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Abstract

Category theorists invented monads in the 1960’s to concisely express certain
aspects of universal algebra. Functional programmers invented list comprehensions
in the 1970’s to concisely express certain programs involving lists. This paper shows
how list comprehensions may be generalised to an arbitrary monad, and how the
resulting programming feature can concisely express in a pure functional language
some programs that manipulate state, handle exceptions, parse text, or invoke con-
tinuations. A new solution to the old problem of destructive array update is also
presented. No knowledge of category theory is assumed.

1 Introduction

Is there a way to combine the indulgences of impurity with the blessings of purity?
Impure, strict functional languages such as Standard ML [Mil84, HMT88] and Scheme

[RC86] support a wide variety of features, such as assigning to state, handling exceptions,
and invoking continuations. Pure, lazy functional languages such as Haskell [HPW91] or
Miranda1 [Tur85] eschew such features, because they are incompatible with the advan-
tages of lazy evaluation and equational reasoning, advantages that have been described
at length elsewhere [Hug89, BW88].

Purity has its regrets, and all programmers in pure functional languages will recall
some moment when an impure feature has tempted them. For instance, if a counter is
required to generate unique names, then an assignable variable seems just the ticket. In
such cases it is always possible to mimic the required impure feature by straightforward
though tedious means. For instance, a counter can be simulated by modifying the relevant
functions to accept an additional parameter (the counter’s current value) and return an
additional result (the counter’s updated value).

1Miranda is a trademark of Research Software Limited.

Author’s address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland. Elec-
tronic mail: wadler@cs.glasgow.ac.uk.

This paper appeared in Mathematical Structures in Computer Science volume 2, pp. 461–493, 1992; copy-
right Cambridge University Press. This version corrects a few small errors in the published version. An
earlier version appeared in ACM Conference on Lisp and Functional Programming, Nice, June 1990.
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This paper describes a new method for structuring pure programs that mimic impure
features. This method does not completely eliminate the tension between purity and
impurity, but it does relax it a little bit. It increases the readability of the resulting
programs, and it eliminates the possibility of certain silly errors that might otherwise
arise (such as accidentally passing the wrong value for the counter parameter).

The inspiration for this technique comes from the work of Eugenio Moggi [Mog89a,
Mog89b]. His goal was to provide a way of structuring the semantic description of features
such as state, exceptions, and continuations. His discovery was that the notion of a monad
from category theory suits this purpose. By defining an interpretation of λ-calculus in
an arbitrary monad he provided a framework that could describe all these features and
more.

It is relatively straightforward to adopt Moggi’s technique of structuring denotational
specifications into a technique for structuring functional programs. This paper presents a
simplified version of Moggi’s ideas, framed in a way better suited to functional program-
mers than semanticists; in particular, no knowledge of category theory is assumed.

The paper contains two significant new contributions.
The first contribution is a new language feature, the monad comprehension. This

generalises the familiar notion of list comprehension [Wad87], due originally to Burstall
and Darlington, and found in KRC [Tur82], Miranda, Haskell and other languages. Monad
comprehensions are not essential to the structuring technique described here, but they do
provide a pleasant syntax for expressing programs structured in this way.

The second contribution is a new solution to the old problem of destructive array
update. The solution consists of two abstract data types with ten operations between
them. Under this approach, the usual typing discipline (e.g., Hindley-Milner extended
with abstract data types) is sufficient to guarantee that array update may safely be
implemented by overwriting. To my knowledge, this solution has never been proposed
before, and its discovery comes as a surprise considering the plethora of more elaborate
solutions that have been proposed: these include syntactic restrictions [Sch85], run-time
checks [Hol83], abstract interpretation [Hud86a, Hud86b, Blo89], and exotic type systems
[GH90, Wad90, Wad91]. That monads led to the discovery of this solution must count as
a point in their favour.

Why has this solution not been discovered before? One likely reason is that the data
types involve higher-order functions in an essential way. The usual axiomatisation of
arrays involves only first-order functions (index , update, and newarray , as described in
Section 4.3), and so, apparently, it did not occur to anyone to search for an abstract data
type based on higher-order functions. Incidentally, the higher-order nature of the solution
means that it cannot be applied in first-order languages such as Prolog or OBJ. It also
casts doubt on Goguen’s thesis that first-order languages are sufficient for most purposes
[Gog88].

Monads and monad comprehensions help to clarify and unify some previous proposals
for incorporating various features into functional languages: exceptions [Wad85, Spi90],
parsers [Wad85, Fai87, FL89], and non-determinism [HO89]. In particular, Spivey’s work
[Spi90] is notable for pointing out, independently of Moggi, that monads provide a frame-
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work for exception handling.
There is a translation scheme from λ-calculus into an arbitrary monad. Indeed, there

are two schemes, one yielding call-by-value semantics and one yielding call-by-name.
These can be used to systematically transform languages with state, exceptions, continu-
ations, or other features into a pure functional language. Two applications are given. One
is to derive call-by-value and call-by-name interpretations for a simple non-deterministic
language: this fits the work of Hughes and O’Donnell [HO89] into the more general frame-
work given here. The other is to apply the call-by-value scheme in the monad of continu-
ations: the result is the familiar continuation-passing style transformation. It remains an
open question whether there is a translation scheme that corresponds to call-by-need as
opposed to call-by-name.

A key feature of the monad approach is the use of types to indicate what parts of
a program may have what sorts of effects. In this, it is similar in spirit to Gifford and
Lucassen’s effect systems [GL88].

The examples in this paper are based on Haskell [HPW91], though any lazy functional
language incorporating the Hindley/Milner type system would work as well.

The remainder of this paper is organised as follows. Section 2 uses list comprehensions
to motivate the concept of a monad, and introduces monad comprehensions. Section 3
shows that variable binding (as in “let” terms) and control of evaluation order can be
modelled by two trivial monads. Section 4 explores the use of monads to structure pro-
grams that manipulate state, and presents the new solution to the array update problem.
Two examples are considered: renaming bound variables, and interpreting a simple im-
perative language. Section 5 extends monad comprehensions to include filters. Section 6
introduces the concept of monad morphism and gives a simple proof of the equivalence of
two programs. Section 7 catalogues three more monads: parsers, exceptions, and continu-
ations. Section 8 gives the translation schemes for interpreting λ-calculus in an arbitrary
monad. Two examples are considered: giving a semantics to a non-deterministic language,
and deriving continuation-passing style.

2 Comprehensions and monads

2.1 Lists

Let us write M x for the data type of lists with elements of type x . (In Haskell, this is
usually written [x ].) For example, [1 , 2 , 3 ] :: M Int and [‘a’, ‘b’, ‘c’] :: M Char . We write
map for the higher-order function that applies a function to each elment of a list:

map :: (x → y) → (M x → M y).

(In Haskell, type variables are written with small letters, e.g., x and y , and type construc-
tors are written with capital letters, e.g., M .) For example, if code :: Char → Int maps a
character to its ASCII code, then map code [‘a’, ‘b’, ‘c’] = [97 , 98 , 99 ]. Observe that

(i) map id = id ,
(ii) map (g · f ) = map g · map f .
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Here id is the identity function, id x = x , and g · f is function composition, (g · f ) x =
g (f x ).

In category theory, the notions of type and function are generalised to object and
arrow . An operator M taking each object x into an object M x , combined with an
operator map taking each arrow f :: x → y into an arrow map f :: M x → M y , and
satisfying (i) and (ii), is called a functor. Categorists prefer to use the same symbol for
both operators, and so would write M f where we write map f .

The function unit converts a value into a singleton lists, and the function join con-
catenates a list of lists into a list:

unit :: x → M x ,
join :: M (M x ) → M x .

For example, unit 3 = [3 ] and join [ [1 , 2 ], [3 ] ] = [1 , 2 , 3 ]. Observe that

(iii) map f · unit = unit · f ,
(iv) map f · join = join · map (map f ).

Laws (iii) and (iv) may be derived by a systematic transformation of the polymorphic
types of unit and join. The idea of deriving laws from types goes by the slogan “theorems
for free” [Wad89] and is a consequence of Reynolds’ abstraction theorem for polymorphic
lambda calculus [Rey83].

In categorical terms, unit and join are natural transformations. Rather than treat unit
as a single function with a polymorphic type, categorists treat it as a family of arrows,
unitx :: x → M x , one for each object x , satisfying map f ·unitx = unity · f for any objects
x and y and any arrow f :: x → y between them. They treat join similarly. Natural
transformation is a simpler concept than polymorphic function, but we will stick with
polymorphism since it’s a more familiar concept to functional programmers.

