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Abstract
Software systems are constantly changing. Patches to fix
bugs and patches to add features are all too common. Every
change risks breaking a previously working system. Hence
administrators loathe change, and are willing to delay even
critical security patches until after fully validating their cor-
rectness. Compared to off-line validation, on-line validation
has clear advantages since it tests against real life workloads.
Yet unfortunately it imposes restrictive overheads as it re-
quires running the old and new versions side-by-side. More-
over, due to spurious differences (e.g. event timing, random
number generation, and thread interleavings), it is difficult
to compare the two for validation.

To allow more effective on-line patch validation, we pro-
pose a new mechanism, called delta execution, that is based
on the observation that most patches are small. ∆ execution
merges the two side-by-side executions for most of the time
and splits only when necessary, such as when they access
different data or execute different code. This allows us to
perform on-line validation not only with lower overhead but
also with greatly reduced spurious differences, allowing us
to effectively validate changes.

We first validate the feasibility of our idea by studying
the characteristics of 240 patches from 4 server programs;
our examination shows that 77% of the changes should not
be expected to cause large changes and are thereby feasible
for ∆ execution. We then implemented ∆ execution using
dynamic instrumentation. Using real world patches from 7
server applications and 3 other programs, we compared our
implementation of ∆ execution against a traditional side-
by-side on-line validation. ∆ execution outperformed tradi-
tional validation by up to 128%; further, for 3 of the changes,
spurious differences caused the traditional validation to fail
completely while ∆ execution succeeded. This demonstrates
that ∆ execution can allow administrators to use on-line val-
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idation to confidently ensure the correctness of the changes
they apply.

Categories and Subject Descriptors D.4.5 [OPERATING
SYSTEMS]: Reliability; D.2.4 [SOFTWARE ENGINEER-
ING]: Software/Program Verification

General Terms Reliability, Verification

Keywords Delta Execution, Patch Validation, Testing

1. Introduction
Modern software systems are plagued by failures. As soft-
ware has grown in size and complexity, the difficulty of find-
ing and fixing bugs has increased. Inevitably, these bugs leak
into production run software, contributing up to 26-30% of
system failures (Marcus and Stern 2000), and costing the US
economy upwards of $59 billion yearly (National Institute
of Standards and Technlogy (NIST), Department of Com-
merce. 2002). Our increasing reliance on computers for ev-
erything we do implies that reliable software is becoming
ever more important.

Unlike a bridge or a building, however, software systems
don’t suffer from physical wear; bits don’t rot. Unless some-
thing changes, we expect a working software system to con-
tinue to work. Unfortunately, changes are all too common.
Whether to repair flaws or add features, software patches
are released all the time. For instance, Microsoft releases
patches monthly on “Patch Tuesday”, the second Tuesday
of the month (Microsoft 2003). This is twelve times a year
that the software is changed, potentially causing working
systems to fail. Other software fares no better; in 2007 over
7600 vulnerabilities were reported to CERT (CERT); that is
7600 changes just to fix security holes. Our software systems
are far from being static.

These changes are a common and continuing source of
failures. For instance, Microsoft recently withdrew SP1 for
Windows Vista for causing “computers to crash or enter an
endless cycle of boots and reboots” (McDougall 2008). Sim-
ilarly, Apple’s recent OS X update irritated users by break-
ing applications (Pegoraro 2008). Nearly 70% of patches
are buggy in their first release (Cowan et al. 2000; Rescorla
2003; Sidiroglou et al. 2007); clearly patching is a risky busi-
ness. Hence, administrators loathe to be the first to apply a



tar/src/incremen.c
Patch: tar null pt

+if(dirp){
   if(children!=NO_CHILDREN)
     for(entry=dirp; ...){

     }
       //main loop

   free(dirp);
+}

....

Patch: CAN−2004−0493
httpd−2.0/server/protocol.c

+if((fold_len−1)>
+   r−>server−>limit){
+  r−>status = BAD_REQUEST;
+  return;
+}

....

