the Grothendieck construction. We
now give a direct description of the !-category

R
A. We leave the proof that the data

given below constitutes an !-category to the reader (the proof can also be found in
[27]). In the first two dimensions

R
A is the familiar Grothendieck construction of

A.

(0-Cells): The 0-cells of
R
A are pairs (x, x�) such that x is an object of C

and x� is an object of Ax.
(1-Cells): The 1-cells (x, x�) // (y, y�) are pairs (f, f�) consisting of a

1-cell f : x // y in C and a 1-cell f� : (x�.f) // y� in Ay.

!-GROUPOID INTERPRETATION 9

Already at this low dimension there are several features of the definition which
should be emphasized. First, in order to define the component f� of arrows in

R
A

we have made a choice of “weight” or “orientation”. Namely, we have determined
that the codomain of f� should be y� where we could have as easily determined
that its domain should be this object of Ay. Secondly, fixing objects ~x and ~y ofR
A, there exists a functor

C1(x, y)
d1
~x,~y

// Ay

defined by

d1~x,~y(�) := (x�.�),

for any m-cell � of C(x, y). Although this functor depends on ~x and ~y we often
write d1 when no confusion will result. With this definition we observe that an
arrow ~f : ~x // ~y has

s(f�) = d1(f).

In this situation, the object d1(f) is said to be the weighted face of f�. We will
see that the higher-dimensional cells resulting from the construction of

R
A also

possess suitably “weighted” faces.

(2-Cells): Given 1-cells ~f and ~g with common source and target ~x and ~y,
respectively, a 2-cell ~f // ~g consists of ↵ : f) g in C together with a
2-cell ↵� of Ay as indicated in the following diagram:

d1(f) y�
f�

//

d1(g)

y�

g�

GG
d1(f)

d1(g)

d1(↵)

✏✏

↵�
↵◆

Now, holding ~f and ~g fixed, there exists a functor

C2(f, g)
d2
~

f,~g

// (Ay)1
�
d1~x,~y(f), y�

�

defined by

d2~f,~g(�) := g� ⇤0 d1~x,~y(�)

where � is a n-cell of C2(f, g). Note that in this case d1(�) is a (n+1)-cell
of Ay so that this definition makes sense. It is straightforward to verify

that this is functorial. Note that an arrow ~↵ : ~f // ~g has

t(↵�) = d2~f,~g(↵).

As above, d2(↵) is the weighted face of ↵�. In general, we will see that (n+1)-cells
of

R
A are given by pairs (','�) and that each component '� comes equipped

with a weighted face. Namely, the weighted face of '� is s('�) if (n + 1) is even
and it is t('�) if (n+ 1) is odd. At each stage n we will construct, along with the
definition of the n-cells, a functor dn(�) which gives an explicit description of the
weighted faces of n-cells.

10 M. A. WARREN

In general, (
R
A)n is defined by induction on n alternating between even and

odd steps in such a way that the following conditions are satisfied:

(1) At each stage n an element of (
R
A)n is a pair (f, f�) such that f is an

n-cell of C and f� is an n-cell of Ay.
(2) At each stage (n + 1), for n � 1, there is also constructed, for each pair

~↵, ~� of parallel n-cells with source ~f and target ~g, a functor dn+1

~↵,~�
such

that

Cn+1(↵,�)
dn+1

~↵,

~

�

// (Ay)n
�
dn~f,~g(↵), g�

�

if (n+ 1) is even and

Cn+1(↵,�)
dn+1

~↵,

~

�

// (Ay)n
�
f�, d

n
~f,~g

(�)
�

if (n+ 1) is odd. The functor dn+1 is called the weighted face functor (in

dimension (n+ 1) determined by ~↵ and

~�).
(3) At each stage (n+1), for n � 0, it is required that the following weighted

face conditions are satisfied:

s('�) =

8
><

>:

↵� if (n+ 1) is even, and

dn+1

~↵,~�
(') if (n+ 1) is odd;

and:

t('�) =

8
><

>:

dn+1

~↵,~�
(') if (n+ 1) is even, and

�� if (n+ 1) is odd,

when ~' is an (n+ 1)-cell ~' : ~↵ // ~�.

By the discussion above, the base cases n = 0, 1, 2 satisfy these conditions. We now
consider the induction steps.

((n+ 1) is odd): Fix parallel n-cells ~f and ~g of
R
A. A (n + 1)-cell ~f) ~g

consists of a pair (↵,↵�) with ↵ : f) g an (n + 1)-cell in C and ↵�
is a (n + 1)-cell of Ay subject to conditions which we will now describe.

Let ~v = s(~f) and ~w = t(~f). Then ~v and ~w are (n � 1)-cells of
R
A

and therefore, by the induction hypothesis, there exists a weighted face

functor Cn(v, w)
dn

~v,~w

// (Ay)n�1

�
dn�1(v), w�

�
. As such, ↵� is required to

be a (n+ 1)-cell of Ay as indicated in the following diagram:

v� dn(f)
f�

//v�

dn(g)

g�

))

dn(f)

dn(g)

dn(↵)

✏✏

↵�
↵◆

!-GROUPOID INTERPRETATION 11

For the weighted functor, we hold ~f and ~g fixed and define

d(n+1)
~f,~g

(�) := dn(�) ⇤(n�1) f�,

for � a m-cell of C(n+1)(f, g). The weighted face conditions are then
trivially satisfied.

((n+ 1) is even): Given parallel n-cells ~f and ~g of
R
A, a (n+1)-cell ~f) ~g

consists, as above, of a pair (↵,↵�) with ↵ : f) g in C and ↵� a (n+1)-
cell of Ay as indicated in the following diagram:

dn(f) w�
f�

//

dn(g)

w�

g�

GG
dn(f)

dn(g)

dn(↵)

✏✏

↵�
↵◆

Finally, we define:

d(n+1)
~f,~g

(�) := g� ⇤(n�1) d
n(�),

for � am-cell of C(n+1)(f, g). The weighted face conditions are then trivial.

For horizontal composition, suppose we are given a pair of composable arrows
~f : ~x // ~y and ~h : ~y // ~z in

R
A. Then we obtain

Ah

�
d1~x,~y(f)

� A
h

(f�)
// Ah(y�) = d1~y,~z(h)

h�
// z�

in Az. Moreover,

Ah(d
1
~x,~yf) = AhAf (x�)

= d1~x,~z(h � f),

and therefore we define

(~h ⇤0 ~f)� := h� ⇤0 Ah(f�).

This is the familiar definition of composition in the (1-dimensional) category of
elements. Now, suppose that we are given m-cells ~' and ~ of

R
A, for m > 1, which

are bounded by 0- and 1-cells as indicated in the following diagram:

~x ~y

~f

""

~x ~y

~g

<< ~y ~z

~h

""
~y ~z

~k

<<~' ~

Then,

tmAh('�) = Ah(tg�) = Ah(y�) = d1~y,~z(h),

and we set

(~ ⇤0 ~')� := � ⇤0 Ah('�).

12 M. A. WARREN

For general composition, assume n > 0 and suppose we are given m-cells which
are composable along an n-cell as indicated in the following diagram:

~u ~v

~f

��

~u ~v

~h

AA~u ~g~g ~v//

~'

~

~↵
��

~�
⇤⇤

~�
��

~�
⇤⇤

(3.2)

where ~f,~g and ~h are n-cells in
R
A. Here, ~↵ and ~� are the (n + 1)-cells bounding

~'. I.e., ~� = t(m�n�1)~', et cetera. As such, when m = n + 1 we have ~� = ~↵ = ~'

and similarly for ~ . We would like to define the composite (~ ⇤n ~'). Since the
first component will be the composite (⇤n ') taken in C, it remains only to define
the second component (~ ⇤n ~')�. The definition will alternate between those cases
where (n+1) is even and those where it is odd. First, assume (n+1) is even. Then
we obtain the following diagram in Ay:

dn(f) v�
f�

//dn(f)

dn(g)

dn(�)

✏✏

dn(g)

dn(h)

dn(�)

✏✏

dn(g)

v�

g�

FF

dn(h)

v�

h�

PP

'�

 �

where ~x and ~y are the 0-cells bounding all of the cells in question. To see that
we have correctly identified the n-cells of Ay bounding '� and � note that when
m = n+ 1 this is trivially the case. When m > n+ 1,

s(m�n)('�) = s(↵�)

= f�.

Similarly, t(m�n)'� = t�� which, since (n + 1) is even, is equal to dn+1
~f,~g

(�), as

required. Similar calculations show that � is as indicated in the diagram. Note
also that

dn~u,~v(�) ⇤(n�1) dn~u,~v(�) = dn(� ⇤n �),

by functoriality of dn~u,~v(�). These observations suggest that, when (n+ 1) is even,

we define (~ ⇤n ~')� to be the composite

�
 � ⇤(n�1) dn~u,~v(�)

�
⇤n '�.

!-GROUPOID INTERPRETATION 13

Similarly, when (n+ 1) is odd, we obtain

u� dn(f)
f�

// dn(f)

dn(g)

dn(↵)

✏✏

dn(g)

dn(h)

dn(�)

✏✏

u�

dn(g)g� 00

u�

dn(h)
h�

//

'�

 �

in Ay and we may define (~ ⇤n ~')� to be the analogous composite. Explicitly, given

~' and ~ as above, we define

(~ ⇤n ~')� :=

8
><

>:

�
 � ⇤(n�1) dn~u,~v(�)

�
⇤n '� if (n+ 1) is even, and

 � ⇤n
�
dn~u,~v(�) ⇤(n�1) '�

�
if (n+ 1) is odd.

where ~� and ~� are the bounding (n+ 1)-cells as indicated in (3.2).
With these definitions we obtain the following Proposition, the detailed proof

of which can be found in [27]:

Proposition 3.1. Given a (small) !-category C and a functor A : C //!-Cat,
the Grothendieck construction

R
A of A is a (small) !-category.

4. !-groupoids

The purpose of this section is to introduce the particular notion of !-groupoid,
which we will be using in order to interpret type theory, and to present several
results and constructions on such !-groupoids. The definition adopted here is the
following:

Definition 4.1. A strict !-category C is a (strict) !-groupoid if every (n+ 1)-cell
f : a // b possesses a strict ⇤n-inverse f�1 : b // a. I.e.,

(f�1 ⇤n f) = a, and(4.1)

(f ⇤n f�1) = b.(4.2)

This definition generalizes both the usual definition of (1-)groupoid as well as
the definition of (strict) 2-groupoid occurring in the work of Moerdijk and Svensson
[19]. It should be contrasted with the weaker notions of !-groupoid, also defined
in the general setting of strict !-categories, due to Street [22], and Kapranov and
Voevodsky [12]. The essential di↵erence with the definition from [22] is that there
the notion of inverse is weakened so that, instead of equations, it is required that
there exist (systems of) higher-dimensional cells (f�1 ⇤n f)) a, et cetera. In [12]
it is further required that the higher-dimensional cells witnessing invertibility of f
satisfy additional coherence conditions.

With Definition 4.1 at hand we obtain the following Corollary to Proposition
3.1:

Corollary 4.2. If C is a (small) !-groupoid and A : C // !-Gpd, then
R
A

is a (small) !-groupoid.

14 M. A. WARREN

In particular, the inverse (~f)�1 of an arrow ~f : ~x //~y is the pair
�
f�1, Af�1(f�)�1

�

and, for n > 0, the inverse of a (n+ 1)-cell ~' : ~↵) ~� is given by

(~')�1 :=
�
'�1,'�1

� ⇤(n�1) d
n
s~↵,t~↵('

�1)
�

when (n+ 1) is even, and

(~')�1 :=
�
'�1, dns~↵,t~↵('

�1) ⇤(n�1) '
�1
�

�

when (n+ 1) is odd.
As mentioned above, when describing the Grothendieck construction

R
A we

could well have chosen to orient our cells (in terms of the weighted faces) di↵erently.
For example, we could define an arrow ~x // ~y in

R
A to consist of f : x // y and

f� : y� // x�.f . By choosing this orientation instead we obtain an !-category
which we call the dual Grothendieck construction of A and denote by

R ⇤
A. We

will give a quick sketch of this construction. When A : C // !-Gpd and C is
an !-groupoid, there is a functor ¬ :

R
A //

R ⇤
A which will be required for

the interpretation of type theory. This functor is obtained from the isomorphism
� : C // Cop which extends the usual isomorphism which is the identity on objects
and sends an arrow f : a // b in C to f�1 : a // b in Cop to the setting of !-
groupoids. Informally, ¬ simply turns the various triangles from the Grothendieck
construction “inside out”.

4.1. The dual Grothendieck construction. When a category C is an ordi-
nary 1-dimensional groupoid, then there exists an isomorphism � : C // Cop which
is the identity on objects and sends an arrow f : x // y to its inverse f�1 : y //x.
Now, when C is an !-groupoid there is a corresponding functor � which we now
consider. We write Cop for the !-category obtained by reversing only the 1-cells of
C. For example, given a 2-cell ↵ : f // g in C, �↵ : f�1 // g�1 is defined to be
(g�1 ⇤0 ↵�1 ⇤0 f�1). As a diagram:

y x
g�1

// x y

g

##
x y

f

;;
y x

f�1

//↵�1

↵◆

Then, where ' : ↵ // � is a 3-cell,

�(') := g�1 ⇤0 (��1 ⇤1 '�1 ⇤1 ↵�1) ⇤0 f�1.

At higher-dimensions the construction is the same, adding a new “inner” block
obtained by composing '�1 with the inverses of its boundary maps. The dual

Grothendieck construction

R ⇤
A of a functor A : C // !-Cat can be described as

the coend Z ⇤
A =

Z x

(C # �(x))⇥Ax,

for � : Cop // C as above. In concrete terms,
R ⇤

A has the same 0-cells as
R
A,

but 1-cells ~f : ~x // ~y are given by f : x // y in C and f� : y� // Af (x�) in Ax.
As with

R
A, the dual weighted face of such an arrow f� is Af (x�) and the dual

weighted face functor

C1(x, y)
ď1
~x,~y

// Ay

!-GROUPOID INTERPRETATION 15

is obtained by defining ď1~x,~y(�) to be x�.�. Inductively, we then have the following:

((n+ 1) is even): A (n + 1)-cell ~↵ : ~f) ~g, with ~f,~g : ~v //
// ~w, is a pair

consisting of a (n+ 1)-cell ↵ : f //
// g in C and a (n+ 1)-cell ↵� in Ay as

indicated in the following diagram:

v� ďn(f)
f�

//v�

ďn(g)

g�

))

ďn(f)

ďn(g)

ďn(↵)

✏✏

↵�
↵◆

The dual weighted face functor

Cn+1(f, g)
ďn+1
~

f,~g

// (Ay)n
�
v�, ď

n(g)
�

is given by defining ďn+1
~f,~g

(�) to be ďn(�) ⇤(n�1) f�.