2.2 Comprehensions

Many functional languages provide a form of list comprehension analogous to set compre-
hension. For example,

[ (x , y) | x ← [1 , 2 ], y ← [3 , 4 ] ] = [(1 , 3 ), (1 , 4 ), (2 , 3 ), (2 , 4 )].

In general, a comprehension has the form [ t | q ], where t is a term and q is a qualifier. We
use the letters t , u, v to range over terms, and p, q , r to range over qualifiers. A qualifier
is either empty, Λ; or a generator, x ← u, where x is a variable and u is a list-valued
term; or a composition of qualifiers, (p, q). Comprehensions are defined by the following
rules:

(1 ) [ t | Λ ] = unit t ,
(2 ) [ t | x ← u ] = map (λx → t) u,
(3 ) [ t | (p, q) ] = join [ [t |q ] | p ].
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(In Haskell, λ-terms are written (λx → t) rather than the more common (λx . t).) Note
the reversal of qualifiers in rule (3): nesting q inside p on the right-hand side means that,
as we expect, variables bound in p may be used in q but not vice-versa.

For those familiar with list comprehensions, the empty qualifier and the parentheses
in qualifier compositions will appear strange. This is because they are not needed. We
will shortly prove that qualifier composition is associative and has the empty qualifier
as unit. Thus we need not write parentheses in qualifier compositions, since ((p, q), r)
and (p, (q , r)) are equivalent, and we need not write (q ,Λ) or (Λ, q) because both are
equivalent to the simpler q . The only remaining use of Λ is to write [ t | Λ ], which we
abbreviate [ t ].

Most languages that include list comprehensions also allow another form of qualifier,
known as a filter, the treatment of which is postponed until Section 5.

As a simple example, we have:

[ sqr x | x ← [1 , 2 , 3 ] ]
= {by (2 )}

map (λx → sqr x ) [1 , 2 , 3 ]
= {reducing map}

[1 , 4 , 9 ].

The comprehension in the initial example is computed as:

[ (x , y) | x ← [1 , 2 ], y ← [3 , 4 ] ]
= {by (3 )}

join [ [ (x , y) | y ← [3 , 4 ] ] | x ← [1 , 2 ] ]
= {by (2 )}

join [map (λy → (x , y)) [3 , 4 ] | x ← [1 , 2 ] ]
= {by (2 )}

join (map (λx → map (λy → (x , y)) [3 , 4 ]) [1 , 2 ])
= {reducing map}

join (map (λx → [(x , 3 ), (x , 4 )]) [1 , 2 ])
= {reducing map}

join [[(1 , 3 ), (1 , 4 )], [(2 , 3 ), (2 , 4 )]]
= {reducing join}

[(1 , 3 ), (1 , 4 ), (2 , 3 ), (2 , 4 )].

From (i)–(iv) and (1 )–(3 ) we may derive further laws:

(4 ) [ f t | q ] = map f [ t | q ],
(5 ) [ x | x ← u] = u,
(6 ) [ t | p, x ← [u|q ], r ] = [ tu

x | p, q , ru
x ].

In (4 ) function f must contain no free occurrences of variables bound by qualifier q , and
in (6 ) the term tu

x stands for term t with term u substituted for each free occurrence of
variable x , and similarly for the qualifier ru

x . Law (4 ) is proved by induction over the
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structure of qualifiers; the proof uses laws (ii)–(iv) and (1 )–(3 ). Law (5 ) is an immediate
consequence of laws (i) and (2 ). Law (6 ) is again proved by induction over the structure
of qualifiers, and the proof uses laws (1 )–(4 ).

As promised, we now show that qualifier composition is associative and has the empty
qualifier as a unit:

(I ′) [ t | Λ, q ] = [ t | q ],
(II ′) [ t | q , Λ ] = [ t | q ],
(III ′) [ t | (p, q), r ] = [ t | p, (q , r) ].

First, observe that (I ′)–(III ′) are equivalent, respectively, to the following:

(I ) join · unit = id ,
(II ) join · map unit = id ,
(III ) join · join = join · map join.

To see that (II ′) and (II ) are equivalent, start with the left side of (II ′) and simplify:

[ t | q , Λ ]
= {by (3 )}

join [ [ t | Λ] | q ]
= {by (1 )}

join [ unit t | q ]
= {by (4 )}

join (map unit [ t | q ]).

That (II ) implies (II ′) is immediate. For the converse, take [ t | q ] to be [ x | x ← u ] and
apply (5 ). The other two equivalences are seen similarly.

Second, observe that laws (I )–(III ) do indeed hold. For example:

join (unit [1 , 2 ]) = join [[1 , 2 ]] = [1 , 2 ],
join (map unit [1 , 2 ]) = join [[1 ], [2 ]] = [1 , 2 ],

join (join [[[1 ], [2 ]], [[3 ]]]) = join [[1 ], [2 ], [3 ]] = [1 , 2 , 3 ],
join (map join [[[1 ], [2 ]], [[3 ]]]) = join [[1 , 2 ], [3 ]] = [1 , 2 , 3 ].

Use induction over lists to prove (I ) and (II ), and over list of lists to prove (III ).

2.3 Monads

The comprehension notation suits data structures other than lists. Sets and bags are
obvious examples, and we shall encounter many others. Inspection of the foregoing lets
us isolate the conditions under which a comprehension notation is sensible.

For our purposes, a monad is an operator M on types together with a triple of functions

map :: (x → y) → (M x → M y),
unit :: x → M x ,
join :: M (M x ) → M x ,
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satisfying laws (i)–(iv) and (I )–(III ).
Every monad gives rise to a notion of comprehension via laws (1 )–(3 ). The three

laws establish a correspondence between the three components of a monad and the three
forms of qualifier: (1 ) associates unit with the empty qualifier, (2 ) associates map with
generators, and (3 ) associates join with qualifier composition. The resulting notion of
comprehension is guaranteed to be sensible in that it necessarily satisfies laws (4 )–(6 )
and (I ′)–(III ′).

In what follows, we will need to distinguish many monads. We write M alone to stand
for the monad, leaving the triple (mapM , unitM , joinM ) implicit, and we write [ t | q ]M

to indicate in which monad a comprehension is to be interpreted. The monad of lists as
described above will be written List .

As an example, take Set to be the set type constructor, mapSet to be the image of a
set under a function, unitSet to be the function that takes an element into a singleton set,
and joinSet to be the union of a set of sets:

mapSet f x = { f x | x ∈ x }
unitSet x = { x }
joinSet x =

⋃
x .

The resulting comprehension notation is the familiar one for sets. For instance, [ (x , y) |
x ← x , y ← y ]Set specifies the cartesian product of sets x and y .

We can recover unit , map, and join from the comprehension notation:

(1 ′) unit x = [ x ]
(2 ′) map f x = [ f x | x ← x ]
(3 ′) join x = [ x | x ← x , x ← x ].

Here we adopt the convention that if x has type x , then x has type M x and x has type
M (M x ).

Thus not only can we derive comprehensions from monads, but we can also derive
monads from comprehensions. Define a comprehension structure to be any interpretation
of the syntax of comprehensions that satisfies laws (5 )–(6 ) and (I ′)–(III ′). Any monad
gives rise to a comprehension structure, via laws (1 )–(3 ); as we have seen, these imply
(4 )–(6 ) and (I ′)–(III ′). Conversely, any comprehension structure gives rise to a monad
structure, via laws (1 ′)–(3 ′); it is easy to verify that these imply (i)–(iv) and (1 )–(4 ),
and hence (I )–(III ).

The concept we arrived at by generalising list comprehensions, mathematicians arrived
at by a rather different route. It first arose in homological algebra in the 1950’s with
the undistinguished name “standard construction” (sort of a mathematical equivalent of
“hey you”). The next name, “triple”, was not much of an improvement. Finally it was
baptised a “monad”. Nowadays it can be found in any standard text on category theory
[Mac71, BW85, LS86].

The concept we call a monad is slightly stronger than what a categorist means by that
name: we are using what a categorist would call a strong monad in a cartesian closed
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category. Rougly speaking, a category is cartesian closed if it has enough structure to
interpret λ-calculus. In particular, associated with any pair of objects (types) x and y
there is an object [x → y ] representing the space of all arrows (functions) from x to y .
Recall that M is a functor if for any arrow f :: x → y there is an arrow map f :: M x →
M y satisfying (i) and (ii). This functor is strong if it is itself represented by a single
arrow map :: [x → y ] → [M x → M y ]. This is all second nature to a generous functional
programmer, but a stingy categorist provides such structure only when it is needed.