Patch: CAN−2004−0811
httpd−2.0/server/core.c

 if(new−>satisfy[i] !=
    SATISFY_NOSPEC){
   conf−>satisfy[i]=new−>satisfy[i];
+}else{

+}

....

+  conf−>satisfy[i]=base−>satisfy[i];

(c) Apache Patch(b) Apache Patch(a) GNU tar patch

Figure 1. Three patches fixing real bugs. Lines with a ‘+’ indicate inserted code. Slightly simplified for descriptive purposes.

patch, and even for critical security patches, they will de-
lay to allow time to validate patch correctness (Beattie et al.
2002). Indeed, Patch Tuesday was created to give adminis-
trators a predictable schedule for validation and roll out (Mi-
crosoft 2003). Yet these delays run counter to minimizing
the window of vulnerability (Browne et al. 2001; Joshi et al.
2005). Administrators have two bad options: patch now and
risk a bad patch, or patch later and risk being exploited. Cur-
rently, the balance favors waiting (Beattie et al. 2002); patch-
ing without validating is too risky.

1.1 Validating Patches
In general, there are two means of validating a patch: off-
line (Barrett et al. 2004) and on-line (Cook and Dage 1999).
Off-line validation is appealing due to its simplicity–merely
set up a test system and see if it works. Yet this has the same
shortcoming as the vendor’s testing does: the test environ-
ment may not reflect actual production usage. Since the ven-
dor’s tests clearly don’t filter out buggy patches, off-line val-
idation seems unlikely to solve our troubles. On-line valida-
tion, with a live workload, is preferred, as it is more accu-
rate (Nagaraja et al. 2004). In on-line validation, an instance
of the “new” system is run simultaneously with the unmod-
ified production run instance. Both are fed the real produc-
tion workload, and the results are compared. This exercises
the whole system, covers extreme or unusual site-specific
conditions, and allows an administrator to answer the only
important question: “does it break my workload”. On-line
validation’s realism provides a high level of assurance.

Unfortunately, there are difficulties to on-line validation.
Since two full instances (production and testing) must be
run, we will use additional computational resources. These
instances may be run on separate hardware, or isolated on the
same hardware (e.g. through a VMM (Lowell et al. 2004)).
Running on the same hardware can hurt performance. In-
deed, competition between the original instance, the test in-
stance, and the validation routines reduced the performance
of the production service by up to 2.6x in our experiments.

Validating with a duplicated hardware setup is equally un-
satisfactory. Since the test instance must support the same
load as the production run instance, a separate validation
setup is expensive. Although the extra hardware may be af-

fordable, other costs (e.g. power, cooling, floorspace, soft-
ware & support licenses, etc.) dominate, especially the cost
of administrator labor. Configuring a system which is iden-
tical to the production instance (but different in small ways
so as to not adversely affect the production side) represents
an expensive drain of human labor.

Even if money and performance don’t matter, worse
yet is that actually verifying that the output of the test in-
stance is correct is non-trivial (Nagaraja et al. 2004). Non-
determinism due to thread interleaving, randomization, and
small timing differences can cause differences in the output
which frustrate checking the correctness of the test instance.
Even for identical side-by-side copies, these spurious dif-
ferences can be quite large, and even make validation com-
pletely impossible. Hence, although on-line validation gives
strong evidence that a patch won’t break when put into pro-
duction, given the options of expense vs. overhead and trou-
ble with spurious differences, it is not surprising that on-line
validation is uncommon.

1.2 Multiple Almost Redundant Executions
The large challenges of on-line validation seem dispropor-
tionate compared to the size of the changes. Figure 1.a shows
a patch for a real bug in tar. The only difference is that the
main processing loop is made conditional on dirp being
non-null. The patch is only two lines long; the omitted main
loop is 100 lines long. Also, in practice dirp will almost
always be non-null and the patch will have no effect. We
would expect the execution of the patch and the original to
be identical, down to the individual instructions, almost all
of the time.