((n+ 1) is odd): On the other hand, when (n + 1) is odd a (n + 1)-cell
~↵ : ~f) ~g is given by ↵ : f) g as above together with a (n + 1)-cell of
Ay as indicated in the following diagram:

ďn(f) w�
f�

//

ďn(g)

w�

g�

GG
ďn(f)

ďn(g)

ďn(↵)

✏✏

↵�
↵◆

Here the dual weighted face functor

Cn+1(f, g)
ďn+1
~

f,~g

// (Ay)n
�
ďn(f), w�

�

is obtained by defining ďn+1
~f,~g

(�) to be g� ⇤(n�1) ď
n(�).

In the case where C is an !-groupoid there are functors �̄x : (x # C) // (Cop # x),
for each object x of C, corresponding to � which send an object x // y of (x # C)
to its inverse and which act on 1-cells by sending

x

y

u

����
��

��
��

�
x

z

v

��
??

??
??

??
?

y z
f

//

f 0
+3

to

y

x

u�1

��
??

??
??

??
? z

x

v�1

����
��

��
��

�
y z

f
//

�(f 0)⇤0f+3

16 M. A. WARREN

For higher-dimensional cells matters are even more straightforward since a n-cell
(↵,↵0), with n > 1, is sent to (↵,�(↵0) ⇤0 ↵). The maps �̄x induce, by the universal
property of

R
A, a canonical functor ¬ :

R
A //

R ⇤
A such that the squares

R
A

R ⇤
A

¬ //

(x # C)⇥Ax

R
A
OO

(x # C)⇥Ax (Cop # x)⇥Ax
�̄
x

⇥A
x // (Cop # x)⇥Ax

R ⇤
A

OO

commute, where the vertical maps are the coend inclusions. Consequently, ¬ com-
mutes with projections in the sense that the triangle

R
A

R ⇤
A

¬ //
R
A

C
��

??
??

??
??

R ⇤
A

C
����

��
��

��

commutes. (This can also be seen from the direct, combinatorial construction of ¬
given in [27].) We refer to ¬ as the duality functor and we will often denote the
second component of ¬(~') by ¬'�. Because the first component of ¬(~') is ' in all
dimensions this should lead to no confusion.

5. The interpretation of identity types

We will now describe the interpretation of type theory using !-groupoids.
Roughly, the interpretation, which generalizes directly the Hofmann-Streicher [10]
interpretation using regular 1-dimensional groupoids, is obtained by interpreting
dependent types as “indexed !-categories”. However, before going into the details
several remarks are in order.

First, whereas in ibid the entire logical framework is interpreted, we here only
interpret the basic form of intensional type theory theory (called T! in [27, 1]).
We note, however, that we could just as well have interpreted the entire logical
framework in this setting. Secondly, the interpretation we give below can be or-
ganized into a (large) comprehension category, or a category with attributes, or a
category with families. In this case we believe that the model most naturally can be
described as a category with attributes or a category with families [5]. We assume
that the reader is familiar with these forms of semantics (all of which are essentially
inspired by Lawvere’s notion of hyperdoctrine [14]). Because the ideas behind the
basic interpretation are not new, we do not go into the full details of the interpre-
tation of the basic syntax. Regarding dependent products and sums we note that,
because terms are interpreted (here and in the original groupoid model) as sections
of projections

R
A //C and not as morphisms of split fibrations they correspond, via

an equivalence of categories, to 1-cells in the category [C,!-Gpd]ps which has the
same objects as [C,!-Gpd] but which has as 1-cells (!-categorical) pseudo natural
transformations. Explicitly, the notion of pseudo natural transformation employed
here can be extracted from the fact that [C,!-Gpd]ps is equivalent to be the cate-
gory of algebras and pseudo morphisms of algebras for the 2-monad on !-Gpd/C
which was mentioned in Section 3. We omit the direct combinatorial description of
pseudo natural transformations as it will not be required here and merely mention
these facts as they serve to provide some motivation for the constructions given

!-GROUPOID INTERPRETATION 17

below. As such, where ⇡ :
R
A // C is a “dependent projection”, dependent sums

give the left-adjoint to the reindexing functor

[C,!-Gpd]ps [
R
A,!-Gpd]ps

⇡⇤
//

and dependent products give the right-adjoint. For the right-adjoint we emphasize
that it is crucial that we are dealing with !-groupoids since the dual functors from
Section 4 are necessary (essentially this is because dependent products are homs
and therefore exhibit a certain contravariance). Both of these adjoints are described
explicitly in Section 7.1 below. The verification that these give the required adjoints
is by a lengthy, but routine, combinatorial argument which we omit. Finally, we
mention that the type of natural numbers is to be interpreted as the discrete !-
groupoid of natural numbers as in the original groupoid model.

5.1. Contexts, types and terms. The idea of the interpretation, which
should be familiar in light of the discussions in the foregoing chapters, is to regard
closed types as !-groupoids. Explicitly, contexts � are interpreted as small !-
groupoids. To begin with, the empty context () is interpreted as the terminal
!-groupoid:

[[()]] := 1.

Now, given a context � together with its interpretation [[�]] as an !-groupoid,
judgements of the form � ` A : type are interpreted as functors

[[�]]
[[� ` A:type]]

// !-Gpd.

The extended context (�, x : A) is then interpreted as the !-groupoid given by
applying the Grothendieck construction from Section 3 to the functor in question:

[[�, x : A]] :=

Z
[[� ` A : type]].

A judgement of the form � ` a : A is then interpreted as a section

[[�]]

[[�]]

1[[�]] ��
??

??
??

?
[[�]]

R
[[� ` A : type]]//

R
[[� ` A : type]]

[[�]]

⇡
����

��
��

�

of the projection functor.

5.2. Sections of projection functors. Because terms are interpreted as sec-
tions of projection functors it will be useful to give a detailed analysis of such
sections. A section F of a projection ⇡ :

R
A // C as indicated in the following

diagram:

C

C
1C

��
??

??
??

??
?C

R
A

F //
R
A

C
⇡

����
��

��
��

consists exactly of the following data:

Objects: To each object x of C there is assigned an object xF of Ax. I.e.,
(x, xF) = F (x).

18 M. A. WARREN

1-Cells: To an arrow f : x // y in C there is assigned an arrow fF :
d1F (x),F (y)(f)

// yF of Ay.

(n+ 1)-Cells: When (n + 1) is even, there is assigned to an (n + 1)-cell
↵ : f) g an (n+ 1)-cell ↵F : fF) dn+1

F (f),F (g)(↵) of Ay. When (n+ 1) is

odd, ↵F : dn+1
F (f),F (g)(↵)) gF .

Note that such an assignment is made into a map of globular sets by defining
F (') := (','F). These assignments are required to be functorial in the sense of
preserving identities and composition. Preservation of composition amounts to the
following. Given m-cells, for m > 0, and ' in C such that (⇤0 ') is defined, it
is required in order for the assignment (�)F to constitute a section that

(⇤0 ')F = F ⇤0 Ah('F).

Assume that the composite (⇤n') is defined and that tm�n�1' = � and sm�n�1 =
�. Furthermore, let u and v be the (n � 1)-cells bounding both ' and . Then it
is required that

(⇤n ')F =

8
><

>:

�
 F ⇤(n�1) d

n
Fu,Fv(�)

�
⇤n 'F if (n+ 1) is even, and

 F ⇤n
�
dnFu,Fv(�) ⇤(n�1) 'F

�
if (n+ 1) is odd.

We also note that given any functor � : D // C, there exists a functor {�}A :R
(A � �) //

R
A such that the following diagram is a pullback in !-Cat:

D C
�

//

R
(A � �)

D
✏✏

R
(A � �)

R
A

{�}
A

//
R
A

C
✏✏

Namely, {�}A sends ~x in
R
A� to (�(x), a) and similarly for cells in all dimensions.

Consequently, there corresponds to any section F of the projection
R
A // C a

canonical section F [�] of
R
A� // D for which

F � � = {�}A � F [�].

Finally, note that, by taking D to be
R
A itself and � to be ⇡, we obtain

R
A⇡ as

the pullback of ⇡ along itself and there exists a canonical map �A :
R
A //

R
A⇡

induced by the identity functor 1R A.

5.3. Substitution and weakening. Suppose we are given an !-groupoid C
interpreting a context � together with A : C // !-Gpd, B :

R
A // !-Gpd and

C :
R
B // !-Gpd interpreting judgements

� ` A : type, �, x : A ` B(x) : type, and �, x : A, y : B(x) ` C(x, y) : type,

respectively. Moreover, let a section a interpreting the judgement � ` a : A be
given. Then the judgement � ` B[a/x] is interpreted as the composite functor

C a //

Z
A

B // !-Gpd.

Similarly,

[[�, y : B(a) ` C(a, y) : type]] := C � {a}B ,

!-GROUPOID INTERPRETATION 19

in the notation of Section 5.2. Finally, if c is a section of
R
C //

R
B interpreting

the judgement �, x : A, y : B(x) ` c(x, y) : C(x, y) we define

[[�, y : B(a) ` c(a, y) : C(a, y)]] := c[a].

Finally, for weakening, we note that when functors A,B : C // !-Gpd interpret
the judgements � ` A : type and � ` B : type, the “weakened” judgement
�, x : A ` B : type is interpreted by the composite

Z
A

⇡ // C B // !-Gpd.

5.4. Identity types. When A : C //!-Gpd has as its domain an !-groupoid
C, the identity type (for A) is a functor IA :

R
A⇡ //!-Gpd where ⇡ :

R
A // C is

the projection. By definition,
R
A�⇡ is has as objects tuples ~x = (x, x�, x+) where

x� and x+ are themselves objects of Ax. Similarly, n-cells ~f in
R
A⇡ are tuples

(f, f�, f+) such that both (f, f�) and (f, f+) are n-cells in
R
A. I.e., the following

diagram is a pullback

R
A C

⇡
//

R
A⇡

R
A
✏✏

R
A⇡

R
A//

R
A

C

⇡

✏✏

with the nameless functors the obvious projections. With this in mind, it is straight-
forward to describe the action of IA on objects. Namely, IA(x, x�, x+) is defined
to be the !-groupoid Ax(x�, x+). Perhaps though, in light of the discussion of the
combinatorics of the Grothendieck construction from the previous sections, matters
are more complicated in higher dimensions. It is to this task which we now turn.

Remark 5.1. Because, when
R
A⇡ is involved, we are dealing with two in-

stances of the Grothendieck construction
R
A it will be convenient to introduce

some notation to describe the various weighted face functors. In particular, be-
cause we adopt the convention of notating cells ~f of

R
A⇡ by (f, f�, f+) we will

also notate the corresponding weighted face functors accordingly. I.e., we write
dn�(f) and dn+(f) for the instances of these functors corresponding to the appro-
priate “negative” and “positive” projections

R
A⇡ //

R
A. When subscripts are

necessary we write, e.g., dn
~↵~�;⇠

with ⇠ = +,�. We adopt also a corresponding

convention for the “co-weighted face” functors.

5.5. Identity types in dimensions 1 and 2. Given an arrow ~f : ~x // ~y inR
A⇡, IA(~f) is the functor

Ax(x�, x+) // Ay(x�, x+)

which sends any cell � of Ax(x�, x+) to the following composite:

y� d1�(f)
f�1
�

// d1�(f) d1+(f)
##

d1�(f) d1+(f)
;;
d1+(f) y+

f+
//Af (�)

I.e., IA(~f)(�) is defined to be (f+ ⇤0 Af (�) ⇤0 f�1
�). Already at this stage we

have tacitly made use of the dual functor ¬ since ¬f� is f�1
� .

20 M. A. WARREN

Now, given a 2-cell ~↵ : ~f) ~g we must provide a natural transformation IA(~↵)
as indicated in the following diagram:

Ax(x�, x+) Ay(y�, y+)

I
A

(~f)

%%

Ax(x�, x+) Ay(y�, y+)

I
A

(~g)

99
I
A

(~↵)
↵◆

Fixing an object h : x� // x+ of Ax(x�, x+), the component IA(~↵)h of this trans-
formation at h is described by the composite of the following diagram in Ay:

y�

d1�(f)¬f� 00

y�

d1�(g)¬g� ..

d1�(f)

d1�(g)

d1
�(↵)

✏✏

¬↵�
↵◆

d1�(f) d1+(f)
A

f

(h)
//

d1�(g) d1+(g)A
g

(h)
//

d1+(f)

d1+(g)

d1
+(↵)

✏✏

d1+(f)

y+

f+

d1+(g)

y+

g+

>>
↵+

↵◆
(5.1)

where the middle square commutes (on the nose) by naturality of A↵. Explicitly,

IA(~↵)h := (f+ ⇤0 Ag(h) ⇤0 ¬↵�) ⇤1 (↵+ ⇤0 Af (h) ⇤0 ¬f�).

With this definition in mind, we now turn to the introduction of some auxiliary
functors which will allow us to describe the identity types in higher dimensions.

5.6. Auxiliary functors. Holding an arrow ~f : ~x //~y of
R
A⇡ fixed together

with an object h of Ax(x�, x+) we define functors

(Ay)1
�
d1+(f), y+

� 1
~

f,h

// (Ay)1(y�, y+), and

(Ay)1
�
y�, d

1
�(f)

� ̌1
~

f,h

// (Ay)1(y�, y+)

by setting

 1
~f,h

(�) := (� ⇤0 Afh ⇤0 ¬f�), and

 ̌1
~f,h

(�) := (f+ ⇤0 Afh ⇤0 �).

As usual, we omit either one or both of the subscripts when no confusion will result.
The first thing we observe about these functors is that

 1
~f
(f+) = ̌

1
~f
(¬f�).(5.2)

The next feature which should be emphasized is that these functors interact in an
important way with the usual weighted face functors. In particular, the following

!-GROUPOID INTERPRETATION 21

diagram (of !-categories) commutes:

(Ay)1
�
d1+(f), y+

�
(Ay)1(y�, y+)

 1
~

f,h

//

C2(f, g)

(Ay)1
�
d1+(f), y+

�

d2
~

f,~g;+

✏✏

C2(f, g) (Ay)1
�
y�, ď1�(g)

�ď2
¬~f,¬~g;�

// (Ay)1
�
y�, ď1�(g)

�

(Ay)1(y�, y+)

 ̌1
~g,h

✏✏

(5.3)

To see this, we note that

 ̌1
~g

�
ď2�(�)

�
= g+ ⇤0 Agh ⇤0 d1�(�) ⇤0 ¬f�
= g+ ⇤0 d1+(�) ⇤0 Afh ⇤0 ¬f�
= 1

~f

�
d2+(�)

�
,

where the second equation is by naturality of A� . We now observe that, when ~↵
is as above, the component IA(~↵) at h can be described using these functors as
follows:

IA(~↵)h = ̌1
~g,h(¬↵�) ⇤1 1

~f,h
(↵+)

In particular, IA(~↵)h is obtained by composing

 1
~f
(f+)

 1
~

f

(↵+)
// 1

~f

�
d2+(↵)

�
= ̌1

~g

�
ď2�(↵)

� ̌1
~g

(¬↵�)
// ̌1

~g(¬g�) = 1
~g(g+).(5.4)

As such, we have employed both (5.2) and (5.3) in order to show that the composite
defining IA(~↵)h makes sense. We emphasize this point because it provides the first
look at what will be required in higher dimensions.