It is needed here, as evidenced by Moggi’s requirement that a computational monad
have a strength, a function t :: (x ,M y) → M (x , y) satisfying certain laws [Mog89a]. In
a cartesian closed category, a monad with a strength is equivalent to a monad with a
strong functor as described above. In our framework, the strength is defined by t (x , y) =
[ (x , y) | y ← y ]. (Following Haskell, we write (x , y) for pairs and also (x , y) for the
corresponding product type.)

Monads were conceived in the 1950’s, list comprehensions in the 1970’s. They have
quite independent origins, but fit with each other remarkably well. As often happens, a
common truth may underlie apparently disparate phenomena, and it may take a decade
or more before this underlying commonality is unearthed.

3 Two trivial monads

3.1 The identity monad

The identity monad is the trivial monad specified by

type Id x = x
mapId f x = f x
unit Id x = x
joinId x = x ,

so mapId , unit Id , and bind id are all just the identity function. A comprehension in the
identity monad is like a “let” term:

[ t | x ← u ]Id

= ((λx → t) u)
= (let x = u in t).

Similarly, a sequence of qualifiers corresponds to a sequence of nested “let” terms:

[ t | x ← u, y ← v ]Id = (let x = u in (let y = v in t)).

Since y is bound after x it appears in the inner “let” term. In the following, comprehen-
sions in the identity monad will be written in preference to “let” terms, as the two are
equivalent.

In the Hindley-Milner type system, λ-terms and “let” terms differ in that the latter
may introduce polymorphism. The key factor allowing “let” terms to play this role is that
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the syntax pairs each bound variable with its binding term. Since monad comprehensions
have a similar property, it seems reasonable that they, too, could be used to introduce
polymorphism. However, the following does not require comprehensions that introduce
polymorphism, so we leave exploration of this issue for the future.

3.2 The strictness monad

Sometimes it is necessary to control order of evaluation in a lazy functional program. This
is usually achieved with the computable function strict , defined by

strict f x = if x �= ⊥ then f x else ⊥.

Operationally, strict f x is reduced by first reducing x to weak head normal form (WHNF)
and then reducing the application f x . Alternatively, it is safe to reduce x and f x in
parallel, but not allow access to the result until x is in WHNF.

We can use this function as the basis of a monad:

type Str x = x
mapStr f x = strict f x
unitStr x = x
joinStr x = x .

This is the same as the identity monad, except for the definition of mapStr . Monad laws
(i), (iii)–(iv), and (I )–(III ) are satisfied, but law (ii) becomes an inequality,

mapStr g · mapStr f � mapStr (g · f ).

So Str is not quite a monad; categorists might call it a lax monad. Comprehensions for
lax monads are defined by laws (1 )–(3 ), just as for monads. Law (5 ) remains valid, but
laws (4 ) and (6 ) become inequalities.

We will use Str -comprehensions to control the evaluation order of lazy programs. For
instance, the operational interpretation of

[ t | x ← u, y ← v ]Str

is as follows: reduce u to WHNF, bind x to the value of u, reduce v to WHNF, bind y
to value of v , then reduce t . Alternatively, it is safe to reduce t , u, and v in parallel, but
not to allow access to the result until both u and v are in WHNF.

4 Manipulating state

Procedural programming languages operate by assigning to a state; this is also possible in
impure functional languages such as Standard ML. In pure functional languages, assign-
ment may be simulated by passing around a value representing the current state. This
section shows how the monad of state transformers and the corresponding comprehension
can be used to structure programs written in this style.
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4.1 State transformers

Fix a type S of states. The monad of state transformers ST is defined by

type ST x = S → (x , S )
mapST f x = λs → [ (f x , s ′) | (x , s ′) ← x s ]Id

unitST x = λs → (x , s)
joinST x = λs → [ (x , s ′′) | (x , s ′) ← x s , (x , s ′′) ← x s ′ ]Id .

(Recall the equivalence of Id -comprehensions and “let” terms as explained in Section 3.1.)
A state transformer of type x takes a state and returns a value of type x and a new state.
The unit takes the value x into the state transformer λs → (x , s) that returns x and
leaves the state unchanged. We have that

[ (x , y) | x ← x , y ← y ]ST = λs → [ ((x , y), s ′′) | (x , s ′) ← x s , (y , s ′′) ← y s ′ ]Id .

This applies the state transformer x to the state s , yielding the value x and the new state
s ′; it then applies a second transformer y to the state s ′ yielding the value y and the
newer state s ′′; finally, it returns a value consisting of x paired with y and the final state
s ′′.

Two useful operations in this monad are

fetch :: ST S
fetch = λs → (s , s)

assign :: S → ST ()
assign s ′ = λs → ((), s ′).

The first of these fetches the current value of the state, leaving the state unchanged; the
second discards the old state, assigning the new state to be the given value. Here () is
the type that contains only the value ().

A third useful operation is

init :: S → ST x → x
init s x = [ x | (x , s ′) ← x s ]Id .

This applies the state transformer x to a given initial state s ; it returns the value computed
by the state transformer while discarding the final state.

4.2 Example: Renaming

Say we wish to rename all bound variables in a lambda term. A suitable data type Term
for representing lambda terms is defined in Figure 1 (in Standard ML) and Figure 2 (in
Haskell). New names are to be generated by counting; we assume there is a function

mkname :: Int → Name
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that given an integer computes a name. We also assume a function

subst :: Name → Name → Term → Term

such that subst x ′ x t substitutes x ′ for each free occurrence of x in t .
A solution to this problem in the impure functional language Standard ML is shown

in Figure 1. The impure feature we are concerned with here is state: the solution uses
a reference N to an assignable location containing an integer. The “functions” and their
types are:

newname :: () → Name,
renamer :: Term → Term,
rename :: Term → Term.

Note that newname and renamer are not true functions as they depend on the state.
In particular, newname returns a different name each time it is called, and so requires
the dummy parameter () to give it the form of a “function”. However, rename is a
true function, since it always generates new names starting from 0. Understanding the
program requires a knowledge of which “functions” affect the state and which do not.
This is not always easy to see – renamer is not a true function, even though it does not
contain any direct reference to the state N , because it does contain an indirect reference
through newname; but rename is a true function, even though it references renamer .

An equivalent solution in a pure functional language is shown in Figure 2. This
explicitly passes around an integer that is used to generate new names. The functions
and their types are:

newname :: Int → (Name, Int),
renamer :: Term → Int → (Term, Int),
rename :: Term → Term.

The function newname generates a new name from the integer and returns an incremented
integer; the function renamer takes a term and an integer and returns a renamed term
(with names generated from the given integer) paired with the final integer generated.
The function rename takes a term and returns a renamed term (with names generated
from 0). This program is straightforward, but can be difficult to read because it contains
a great deal of “plumbing” to pass around the state. It is relatively easy to introduce
errors into such programs, by writing n where n ′ is intended or the like. This “plumbing
problem” can be more severe in a program of greater complexity.

Finally, a solution of this problem using the monad of state transformers is shown in
Figure 3. The state is taken as S = Int . The functions and their types are now:

newname :: ST Name,
renamer :: Term → ST Name,
rename :: Term → Term.

The monadic program is simply a different way of writing the pure program: expanding the
monad comprehensions in Figure 3 and simplifying would yield the program in Figure 2.
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Types in the monadic program can be seen to correspond directly to the types in the
impure program: an impure “function” of type U → V that affects the state corresponds
to a pure function of type U → ST V . Thus, renamer has type Term → Term in the
impure program, and type Term → ST Term in the monadic program; and newname
has type () → Name in the impure program, and type ST Name, which is isomorphic to
() → ST Name, in the pure program. Unlike the impure program, types in the monadic
program make manifest where the state is affected (and so do the ST -comprehensions).

The “plumbing” is now handled implicitly by the state transformer rather than explic-
itly. Various kinds of errors that are possible in the pure program (such as accidentally
writing n in place of n ′) are impossible in the monadic program. Further, the type sys-
tem ensures that plumbing is handled in an appropriate way. For example, one might
be tempted to write, say, App (renamer t) (renamer u) for the right-hand side of the last
equation defining renamer , but this would be detected as a type error.

Safety can be further ensured by making ST into an abstract data type on which
mapST , unitST , joinST , fetch, assign, and init are the only operations. This guarantees
that one cannot mix the state transformer abstraction with other functions which handle
the state inappropriately. This idea will be pursued in the next section.