We call such highly similar executions MAREs: multi-
ple almost redundant executions. That is, we have more than
one execution that are almost, but not quite, completely iden-
tical and redundant to each other. Such cases of MAREs are
common in patch validation, especially for security patches.
Figure 1.b and 1.c show two security patches for the Apache
web server. Both are small, and indicate that some action
should be taken in case of a certain condition. Again, most of
the time the condition will not occur, since most requests are
not exploit attempts. Consider that adding a bounds check
is the straightforward way to deal with buffer overflow. The



patch is small, and in the case where there is no exploit at-
tempt, nothing at all happens. Together, these imply that se-
curity patches will only ever lead to small changes in execu-
tion. Overall, it seems likely that validating the correctness
of patches will be rife with uselessly redundant work.

1.3 Contributions
To eliminate redundancy in these MARE tasks, we explore
a new technique called delta (∆) execution. ∆ execution (il-
lustrated in Figure 2) runs only the differences, or deltas, of
the two different versions separately. Mostly, only one ex-
ecution is necessary (such runtime is called merged execu-
tion). In the few short segments where the original and the
patched versions differ(called ∆ code), we run two separate
executions (called split execution). After a time, we logically
merge the two separate executions back into one (making
note of state differences, or ∆ state), and continue running
merged. Further executions of the patch, or accesses to data
which differs, causes another split, with each half running as
if it had been running alone the entire time.

For patch validation, ∆ execution should have several key
advantages:

Lower overhead when merged. We expect that the bulk
of execution between the two versions will be identical,
and most runtime will be merged. Most computation, I/O,
and system calls will be done once. There will be little
competition between instances for resources. Especially if
a user’s particular workload never triggers the change, the
overhead will be much lower than running two separate
instances.

Lower overhead when split. Even when split, resource
competition is minimized. Rather than issue I/O operations
and system calls twice, the ∆ execution runtime can monitor
expensive operations and ensure that those which are identi-
cal in both instances are issued only once, with the two in-
stances transparently sharing the result. This especially lim-
its contention for disk resources.

Easier validation due to more similar executions. ∆
execution eases validation by reducing non-determinism.
Mostly the two instances will run merged, and any sources
of non-determinism (e.g. thread interleaving) will influence
both versions identically. Only non-determinism during the
short segments of split execution will affect the output of the
two versions.

These advantages allow ∆ execution to support efficient
and effective patch validation. To ensure the feasibility of ∆
execution, we performed a study of patches. We manually
looked at 60 patches each from MySQL, Apache, OpenSSL,
and Squid, for a total of 240 patches. As detailed in Sec-
tion 2, we find that 77% of the patches should be straight-
forward to run under ∆ execution, and that extensions to ∆
execution should not only improve the performance but al-
low a further 6% of patches to be supported.

Further, we demonstrate a practical implementation of ∆
execution, detailed in Section 4. We test ∆ execution with

10 different patches, using software ranging from servers
like Apache, to multi threaded utilities like crafty. Even with
the overhead of instrumentation, ∆ execution outperforms
basic side-by-side validation by 12%, due to competition
for resources and the overhead of checking correctness. If
we account for the intrinsic overhead of the instrumenta-
tion engine, this increases to 74%. Although both ∆ exe-
cution and our basic side-by-side validation implementation
detect incorrect runs, ∆ execution was unaffected by non-
determinism from the underlying programs. The basic side-
by-side verification implementation was confused by non-
determinism, and hence flagged many correct runs as buggy.

Overall, ∆ execution is capable of efficiently dealing with
the MAREs found in patch validation. The overhead is far
less than running two separate instances, and it is easier
to identify when a true discrepancy occurs. This greatly
increases the practicality of on-line patch validation; hence,
∆ execution may be an important mechanism for ensuring
the reliability of future software systems.