At the next stage, holding a 2-cell ~↵ : ~f // ~g and an arrow h : x� // x+ as
above fixed, we define functors

(Ay)2
�
f+, d

2
~f,~g;+

(↵)
� 2

~↵,h

// (Ay)2
�
 1
~f,h

(f+),
1
~g,h(g+)

�
, and

(Ay)2
�
ď2¬~f,¬~g;�(↵),¬g�

� ̌2
~↵,h

// (Ay)2
�
 1
~f,h

(f+),
1
~g,h(g+)

�

as follows

 2
~↵,h(�) := ̌1

~g,h

�
¬↵�) ⇤1 1

~f,h
(�), and

 ̌2
~↵,h(�) := ̌1

~g,h(�) ⇤1 1
~f,h

(↵+).

The motivation for these definitions can perhaps best be seen in consultation with
(5.1). It follows, using the same reasoning from (5.4), that these functors are well-
defined and possess the appropriate boundaries. An immediate consequence of the
definition is that

 2
~↵,h(↵+) = ̌

2
~↵,h(¬↵�).

22 M. A. WARREN

Moreover, (5.3) also generalizes to dimension 2 to give:

(Ay)2
�
f+, d2+(�)

�
(Ay)2

�
 1
~f,h

(f+), 1
~g,h(g+)

�
 2
~

�,h

//

C3(↵,�)

(Ay)2
�
f+, d2+(�)

�

d3
~↵,

~

�;+

✏✏

C3(↵,�) (Ay)2
�
ď2�(↵),¬g�

�ď3
¬~↵,¬~�;�

// (Ay)2
�
ď2�(↵),¬g�

�

(Ay)2
�
 1
~f,h

(f+), 1
~g,h(g+)

�

 ̌2
~↵,h

✏✏

when ~↵, ~� : ~f //
// ~g are fixed 2-cells. To see that the equation holds we reason as

follows:

 2
~�,h

�
d3+(�)

�
= ̌1

~g,h(¬��) ⇤1 1
~f,h

�
d3+(�)

�

= ̌1
~g,h(¬��) ⇤1 1

~f,h

�
d2+(�)

�
⇤1 1

~f,h
(↵+)

= ̌1
~g,h(¬��) ⇤1 ̌1

~g,h

�
ď2�(�)

�
⇤1 1

~f,h
(↵+)

= ̌1
~g,h

�
¬�� ⇤1 ď2�(�)

�
⇤1 1

~f,h
(↵+)

= ̌1
~g,h

�
ď3�(�)

�
⇤1 1

~f,h
(↵+)

= ̌2
~↵,h

�
ď3�(�)

�
,

where the third equation is by (5.3). We will now show that this construction can
be generalized to all dimensions (n + 1) with n � 2. In particular we will prove
that at each stage (n+1), for every (n+1)-cell ~' : ~↵ // ~� and arrow h : x� //x+,
there exist functors n+1

~',h and ̌n+1
~',h satisfying the following conditions:

(1) When (n+ 1) is odd,

(Ay)n+1

�
dn+1

~↵,~�;+
('),�+

� n+1
~',h

// (Ay)n+1

�
 n
~↵,h(↵+),

n
~�,h

(�+)
�
, and

(Ay)n+1

�
¬↵�, ď

n+1

¬~↵,¬~�;�
(')

� ̌n+1
~',h

// (Ay)n+1

�
 n
~↵,h(↵+),

n
~�,h

(�+)
�
.

Similarly, when (n+ 1) is even,

(Ay)n+1

�
↵+, d

n+1

~↵,~�;+
(')

� n+1
~',h

// (Ay)n+1

�
 n
~↵,h(↵+),

n
~�,h

(�+)
�
, and

(Ay)n+1

�
ďn+1

¬~↵,¬~�;�
('),¬��

� ̌n+1
~',h

// (Ay)n+1

�
 n
~↵,h(↵+),

n
~�,h

(�+)
�

(2) When ~' is an (n+ 1)-cell as above,

 n+1
~',h ('+) = ̌

n+1
~',h (¬'�).(5.5)

!-GROUPOID INTERPRETATION 23

(3) Let parallel (n+1)-cells ~', ~ : ~↵ //
// ~� be given. When (n+1) is odd, the

following diagram commutes:

(Ay)n+1

�
dn+1
+ ('),�+

�
(Ay)n+1

�
 n+1
~',h (↵+),

n+1
~ ,h

(�+)
�

 n+1
~',h

//

Cn+2(',)

(Ay)n+1

�
dn+1
+ ('),�+

�

dn+2

~',

~

 ;+

✏✏

Cn+2(',) (Ay)n+1

�
¬↵�, ď

n+1
� ()

�ďn+2

¬~',¬~ ;�
// (Ay)n+1

�
¬↵�, ď

n+1
� ()

�

(Ay)n+1

�
 n+1
~',h (↵+),

n+1
~ ,h

(�+)
�

 ̌n+1
~

 ,h

✏✏

(5.6)

And, when (n+ 1) is even,

(Ay)n+1

�
↵+, d

n+1
+ ()

�
(Ay)n+1

�
 n
~↵,h(↵+), n

~�,h
(�+)

�
 n+1
~

 ,h

//

Cn+1(',)

(Ay)n+1

�
↵+, d

n+1
+ ()

�

dn+2

~',

~

 ;+

✏✏

Cn+1(',) (Ay)n+1

�
ďn+1
� ('),¬��

�ďn+2

¬~',¬~ ;�
// (Ay)n+1

�
ďn+1
� ('),¬��

�

(Ay)n+1

�
 n
~↵,h(↵+), n

~�,h
(�+)

�

 ̌n+1
~',h

✏✏

(5.7)

commutes.

Lemma 5.2. The conditions (1)-(3) described above are satisfied when, for

~' : ~↵ // ~� an (n+ 1)-cell of
R
A⇡ and h : x� // x+ as above, the functors n+1

~',h

and ̌n+1
~',h are defined as follows:

 n+1
~',h (�) :=

8
>><

>>:

 ̌n
~�,h

(¬'�) ⇤n n
~↵,h(�) if (n+ 1) is even, and

 n
~�,h

(�) ⇤n ̌n
~↵,h(¬'�) if (n+ 1) is odd;

and

 ̌n+1
~',h (�) :=

8
>><

>>:

 ̌n
~�,h

(�) ⇤n n
~↵,h('+) if (n+ 1) is even, and

 n
~�,h

('+) ⇤n ̌n
~↵,h(�) if (n+ 1) is odd.

Proof. We give the proof in the case where (n+ 1) is odd as the case where
it is even is essentially dual. First, to see that n+1

~' is well defined and possesses
the source and target as stated in condition (1) above, suppose we are given a m-
cell ⇣ of (Ay)n+1(d

n+1
+ ',�+). Then, ⇣ is a (m + 1)-cell of (Ay)n(f+, dn+�) where

~↵, ~� : ~f //
// ~g. As such, we may apply n

~�
to obtain

 n
~�

�
dn+1
+ (')

�
 n
~�
(�+)

%%

 n
~�

�
dn+1
+ (')

�
 n
~�
(�+)

99

 n
~�
(⇣)

24 M. A. WARREN

By definition of ¬~', we have also ¬'� : ¬↵� // ďn+1
� ('). By the induction

hypothesis,

 ̌n
~↵

�
ďn+1
� (')

�
= n

~�

�
dn+1
+ (')

�
,

and therefore applying ̌n
~↵ to ¬'� yields

 n
~↵(↵+) = ̌n

~↵(¬↵�)
 ̌n

~↵

(¬'�)
// n

~�

�
dn+1
+ (')

�
.

Here the equation is by the induction hypothesis. As such, the composite

 n+1
~' (⇣) := n

~�
(⇣) ⇤n ̌n

~↵(¬'�)

is defined and possesses the correct boundary. A similar argument shows that
 ̌n+1
~' is well-defined with the appropriate boundary. Note also that, with these

definitions, condition (2) from above is trivially satisfied.
Finally, to see that (3) is satisfied we note that, when ~' and ~ are parallel

(n+ 1)-cells as above and � is a cell of Cn+2(',),

 n+1
~'

�
dn+2
+ (�)

�
= n

~�

�
dn+2
+ (�)

�
⇤n ̌n

~↵(¬'�)

= n
~�

�
 + ⇤n dn+1

+ (�)
�
⇤n ̌n

~↵(¬'�)

= n
~�
(+) ⇤n n

~�

�
dn+1
+ (�)

�
⇤n ̌n

~↵(¬'�)

= n
~�
(+) ⇤n ̌n

~↵

�
ďn+1
� (�)

�
⇤n ̌n

~↵(¬'�)

= n
~�
(+) ⇤n ̌n

~↵

�
ďn+2
� (�)

�

= ̌n+1
~

�
ďn+2
� (�)

�
,

where the fourth equation is by the induction hypothesis. ⇤

5.7. Definition of the identity types. With the functors n and ̌n at
our disposal it is possible to give a very e�cient description of the “identity type”
functor IA :

R
A⇡ // !-Gpd. In particular, the o�cial definition of IA in all

dimensions is as follows:

Objects: IA(x, x�, x+) is given by the !-groupoid Ax(x�, x+).
1-Cells: Given ~f : ~x // ~y, the functor IA(~f) : I(~x) // I(~y) is defined by

setting

IA(~f)(�) := f+ ⇤0 Af (�) ⇤0 ¬f�,

for any m-cell � of Ax(x�, x+).
2-Cells: A 2-cell ~↵ : ~f) ~g is sent to the natural transformation IA(~↵)

which is defined, for an object h : x� // x+ of Ax(x�, x+), as follows:

IA(~↵)h := 2
~↵,h(↵+)

= ̌2
~↵,h(¬↵�).

That IA(~↵)h possesses the correct domain and codomain is an immediate
consequence of the results of Section 5.6.

!-GROUPOID INTERPRETATION 25

(n+ 1)-Cells: In general, given an (n + 1)-cell ~' : ~↵) ~� in
R
A⇡ and

h : x� // x+, we define

IA(~')h := (n+1)
~',h ('+)

= ̌(n+1)
~',h (¬'�).

Again, that IA(~')h possesses the correct domain and codomain follows
directly from the definition of IA at lower dimensional cells together with
the results of Section 5.6.

It remains only to verify that IA is functorial. To this end, we first prove that the
data given in the definition are of the appropriate kinds. E.g., that I(~↵) is a natural
transformation, et cetera.

Lemma 5.3. As defined above, when ~↵ : ~f) ~g is a 2-cell of

R
A⇡, IA(~↵) is

an !-natural transformation.

Proof. Explicitly, we must show that, for any m-cell � of Ax(x�, x+) with
m > 0 such that sm(�) = h and tm(�) = k, the following “schematic” diagram
commutes:

IA(~f)(h) IA(~g)(h)
I
A

(~↵)
h

//IA(~f)(h)

IA(~f)(k)
}}

IA(~f)(h)

IA(~f)(k)
!!

IA(~f)(k) IA(~g)(k)
I
A

(~↵)
k

//

IA(~g)(h)

IA(~g)(k)
}}

IA(~g)(h)

IA(~g)(k)
!!

IA(~f)(�) IA(~g)(�)

in Ay(y�, y+). I.e., we must prove that

IA(~↵)k ⇤1 IA(~f)(�) = IA(~g)(�) ⇤1 IA(~↵)h.(5.8)

By definition of 2
~↵,h(↵+) and interchange it follows that the right-hand side of

(5.8) is equal to
�
g+ ⇤0 Ag(�) ⇤0 ¬↵�

�
⇤1 1

~f,h
(↵+).

Because A↵ is itself a transformation Af) Ag we obtain

d1+(↵) ⇤0 Af (�) = Ag(�) ⇤0 d1�(↵).

Thus,

Ag(�) ⇤0 ¬↵� =
�
Ag(k) ⇤1 Ag(�)

�
⇤0

�
¬↵� ⇤1 ď2�(↵)

�

=
�
Ag(k) ⇤0 ¬↵�

�
⇤1

�
Ag(�) ⇤0 ď2�(↵)

�

=
�
Ag(k) ⇤0 ¬↵�

�
⇤1

�
d1+(↵) ⇤0 Af (�) ⇤0 f�1

�
�
.

Thus, the right-hand side of (5.8) is equal to

 ̌1
~g,k(¬↵�) ⇤1

�
d2+(↵) ⇤0 Af (�) ⇤0 f�1

�
�
⇤1 1

~f,h
(↵+).(5.9)

Moreover, the interchange and unit laws yield
�
d2+(↵) ⇤0 Af (�) ⇤0 f�1

�
�
⇤1 1

~↵,h(↵+) = ↵+ ⇤0 Af (�) ⇤0 f�1
� .

26 M. A. WARREN

Thus, the right-hand side of (5.8) is equal to

 ̌1
~↵,k(¬↵�) ⇤1

�
↵+ ⇤0 Af (�) ⇤0 f�1

�
�
= IA(~↵)k ⇤1 IA(~f)(�),

as required. ⇤

A similar argument yields the following fact:

Lemma 5.4. Given parallel n-cells ~↵ and

~� in

R
A⇡ bounded by 1-cells ~f,~g :

~x //
// ~y together with a (n + 1)-cell ~' : ~↵) ~�, IA(~'), as defined above, is a

modification IA(~↵)) IA(~�).

Proposition 5.5. As defined, IA is a functor

R
(A � ⇡) // !-Gpd.