Impure functional languages (such as Standard ML) are restricted to using a strict
(or call-by-value) order of evaluation, because otherwise the effect of the assignments
becomes very difficult to predict. Programs using the monad of state transformers can be
written in languages using either a strict (call-by-value) or lazy (call-by-name) order of
evaluation. The state-transformer comprehensions make clear exactly the order in which
the assignments take effect, regardless of the order of evaluation used.

Reasoning about programs in impure functional languages is problematic (although
not impossible – see [MT89] for one approach). In contrast, programs written using
monads, like all pure programs, can be reasoned about in the usual way, substituting
equals for equals. They also satisfy additional laws, such as the following laws on qualifiers:

x ← fetch, y ← fetch = x ← fetch, y ← [x ]ST ,
() ← assign u, y ← fetch = () ← assign u, y ← [u]ST ,

() ← assign u, () ← assign v = () ← assign v ,

and on terms:
init u [ t ]ST = t ,

init u [ t | () ← assign v , q ]ST = init v [ t | q ]ST ,
init u [ t | q , () ← assign v ]ST = init u [ t | q ]ST .

These, together with the comprehension laws (5 ), (6 ), and (I ′) − −(III ′), allow one to
use equational reasoning to prove properties of programs that manipulate state.
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4.3 Array update

Let Arr be the type of arrays taking indexes of type Ix and yielding values of type Val .
The key operations on this type are

newarray :: Val → Arr ,
index :: Ix → Arr → Val ,
update :: Ix → Val → Arr → Arr .

Here newarray v returns an array with all entries set to v ; and index i a returns the value
at index i in array a; and update i v a returns an array where index i has value v and the
remainder is identical to a. In equations,

index i (newarray v) = v ,
index i (update i v a) = v ,
index i (update i ′ v a) = index i a, if i �= i ′.

The efficient way to implement the update operation is to overwrite the specified entry of
the array, but in a pure functional language this is only safe if there are no other pointers
to the array extant when the update operation is performed.

Now consider the monad of state transformers taking the state type S = Arr , so that

type ST x = Arr → (x ,Arr).

Variants of the fetch and assign operations can be defined to act on an array entry specified
by a given index, and a variant of init can be defined to initialise all entries in an array
to a given value:

fetch :: Ix → ST Val
fetch i = λa → [ (v , a) | v ← index i a ]Str

assign :: Ix → Val → ST ()
assign i v = λa → ((), update i v a)

init :: Val → ST x → x
init v x = [ x | (x , a) ← x (newarray v) ]Id .

A Str -comprehension is used in fetch to force the entry from a to be fetched before a is
made available for further access; this is essential in order for it to be safe to update a by
overwriting.

Now, say we make ST into an abstract data type such that the only operations on
values of type ST are mapST , unitST , joinST , fetch, assign, and init . It is straightforward
to show that each of these operations, when passed the sole pointer to an array, returns
as its second component the sole pointer to an array. Since these are the only operations
that may be used to build a term of type ST , this guarantees that it is safe to implement
the assign operation by overwriting the specified array entry.

The key idea here is the use of the abstract data type. Monad comprehensions are not
essential for this to work, they merely provide a desirable syntax.
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4.4 Example: Interpreter

Consider building an interpreter for a simple imperative language. The store of this
language will be modelled by a state of type Arr , so we will take Ix to be the type of
variable names, and Val to be the type of values stored in variables. The abstract syntax
for this language is represented by the following data types:

data Exp = Var Ix | Const Val | Plus Exp Exp
data Com = Asgn Ix Exp | Seq Com Com | If Exp Com Com
data Prog = Prog Com Exp.

An expression is a variable, a constant, or the sum of two expressions; a command is an
assignment, a sequence of two commands, or a conditional; and a program consists of a
command followed by an expression.

A version of the interpreter in a pure functional language is shown in Figure 4. The
interpreter can be read as a denotational semantics for the language, with three semantic
functions:

exp :: Exp → Arr → Val ,
com :: Com → Arr → Arr ,
prog :: Prog → Val .

The semantics of an expression takes a store into a value; the semantics of a command
takes a store into a store; and the semantics of a program is a value. A program consists of
a command followed by an expression; its value is determined by applying the command
to an initial store where all variables have the value 0 , and then evaluating the expression
in the context of the resulting store.

The interpreter uses the array operations newarray , index , and update. As it happens,
it is safe to perform the updates in place for this program, but to discover this requires
using one of the special analysis techniques cited in the introduction.

The same interpreter has been rewritten in Figure 5 using state transformers. The
semantic functions now have the types:

exp :: Exp → ST Val ,
com :: Com → ST (),
prog :: Prog → Val .

The semantics of an expression depends on the state and returns a value; the semantics
of a command transforms the state only; the semantics of a program, as before, is just
a value. According to the types, the semantics of an expression might alter the state,
although in fact expressions depend the state but do not change it – we will return to this
problem shortly.

The abstract data type for ST guarantees that it is safe to perform updates (indicated
by assign) in place – no special analysis technique is required. It is easy to see how
the monad interpreter can be derived from the original, and (using the definitions given
earlier) the proof of their equivalence is straightforward.
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The program written using state transformers has a simple imperative reading. For
instance, the line

com (Seq c1 c2 ) = [ () | () ← com c1 , () ← com c2 ]ST

can be read “to evaluate the command Seq c1 c2 , first evaluate c1 and then evaluate
c2”. The types and the use of the ST comprehension make clear that these operations
transform the state; further, that the values returned are of type () makes it clear that
only the effect on the state is of interest here.

One drawback of this program is that it introduces too much sequencing. The line

exp (Plus e1 e2 ) = [ v1 + v2 | v1 ← exp e1 , v2 ← exp e2 ]ST

can be read “to evaluate Plus e1 e2 , first evaluate e1 yielding the value v1 , then evaluate
e2 yielding the value v2 , then add v1 and v2”. This is unfortunate: it imposes a spurious
ordering on the evaluation of e1 and e2 (the original program implies no such ordering).
The order does not matter because although exp depends on the state, it does not change
it. But, as already noted, there is no way to express this using just the monad of state
transformers. To remedy this we will introduce a second monad, that of state readers.

4.5 State readers

Recall that the monad of state transformers, for a fixed type S of states, is given by

type ST x = S → (x , S ).

The monad of state readers, for the same type S of states, is given by

type SR x = S → x
mapSR f x̂ = λs → [ f x | x ← x̂ s ]Id

unitSR x = λs → x

joinSR ̂̂x = λs → [ x | x̂ ← ̂̂x s , x ← x̂ s ]Id .

Here x̂ is a variable of type SR x , just as x is a variable of type ST x . A state reader of
type x takes a state and returns a value (of type x ), but no new state. The unit takes
the value x into the state transformer λs → x that ignores the state and returns x . We
have that

[ (x , y) | x ← x̂ , y ← ŷ ]SR = λs → [ (x , y) | x ← x̂ s , y ← ŷ s ]Id .

This applies the state readers x̂ and ŷ to the state s , yielding the values x and y , which
are returned in a pair.

It is easy to see that

[ (x , y) | x ← x̂ , y ← ŷ ]SR = [ (x , y) | y ← ŷ , x ← x̂ ]SR,
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so that the order in which x̂ and ŷ are computed is irrelevant. A monad with this property
is called commutative, since it follows that

[ t | p, q ]SR = [ t | q , p ]SR

for any term t , and any qualifiers p and q such that p binds no free variables of q and
vice-versa. Thus state readers capture the notion of order independence that we desire
for expression evaluation in the interpreter example.

Two useful operations in this monad are

fetch :: SR S
fetch = λs → s

ro :: SR x → ST x
ro x̂ = λs → [ (x , s) | x ← x̂ s ]Id .

The first is the equivalent of the previous fetch, but now expressed as a state reader rather
than a state transformer. The second converts a state reader into the corresponding state
transformer: one that returns the same value as the state reader, and leaves the state
unchanged. (The name ro abbreviates “read only”.)

In the specific case where S is the array type Arr , we define

fetch :: Ix → SR Val
fetch i = λa → index i a.