2. Real World Patch Characteristics:
Feasibility Analysis of Delta Execution

In order for delta execution to be effective, the differences
between the original and modified executions must be small.
The three patches previously shown in Figure 1 are all five
lines or shorter. Indeed, patches are generally small and un-
obtrusive for good reason. Large or intrusive patches are
hard to understand. Hence they are seen as being more likely
to introduce bugs. Some software projects, such as the Linux
kernel, discourage large patches (Torvalds 2000). If a large
change must be made, the programmer is encouraged to pro-
vide it as several smaller changes, which can be applied and
verified separately. Small unobtrusive changes are easier to
understand, and are viewed as less likely to hide or intro-
duce new faults. This is especially true for security patches;
the goal is to fix the problem as quickly and as simply as pos-
sible. Hence, it is unsurprising that many patches are small.

To back this intuition with data, we performed a study
of real world patches. We manually evaluated patches from
four representative open source applications (Apache, MySQL,
OpenSSL, and Squid), and categorized them according to
how we believe they will behave under ∆ execution. Further,
we determined 10 total general categories to classify them
under, based on distinguishing characteristics. We choose
60 patches from each of these large and mature applications,
for a total of 240 patches.

2.1 10 categories of patches
Table 1 shows the 10 categories of patches we identified,
while Figure 3 shows concrete examples, drawn from the
applications we studied and used in our experiments. These
categories are meant to summarize essential qualities of the
patches as they relate to ∆ execution and are not necessar-
ily exhaustive. However, all of the changes we studied fall
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Figure 2. Delta execution “fakes” running two instances by running common segments only once, in merged execution. Non-
common segments (due to “delta code” or “delta state”) are run separately, in split execution.

Definitions of patch categories
Category Description Abbr. ∆-EXE
Refactor Changing names of variables, functions, etc refact all
Rare path The code that is changed but almost never be run rare all

Stack effect The changes are expected to affect the stack stack most
Changes that make global effects

Side effect (i.e. heap manipulation, different I/O.) side some

Adding or changing small conditions
Conditional (i.e. adding a buffer overflow check) cond most

Changes that are related to concurrency
Synchronization (i.e. data race prevention, deadlock elimination.) sync most

Data structure Changing a structure size struct none
Macro Patches that involve modifying macros macro most W/ C

Polymorphic Data type changes that don’t actually affect memory layout poly most W/ C
Complex Changes that are too complex to segregate to small patches
changes (i.e. hundreds of lines affected, new files added.) comp none

Table 1. Patch categories. The last column of the table indicates whether patches in those categories can be well dealt with in
our current ∆ execution implementation or not. “W/ C” indicates YES with minimal additional compiler support.

into one or more of these categories. We also list how well
we feel our current implementation of ∆ execution handles
each category, based on the 240 patches we examined. More
specifically about each category:

Refactor “Harmless refactoring,” like the renaming of a
function shown in (a), or otherwise merely restructuring the
organization of code, is not intended to actual change the
behavior of a program. Hence, this is nearly an ideal case for
∆ execution: unless the refactoring is buggy, no execution
properties will change.

Rare path It isn’t so much the changes in (b) that allow
efficient ∆ execution, but where they are: in the segfault
handler. Changes to rarely used functionality, error handlers,
etc. are all good candidates, since for many runs the changed
code won’t even be executed.

Stack effect Many patches are expected to cause little
overall change outside of the their respective functions. The
intended result of the function remains the same, just pre-
cisely how it is gone about differs. In (c), decrementing
count prevents a possible overflow, and in nearly all cases
has zero impact on other execution.

Side effect In contrast, some patches are not completely
isolated. (d) is characterized by changing what is put into

heap memory. This and similar patches will likely cause
some further splitting due to differing data. The differing
data does tend to stay confined (in this case to the error log
buffer), but overall efficiency will be reduced.