Proof. First we consider the case of vertical composition. Let p-cells ~' and
~ be given, for p � m � n + 1 > 1, which are bounded by 0-cells ~x and ~y and by
n-cells ~f , ~g and ~h as indicated in the following diagram:

~u ~v

~f

��

~u ~v

~h

AA~u ~g~g ~v//

~'

~

~↵
��

~�
⇤⇤

~�
��

~�
⇤⇤

Then, for any object k : x� // x+ of Ax(x�, x+), we will prove by induction on m
the stronger fact that when m is odd

 m
sp�m(~ ⇤

n

~'),k

�
(~ ⇤n ~')+

�
= m

s(p�m) ~ ,k
(+) ⇤n m

s(p�m)~',k('+), and

 ̌m
tp�m(~ ⇤

n

~'),k

�
¬(~ ⇤n ~')�

�
= ̌m

t(p�m) ~ ,k
(¬ �) ⇤n ̌m

t(p�m)~',k(¬'�);

and

 m
tp�m(~ ⇤

n

~'),k

�
(~ ⇤n ~')+

�
= m

t(p�m) ~ ,k
(+) ⇤n m

t(p�m)~',k('+), and

 ̌m
sp�m(~ ⇤

n

~'),k

�
¬(~ ⇤n ~')�

�
= ̌m

s(p�m) ~ ,k
(¬ �) ⇤n ̌m

s(p�m)~',k(¬'�);

when m is even.
First, assume m = n+1 is even. We also assume that n+1 > 2 since the case

where n + 1 = 2 is a straightforward calculation (using ideas essentially the same
as those used here). Then

 n+1
~�⇤

n

~�

�
(~ ⇤n ~')+

�
= ̌n

~h

�
¬(~� ⇤n ~�)�

�
⇤n n

~f

�
(~ ⇤n ~')+

�

And this is equal, by definition of composition, to

 ̌n
~h

�
¬�� ⇤n (ďn�(�) ⇤(n�1) ¬��)

�
⇤n n

~f

�
(+ ⇤(n�1) d

n
+(�)) ⇤n '+

�
(5.10)

Now we will investigate in more detail each of the larger terms in this composite.
First:

 ̌n
~h

�
¬�� ⇤n (ďn�(�) ⇤(n�1) ¬��)

�
= ̌n

~h
(¬��) ⇤n ̌n

~h

�
ďn�(�) ⇤(n�1) ¬��)

�
.

!-GROUPOID INTERPRETATION 27

By definition of ̌n and functoriality this is equal to

 ̌n
~h
(¬��) ⇤n

�
 n�1
~v (h+) ⇤(n�1) ̌

n�1
~u (ďn�(�)) ⇤(n�1) ̌

n�1
~u (¬��)

�
,

which by (5.7) is equal to:

 ̌n
~h
(¬��) ⇤n

�
 n�1
~v (h+) ⇤(n�1)

n�1
~v (dn+(�)) ⇤(n�1) ̌

n�1
~u (¬��)

�

= ̌n
~h
(¬��) ⇤n

�
 n�1
~v (dn+1

+ (�)) ⇤(n�1) ̌
n�1
~u (¬��)

�

Similarly, the other half of (5.10) is equal to
�
 n�1
~v (+) ⇤(n�1) ̌

n�1
~u (ďn+1

� (�))
�
⇤n n

~f
('+).

By these observations and a routine calculation it follows that (5.10) is equal to

 ̌n
~h
(¬��) ⇤n

�
 n�1
~v (+) ⇤(n�1) ̌

n�1
~u (¬��)

�
⇤n n

~f
('+).

Finally, using the unit and interchange laws this is seen to be the same as n+1
~�

(+)⇤n
 n+1
~�

('+). The base cases where n+1 is odd are dual and the induction steps are

trivial. Thus, IA is a functor. ⇤

6. Reflexivity and elimination terms

In this section we define the functors which will interpret reflexivity and elim-
ination terms. As in [10] we will interpret terms as sections of the projection mapR
A // C associated to the functor A which interprets their type. We begin by

summarizing some of the basic facts about such sections and the related structures
resulting from the Grothendieck construction.

6.1. Reflexivity terms. We end this section by describing briefly the “reflex-
ivity term” associated to a functor A : C // !-Gpd. By definition, the reflexivity
term should be a section rA:

R
A

R
A

1R
A ��

??
??

??
?

R
A

R
(IA � �A)

r
A //

R
(IA � �A)

R
A

����
��

��
�

(6.1)

where �A is as in Section 5.2. However, we will require the explicit description of
this map and we will also introduce some notation related to this map. For objects,
given an object ~x of

R
A, we must provide an object ~xr of IA(x, x�, x�). I.e., ~xr

should be an arrow x� // x� in Ax. We define ~xr to be the identity x�. (Note
that here and throughout we omit the identity maps and write x� instead of i(x�).)
Next, given an arrow ~f : ~x // ~y, we need to provide an arrow

(@I)1r(~x),r(~y)(
~f)

~f
r // ~yr = y�

in Ay, where (@I)n denotes the weighted face functor for
R
IA (and so, in this case,

also
R
IA�A). But, by definition, (@I)1(~f) is just y� and we therefore define ~fr to be

y�. Indeed, at every dimension n � 1, when ~' is a n-cell of
R
A bounded by objects

~x and ~y, we define ~'r to be y�. Alternatively, the map rA may be constructed, as

28 M. A. WARREN

the anonymous referee was kind enough to mention to us, as the canonical section
induced by the fact that

R
(IA � �A)

R
IA//

R
(IA � �A)

R
A
✏✏R
A

R
(A � ⇡)

�
A

//

R
IA

R
(A � ⇡)

✏✏

is a pullback. Note that r is constant y� in all dimensions n � 1 since (@I)1r(~x),r(~y)(~')

is equal to y� for any ~' in
R
A bounded by ~x and ~y. As such, we define ~'r to be

y� in all dimensions n � 1. With this definition functoriality of r is trivial and we
have proved:

Lemma 6.1. Given A : C //!-Gpd as above, the assignment r defined above

induces a section rA as indicated in (6.1).

6.2. Setting up the construction of elimination terms. Turning now to
elimination terms, suppose we are given a functor D :

R
IA // !-Gpd together

with a section d :
R
A //

R
D{�A}I

A

rA of the projection
R
D{�A}I

A

rA //
R
A.

We would like to prove that this extends to a section J of
R
D //

R
IA. We begin

by fixing notation.
As we are dealing with multiple cases of the Grothendieck construction it will

be convenient to introduce some notation to deal with the di↵erent weighted face
functions which occur. First, we denote by ⇥n(�) the weighted face functor forR
D. As usual, we denote by dn� and dn+ the functors for the two projections ofR
IA. Finally, we denote by ⇥̃n the weighted face functor for

R
D � {�A}I

A

� rA.
Next, we observe that there is an endofunctor # (�) :

R
IA //

R
IA defined as

the following composite:
Z

IA
⇡0 //

Z
A

r
A //

Z
IA � �A //

Z
IA.

I.e., # sends an object ~x = (x, x�, x+, x!) to (x, x�, x�, x�) and similarly for
higher-dimensional cells. Here, as throughout, we omit mention of identity arrows.
I.e., writing out identities we have that # ~x is (x, x�, x�, i(x�)) or (x, x�, x�, 1x�).

We will often be concerned with the situation where we consider, given ~x an
object of

R
IA, the restriction (x, x�) of ~x to

R
A. Rather than write ⇡0(~x) every

time for this object we instead denote this pair by x̆. Similarly, �̆ denotes ⇡0(~�) for
general n-cells ~� of

R
IA.

6.3. Naturality cells. The construction of the elimination terms is rather
technical and proceeds in several stages. First, we describe “naturality cells” which
exhibit what amounts to a (suitable notion of) pseudo natural transformation "�
from # (�) to the identity 1R I

A

. The construction proceeds by induction on di-
mension as usual.

(Dimension 0): First, in dimension 0, given ~x in
R
IA, we define an arrow

"~x :# (~x) // ~x as follows:

"~x := (x, x�, x!, x!),

!-GROUPOID INTERPRETATION 29

where ~x = (x, x�, x+, x!). Next, holding 0-cells ~x and ~y of
R
IA fixed we

define functors

(

Z
IA)1(~x, ~y)

r1
~x,~y;⇠

// (

Z
IA)1(# ~x, ~y)

for ⇠ = �,+ as follows:

r1
~x,~y;⇠ :=

8
><

>:

(� ⇤0 "~x) if ⇠ = �, and

�
"~y ⇤0 # (�)

�
if ⇠ = +.

As usual, we omit the subscripts ~x and ~y when these are understood.

Note that with these definitions, when ~' is any m-cell, with m � 1,

r1
�(~') = (', '�, '+ ⇤0 Af (x!), '!), and(6.2)

r1
+(~') = (', '�, y! ⇤0 '�, y!),(6.3)

where sm�1~' = ~f and ~f : ~x // ~y is as above.

Remark 6.2. Because we will sometimes want to refer to the di↵erent elements
of such a pair r1

⇠(~') we denote by [r1
⇠(~')]k the k-th component, for k = 0, 1, 2, 3.

E.g., [r1
+(~')]2 is (y! ⇤0 '�),.

Dimension 1: Next, we define, given an arrow ~f : ~x // ~y in
R
IA, a 2-cell

r1
�(~f)

"
~

f

// r1
+(~f).

I.e., "~f is as indicated in the following “naturality” diagram:

(~y) ~y
"
~y

//

(~x)

(~y)

#(~f)
✏✏

(~x) ~x
"
~x // ~x

~y

~f

✏✏

"
~

f

↵◆

In particular, "~f is defined to be (f, f�, f! ⇤0 f�, f!). This definition
is easily seen to make sense using (6.2) and (6.3). Now, holding parallel
arrows ~f and ~g fixed, we define functors

(

Z
IA)2(~f,~g)

r2
⇠

// (

Z
IA)2

�
r1

�(~f),r1
+(~g)

�

by

r2
⇠(~�) :=

8
><

>:

r1
+(~�) ⇤1 "~f if ⇠ = �, and

"~g ⇤1 r1
�(~�) if ⇠ = +.

With these definitions it is straightforward to verify that

r2
�(~') = (', '�, f! ⇤0 '�, f!),(6.4)

when ~' is any cell of (
R
IA)2(~f,~g). In order to obtain a similar analysis of r2

+(~')
we require a further fact about the duality functor ¬.

30 M. A. WARREN

Lemma 6.3. Given any m-cell, for m � 1, ~' of

R
A,

¬'� ⇤0 '� = d1~x,~y('), and

'� ⇤0 ¬'� = y�

where ~x and ~y are the 0-cells bounding ~'.

Proof. This is a direct consequence of the easily proved fact that, for 0 n
m� 2

⇢m�n�2
@~' ('�1

�) ⇤n '� = tm�n�1(~')�� ⇤n
�
'� ⇤(n+1) ⇢

m�n�3
@~' ('�1

�)
�

when n is even (or 0), and

'� ⇤n ⇢m�n�2
@~' ('�1

�) =
�
⇢m�n�3
@~' ('�1

�) ⇤(n+1) '�
�
⇤n sm�n�1(~')�1

� ,

when n is odd. Iteratively applying these facts and canceling inverses yields the
required result. ⇤

Using Lemma 6.3 it follows, by a (lengthy but) straightforward calculation,
that, where ~�

r2
+(~') =

✓
', '�,

�
g! ⇤1 2

~�,x!
('+)

�
⇤0 ��, '!

◆
(6.5)

for any m-cell ~' of (
R
IA)2(~f,~g) with ~� = tm�2~'. Using (6.4) and (6.5) we define

"~↵, for ~↵ : ~f //
// ~g a 2-cell of

R
IA, as follows:

"~↵ := (↵, ↵�, ↵! ⇤0 ↵�, ↵!).

In higher-dimensions this procedure is carried out as follows:

Dimension (n+ 1): Given ~↵ and ~� of dimension n together with the ap-
propriate rn

� we first observe that, using decompositions of rn
⇠ (~') corre-

sponding to (6.4) and (6.5), and proved by a standard calculation using
Lemma 6.3, it follows that, if, ~' : ~↵) ~� is a (n+ 1)-cell, then

rn
�(~') =

8
><

>:

(', '�, ↵! ⇤0 '�, ↵!) if n is even, and

(', '�, (@I)n(~') ⇤0 '�, '!) if n is odd;

and

rn
+(~') =

8
><

>:

(', '�, (@I)n(~') ⇤0 '�, ↵!) if n is even, and

(', '�, �! ⇤0 '�, �!) if n is odd.

Thus we define

rn
�(~↵)

"
~'

// rn
+(~�)

by

(','�,'! ⇤0 '�,'!).

Now, holding ~↵ and ~� fixed, we define

(

Z
IA)n+1(~↵, ~�)

rn+1
⇠

// (

Z
IA)n+1

�
rn

�(~↵),rn
+(~�)

�

!-GROUPOID INTERPRETATION 31

for ⇠ = �,+ as

rn+1
⇠ (~�) :=

8
><

>:

rn
+(~�) ⇤n "~↵ if ⇠ = �, and

"~� ⇤n rn
�(~�) if ⇠ = +.

6.4. Elimination terms in dimensions 0, 1. Assume we are given an object
~x = (x, x�, x+, x!) of

R
IA. We would like to provide a corresponding object, which

for the sake of notational convenience we simply denote by xJ , of D(~x). This xJ

is obtained by a kind of Yoneda style argument. Namely, we observe that, by
assumption there is a term x̆d in D(# (~x)). Applying the functor D("~x) yields the
required xJ in D(~x). I.e.,

xJ := D("~x)(x̆d).

Because it will greatly simplify matters in the later stages, we introduce a special
notation for D("~x) and its higher-dimensional generalizations D("~�). Namely, we
define

h~�i := D("~�).

With this notation xJ = h~xi(x̆d).
In dimension 1, given an arrow ~f : ~x // ~y in

R
IA we have by hypothesis the

arrow f̆d : ⇥̃1
x̆,y̆(f̆)

// y̆d in D(# ~y) and, applying h~yi,

h~yi
�
⇥̃1f̆

� h~yi(f̆
d

)
// yJ

in D(~y). Now,

h~yi
�
⇥̃1f̆

�
= h~yi

�
D(# ~f)x̆d

�

= D
�
r1

+
~f)x̆d

Also,

⇥1(~f) = D(~f)(xJ)

= D
�
r1

�
~f
�
x̆d

and therefore we define fJ to be the composite

⇥1(~f)
h~fi

x̆

d // D
�
r1

+
~f
�
x̆d

h~yif̆
d

// yJ .

Again, it will be useful to introduce some additional notation to clarify the situation
in higher-dimensions. First, holding fixed objects ~x and ~y of

R
IA, we define a

functor

(

Z
IA)1(~x, ~y)

#1
~x,~y

// D(~y)

by

#1~x,~y(~�) := h~yi
�
⇥̃1
~x,~y(�̆)

�
.

32 M. A. WARREN

The next ingredient is to define, for ~f : ~x // ~y, arrows /(~f) : ⇥1(~f) // #1(~f) and
.(~f) : #1(~f) // yJ as follows:

/(~f) := h~fix̆
d

, and

.(~f) := h~yif̆d.