In order to guarantee the safety of update by overwriting, it is necessary to modify two
of the other definitions to use Str -comprehensions rather than Id -comprehensions:

mapSR f x̂ = λa → [ f x | x ← x̂ a ]Str

ro x̂ = λa → [ (x , a) | x ← x̂ a ]Str

These correspond to the use of an Str -comprehension in the ST version of fetch.
Thus, for arrays, the complete collection of operations on state transformers and state

readers consists of
fetch :: Ix → SR Val ,
assign :: Ix → Val → ST (),
ro :: SR x → ST x ,
init :: Val → ST x → x ,

together with mapSR, unitSR, joinSR and mapST , unitST , joinST . These ten operations
should be defined together and constitute all the ways of manipulating the two mutually
defined abstract data types SR x and ST x . It is straightforward to show that each
operation of type SR, when passed an array, returns a value that contains no pointer to
that array once it has been reduced to weak head normal form (WHNF); and that each
operations of type ST , when passed the sole pointer to an array, returns as its second
component the sole pointer to an array. Since these are the only operations that may be
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used to build values of types SR and ST , this guarantees that it is safe to implement the
assign operation by overwriting the specified array entry. (The reader may check that the
Str -comprehensions in mapSR and ro are essential to guarantee this property.)

Returning to the interpreter example, we get the new version shown in Figure 6. The
only difference from the previous version is that some occurrences of ST have changed to
SR and that ro has been inserted in a few places. The new typing

exp :: Exp → SR Val

makes it clear that exp depends on the state but does not alter it. A proof that the two
versions are equivalent appears in Section 6.

The excessive sequencing of the previous version has been eliminated. The line

exp (Plus e1 e2 ) = [ v1 + v2 | v1 ← exp e1 , v2 ← exp e2 ]SR

can now be read “to evaluate Plus e1 e2 , evaluate e1 yielding the value v1 and evaluate e2

yielding the value v2 , then add v1 and v2”. The order of qualifiers in an SR-comprehension
is irrelevant, and so it is perfectly permissible to evaluate e1 and e2 in any order, or even
concurrently.

The interpreter derived here is similar in structure to one in [Wad90], which uses a type
system based on linear logic to guarantee safe destructive update of arrays. (Related type
systems are discussed in [GH90, Wad91].) However, the linear type system uses a “let!”
construct that suffers from some unnatural restrictions: it requires hyperstrict evaluation,
and it prohibits certain types involving functions. By contrast, the monad approach
requires only strict evaluation, and it places no restriction on the types. This suggests
that a careful study of the monad approach may lead to an improved understanding of
linear types and the “let!” construct.

5 Filters

So far, we have ignored another form of qualifier found in list comprehensions, the filter.
For list comprehensions, we can define filters by

[ t | b ] = if b then [t ] else [ ],

where b is a boolean-valued term. For example,

[ x | x ← [1 , 2 , 3 ], odd x ]
= join [ [ x | odd x ] | x ← [1 , 2 , 3 ] ]
= join [ [ 1 | odd 1 ], [ 2 | odd 2 ], [ 3 | odd 3 ] ]
= join [ [1 ], [ ], [2 ] ]
= [1 , 3 ].

Can we define filters in general for comprehensions in an arbitrary monad M ? The answer
is yes, if we can define [ ] for M . Not all monads admit a useful definition of [ ], but many
do.

17



Recall that comprehensions of the form [t ] are defined in terms of the qualifier Λ, by
taking [ t ] = [ t | Λ ], and that Λ is a unit for qualifier composition,

[ t | Λ, q ] = [ t | q ] = [ t | q , Λ ].

Similarly, we will define comprehensions of the form [ ] in terms of a new qualifier, ∅, by
taking [ ] = [ t | ∅ ], and we will require that ∅ is a zero for qualifier composition,

[ t | ∅, q ] = [ t | ∅ ] = [ t | q , ∅ ].

Unlike with [t |Λ], the value of [t |∅] is independent of t !
Recall that for Λ we introduced a function unit :: x → M x satisfying the laws

(iii) map f · unit = unit · f ,
(I ) join · unit = id ,
(II ) join · map unit = id ,

and then defined [ t | Λ ] = unit t .
Similarly, for ∅ we introduce a function

zero :: y → M x ,

satisfying the laws
(v) map f · zero = zero · g ,
(IV ) join · zero = zero,
(V ) join · map zero = zero.

and define
(7 ) [ t | ∅ ] = zero t .

Law (v) specifies that the result of zero is independent of its argument, and can be derived
from the type of zero (again, see [Rey83, Wad89]). In the case of lists, setting zero y = [ ]
makes laws (IV ) and (V ) hold, since join [ ] = [ ] and join [ [ ], . . . , [ ] ] = [ ]. (This ignores
what happens when zero is applied to ⊥, which will be considered below.)

Now, for a monad with zero we can extend comprehensions to contain a new form of
qualifier, the filter, defined by

(8 ) [ t | b ] = if b then [t ] else [ ],

where b is any boolean-valued term. Recall that laws (4 ) and (6 ) were proved by induction
on the form of qualifiers; we can show that for the new forms of qualifiers, defined by (7 )
and (8 ), they still hold. We also have new laws

(9 ) [ t | b, c ] = [ t | (b ∧ c) ],
(10 ) [ t | q , b ] = [ t | b, q ],

where b and c are boolean-valued terms, and where q is any qualifier not binding variables
free in b.
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When dealing with ⊥ as a potential value, more care is required. In a strict language,
where all functions (including zero) are strict, there is no problem. But in a lazy language,
in the case of lists, laws (v) and (IV ) hold, but law (V ) is an inequality, join ·map zero �
zero, since join (map zero)⊥ = ⊥ but zero ⊥ = [ ]. In this case, laws (1 )–(9 ) are still
valid, but law (10 ) holds only if [ t | q ] �= ⊥. In the case that [ t | q ] = ⊥, law (10 )
becomes an inequality, [ t | q , b ] � [ t | b, q ].

As a second example of a monad with a zero, consider the strictness monad Str defined
in Section 3.2. For this monad, a zero may be defined by zeroStr y = ⊥. It is easy to verify
that the required laws hold; unlike with lists, the laws hold even when zero is applied to ⊥.
For example, [ x − 1 | x ≥ 1 ]Str returns one less than x if x is positive, and ⊥ otherwise.

6 Monad morphisms

If M and N are two monads, then h :: M x → N x is a monad morphism from M to N if
it preserves the monad operations:

h · mapM f = mapN f · h,
h · unitM = unitN ,
h · joinM = joinN · h2 ,

where h2 = h ·mapM h = mapN h ·h (the two composites are equal by the first equation).
Define the effect of a monad morphism on qualifiers as follows:

h (Λ) = Λ,
h (x ← u) = x ← (h u),
h (p, q) = (h p), (h q).

It follows that if h is a monad morphism from M to N then

(11 ) h [ t | q ]M = [ t | (h q) ]N

for all terms t and qualifiers q . The proof is a simple induction on the form of qualifiers.
As an example, it is easy to check that unitM :: x → M x is a monad morphism from

Id to M . It follows that

[ [ t | x ← u ]Id ]M = [ t | x ← [ u ]M ]M .

This explains a trick occasionally used by functional programmers, where one writes the
qualifier x ← [ u ] inside a list comprehension to bind x to the value of u, that is, to achieve
the same effect as the qualifier x ← u in an Id comprehension.

As a second example, the function ro from Section 4.5 is a monad morphism from SR
to ST . This can be used to prove the equivalence of the two interpreters in Figures 5
and 6. Write expST :: Exp → ST Val and expSR :: Exp → SR Val for the versions in the
two figures. The equivalence of the two versions is clear if we can show that

ro · expSR = expST .
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The proof is a simple induction on the structure of expressions. If the expression has the
form (Plus e1 e2 ), we have that

ro (expSR (Plus e1 e2 ))
= {unfolding expSR}

ro [ v1 + v2 | v1 ← expSR e1 , v2 ← expSR e2 ]SR

= {by (11 )}
[ v1 + v2 | v1 ← ro (expSR e1 ), v2 ← ro (expSR e2 ) ]ST

= {hypothesis}
[ v1 + v2 | v1 ← expST e1 , v2 ← expST e2 ]ST

= {folding expST}
expST (Plus e1 e2 ).

The other two cases are equally simple.
All of this extends straightforwardly to monads with zero. In this case we also require

that h ·zeroM = zeroN , define the action of a morphism on a filter by h b = b, and observe
that (11 ) holds even when q contains filters.

7 More monads

This section describes four more monads: parsers, expressions, input-output, and contin-
uations. The basic techniques are not new (parsers are discussed in [Wad85, Fai87, FL89],
and exceptions are discussed in [Wad85, Spi90]), but monads and monad comprehensions
provide a convenient framework for their expression.

7.1 Parsers

The monad of parsers is given by

type Parse x = String → List (x , String)
mapParse f x = λi → [ (f x , i ′) | (x , i ′) ← x i ]List

unitParse x = λi → [ (x , i) ]List

joinParse x = λi → [ (x , i ′′) | (x , i ′) ← x i , (x , i ′′) ← x i ′ ]List .