Conditional Changes to condition statements are the
most common class of patch we found. Most of them, like
this Apache patch in (e), are intended to better deal with
some corner case. ∆ execution will work wonderfully in
the common case that the result of evaluating the condition
remains the same.

Synchronization Another easy case is changes in syn-
chronization, like the addition of a lock in (f). Synchro-
nization changes are mostly intended to remove races or
deadlocks; since they have no effect unless the error occurs,
and such errors are triggered only sporadically, ∆ execution
works very well.

Data structure Changes to data structures, such as the
new field added in (g), do not work at all with our current im-
plementation. Especially for memory-unsafe languages like
C and C++, changing the size of a type can shift the en-
tire layout of memory, which makes it difficult to identify
semantically identical data. Minor help from the compiler



openssl/crypto/des/des_enc.c
....
− void des_encrypt(DLONG *data, k_sched ks, int enc)
+ void des_encrypt1(DLONG *data, k_sched ks, int enc){
....

sql/mysqld.cc
....
  sig_handler handle_segfault(ing sig){
+   curr_time = time(NULL);

....
+   localtime_r(&curr_time, &tm);

httpd/server/scoreboard.c
....
 if(rv!=APR_SUCCESS){
  ap_log_error(APLOG_MARK, ...,
−   "unable to create scoreboard\"%s\"",
+   "unable to create or access scoreboard\"%s\"",
....

atphttpd/sockhelp.c
....
  int sock_gets(sockfd, str, count){
+   count−−;
....

httpd/modules/proxy/mod_proxy.c
....
 if(strcmp(e[i].sch,"*")==0 ||
  (e[i].regex &&
−  regexec(e[i].rex,url,0,0,0))||
+  regexec(e[i].rex,url,0,0,0)==0)||
....

openssl/crypto/rsa/rsa_eay.c
....
  int helper(RSA *rsa, BTX *ctx){
+   CRYPTO_r_lock(CRYPTO_LOCK_RSA);
    if(rsa−>flags&RSA_NO_BLINDING)
      ret=1;
+   CRYPTO_r_unlock(CRYPTO_LOCK_RSA);
....

httpd/..../mod_deflate.c
....
  struct deflate_ctx_t{
    ....
+   int inflate_init;
  };
....
− if(!inflate_init++){
+ if(!ctx−>inflate_init++){
....

httpd/modules/cache/mod_mem_cache.c
....
− #define DEFAULT_MIN_CACHE_OBJECT_SIZE 0
+ #define DEFAULT_MIN_CACHE_OBJECT_SIZE 1
....

sql/log_event.h, and sql/log_event.cc
....
  class Log_event{
+   typedef unsigned char Byte;
  }
− void get_strlen_and_ptr(const char **src, ....
+ void get_strlen_and_ptr(const Log_event::Byte ** src, ....
.... i) Polymorphich) Macro

b) Rare patha) Refactor

d) Side effectc) Stack effect

e) Conditional g) Data structuref) Synchronization

Figure 3. Examples of the patch categories. Simplified for illustration.

seems insufficient, so we consider such changes to be be-
yond our reach.

Macro Changes to macros, as in (h), are another case
we currently don’t deal with; we can’t identify where in the
code the change actually occurs. However, here it seems like
slight assistance from the preprocessor should be sufficient
to label where the patch has an effect, and therefore allow ∆
execution.

Polymorphic As with macros, changing the type of
something polymorphically (e.g. as in (i)) introduces scat-
tered changes in the code far separated from the textual
change. Again as with macros, the needed assistance from
the compiler seems minor.

Complex Omitted from our examples, some patches are
simply too complex or intrusive for ∆ execution. Such
patches involve many changes across hundreds or thousands
of lines in multiple modules. Although we cannot deal with
them, we would hope that the difficulty in reasoning about
such patches (Torvalds 2000) and the availability of an easy
mechanism for validating smaller changes would encourage
programmers to avoid such patches.