Thus, with this notation fJ is just .(~f) ⇤0 /(~f). We will see below that, in general,
�J will always be formed as a composite of the form .(~�)⇤k�1/(~�) along a (k�1)-cell
#k(~�).

6.5. Elimination terms in dimensions 2. In dimension 2, let arrows ~f,~g :
~x

//
// ~y in

R
IA be given together with a 2-cell ~↵ : ~f) ~g. In order to define ↵J we

will describe 2-cells filling both the square and triangle as indicated in the following
diagram:

⇥1(~f) #1(~f)
/(~f)

//⇥1(~f)

⇥1(~g)

⇥1(~↵)

✏✏

#1(~f) yJ
.(~f)

//

⇥1(~g) #1(~g)
/(~g)

//

#1(~f)

#1(~g)

#1(~↵)

✏✏

#1(~g)

yJ

.(~g)

FF

↵◆ ↵◆

Defining the functor

(

Z
IA)2(~f,~g)

#2
~

f,~g

// D(~y)1
�
⇥1(~f), yJ

�

by

#2(�) := .(~g) ⇤0 #1(�) ⇤0 /(~f).

we see that our goal is precisely to provide 2-cells

fJ
/(~↵)

// #2~f,~g(~↵)
.(~↵)

//⇥2
~f,~g

(~↵).

The strategy for filling the square and triangle from above is fairly simple. For the
triangle, we use ↵̆d, and for the square we use the naturality cell "~↵. To begin with,
we define

/(~↵) := h~yi(↵̆d) ⇤0 /(~f).

For the square, we observe that

⇥1(~�) = D(~�)(xJ), and

#1(~�) = D(r1
+~�)(x̆d)

where ~� is any cell of
R
IA(~x, ~y). Thus,

#1(~�) ⇤0 /(~f) = D(r2
�~�)(x̆d), and

/(~g) ⇤0 ⇥1(~�) = D(r2
+~�)(x̆d).

As such, we define

.(~↵) := .(~g) ⇤0 h~↵ix̆
d

.

!-GROUPOID INTERPRETATION 33

Thus, ↵J is (.(~↵) ⇤1 /(~↵)). It will often be convenient to omit parentheses when
dealing with the arrows .(~↵) and /(~↵). In order to avoid confusion, we adopt the
convention that . and / bind more tightly than composition. I.e., / ~� ⇤k ~' should
be read as /(~�) ⇤k ~'.

Before moving on to dimension 3, we first introduce some additional machinery
which is the final technical ingredient required in order to make the induction to
higher dimensions possible. Namely, for ~f,~g : ~x //

// ~y parallel 1-cells, we define
functors

D(~y)1(#
1 ~f, yJ)

H̆1
~

f,~g

// D(~y)1(⇥
1 ~f, yJ) oo

H1
~

f,~g

D(~y)1(⇥
1 ~f,#1~g)

as follows:

H̆1
~f,~g

(�) := (� ⇤0 /~f), and

H1
~f,~g

(�) := (.~g ⇤0 �).

With these functors at our disposal, we are in the position to make several remarks
regarding their interaction with the other structures with which we are concerned.
To begin with, when ~↵ is a 2-cell ~f) ~g,

. ~↵ = H1
~f,~g

�
h~↵ix̆

d

�
, and(6.6)

/ ~↵ = H̆1
~f,~g

�
h~yi(↵̆d)

�
.(6.7)

Also, these functors interact with #2 in the sense that

H̆1
~f,~g

�
. ~g ⇤0 #1(~�)

�
= #2~f,~g(~�) = H1

~f,~g

�
#1(~�) ⇤0 / ~f

�
.(6.8)

In an informal sense, the problem of providing the elimination maps 'J will be seen
to always amount, as above, to filling both a triangle and a square. In each case,
the tactic is essentially the same as above and the functors Hk and H̆k allow us
to express in the most perspicuous way the combinatorics of the situation for the
squares and triangles, respectively.

6.6. Elimination terms in dimension 3. In dimension 3, given ~' : ~↵) ~�
a 3-cell of

R
IA, we would like to describe the 3-cells indicated in the following

diagram:

#2(~↵) ⇥2(~↵)
. ~↵ //#2(~↵)

#2(~�)

#2(~')

✏✏

fJ #2(~↵)
/ ~↵ //

#2(~�) ⇥2(~�)
. ~�

//

⇥2(~↵)

⇥2(~�)

⇥2(~')

✏✏

fJ

#2(~�)
/ ~�

--

↵◆ ↵◆

(6.9)

With this picture in mind we begin by defining, for fixed parallel 2-cells ~↵, ~� : ~f //
//~g,

functors

D(~y)2(fJ ,#
2~�)

H̆2
~↵,

~

�

// D(~y)2(fJ ,⇥
2~�) oo

H2
~↵,

~

�

D(~y)2(#
2~↵,⇥2~�)

34 M. A. WARREN

as follows:

H̆2
~↵,~�

(�) := . ~� ⇤1 H̆1
~f,~g

(�), and

H2
~↵,~�

(�) := H1
~f,~g

(�) ⇤1 / ~↵.

Next,

(

Z
IA)3(~↵, ~�)

#3
~↵,

~

�

// D(~y)2
�
fJ ,⇥

2(~�)
�

is defined by

#3(�) := .(~�) ⇤1 #2(�) ⇤1 /(~↵)

Before going any further it is useful to establish several facts. First, we note that
by a straightforward calculation:

#2~f,~g(~�) = H̆1
~f,~g

�
h~yi⇥̃2�̆

�
.(6.10)

We call (6.10) the triangle-law for dimension 2 and note that together with (6.7)
it follows that the triangle from (6.9) may be filled with the 3-cell H̆1

~f,~g
(h~yi'̆d).

Accordingly, we define

. ~' := H̆2
~↵,~�

�
h~yi'̆d

�
.

Turning to the square, observe that

⇥2
~f,~g

(~�) ⇤1 . ~↵ = (gJ ⇤0 ⇥1~�) ⇤1 (. ~g ⇤0 h~↵ix̆
d

)

= (. ~g ⇤0 / ~g ⇤0 ⇥1~�) ⇤1 (. ~g ⇤0 h~↵ix̆
d

)

= . ~g ⇤0
�
(/ ~g ⇤0 ⇥1~�) ⇤1 h~↵ix̆

d

�

= . ~g ⇤0 D
�
r3

�~�
�
x̆
d

.

Consequently, we obtain the source square-law for dimension 2 :

⇥2
~f,~g

(~�) ⇤1 . ~↵ = H1
~f,~g

�
D(r3

�~�)x̆d

�
.(6.11)

Another straightforward calculation yields the target square-law for dimension 2 :

. ~� ⇤1 #2~f,~g(~�) = H1
~f,~g

�
D(r3

+~�)x̆d

�
.(6.12)

Thus, the filler of the square in (6.9) is defined to be H1
~f,~g

�
h~'ix̆

d

�
. Finally, we set

/ ~' := H2
~↵,~�

�
h~'ix̆

d

�
, and

'J := . ~' ⇤2 / ~'.

6.7. The construction in higher dimensions. Now, at higher-dimensions,
the construction of the elimination terms is by induction on dimension. In partic-
ular, we proceed by induction on n � 2 in such a way that at stage (n + 1) — in
addition to the existence of the required (n+1)-cells 'J — the following conditions
are satisfied:

(1) For all parallel n-cells ~↵, ~� : ~f //
// ~g, there is a functor #n+1

~↵,~�
parallel to

⇥n+1

~↵,~�
. I.e., .

!-GROUPOID INTERPRETATION 35

(2) For any (n+1)-cell ~' : ~↵ // ~�, there exist corresponding (n+1)-cells . ~'
and / ~' such that

↵J
/ ~'

// #n+1

~↵,~�
~'

. ~'
//⇥n+1

~↵,~�
~'

when (n+ 1) is even, and

⇥n+1

~↵,~�
~'

/ ~'
// #n+1

~↵,~�
~'

. ~'
// �J

when (n+ 1) is odd.
(3) There are, for ~↵ and ~� parallel n-cells, functors Hn

~↵,~�
and H̆n

~↵,~�
such that

D(~y)n
�
#n~↵, gJ

� H̆n

~↵,

~

�

// D(~y)n
�
⇥n~↵, gJ

�
, and

D(~y)n
�
⇥n~↵,#n~�

� Hn

~↵,

~

�

// D(~y)n
�
⇥n~↵, gJ

�

if (n+ 1) is even; and

D(~y)n
�
fJ ,#

n~�
� H̆n

~↵,

~

�

// D(~y)n
�
fJ ,⇥

n~�
�
, and

D(~y)n
�
#n~↵,⇥n~�

� Hn

~↵,

~

�

// D(~y)n
�
fJ ,⇥

n~�
�

if (n+ 1) is odd.
(4) The following triangle-law is satisfied:

#n+1

~↵,~�
~� = H̆n

~↵,~�

�
h~yi⇥̃n+1�̆

�
,

when ~� is any cell in the domain of #n+1.
(5) If ~', ~ : ~↵ //

// ~� are parallel (n + 1)-cells, the following square-laws are
satisfied:

Hn
~↵,~�

�
D(rn+2

� ~�)x̆
d

�
=

8
><

>:

⇥n+1~� ⇤n . ~' if (n+ 1) is even, and

#n+1~� ⇤n / ~' if (n+ 1) is odd;

and

Hn
~↵,~�

�
D(rn+2

+
~�)x̆

d

�
=

8
><

>:

. ~ ⇤n #n+1~� if (n+ 1) is even, and

/ ~ ⇤n ⇥n+1~� if (n+ 1) is odd,

for appropriate cells ~� and ~�. Note that the rn+2
⇠ here are defined with

respect to ~' and ~ .

Assuming we have carried out the construction up to stage n, we claim that the
following definitions at stage (n+ 1) will satisfy the required conditions:

• For parallel n-cells ~↵ and ~�,

#n+1

~↵,~�
(�) := . ~↵ ⇤(n�1) #

n(�) ⇤(n�1) / ~�.

36 M. A. WARREN

• If ~↵ and ~� are parallel n-cells ~f //
// ~g, then we define

Hn
~↵,~�

(�) :=

8
>><

>>:

.~� ⇤n Hn�1
~f,~g

(�) if (n+ 1) is even, and

Hn�1
~f,~g

(�) ⇤n / ~↵ if (n+ 1) is odd;

and

H̆n
~↵,~�

(�) :=

8
>><

>>:

H̆n�1
~f,~g

(�) ⇤n / ~↵ if (n+ 1) is even, and

. ~� ⇤n H̆n�1
~f,~g

(�) if (n+ 1) is odd.

• Given ~' : ~↵) ~� a (n+ 1)-cell, we define

/ ~' :=

8
>><

>>:

H̆n
~↵,~�

�
h~yi'̆d

�
if (n+ 1) is even, and

Hn
~↵,~�

�
h~'ix̆

d

�
if (n+ 1) is odd;

and

. ~' :=

8
>><

>>:

Hn
~↵,~�

�
h~'ix̆

d

�
if (n+ 1) is even, and

H̆n
~↵,~�

�
h~yi'̆d

�
if (n+ 1) is odd.

• In all dimensions,

↵J := . ~↵ ⇤n / ~↵

when ~↵ is a (n+ 1)-cell.

The reader can readily verify that we have already satisfied the conditions of the
induction in the base case where n = 2. We now turn to the induction step.

Lemma 6.4. With the definitions given above, the conditions of the construc-

tion are satisfied in all dimensions (n+ 1).

Proof. First, assume (n + 1) is even with n > 2 and let an (n + 1)-cell
~' : ~↵ //

// ~� in
R
IA be given. Then, by the induction hypothesis and examination

of the following diagram

⇥n(~↵) #n(~↵)
/ ~↵ //⇥n(~↵)

⇥n(~�)

⇥n(~')

✏✏

#n(~↵) gJ
. ~↵ //

⇥n(~�) #n(~�)
/ ~�

//

#n(~↵)

#n(~�)

#n(~')

✏✏

#n(~�)

gJ

. ~�

FF

↵◆ ↵◆

where ~↵, ~� : ~f //
//~g, it follows that conditions (1)-(3) are satisfied with the definitions

given above.

!-GROUPOID INTERPRETATION 37

For the triangle law, we reason as follows:

H̆n
~↵,~�

�
h~yi⇥̃n+1�̆

�
= H̆n�1

~f,~g

�
h~yi�̆d ⇤(n�1) h~yi⇥̃n�̆

�
⇤(n�1) / ~↵

= H̆n�1
~f,~g

�
h~yi�̆d

�
⇤(n�1) H̆n�1

~f,~g

�
h~yi⇥̃n�̆

�
⇤(n�1) / ~↵

= . ~� ⇤(n�1) #
n
~f,~g

(~�) ⇤(n�1) / ~↵

= #n+1

~↵,~�
(~�),

where the penultimate equation is by definition of . ~� and the induction hypothesis.
Next assume given (n+1)-cells ~', ~ : ~↵ //

// ~�. For the “source” square law, we
have

Hn
~↵,~�

�
D(rn+2

� ~�)x̆
d

�
= Hn

~↵,~�

�
D(rn+1

+ ~�)x̆
d

⇤n h~'ix̆
d

�

=

✓
.~� ⇤(n�1) Hn�1

~f,~g

�
D(rn+1

+ ~�)
�◆

⇤n . ~'

=
�
.~� ⇤(n�1) / ~� ⇤(n�1) ⇥

n~�
�
⇤n . ~'

=
�
�J ⇤(n�1) ⇥

n~�
�
⇤n . ~'

= ⇥n+1

~↵,~�
~� ⇤n . ~',

where the third equation is by the induction hypothesis. For the “target” square
law, we reason similarly and note that

Hn
~↵,~�

�
h~ ix̆

d

⇤n D(rn+1
� ~�)x̆

d

�
= . ~ ⇤n

✓
. ~� ⇤(n�1) Hn�1

~f,~g

�
D(rn+1

� ~�)x̆
d

�◆

= . ~ ⇤n
�
. ~� ⇤(n�1) #

n~� ⇤(n�1) / ~↵
�

= . ~ ⇤n #n+1

~↵,~�
~�,

as required.
The induction step where (n+ 1) is odd is essentially dual. ⇤

Using the lemma, we now have the following fundamental result.

Proposition 6.5. The cells of the form 'J constitute a section J :
R
IA //

R
D

of the projection map

R
D //

R
IA.

Proof. In light of Lemma 6.4 the only thing which remains is to verify that the
assignment (�)J is functorial. This however is a consequence of the functoriality
of d and the construction of the “terms” 'J using the functors Hk and H̆k. ⇤

7. The main results

With the machinery from the preceding sections at our disposal it is now pos-
sible to establish our main results.