Here String is the type of lists of Char . Thus, a parser accepts an input string and returns
a list of pairs. The list contains one pair for each successful parse, consisting of the value
parsed and the remaining unparsed input. An empty list denotes a failure to parse the
input. We have that

[ (x , y) | x ← x , y ← y ]Parse = λi → [ ((x , y), i ′′) | (x , i ′) ← x i , (y , i ′′) ← y i ′ ]List .

This applies the first parser to the input, binds x to the value parsed, then applies the
second parser to the remaining input, binds y to the value parsed, then returns the pair
(x , y) as the value together with input yet to be parsed. If either x or y fails to parse its
input (returning an empty list) then the combined parser will fail as well.
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There is also a suitable zero for this monad, given by

zeroParse y = λi → [ ]List .

Thus, [ ]Parse is the parser that always fails to parse the input. It follows that we may use
filters in Parse-comprehensions as well as in List-comprehensions.

The alternation operator combines two parsers:

([]) :: Parse x → Parse x → Parse x
x [] y = λi → (x i) ++ (y i).

(Here ++ is the operator that concatenates two lists.) It returns all parses found by the
first argument followed by all parses found by the second.

The simplest parser is one that parses a single character:

next :: Parse Char
next = λi → [ (head i , tail i) | not (null i) ]List .

Here we have a List-comprehension with a filter. The parser next succeeds only if the
input is non-empty, in which case it returns the next character. Using this, we may define
a parser to recognise a literal:

lit :: Char → Parse ()
lit c = [ () | c ′ ← next , c == c ′ ]Parse .

Now we have a Parse-comprehension with a filter. The parser lit c succeeds only if the
next character in the input is c.

As an example, a parser for fully parenthesised lambda terms, yielding values of the
type Term described previously, can be written as follows:

term :: Parse Term
term = [Var x | x ← name ]Parse

[] [Lam x t | () ← lit ‘(’, () ← lit ‘λ’, x ← name, () ← lit ‘→’,
t ← term, () ← lit ‘)’ ]Parse

[] [App t u | () ← lit ‘(’, t ← term, u ← term, () ← lit ‘)’ ]Parse

name :: Parse Name
name = [ c | c ← next , ‘a’ ≤ c, c ≤ ‘z’ ]Parse .

Here, for simplicity, it has been assumed that names consist of a single lower-case letter,
so Name = Char ; and that λ and → are both characters.

7.2 Exceptions

The type Maybe x consists of either a value of type x , written Just x , or an exceptional
value, written Nothing :

data Maybe x = Just x | Nothing .
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(The names are due to Spivey [Spi90].) The following operations yield a monad:

mapMaybe f (Just x ) = Just (f x )
mapMaybe f Nothing = Nothing

unitMaybe x = Just x

joinMaybe (Just (Just x )) = Just x
joinMaybe (Just Nothing) = Nothing
joinMaybe Nothing = Nothing .

We have that
[ (x , y) | x ← x , y ← y ]Maybe

returns Just (x , y) if x is Just x and y is Just y , and otherwise returns Nothing .
There is also a suitable zero for this monad, given by

zeroMaybe y = Nothing .

Hence [ ]Maybe = Nothing and [ x ]Maybe = Just x . For example, [ x − 1 | x ≥ 1 ]Maybe

returns one less than x if x is positive, and Nothing otherwise.
Two useful operations test whether an argument corresponds to a value and, if so,

return that value:
exists :: Maybe x → Bool
exists (Just x ) = True
exists Nothing = False

the :: Maybe x → x
the (Just x ) = x .

Observe that
[ the x | exists x ]Maybe = x

for all x :: Maybe x . If we assume that (the Nothing) = ⊥, it is easily checked that the is
a monad morphism from Maybe to Str . We have that

the [ x − 1 | x ≥ 1 ]Maybe = [ x − 1 | x ≥ 1 ]Str

as an immediate consequence of the monad morphism law. This mapping embodies the
common simplification of considering error values and ⊥ to be identical.

The biased-choice operator chooses the first of two possible values that is well defined:

(?) :: Maybe x → Maybe x → Maybe x
x ? y = if exists x then x else y .

The ? operation is associative and has Nothing as a unit. It appeared in early versions
of ML [GMW79], and similar operators appear in other languages. As an example of its
use, the term

the ([ x − 1 | x ≥ 1 ]Maybe ? [ 0 ]Maybe)
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returns the predecessor of x if it is non-negative, and zero otherwise.
In [Wad85] it was proposed to use lists to represent exceptions, encoding a value x by

the unit list, and an exception by the empty list. This corresponds to the mapping

list :: Maybe x → List x
list (Just x ) = [ x ]List

list Nothing = [ ]List

which is a monad morphism from Maybe to List . We have that

list (x ? y) ⊆ (list x ) ++ (list y),

where ⊆ is the sublist relation. Thus, exception comprehensions can be represented by list
comprehensions, and biased choice can be represented by list concatenation. The argu-
ment in [Wad85] that list comprehensions provide a convenient notation for manipulating
exceptions can be mapped, via this morphism, into an argument in favour of exception
comprehensions!

7.3 Input and output

Fix the input and output of a program to be strings (e.g., the input is a sequence of
characters from a keyboard, and the output is a sequence of characters to appear on a
screen). The input and output monads are given by:

type In x = String → (x , String)
type Out x = (x , String → String).

The input monad is a function from a string (the input to the program) and to a pair of
a value and a string (the input to the rest of the program). The output monad is a pair
of a value and a function from a string (the output of the rest of the program) to a string
(the output of the program).

The input monad is identical to the monad of state transformers, fixing the state to
be a string; and the operations map, unit , and join are identical to those in the state-
transformer monad. Two useful operations in the input monad are

eof :: In Bool
eof = λi → (null i , i)

read :: In Char
read = λi → (head i , tail i).

The first returns true if there is more input to be read, the second reads the next input
character.

The output monad is given by

mapOut f x̂ = [ (f x , ot) | (x , ot) ← x̂ ]Id

unitOut x = (x , λo → o)

joinOut ̂̂x = [ (x , ot · ot ′) | (x̂ , ot) ← ̂̂x , (x , ot ′) ← x̂ ]Id .
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The second component of the pair is an output transformer, which given the output of
the rest of the program produces the output of this part. The unit produces no output of
its own, so its output transformer is the identity function. The join operation composes
two output transformers. A useful operation in the output monad is

write :: Char → Out ()
write c = ((), λo → c : o).

This adds the character to be written onto the head of the output list.
Alternative definitions of the output monad are possible, but these do not behave as

well as the formulation given above. One alternative treats output as a state transformer,

type Out ′ x = String → (x , String),

taking map, unit , and join as in the state transformer monad. The write operation is
now

write :: Char → Out ′ ()
write c = λo → ((), c : o).

This formulation is not so good, because it is too strict: output will not appear until the
program terminates. Another alternative is

type Out ′′ x = (x , String)
mapOut ′′ f x̂ = [ (f x , o) | (x , o) ← x̂ ]Id

unitOut ′′ x = (x , [ ])

joinOut ′′ ̂̂x = [ (x , o ++ o ′) | (x̂ , o) ← ̂̂x , (x , o ′) ← x̂ ]Id

write c = ((), [c]).

This formulation is also not so good, because the time to perform the concatenation (++)
operations is quadratic in the size of the output in the worst case.

Finally, the output and input monads can be combined into a single monad:

type InOut x = String → (x , String , String → String).

Suitable definitions of map, unit , and join are left to the reader. Useful operations on
this monad are:

in :: In x → InOut x
in x = λi → [ (x , i ′, λo → o) | (x , i ′) ← x i ]Id

out :: Out x → InOut x
out x̂ = λi → [ (x , i , ot) | (x , ot) ← x̂ ]Id

fun :: InOut () → (String → String)
fun x̃ = λi → [ ot [ ] | ((), i ′, ot) ← x̃ i ]Id .

The first two are monad morphisms from In and Out to InOut ; they take input-only
and output-only operations into the input-output monad. The last takes a value into the
input-output monad into a function from the input to the output.
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7.4 Continuations

Fix a type R of results. The monad of continuations is given by

type Cont x = (x → R) → R
mapCont f x = λk → x (λx → k (f x ))
unitCont x = λk → k x
joinCont x = λk → x (λx → x (λx → k x )).

A continuation of type x takes a continuation function k :: x → R, which specifies how
to take a value of type x into a result of type R, and returns a result of type R. The unit
takes a value x into the continuation λk → k x that applies the continuation function to
the given value. We have that

[ (x , y) | x ← x , y ← y ]Cont = λk → x (λx → y (λy → k (x , y))).