2.2 Distribution of the categories
We summarize the distribution of patch types among each
category in Table 2. Conditional changes dominate the num-
ber of patches, and there are also many stack effect patches.
These and the other ∆ executable changes comprise 77% of
the changes. A further 6% of patches seem like they only
need minor compiler support, implying that ∆ execution
should be effective for up to 83% of patches. This implies
that there is a large potential to exploit the similarity between
different versions, and that ∆ execution is quite promising.

3. Delta Execution Idea
The patch study implies that the large bulk of execution
during patch validation is completely redundant. Hence there
seems little reason to actually have two separate runs. We
could instead have only one context of execution, which
applies the state updates to both copies. Further, since most
of the state is also the same, we can maintain only one
physical set of state. The small portions of execution where
we need two executions streams and two sets of state can be
treated as a special case. This is the key of delta execution.

Figure 2 shows ∆ execution at a high level. Initially,
we run only one execution, and have only one set of state.
Runtime monitoring will tell us when we eventually access
patched code (or delta code). This causes a split; execution
continues with two contexts, each running a different ver-
sion. I/O operations must be monitored, since they may dif-
fer and need validation. Also, while split the runtime tracks
data writes, as the values may potentially differ, forming new
delta data. After we merge, we must monitor for accesses to
delta data, because it signifies we need to split again.

Eventually, the two separate executions should be merged
together again. Any time the register states and instruction
pointers of the two contexts are identical the two executions
may be merged. This is because computers are deterministic
state machines — once two contexts are identical they will
change states in lockstep until either an instruction fetch or
a data load causes an access to delta code or delta data.
Hence, when each instance reaches the end of the patched
code, we block them to compare to one another. If they
match, merged execution will continue, with the runtime
environment monitoring for further splits.



Patch statistics in categories ∆-EXE %
App. refact rare stack side cond sync struct macro poly comp YES W/ C NO
Apache 5 8 16 10 31 0 7 5 0 3 76.7 83.3 16.7
MySQL 4 4 12 11 34 2 7 2 2 3 78.3 83.3 16.7
OpenSSL 6 7 14 7 28 3 1 3 0 4 81.7 88.3 11.7
Squid 2 6 11 9 32 0 7 5 1 5 73.3 78.3 21.7

Table 2. Patch characteristic study summary.“W/ C” indicates YES with compiler support.

Of course, all of this isn’t free. It may be that ∆ execution
is unsuitable for certain patches. Furthermore, the underly-
ing delta execution mechanism must cost something. Finally,
∆ execution is not trivial to actually implement. Specifically,
we must address the following challenges:

• Splitting. Whenever the execution would diverge be-
tween the original and the patched version, we must split.
We need to identify when such divergence would occur,
begin two instruction streams, and arrange for the even-
tual reunification.

• Running split. When running split, we want to effi-
ciently run two different instruction streams. Further, any
data writes may be different between the two versions;
hence we must track such writes, and ensure that any
reads receive the correct result.

• Merging. Without merging, most of the benefit would
be lost; however, we must somehow detect that the exe-
cutions are again identical, identify which data is shared
between the two instances, join the two streams, and ar-
range for detecting when we should split again.

• Dealing with system calls and I/O. Both versions will
want to perform system operations; we must minimize
redundant work, ensure that both versions receive the
data they ought if they were alone, and at the same time
prevent the non-production version from becoming exter-
nally visible.

• Maximizing merged execution. ∆ execution’s benefits
come from the merged execution; we want to minimize
the amount of time we spend split, eliminate unnecessary
splits, and attempt to prevent minor differences in the two
executions from blowing up into irreconcilable splits.

• Delta execution and threads. Threads pose their own
special challenges, as detailed in Section 4.3.

4. Implementation and Issues
The previous section describes the overall idea of ∆ execu-
tion; in this section we discuss the practical issues surround-
ing implementation.