7.1. Dependent sums and products. Before defining the dependent prod-
ucts and sums, we begin by describing some basic features of general setup. First,
given a functor A : C // !-Gpd we note that, by the basic properties of !-Gpd,

38 M. A. WARREN

there exists an !-groupoid denoted by �(A) of sections of the projection
R
A // C.

I.e., the objects of �(A) are sections

C

C
1C

��
??

??
??

??
?C

R
A

a //
R
A

C
⇡

����
��

��
��

and arrows are 2-cells ↵ : a) b for which ⇡ � ↵ = 1C and so forth at higher
dimensions. Now, given a further functor B :

R
A //!-Gpd and an object x of C,

we define a functor pBxq : Ax
// !-Gpd as follows:

Objects: Given an object x� of Ax, pBxq(x�) is the !-groupoid B(x, x�).
1-Cells: Given an arrow h : x� //x+ in Ax, we define the functor pBxq(h) :

B(x, x�) // B(x, x+) as follows:

pBxq(h)(�) := B(x, h)(�).

Here we note that this is possible since (x, h) : (x, x�) // (x, x+), where
we have written (x, h) instead of (1x, h).

(n+ 1)-Cells: Given a (n + 1)-cell ↵ : f) g in Ax bounded by 0-cells
x� and x+, together with an object y of B(x, x�), the transformation
pBxq(↵) is defined at y by

pBxq(↵)y := B(x,↵)y.

Now, we would like to describe, in this same setting, the dependent sum ⌃A,B :
C // !-Gpd. Note that, when A and B are apparent, we will often omit the
subscripts.

Objects: Given an object x of C, we define

⌃A,B(x) :=

Z
pBxq.

Given f : x // y in C we would like to define ⌃A,B(f) :
R
pBxq //

R
pByq, which

we will write, for the sake of avoiding too many parentheses, as ⌃f . An object ~v
of

R
pBxq is a pair (v�, v]) such that v� is an object of Ax and v] is an object of

B(x, v�). We adopt a similar notation in higher dimensions. We also write @(x)n

for the weighted face functor of
R
pBxq and similarly for @(y)n, et cetera. With this

in mind we adopt the following definition (which we will discuss below):

1-Cells: Given f : x // y in C, ⌃f is defined on objects ~v of
R
pBxq by

⌃f (~v) :=
�
v�.f, B(f, v�.f)(v])

�
,

and on (n+ 1)-cells ~' of
R
pBxq by

⌃f (~') :=
�
'�.f, B(f, w�.f)('])

�
,

where ~v and ~w are the objects bounding ~' at source and target position,
respectively.

Note that this is a correct definition since, by functoriality of B, it is proved (si-
multaneously with the verification of the definitions) at each stage that

B(f, w�.f)
�
@(x)n+1

~↵,~�
('�)

�
= @(y)n+1

⌃
f

~↵,⌃
f

~�
('�.f),

where ~↵ and ~� are the n-cells bounding ~'.
In dimension (n+ 1), ⌃A,B is given as follows:

!-GROUPOID INTERPRETATION 39

(n+ 1)-Cells: Given a (n + 1)-cell ' : ↵ // � in C, ⌃' : ⌃↵ // ⌃� has as
its component at the object ~v of

R
pBxq the n-cell

(⌃')~v :=
�
v�.', B(', v�.')(v])

�

of
R
pByq.

To see that this makes sense, let n-cells �, µ : ↵ // � be given. Then it follows, by
induction on n that,

@(y)(n+1)
(⌃
�

)
~v

,(⌃
µ

)
~v

(v�.�) =

8
><

>:

B(µ, v�.�)v
]

if (n+ 1) is even, and

B(�, v�.�)v
]

if (n+ 1) is odd,

where � is any m-cell with m � n + 1 bounded by � and µ (i.e., sm�n� = �
and tm�n� = µ). This is a straightforward induction using functoriality of B.
This completes the description of the interpretation ⌃A,B of dependent sums in
this setting. With these definitions, the verification of functoriality is a routine
calculation.

Next, we define the dependent product ⇧A,B : C // !-Gpd to be the functor
which sends an object x to the !-groupoid �(pBxq) of sections of the projectionR
pBxq // Ax. Explicitly, ⇧A,B is as follows:

Objects: ⇧A,B(x) is defined to be �(pBxq).
1-Cells: Given an arrow f : x // y in C, ⇧A,B(f) is the functor sending a

section a in �(pBxq) to the section ⌃f � a � Af�1 . In general, ⇧A,B(f)
sends an arbitrary cell ' of �(pBxq) to the composite ⌃f � ' � Af�1 as
indicated in the following diagram:

Ay Ax

A
f

�1
// Ax

R
pBxq

''

Ax

R
pBxq

77

R
pBxq

R
pByq

⌃
f

//
R
pByq

Ay

✏✏

R
pBxq

Ax

✏✏

Ax Ay
A

f

//

'Ax

Ax

1
A

x ..

(n+ 1)-Cells: In general, when � : ↵ // � is a (n+ 1)-cell in C and a is an
object of ⇧A,B(x), the dependent product is defined by setting

⇧A,B(�)a := ⌃� � a �A�(�),
where � : C // Cop is the dual functor for C as described in Section 4.

This completes the description of the dependent sums and products. The introduc-
tion and elimination terms are then obtained as generalizations of those given in
[10].

7.2. Results. With the interpretations given we obtain the following result
extending the original groupoids model from ibid to the setting of !-groupoids:

Theorem 7.1. The interpretation given above soundly interprets the basic form

of intensional type theory with dependent sums, dependent products and identity

types (i.e., the theory T! from [1]). Moreover, the ⌘-rules for dependent sums and

products are also satisfied.

Proof. Using the interpretation given above it is straightforward to verify that
all of the required laws, including all of the Beck-Chevalley laws, are satisfied. ⇤

40 M. A. WARREN

Recall from [27, 1] that we employ the following notation for iterated identity
types:

An+1(a1, b1; · · · ; an+1, bn+1) := An(a1, b1; · · · ; an, bn)(an+1, bn+1).

In this notation, the principle of n-dimensional uniqueness of identity proofs is

` an+1, bn+1 : An(a1, b1; . . . ; an, bn)

` an+1 = bn+1 : An(a1, b1; . . . ; an, bn)

It is a trivial consequence of the interpretation that, for all n � 1, the !-groupoid
model refutes UIPn. To see this, form the globular set G which is described as
follows:

0-Cells: Two 0-cells ?0 and >0.
(n+ 1)-Cells: Two parallel (n+ 1)-cells ?n+1,>n+1 :?n // >n.

Then the free !-groupoid on G refutes uniqueness of identity proofs at all dimen-
sions (in both the forms which deal with definitional and propositional equality).
This is the case because the terms of identity types in any type interpreted as this
free groupoid are simply the cells of this groupoid. I.e., we have:

Corollary 7.2. For all n � 1, the principle UIPn is not derivable in T!.
Similar, the principle of uniqueness of identity proofs with respect to propositional

equality is also not derivable.

Recall from [1] that the n-truncation rule is as follows:

` an+1, bn+1 : An(a1, b1; · · · ; an, bn) ` p : An+1(a1, b1; · · · ; an+1, bn+1)
TRn` an+1 = bn+1 : An(a1, b1; · · · ; an, bn)

Our main corollary of Theorem 7.1 then states that the identity types in intensional
type theory are non-trivial in all dimensions in the sense that all of the truncation
rules are refuted by the !-groupoid model. The same counterexample from above
su�ces to give this result as well. I.e., we have:

Corollary 7.3. For n � 0, TRn is not derivable in T!.

We note that all of these results also apply in the case of type theory with the
added ⌘-rules for dependent products and sums, since these rules are valid in the
model.

Appendix A. Rules governing identity types, dependent products and
dependent sums

In this appendix we describe the syntax of the system considered in this paper
(called T! in [1]). All rules below are stated in an ambient context which is omitted
for ease of presentation.

A.1. Identity types.

a, b : A
formation

` A(a, b) : type

a : A introduction
r(a) : A(a, a)

!-GROUPOID INTERPRETATION 41

x : A, y : A, z : A(x, y) ` B(x, y, z) : type

x : A ` '(x) : B
�
x, x, r(x)

�

f : A(a, b)
elimination

J
�
'(x), a, b, f) : B(a, b, f)

a : A conversion
J
�
'(x), a, a, r(a)

�
= '(a) : B

�
a, a, r(a)

�

A.2. Dependent products.

x : A ` B(x) : type Q
formationQ

x:A B(x) : type

x : A ` f(x) : B(x) Q
introduction

�x:Af(x) :
Q

x:A B(x)

f :
Q

x:A B(x) a : A Q
elimination

app(f, a) : B(a).

�x:Af(x) :
Q

x:A B(x) a : A Q
conversion

app
�
�x:Af(x), a

�
= f(a) : B(a)

A.3. Dependent sums.

x : A ` B(x) : type P
formationP

x:A B(x) : type

a : A b : B(a) P
introduction

pair(a, b) :
P

x:A B(x)

p :
P

x:A B(x) x : A, y : B(x) ` (x, y) : C
�
pair(x, y)

�
P

elimination
R
�
 (x, y), p

�
: C(p)

a : A b : B(a) x : A, y : B(x) ` (x, y) : C
�
pair(x, y)

�
P

conversion
R
�
 (x, y), pair(a, b)

�
= (a, b) : C

�
pair(a, b)

�

Appendix B. The universal property of the Grothendieck construction

In this appendix we provide a detailed proof that the Grothendieck constructionR
A for strict !-categories introduced in Section 3 can be described as the coendR x
(x # C) ⇥ Ax. First we turn to a more detailed description of the comma !-

category (x # C) when x is a 0-cell of an !-category C.

42 M. A. WARREN

B.1. The comma !-category. Given an !-category C and an object x of
C the comma !-category (x # C) will be constructed inductively in such a way
that at each stage a n-cell of (x # C) is a pair (f, f�) such that f is a n-cell of C
and f� is a (n + 1)-cell of C. At each stage it will also be necessary to construct
auxiliary functors which describe the boundaries of the cells f� in terms of f and
lower dimensional cells. These are like the weighted face functors discussed in the
construction of the Grothendieck construction given above and we denote them
also using the notation d. Because we will not require the combinatorial details of
the comma category (x # C) we will merely describe the di↵erent cells and leave
the proof that this yields an !-category to the reader. We mention that slicing
constructions in the higher-dimensional setting have been studied in recent work
by Palm [21].

0-Cells: A 0-cell of (x # C) is a pair ~y = (y, y�) such that y is an object of
C and y� is an arrow x // y in C. For fixed 0-cells ~y, ~z define @~y,~z(�) :=
� ⇤0 y�. When ~y, ~z are understood the subscript will be omitted.

1-Cells: A 1-cell ~y // ~z of (x # C) is a tuple ~f = (f, f�) with f : y // z
a 1-cell in C and f� : @(f) // z� a 2-cell in C. Fixing parallel 1-cells
~f,~g : ~y // ~z, we define @~f,~g(�) := g� ⇤1 @(�).

(n+ 1)-Cells for (n+ 1) even: A (n + 1)-cell ~' : ~� // ~� is given by a
(n+1)-cell ' : � // � in C and a (n+2)-cell '� : �� //@(') in C. Given
parallel (n+ 1)-cells ~' and ~ we define @~',~ (�) := @(�) ⇤n+1 '�.

(n+ 1)-Cells for (n+ 1) odd: A (n+1)-cell ~' : ~� //~� is given by a (n+1)-
cell ' : � // � in C and a (n+2)-cell '� : @(') // �� in C. Given parallel
(n+ 1)-cells ~' and ~ we define @~',~ (�) := � ⇤n+1 @(�).

Here we use the notation @ instead of d to describe the required “weighted bound-
aries” of the construction since we will be mixing both the Grothendieck construc-
tion and its d and comma categories in Section B.2 below.

Allowing x to vary we obtain a functor (of !-categories) (� # C) : Cop //!-Cat
which we describe as follows.

Dimension 1: Given an arrow l : v // x in Cop we have a functor l⇤ : (x #
C) // (v # C) which sends a cell ~' = (','�) of any dimension of (x # C)
to

l⇤(~') := (','� ⇤0 l).

This is trivially functorial.
Dimension 2: Given parallel arrows l,m : v //x in C and a 2-cell � : l //m

the induced transformation �⇤ : l⇤ //m⇤ has as its component at an object
~y = (y, y�) of (x # C) the cell

(�⇤)~y := (1y, y� ⇤0 �).

With this definition the naturality condition for natural transformations
of !-categories is straightforward.

Dimension n > 2: Given parallel (n � 1)-cells ↵ and � in C (bounded by
v and x, respectively, at dimension 0), and a n-cell ' : ↵ // �, the
component of the induced transformation '⇤ : ↵⇤ // �⇤ at an object ~y
of (x # C) is given by (1y, y� ⇤ '). This clearly satisfies the naturality
condition.

!-GROUPOID INTERPRETATION 43

This process is clearly functorial (since it is just given by precomposition).

B.2. Description of the coend inclusions. We now turn to the description
of the coend inclusion functors ◆x : (x # C)⇥Ax

//
R
A, for A : C //!-Cat. Again,

◆x is given by an inductive construction where we must verify certain equations at
each stage. We will begin with the first few dimensions and then we will explain
precisely the conditions of the induction.

0-Cells: A 0-cell of (x # C) ⇥ Ax is a tuple ~y = (y, y�, yo) such that y is a
0-cell of C, y� is a 1-cell y� : x // y in C, and yo is an object of Ax. We
define

◆x(~y) := (y, yo · y�).

So, in particular, ◆x(~y)� = yo · y�.
Now, given two 0-cells ~y and ~z of (x # C)⇥ Ax we have the weighted

boundary functors @~y,~z(�) (for (x # C)) and d◆
x

(~y),◆
x

(~z)(�) (for
R
A).

These two functors are moreover related by the law

d◆
x

(~y),◆
x

(~z)(�) = yo · @~y,~z(�)(B.1)

since

d◆
x

(~y),◆
x

(~z)(�) = yo · y� ·� = yo · (� ⇤0 y�) = yo · @~y,~z(�).

1-Cells: A 1-cell ~f : ~y // ~z of (x # C) ⇥ Ax is a tuple ~f = (f, f�, fo) such
that f is a 1-cell f : y // z in C, f� : @~y,~z(f) // z� is a 2-cell in C,
and fo : yo // zo is a 1-cell in Ax. Then ◆x(~f) is defined to be the pair
(f, ◆x(~f)�) where ◆x(~f)� is the 1-cell

d◆
x

(~y),◆
x

(~z)(f) yo · @~y,~z(f)yo · @~y,~z(f) yo · z�
y
o

·f�
// yo · z� zo · z�,

f
o

·z�
//

where the equation is by (B.1). I.e.,

◆x(~f)� := (fo · z�) ⇤0 (yo · f�).