This can be read as follows: evaluate x , bind x to the result, then evaluate y , bind y to
the result, then return the pair (x , y).

A useful operation in this monad is

callcc :: ((x → Cont y) → Cont x ) → Cont x
callcc g = λk → g (λx → λk ′ → k x ) k .

This mimics the “call with current continuation” (or call/cc) operation popular from
Scheme [RC86]. For example, the Scheme program

(call/cc (lambda (esc)(/ x (if (= y 0 ) (esc 42 ) y))))

translates to the equivalent program

callcc (λesc → [ x/z | z ← if y == 0 then esc 42 else [ y ]Cont ]Cont).

Both of these programs bind esc to an escape function that returns its argument as the
value of the entire callcc expression. They then return the value of x divided by y , or
return 42 if y is zero.

8 Translation

In Section 4, we saw that a function of type U → V in an impure functional language
that manipulates state corresponds to a function of type U → ST V in a pure functional
language. The correspondence was drawn in an informal way, so we might ask, what
assurance is there that every program can be translated in a similar way? This section
provides that assurance, in the form of a translation of λ-calculus into an arbitrary monad.
This allows us to translate not only programs that manipulate state, but also programs
that raise exceptions, call continuations, and so on. Indeed, we shall see that there are
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two translations, one call-by-value and one call-by-name. The target language of both
translations is a pure, non-strict λ-calculus, augmented with M -comprehensions.

We will perform our translations on a simple typed lambda calculus. We will use T ,
U , V to range over types, and K to range over base types. A type is either a base type,
function type, or product type:

T ,U ,V ::= K | (U → V ) | (U ,V ).

We will use t , u, v to range over terms, and x to range over variables. A term is either a
variable, an abstraction, an application, a pair, or a selection:

t , u, v ::= x | (λx → v) | (t u) | (u, v) | (fst t) | (snd t).

In the following, we usually give the case for (fst t) but omit that for (snd t), since the two
are nearly identical. We will use A to range over assumptions, which are lists associating
variables with types:

A ::= x1 :: T1 , . . . , xn :: Tn .

We write the typing A � t :: T to indicate that under assumption A the term t has type
T . The inference rules for well-typings in this calculus are well known, and can be seen
on the left hand sides of Figures 8 and 10.

The call-by-value translation of lambda-calculus into a monad M is given in Figure 7.
The translation of the type T is written T ∗ and the translation of the term t is written
t∗. The rule for translating function types,

(U → V )∗ = U ∗ → M V ∗,

can be read “a call-by-value function takes as its argument a value of type U and returns
a computation of type V .” This corresponds to the translation in Section 4, where a
function of type U → V in the (impure) source language is translated to a function of
type U → M V in the (pure) target language. Each of the rules for translating terms has
a straightforward computational reading. For example, the rule for applications,

(t u)∗ = [ y | f ← t∗, x ← u∗, y ← (f x ) ]M ,

can be read “to apply t to u, first evaluate t (call the result f ), then evaluate u (call
the result x ), then apply f to x (call the result y) and return y .” This is what one
would expect in a call-by-value language – the argument is evaluated before the function
is applied. If

x1 :: T1 , . . . , xn :: Tn � t :: T

is a well-typing in the source language, then its translation

x1 :: T ∗
1 , . . . , xn :: T ∗

n � t∗ :: M T ∗

is a well-typing in the target language. Like the arguments of a function, the free variables
correspond to values, while, like the result of a function, the term corresponds to a com-
putation. Figure 8 demonstrates that the call-by-value translation preserves well-typings:
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a term that is well-typed in the source language translates to one that is well-typed in
the target language.

The call-by-name translation of λ-calculus into a monad M is given in Figure 9. Now
the translation of the type T is written T † and the translation of the term t is written
t †. The rule for translating function types,

(U → V )† = M U † → M V †,

can be read “a call-by-name function takes as its argument a computation of type U and
returns a computation of type V .” The rule for applications,

(t u)† = [ y | f ← t †, y ← (f u†) ]M ,

can be read “to apply t to u, first evaluate t (call the result f ), then apply f to the term
u (call the result y) and return y .” This is what one would expect in a call-by-name
language – the argument u is passed unevaluated, and is evaluated each time it is used.
The well-typing in the source language given previously now translates to

x1 :: M T †
1 , . . . , xn :: M T †

n � t † :: M T †,

which is again a well-typing in the target language. This time both the free variables and
the term correspond to computations, reflecting that in a call-by-name language the free
variables correspond to computations (or closures) that must be evaluated each time they
are used. Figure 10 demonstrates that the call-by-name translation preserves well-typings.

In particular, the call-by-value intrepretation in the strictness monad Str of Section 3.2
yields the usual strict semantics of λ-calculus, whereas the call-by-name interpretation in
the same monad yields the usual lazy semantics.

If we use the monad of, say, state transformers, then the call-by-value interpretation
yields the usual semantics of a λ-calculus with assignment. The call-by-name interpreta-
tion yields a semantics where the state transformation specified by a variable occurs each
time the variable is accessed. This explains why the second translation is titled call-by-
name rather than call-by-need. Of course, since the target of both the call-by-value and
call-by-name translations is a pure, non-strict λ-calculus, there is no problem with exe-
cuting programs translated by either scheme in a lazy (i.e., call-by-need) implementation.

8.1 Example: Non-determinism

As a more detailed example of the application of the translation schemes, consider a
small non-deterministic language. This consists of the λ-calculus as defined above with its
syntax extended to include a non-deterministic choice operator () and simple arithmetic:

t , u, v ::= · · · | (u  v) | n | (u + v),

where n ranges over integer constants. This language is typed just as for lambda calculus.
We assume a base type Int , and that the additional constructs typed as follows: for any
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type T , if u :: T and v :: T then (u  v) :: T ; and n :: Int ; and if u :: Int and v :: Int
then (u + v) :: Int . For example, the term

((λa → a + a) (1  2 ))

has the type Int . Under a call-by-value interpretation we would expect this to return
either 2 or 4 (i.e., 1 +1 or 2 +2 ), whereas under a call-by-name interpretation we would
expect this to return 2 or 3 or 4 (i.e., 1 + 1 or 1 + 2 or 2 + 1 or 2 + 2 ).

We will give the semantics of this language by interpreting the λ-calculus in the set
monad, as specified in Section 2.3. In what follows we will write { t | q } in preference to
the more cumbersome [ t | q ]Set .

The call-by-value interpretation for this language is provided by the rules in Figure 7,
choosing M to be the monad Set , together with the rules:

(u  v)∗ = u∗ ∪ v ∗

n∗ = {n}
(u + v)∗ = { x + y | x ← u∗, y ← v ∗ }.

These rules translate a term of type T in the non-deterministic language into a term
of type Set T in a pure functional language augmented with set comprehensions. For
example, the term above translates to

{ y | f ← { (λa → { x ′ + y ′ | x ′ ← {a}, y ′ ← {a} }) },
x ← {1} ∪ {2},
y ← (f x ) }

which has the value {2 , 4}, as expected.
The call-by-name translation of the same language is provided by the rules in Figure 9.

The rules for (u  v), n, and (u + v) are the same as the call-by-value rules, replacing
(−)∗ with (−)†. Now the same term translates to

{ y | f ← { (λa → { x ′ + y ′ | x ′ ← a, y ′ ← a }) },
y ← f ({1} ∪ {2}) }

which has the value {2 , 3 , 4}, as expected.
A similar approach to non-deteminism is taken by Hughes and O’Donnell [HO89].

They suggest adding a set type to a lazy functional language where a set is actually
represented by a non-deterministic choice of one of the elements of the set. The primitive
operations they provide on sets are just map, unit , and join of the set monad, plus set
union (∪) to represent non-deterministic choice. They address the issue of how such sets
should behave with respect to ⊥, and present an elegant derivation of a non-deterministic,
parallel, tree search algorithm. However, they provide no argument that all programs in
a traditional, non-deterministic functional language can be encoded in their approach.
Such an argument is provided by the translation scheme above.
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8.2 Example: Continuations

As a final example, consider the call-by-value interpretation under the monad of contin-
uations, Cont , given in Section 7.4. Applying straightforward calculation to simplify the
Cont-comprehensions yields the translation scheme given in Figure 11, which is simply
the continuation-passing style transformation beloved by many theorists and compiler
writers [Plo75, AJ89].

Each of the rules retains its straightforward operational reading. For example, the
rule for applications,

(t u)∗ = λk → t∗ (λf → u∗ (λx → f x k)),

can still be read “to apply t to u, first evaluate t (call the result f ), then evaluate u (call
the result x ), then apply f to x (call the result y) and return y .”

A similar calculation on the other translation scheme yields a call-by-name version of
continuation-passing style. This is less well known, but can be found in [Rey74, Plo75].
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datatype Term = Var of Name | Lam of Name ∗ Term | App of Term ∗ Term;

fun rename t = let val N = ref 0 ;

fun newname () = let val n = !N ;
val () = (N := n + 1 );

in mkname n
end;

fun renamer (Var x ) = Var x
| renamer (Lam (x , t)) = let val x ′ = newname ();

in Lam (x ′, subst x ′ x (renamer t))
end

| renamer (App (t , u)) = App (renamer t , renamer u);

in renamer t
end;

Figure 1: Renaming in an impure functional language (Standard ML)

data Term = Var Name | Lam Name Term | App Term Term

newname :: Int → (Name, Int)
newname n = (mkname n,n + 1 )

renamer :: Term → Int → (Term, Int)
renamer (Var x )n = (Var x ,n)
renamer (Lam x t)n = let (x ′,n ′) = newname n

(t ′,n ′′) = renamer t n ′

in (Lam x ′ (subst x ′ x t ′),n ′′)
renamer (App t u)n = let (t ′,n ′) = renamer t n

(u ′,n ′′) = renamer u n ′

in (App t ′ u ′,n ′′)

rename :: Term → Term
rename t = let (t ′,n ′) = renamer t 0 in t ′

Figure 2: Renaming in a pure functional language (Haskell)
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data Term = Var Name | Lam Name Term | App Term Term

newname :: ST Name
newname = [mkname n | n ← fetch, () ← assign (n + 1 ) ]ST

renamer :: Term → ST Term
renamer (Var x ) = [Var x ]ST

renamer (Lam x t) = [Lam x ′ (subst x ′ x t ′)) | x ′ ← newname, t ′ ← renamer t ]ST

renamer (App t u) = [App t ′ u ′ | t ′ ← renamer t , u ′ ← renamer u ]ST

rename :: Term → Term
rename t = init 0 (renamer t)

Figure 3: Renaming with the monad of state transformers

exp :: Exp → Arr → Val
exp (Var i) a = index i a
exp (Const v) a = v
exp (Plus e1 e2 ) a = exp e1 a + exp e2 a

com :: Com → Arr → Arr
com (Asgn i e) a = update i (exp e a) a
com (Seq c1 c2 ) a = com c2 (com c1 a)
com (If e c1 c2 ) a = if exp e a == 0 then com c1 a else com c2 a

prog :: Prog → Val
prog (Prog c e) = exp e (com c (newarray 0 ))

Figure 4: Interpreter in a pure functional language
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exp :: Exp → ST Val
exp (Var i) = [ v | v ← fetch i ]ST

exp (Const v) = [ v ]ST

exp (Plus e1 e2 ) = [ v1 + v2 | v1 ← exp e1 , v2 ← exp e2 ]ST

com :: Com → ST ()
com (Asgn i e) = [ () | v ← exp e, () ← assign i v ]ST

com (Seq c1 c2 ) = [ () | () ← com c1 , () ← com c2 ]ST

com (If e c1 c2 ) = [ () | v ← exp e, () ← if v == 0 then com c1 else com c2 ]ST

prog :: Prog → Val
prog (Prog c e) = init 0 [ v | () ← com c, v ← exp e ]ST

Figure 5: Interpreter with state transformers

exp :: Exp → SR Val
exp (Var i) = [ v | v ← fetch i ]SR

exp (Const v) = [ v ]ST

exp (Plus e1 e2 ) = [ v1 + v2 | v1 ← exp e1 , v2 ← exp e2 ]SR

com :: Com → ST ()
com (Asgn i e) = [ () | v ← ro (exp e), () ← assign i v ]ST

com (Seq c1 c2 ) = [ () | () ← com c1 , () ← com c2 ]ST

com (If e c1 c2 ) = [ () | v ← ro (exp e), () ← if v == 0 then com c1 else com c2 ]ST

prog :: Prog → Val
prog (Prog c e) = init 0 [ v | () ← com c, v ← ro (exp e) ]ST

Figure 6: Interpreter with state transformers and readers
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Types

K ∗ = K

(U → V )∗ = (U ∗ → M V ∗)

(U ,V )∗ = (U ∗,V ∗)

Terms

x ∗ = [ x ]M

(λx → v)∗ = [ (λx → v ∗) ]M

(t u)∗ = [ y | f ← t∗, x ← u∗, y ← (f x ) ]M

(u, v)∗ = [ (x , y) | x ← u∗, y ← v ∗ ]M

(fst t)∗ = [ (fst z ) | z ← t∗ ]M

Assumptions

(x1 :: T1 , . . . , xn :: Tn)∗ = x1 :: T ∗
1 , . . . , xn :: T ∗

n

Typings

(A � t :: T )∗ = A∗ � t∗ :: M T ∗

Figure 7: Call-by-value translation.

(A, x :: T � x :: T )∗ = A∗, x :: T ∗ � [ x ]M :: M T ∗

(A, x :: U � v :: V )∗ = A∗, x :: U ∗ � v ∗ :: M V ∗

(A � (λx → v) :: (U → V ))∗ = A∗ � [ (λx → v ∗) ]M :: M (U ∗ → M V ∗)

(A � t :: (U → V ))∗ = A∗ � t∗ :: M (U ∗ → M V ∗)
(A � u :: U )∗ = A∗ � u∗ :: M U ∗

(A � (t u) :: V )∗ = A∗ � [ y | f ← t∗, x ← u∗, y ← (f x ) ]M :: M V ∗

(A � u :: U )∗ = A∗ � u∗ :: M U ∗

(A � v :: V )∗ = A∗ � v ∗ :: M V ∗

(A � (u, v) :: (U ,V ))∗ = A∗ � [ (x , y) | x ← u∗, y ← v ∗ ]M :: M (U ∗,V ∗)

(A � t :: (U ,V ))∗ = A∗ � t∗ :: M (U ∗,V ∗)
(A � (fst t) :: U )∗ = A∗ � [ (fst z ) | z ← t∗ ]M :: M U ∗

Figure 8: The call-by-value translation preserves well-typing.
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Types

K † = K

(U → V )† = (M U † → M V †)

(U ,V )† = (M U †, M V †)

Terms

x † = x

(λx → v)† = [ (λx → v †) ]M

(t u)† = [ y | f ← t †, y ← (f u†) ]M

(u, v)† = [ (u†, v †) ]M

(fst t)† = [ x | z ← t †, x ← (fst z ) ]M

Assumptions

(x1 :: T1 , . . . , xn :: Tn)† = x1 :: M T †
1 , . . . , xn :: M T †

n

Typings

(A � t :: T )† = A† � t † :: M T †

Figure 9: Call-by-name translation.

(A, x :: T � x :: T )† = A†, x :: M T † � x :: M T †

(A, x :: U � v :: V )† = A†, x :: M U † � v † :: M V †

(A � (λx → v) :: (U → V ))† = A† � [ (λx → v †) ]M :: M (M U † → M V †)

(A � t :: (U → V ))† = A† � t † :: M (M U † → M V †)
(A � u :: U )† = A† � u† :: M U †

(A � (t u) :: V )† = A† � [ y | f ← t †, y ← (f u†) ]M :: M V †

(A � u :: U )† = A† � u† :: M U †

(A � v :: V )† = A† � v † :: M V †

(A � (u, v) :: (U ,V ))† = A† � [ (u†, v †) ]M :: M (M U †,M V †)

(A � t :: (U ,V ))† = A† � t † :: M (M U †,M V †)
(A � (fst t) :: U )† = A† � [ x | z ← t †, x ← (fst z ) ]M :: M U †

Figure 10: The call-by-name translation preserves well-typing.
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x ∗ = λk → k x

(λx → v)∗ = λk → k (λx → v ∗)

(t u)∗ = λk → t∗ (λf → u∗ (λx → f x k))

(u, v)∗ = λk → u∗ (λx → v ∗ (λy → k (x , y)))

(fst t)∗ = λk → t∗ (λz → k (fst z ))

Figure 11: Call-by-value continuation-passing style transformation

x † = x

(λx → v)† = λk → k (λx → v †)

(t u)† = λk → t † (λf → f u† k)

(u, v)† = λk → k (u†, v †)

(fst t)† = λk → t † (λz → fst z k)

Figure 12: Call-by-name continuation-passing style transformation
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