Now, before moving on to the next stage we observe that, for 1-cells ~f,~g
of (x # C) ⇥ Ax, the following equation relating the weighted boundary
functors holds:

d
◆
x

(~f),◆
x

(~g)
(�) = (go · z�) ⇤0 (yo · @~f,~g(�)),(B.2)

since

d
◆
x

(~f),◆
x

(~g)
(�) = ◆x(~g)� ⇤0 d◆

x

(~y),◆
x

(~z)(�)

=
�
(go · z�) ⇤0 (yo · g�)

�
⇤0

�
yo · @~y,~z(�)

�

= (go · z�) ⇤0
�
yo · (g� ⇤1 @~y,~z(�))

�

= (go · z�) ⇤0 (yo · @~f,~g(�)),

where the first equation is by definition of @◆
x

(~f),◆
x

(~g)(�), the second equa-

tion is by (B.1), the third equation is by associativity of ⇤0 and functori-
ality of A, and the fourth equation is by definition of @~f,~g(�).

44 M. A. WARREN

2-Cells: A 2-cell ~↵ : ~f //~g in (x # C)⇥Ax consists of a tuple ~↵ = (↵,↵�,↵o)
such that ↵ : f // g is a 2-cell in C, ↵� is a 3-cell ↵� : f� // @~f,~g(↵) in
C, and ↵o is a 2-cell ↵o : fo // go in Ax. Then ◆x(~↵) is a pair (↵, ◆x(~↵)�)
where ◆x(~↵)� is the 2-cell

◆x(~f)�

(fo · z�) ⇤0 (yo · f�)(fo · z�) ⇤0 (yo · f�) (go · z�) ⇤0
�
yo · @~f,~g(↵)

�
.

(↵
o

·z�)⇤0(yo

·↵�)
// (go · z�) ⇤0

�
yo · @~f,~g(↵)

�
.

d
◆
x

(~f),◆
x

(~g)
(↵)

I.e.,

◆x(~↵)� := (↵o · z�) ⇤0 (yo · ↵�).

Again, for 2-cells ~↵ and ~� of (x # C)⇥Ax, there is an equation

d
◆
x

(~↵),◆
x

(~�)
(�) = (↵o · z�) ⇤0 (yo · @~↵,~�(�))(B.3)

relating the weighted boundary functors. This equation is obtained as
follows:

d
◆
x

(~↵),◆
x

(~�)
(�) = d

◆
x

(~f),◆
x

(~g)
(�) ⇤1 ◆x(~↵)�

=
�
(go · z�) ⇤0 (yo · @~f,~g(�)

�
⇤1

�
(↵o · z�) ⇤0 (yo · ↵�)

�

= (↵o · z�) ⇤0
�
yo · (@~f,~g(�) ⇤2 ↵�)

�

= (↵o · z�) ⇤0 (yo · @~↵,~�(�)),

where the penultimate equation is by the interchange law and functoriality
of A.

3-Cells: A 3-cell ~' : ~↵ // ~� of (x # C)⇥Ax is a tuple ~' = (','�,'o) such
that ' : ↵ // � is a 3-cell in C, '� is a 4-cell '� : @~↵,~�(')

// �� in C,
and 'o : ↵o

// �o is a 3-cell in Ax. Then ◆x(~') is the pair (', ◆x(~')�)
where ◆x(~')� is the 3-cell

d
◆
x

(~↵),◆
x

(~�)
(')

(↵o · z�) ⇤0 (yo · @~↵,~�('))(↵o · z�) ⇤0 (yo · @~↵,~�(')) (�o · z�) ⇤0 (yo · ��).
('

o

·z�)⇤0(yo

·'�)
// (�o · z�) ⇤0 (yo · ��).

◆x(~�)�

in Az. I.e.,

◆x(~')� := ('o · z�) ⇤0 (yo · '�).

Now, given two 3-cells ~', ~ : ~↵ // ~� in (x # C)⇥Ax, we have the equation

d
◆
x

(~'),◆
x

(~)
(�) = (o · z�) ⇤0 (yo · @~',~ (�)),(B.4)

since

d
◆
x

(~'),◆
x

(~)
(�) = ◆x(~)� ⇤2 d◆

x

(~↵),◆
x

(~�)
(�)

=
�
(o · z�) ⇤0 (yo · �)

�
⇤2

�
(↵o · z�) ⇤0 (yo · @~↵,~�(�))

�

= (o · z�) ⇤0
�
yo · (� ⇤3 @~↵,~�(�))

�

= (o · z�) ⇤0 (yo · @~',~ (�))

!-GROUPOID INTERPRETATION 45

Indeed, as suggested by these cases, we define at all subsequent stages of the con-
struction

◆x(~⇠)� := (⇠o · z�) ⇤0 (yo · ⇠�),(B.5)

and that we must verify that the equation

d
◆
x

(~⇠),◆
x

(~⇣)
(�) = (⇣o · z�) ⇤0 (yo · @~⇠,~⇣(�)(B.6)

holds. However, the verification that this equation holds generalizes directly from
the cases of dimensions 2 and 3 given above (since the definitions of d and @ also
generalize directly from these cases). That ◆x is functorial is straightforward and is
left to the reader.

The functors ◆x, for x an object of C, constitute a dinatural transformation
(� # C)⇥A� //

R
A in the sense that, for any l,m : v // x in C and any n-cell '

bounded by l and m (including the degenerate case where l = m = '), the diagram

(x # C)⇥Av (v # C)⇥Av

l⇤⇥A
v

**

(x # C)⇥Av

(x # C)⇥Ax

(x#C)⇥A
l

��

(x # C)⇥Av (v # C)⇥Av

m⇤⇥A
v

44
(x # C)⇥Av

(x # C)⇥Ax

(x#C)⇥A
m

��

(v # C)⇥Av

R
A

◆
v

✏✏

(x # C)⇥Ax

R
A

◆
x

//

'⇤⇥A
v

(x#C)⇥A
'

in !-Cat commutes. To see this note that, for 0-cells ~y = (y, y�, yo) of (x # C)⇥Av,

◆v � (l⇤ ⇥Av)(~y) = (y, yo · (y� ⇤0 l)) = (y, yo · l · y�) = ◆x � ((x # C)⇥Al)(~y),

and, for ~' any higher dimensional cell bounded by 0-cells ~y and ~z, we have

◆v � (l⇤ ⇥Av)(~') =
�
', ('o · (z� ⇤0 l)) ⇤0 (yo · ('� ⇤0 l))

�

=
�
', ('o · l · z�) ⇤0 (yo · l · '�)

�

= ◆x � ((x # C)⇥Al)(~').

B.3. Verification of the universal property. We will now show that the
◆� constitute the universal dinatural transformation of this form. I.e., we prove that
if A is any !-category together with a family of dinatural transformations (in the !-
categorical sense of a !-categorical natural transformation) ⇠ : (� # C)⇥A� //A,
then there exists a canonical functor (of !-categories) F :

R
A // A such that

(x # C)⇥Ax

R
A

◆
x //(x # C)⇥Ax

A⇠
x //

R
A

A

F

✏✏

(B.7)

commutes for every object x of C. The construction of F is a fairly involved
induction on dimension. In particular, we will need to construct, for each pair of
n-cells ~↵, ~�, auxiliary functors [~↵,~�(�,�) and]~↵,~�(�) (the domains and codomains

46 M. A. WARREN

of these functors will be clear from the description given below). Moreover, we will
prove at each stage that

]~↵,~�(d~↵,~�(�)) =

(
[~↵,~�(�,�) if n is even, and

[~↵,~�(↵,�) if n is odd.

Additionally, we will require that at even stages F (~↵) = [~↵,~�(↵, 1↵) and F (~�) =
]~↵,~�(��), and that the dual equations hold at odd stages. The final fact we require
is that, as arrows in (y # C), if ' : ↵ // � is an n-cell in C (bounded by 0-cells
x and y), then (', 1') : (↵, 1↵) // (�,') when n is odd. Similarly, when n is
even, (', 1') : (↵,') // (�, 1�). This last fact is a straightfoward induction, using
the definition of the !-category (y # C). The second condition will be trivially
satisfied by definition in each case and therefore we omit explicit mention of it in
the construction below. We will also omit the proof of functoriality of the auxiliary
functors as this is also straightforward.

We describe F as follows:

0-Cells: Given a 0-cell ~x = (x, x�) of
R
A, we define

F (~x) := ⇠x(x, 1x, x�).

For 0-cells ~x, ~y, we define

[~x,~y(�,�) := ⇠x(�,�, x�), and

]~x,~y(�) := ⇠y(y, 1y,�).

Then we have

]~x,~y(d~x,~y(�)) = ⇠y(y, 1y, x� ·�)

= ⇠y � ((y # C)⇥A�)(y, 1y, x�)

= ⇠x � (�⇤ ⇥Ax)(y, 1y, x�)

= ⇠x(y,�, x�)

= [~x,~y(y,�),

where the third equation is by dinaturality of ⇠.
(n+ 1)-Cells for (n+ 1) odd: Given a (n + 1)-cell ~' = (','�) : ~↵ // ~�,

we define F (~') : F (~↵) // F (~�) as the following composite

F (~↵)

[~↵,~�(↵, 1↵)[~↵,~�(↵, 1↵) [~↵,~�(�,')
[
~↵,

~

�

(',1
'

)
// [~↵,~�(�,')]~↵,~�(d~↵,~�('))]~↵,~�(d~↵,~�('))]~↵,~�(��)

]
~↵,

~

�

('�)
//]~↵,~�(��)

F (~�)

I.e.,

F (~') :=]~↵,~�('�) ⇤n [~↵,~�(', 1').

Now, given parallel (n+ 1)-cells ~', ~ : ~↵ // ~� we define

[~',~ (�,�) :=]~↵,~�(�) ⇤n [~↵,~�(�,�)

]~',~ (�) :=]~↵,~�(�) ⇤n [~↵,~�(', 1').

!-GROUPOID INTERPRETATION 47

With this definition, we observe that

]~',~ (d~',~ (�)) =]~',~ (� ⇤n d
~↵,~�

(�))

=]~↵,~�(� ⇤n d
~↵,~�

(�)) ⇤n [~↵,~�(', 1')

=]~↵,~�(�) ⇤n [~↵,~�(�,�) ⇤n [~↵,~�(', 1')
=]~↵,~�(�) ⇤n [~↵,~�(',�)

= [~↵,~�(',�),

where the third equation is by functoriality and the corresponding equa-
tion for]~↵,~�(�).

(n+ 1)-Cells for (n+ 1) even: Given a (n + 1)-cell ~' : ~↵ // ~� we define
F (~') to be the composite

F (~↵)

]~↵,~�(↵�)]~↵,~�(↵�)]~↵,~�(d~↵,~�('))
]
~↵,

~

�

('�)
//]~↵,~�(d~↵,~�(')) [~↵,~�(↵,')[~↵,~�(↵,') [~↵,~�(�, 1�)

[
~↵,

~

�

(',1
'

)
// [~↵,~�(�, 1�)

F (~�)

I.e.,

F (~') := [~↵,~�(', 1') ⇤n]~↵,~�('�).

Finally, for parallel (n+ 1)-cells ~', ~ : ~↵ // ~� we define

[~',~ (�,�) := [~↵,~�(�,�) ⇤n]~↵,~�('�), and

]~',~ (�) := [~↵,~�(, 1) ⇤n]~↵,~�(�).

The verification that the corresponding equation holds is by an argument
dual to the one for the case of (n+ 1) odd given above.

Next, we will prove inductively that F makes the diagram (B.7) commute. The
key point which will allow us to prove this fact is that the action of the functor
F has a simplified description for those cells of

R
A in the image of ◆x. (To prove

the uniqueness of F we will in fact show that all cells of
R
A occur as composites

of cells in the images of the ◆x, but more on this later.) In order to explain this it
will be convenient to again introduce additional auxiliary operations }~↵,~�(~') and

|~↵,~�(~') at each stage of the proof which are indexed by parallel n-cells ~↵, ~� of
(x # C) ⇥ Ax and which act on m-cells ~' of (x # C) ⇥ Ax for m � n. We will also
prove that these auxiliary functions interact in an appropriate way with each other
and with]◆

x

(~↵),◆
x

(~�)(�) and [◆
x

(~↵),◆
x

(~�)(�,�). These matters are described below
in the proof.

0-Cells: Given ~y = (y, y�, yo) in (x # C)⇥Ax, we have

F � ◆x(~y) = F (y, yo · y�) = ⇠y(y, y, yo · y�) = ⇠x(y, y�, yo),

where the final equation is by dinaturality of the ⇠.
Given two 0-cells ~y and ~z, and a n-cell ~' bounded by ~y and ~z, respec-

tively, we define

|~y,~z(~') := ⇠x(z,'�, yo), and

}~y,~z(~') := ⇠x(↵,↵ ⇤0 y�, yo),

48 M. A. WARREN

and we observe that

]◆
x

(~y),◆
x

(~z)

�
◆x(~')�

�
= ⇠x(z, z�,'o) ⇤0 |~y,~z(~'), and(B.8)

[◆
x

(~y),◆
x

(~z)(',') = }~y,~z(~').(B.9)

To see that these equations hold we reason as follows:

]◆
x

(~y),◆
x

(~z)

�
◆x(~')�

�
= ⇠z(z, z, ('o · z�) ⇤0 (yo · '�))

= ⇠z(z, z,'o · z�) ⇤0 ⇠z(z, z, yo · '�)

= ⇠x(z, z�,'o) ⇤0 ⇠x(z,'�, yo),

where the final equation is by dinaturality of ⇠, and similarly

[◆
x

(~y),◆
x

(~z)(',') = ⇠y(',', yo · y�)
= ⇠x(',' ⇤0 y�, yo)

where the final equation is by dinaturality of ⇠.
We also note that, by definition,

|~y,~z(~') ⇤0 }~y,~z(~') = ⇠x(f, f�, yo)

1-Cells: Given ~f = (f, f�, fo) : ~y // ~z in (x # C)⇥Ax, we have

F � ◆x(~f) =]◆
x

(~y),◆
x

(~z)

�
◆x(~f)�

�
⇤0 [◆

x

(~y),◆
x

(~z)(f, f)

= ⇠x(z, z�, fo) ⇤0 |~y,~z(~f) ⇤0 }~y,~z(~f)
= ⇠x(z, z�, fo) ⇤0 ⇠x(f, f�, yo)
= ⇠x(f, f�, fo).

where the second equation is by (B.8) and (B.9).
Now, given parallel 1-cells ~f,~g : ~y // ~z, we define

|~f,~g(~') := |~y,~z(~g) ⇤0 }~y,~z(~'), and

}~f,~g(~') := |~y,~z(~') ⇤0 }~y,~z(~f),

and we observe that

]◆
x

(~f),◆
x

(~g)

�
◆x(~')�

�
= ⇠x(z, z�,'o) ⇤0 }~f,~g(~'), and(B.10)

[◆
x

(~f),◆
x

(~g)(',') = ⇠x(z, z�, go) ⇤0 |~f,~g(~').(B.11)

The proof that these equations hold is immediate from the definition to-
gether with (B.8) and (B.9). Similarly, we also have that

|~f,~g(~') ⇤1 }~f,~g(~') = ⇠x(','�, yo).

2-Cells: Given ~↵ = (↵,↵�,↵o) : ~f // ~g in (x # C)⇥Ax we have

F � ◆x(~↵) = [◆
x

(~f),◆
x

(~g)(↵,↵) ⇤1]◆
x

(~f),◆
x

(~g)

�
◆x(~↵)�

�

=
�
⇠x(z, z�, go) ⇤0 |~f,~g(~↵)

�
⇤1

�
⇠x(z, z�,↵o) ⇤0 }~f,~g(~↵)

�

= ⇠x(z, z�,↵o) ⇤0 (|~f,~g(~↵) ⇤1 |~f,~g(~↵))

= ⇠x(z, z�,↵o) ⇤0 ⇠x(↵,↵�, yo)

= ⇠x(~↵),

where the first equation is (B.10) and (B.11).

!-GROUPOID INTERPRETATION 49

This calculation can be visualized as follows:

(y, y�, yo) (z, f ⇤0 y�, yo)
(f,f⇤0y�,y

o

)
// (z, f ⇤0 y�, yo)

(z, g ⇤0 y�, yo)

(z,↵⇤0y�,y
o

)

✏✏

(y, y�, yo)

(z, g ⇤0 y�, yo)
(g,g⇤0y�,y

o

)
++

(↵,↵⇤0y�,y
o

)↵◆

(z, f ⇤0 y�, yo) (z, z�, yo)
(z,f�,y

o

)
//

(z, g ⇤0 y�, yo)

(z, z�, yo)

(z,g�,y
o

)

@@

(z,↵�,y
o

)↵◆

(z, z�, yo)

(z, z�, zo)

(z,z�,f
o

)

✏✏

(z, z�, yo)

(z, z�, zo)(z,z�,g
o

) //

(z,z�,↵
o

)↵◆

=

(y, y�, yo) (z, z�, yo)

(f,f�,y
o

)

))

(y, y�, yo) (z, z�, yo)

(g,g�,y
o

)

55
(↵,↵�,y

o

)↵◆ (z, z�, yo) (z, z�, zo).

(z,z�,f
o

)

))

(z, z�, yo) (z, z�, zo).

(z,z�,f
o

)

55
(z,z�,↵

o

)↵◆

Now, given parallel 2-cells ~↵, ~� : ~f // ~g we define

|~↵,~�(~') := |~f,~g(
~�) ⇤1 }~f,~g(~'), and

}~↵,~�(~') := |~f,~g(~') ⇤1 }~f,~g(~↵).

It then follows that

[◆
x

(~↵),◆
x

(~�)(',') = ⇠x(z, z�,↵o) ⇤0 }~↵,~�(~'),(B.12)

]◆
x

(~↵),◆
x

(~�)

�
◆x(~')�

�
= ⇠x(z, z�,'o) ⇤0 |~↵,~�(~').,(B.13)

and that

|~↵,~�(~') ⇤2 }~↵,~�(~') = ⇠x(','�, yo).

All three of these equations are easily verified using the corresponding
equations for |~f,~g and }~f,~g.

We now describe the general structure of the inductive proof. At each stage (n+1)
we will prove that F � ◆x(~') = ⇠x(~'), for ~' a (n + 1)-cell. We will also define, for
parallel (n+ 1)-cells ~', ~ : ~↵ // ~�, Next, given parallel (n+ 1)-cells ~', ~ : ~↵ // ~�
we define

|~',~ (~�) := |~↵,~�(
~) ⇤n }~↵,~�(~�)

}~',~ (~�) := |~↵,~�(~�) ⇤n }~↵,~�(~'),

|~',~ and we will prove the corresponding equations:

[◆
x

(~'),◆
x

(~)(�, �) =

8
><

>:

⇠x(z, z�,'o) ⇤0 }~',~ (~�) for (n+ 1) even,

⇠x(z, z�, o) ⇤0 |~',~ (~�) for (n+ 1) odd,

and

]◆
x

(~'),◆
x

(~)

�
◆x(~�)�

�
=

8
><

>:

⇠x(z, z�, �o) ⇤0 |~',~ (~�) for (n+ 1) even,

⇠x(z, z�, �o) ⇤0 }~',~ (~�) for (n+ 1) odd.

50 M. A. WARREN

Finally, we will show at each stage that

|~',~ (~�) ⇤(n+1) }~',~ (~�) = ⇠x(�, ��, yo).

We now turn to the proof.

(n+ 1)-Cells for (n+ 1) odd: Given a (n+ 1)-cell ~' : ~↵ // ~� we have

F � ◆x(~') =]◆
x

(~↵),◆
x

(~�)

�
◆x(~')�

�
⇤n [◆

x

(~↵),◆
x

(~�)(',')

=
�
⇠x(z, z�,'o) ⇤0 |~↵,~�(~')

�
⇤n

�
⇠x(z, z�,↵o) ⇤0 }~↵,~�(~')

�

= ⇠x(z, z�,'o) ⇤0
�
|~↵,~�(~') ⇤n }~↵,~�(~')

�

= ⇠x(~').

Next, given parallel (n+1)-cells ~', ~ : ~↵ // ~�, we prove that the required
equations hold as follows:

[◆
x

(~'),◆
x

(~)(�, �) =]◆
x

(~↵),◆
x

(~�)

�
◆x(~)�

�
⇤n [◆

x

(~↵),◆
x

(~�)(�, �)

=
�
⇠x(z, z�, �o) ⇤0 |~↵,~�(~�)

�
⇤n

�
⇠x(z, z�,'o) ⇤0 }~↵,~�(~�)

�

= ⇠x(z, z�, �o) ⇤0
�
|~↵,~�(~�) ⇤n }~↵,~�(~�)

�

= ⇠x(~�),

where we have used the equations given by the induction hypothesis. Sim-
ilarly, we see that

|~',~ (~�) ⇤n+1 }~',~ (~�) = ⇠x(�, ��, yo).

(n+ 1)-Cells for (n+ 1) even: The calculations here are dual (in the ap-
propriate sense) to those for the odd case and are left to the reader.

This completes the proof of the following lemma:

Lemma B.1. With the definition of F given above, (B.7) commutes.

Finally, in order to show that F is the canonical functor
R
A // A making

(B.7) commute, we will prove that every cell of
R
A can be written as a composite

of cells in the image of the maps ◆x. The construction of this decomposition of
the cells of

R
A, which is again by induction on dimension, involves constructing

auxiliary operations (which mimic [and]) and then proving that these satisfy
suitable equations.

0-Cells: Given a 0-cell ~x = (x, x�) in
R
A we have that

~x = ◆x(x, x, x�).

Given 0-cells ~x and ~y and a (n+1)-cell ~' bounded by ~x and ~y in
R
A, we

define

[̂~x,~y(~') := ◆x(',', x�), and

]̂~x,~y(~') := ◆y(y, y,'�).

We observe that we have the equations

[̂~x,~y(~') = (', d~x,~y(')), and

]̂~x,~y(~') = (y,'�),

!-GROUPOID INTERPRETATION 51

since

◆x(�,�, x�)� = (x� ·�) ⇤0 (x� ·�) = x� ·� = d~x,~y(�),

and the first equation is trivial by definition of ◆y(y, y,�).

1-Cells: Given ~f = (f, f�) : ~x // ~y we have

◆y(y, y, f�) ⇤0 ◆x(f, f, x�) = ~f.

by the equations above (since d~x,~y(f) is the domain of f�).

Next, given parallel ~f,~g : ~x // ~y in
R
A, we define

[̂~f,~g(~') :=]̂~x,~y(~g) ⇤0 [̂~x,~y(~'), and

]̂~f,~g(~') :=]̂~x,~y(~') ⇤0 [̂~x,~y(~f).

Now, we also have the equations

[̂~f,~g(~') = (', d~f,~g(')), and

]̂~f,~g(~') = (f,'�),

as the reader may readily verify.

We may now describe the general inductive construction. Explicitly, for parallel
(n+ 1)-cells ~', ~ : ~↵ // ~�, we define

[̂~',~ (~�) :=

(
]̂~↵,~�(

~) ⇤n [̂~↵,~�(~�) for (n+ 1) odd, and

[̂~↵,~�(~�) ⇤n]̂~↵,~�(~') for (n+ 1) even,

and

]̂~',~ (~�) :=

(
]̂~↵,~�(~�) ⇤n [̂~↵,~�(~') for (n+ 1) odd, and

[̂~↵,~�(
~) ⇤n]̂~↵,~�(~�) for (n+ 1) even.

We note that with these definitions one easily proves by induction that the equations

[̂~',~ (~�) = (�, d
~',~

(�)), and

]̂~',~ (~�) = (', ��)

hold. So, if ~� : ~' // ~ is any (n+ 1)-cell of
R
A, then

~� =]̂~',~ (~�) ⇤n [̂~',~ (~�).

Therefore, since each cell of the form [̂~',~ (~�) or]̂~',~ (~�) is by construction a compos-

ite of cells in the image of the ◆ it follows that every cell of
R
A can be represented

as a composite of cells in the image of the ◆ and therefore F is the canonical mapR
A // A making (B.7) commute. This completes the proof of the following:

Theorem B.2. Given a functor A : C //!-Cat of !-categories, the Grothendieck

construction

R
A described in Section 3 is the coend

R x
(x # C)⇥Ax.

52 M. A. WARREN

References

1. S. Awodey, P. Hofstra, and M. A. Warren, Martin-Löf Complexes, Submitted for publication.
Preprint available on the arXiv as 0906.4521 (math.LO), 2009.

2. S. Awodey and M. A. Warren, Homotopy theoretic models of identity types, Math. Proc.
Camb. Phil. Soc. 146 (2009), 45–55.

3. M. A. Batanin, Monoidal globular categories as a natural environment for the theory of weak

n-categories, Adv. Math. 136 (1998), no. 1, 39–103.
4. B. van den Berg and R. Garner, Types are weak !-groupoids, submitted for publication.

Preprint available on the arXiv as 0812.0298 (math.LO), 2009.
5. P. Dybjer, Internal type theory, Proc. BRA TYPES workshop, Torino, June 1995 (Berlin),

Lecture Notes in Comput. Sci., vol. 1158, Springer-Verlag, 1996.
6. N. Gambino and R. Garner, The identity type weak factorization system, Theoret. Comput.

Sci. 409 (2008), no. 1, 94–109.
7. R. Garner, Two-dimensional models of type theory, Math. Structures Comput. Sci. 19 (2009),

no. 04, 687–736.
8. C. Hermida, Some properties of Fib as a fibred 2-category, J. Pure Appl. Algebra 134 (1999),

no. 1, 83–109.
9. M. Hofmann, Syntax and semantics of dependent types, Semantics and Logics of Computation

(P. Dybjer and A. M. Pitts, eds.), Publications of the Newton Institute, Cambridge University
Press, Cambridge, 1997, pp. 79–130.

10. M. Hofmann and T. Streicher, The groupoid interpretation of type theory, Twenty-Five Years
of Constructive Type Theory (G. Sambin and J. Smith, eds.), Oxford Logic Guides, vol. 36,
Oxford University Press, Oxford, 1998, pp. 83–111.

11. B. Jacobs, Categorical logic and type theory, Elsevier, Amsterdam, 1999.
12. M. M. Kapranov and V. A. Voevodsky, 1-groupoids and homotopy types, Cah. Topol. Géom.

Di↵ér. Catég. 32 (1991), no. 1, 29–46.
13. Y. Lafont, F. Métayer, and K. Worytkiewicz, A folk model structure on omega-cat, Accepted

for publication in Adv. Math. Preprint available on the arXiv as arXiv:0712.0617 (math.CT),
2007.

14. F. W. Lawvere, Adjointness in foundations, Repr. Theory Appl. Categ. (2006), no. 16, Orig-
inally published in Dialectica, 23, 1969.

15. T. Leinster, Higher operads, higher categories, London Math. Soc. Lecture Note Ser., no. 298,
Cambridge University Press, Cambridge, 2004.

16. P. L. Lumsdaine, Weak !-categories from intensional type theory, Typed Lambda Calculi
and Applications (P.-L. Curien, ed.), Lecture Notes in Computer Science, vol. 5608, Springer
Berlin / Heidelberg, 2009, journal version to appear, pp. 172–187.

17. P. Martin-Löf, An intuitionistic theory of types: predicative part, Logic Colloquium ’73 (Am-
sterdam) (H. E. Rose and J. C. Shepherdson, eds.), North-Holland, 1975, pp. 73–118.

18. F. Métayer, Resolutions by polygraphs, Theory Appl. Categ. 11 (2003), no. 7, 148–184.
19. I. Moerdijk and J.-A. Svensson, Algebraic classification of equivariant homotopy 2-types, I,

J. Pure Appl. Algebra 89 (1993), 187–216.
20. B. Nordström, K. Petersson, and J. M. Smith, Programming in Martin-Löf ’s type theory. An

introduction, Oxford University Press, 1990.
21. T. Palm, Categories with slicing, Theory Appl. Categ. 22 (2009), no. 5, 97–135.
22. R. Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987), 283–335.
23. , The petit topos of globular sets, J. Pure Appl. Algebra 154 (2000), 299–315.
24. T. Streicher, Semantics of type theory, Prog. Theor. Comput. Sci., Birkhauser, Basel, 1991.
25. , Investigations into intensional type theory, Habilitationsschrift, Ludwig-Maximilians-

Universität München, November 1993.
26. D. Verity, Complicial sets characterising the simplicial nerves of strict !-categories, vol. 193,

Mem. Amer. Math. Soc., no. 905, American Mathematical Society, Providence, RI, 2008.
27. M. A. Warren, Homotopy theoretic aspects of constructive type theory, Ph.D. thesis, Carnegie

Mellon University, Pittsburgh, USA, 2008.
28. , A characterization of representable intervals, Submitted for publication. Preprint

available on the arXiv as 0903.3743 (math.CT)., 2009.

!-GROUPOID INTERPRETATION 53

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward
Ave., Ottawa, Ontario, K1N 6N5 Canada

E-mail address: mwarren@uottawa.ca