4.1 Basic Delta execution
As described previously, there are several basic issues to
address. Namely, splitting & deciding when to split, running
split, and then how to merge again:

Splitting There are two reasons to split: delta code and
delta data. For delta code, we generate a list of patched
functions, and then use dynamic instrumentation to insert
a split at the beginning of them. For delta data, we use
mprotect to deny access to pages containing delta data.
Using the page protection hardware allows us to avoid the
expense of instrumenting every memory access.

To actually split, we use the fork system call. Fork
creates two copies of the current program and arranges for
copy-on-write sharing of pages: exactly what we need. If the
split was caused by delta code, we set the instruction pointer
of the child instance1 to the patched version of the function.
Regardless of why we split, we also copy any saved delta
data into place for the child instance (the original version’s
delta data being stored in the proper place already). We
now have two instances, one original running the original
code with the original data, and one modified running (if
applicable) modified code with modified data.

Running split Once set up, running split is fairly straight-
forward. Fork takes care of much of the work, however we
still need to track delta state ourselves. When splitting, we
use mprotect to re-enable access to delta pages (pages con-
taining ∆ data), and then to deny write access to all non-
delta pages (pages which are identical in the two versions).
Hence we will be notified of any writes which may create
new delta data. We can record such writes and then reallow
write access for those pages. Fork then takes care of actually
copying the page for us.

Merging If we never merge after splitting, then we may
as well have just run two copies. There are two issues with
merging; when and how. We try merging at every function
return, if the nesting level is less than what it was when we
split. As the patch study showed, we can generally expect
separate functions not to affect one another, so this works
quite well as a heuristic. As future work, we may consider
dynamically adapting where to merge, based on the success
of previous merge attempts. As for how, when either instance
hits a merge point (e.g. end of a function), we block them un-
til the other instance is there as well. If their processor states
are identical, we compare the pages we recorded as being
written to and see if they really are different; if so we save
them as ∆ pages. Once the child’s copy of delta pages are
saved, we terminate the child, and then use mprotect to re-

1 By arbitrary convention, the child is always the patched version.



allow access to all pages except the delta pages, which we
begin monitoring. Finally, we continue with merged execu-
tion.

4.2 Advanced Delta Execution
Although the basic implementation of delta execution will
work well for simple patches in simple programs, it isn’t
capable of handling more complex patches or programs.
Here we address the further features needed for such cases.

Dealing with I/O During split execution, I/O writes from
the child instance must be verified and sandboxed. Further,
network reads are non-idempotent; data read by one process
won’t be there for the other. Hence, the ∆ execution runtime
must instrument all calls to read and write to manage the
I/O operations. We can then 1) validate the modified copy’s
writes, 2) perform non-idempotent reads (e.g. from sockets
or fifos) only once and forward the results to both instances,
and 3) ensure that these relative expensive operations are
done only once even for idempotent I/O calls. Also, because
an I/O syscall could target delta data, even in merged mode
we monitor the I/O operations and perform the necessary
validation.

One issue with I/O that we don’t address is that if the ver-
ification instance sends a remote procedure request that the
live instance does not; we can’t share the results because the
visible instance didn’t do it. This can be addressed by main-
taining a verification instance of any possible RPC targets,
and is a problem that faces any on-line validation system.

Maximizing merged execution To maximize the benefit
of ∆ execution, we want to maximize the time spent merged.
Hence, we must minimize the amount of time we spend split.
One source of unnecessary splits is false delta data. That is,
data which is literally different and will be detected as delta
data, but is actually semantically identical. For example, the
area of the stack above the current frame, and freed heap
objects, are dead state; they won’t have any further effect on
our execution. If we “scrub” this state after it is no longer
needed, we can make additional pages exactly identical, and
reduce the amount of delta data.

Another source of false delta data is from differing mem-
ory allocations. If the original and the modified executions
allocate different amounts of memory, the heaps will become
different, and subsequent allocations will be shifted between
the two. This will cause a large divergence in the amount of
detected delta data. Worse, this can cause malloc’s internal
data structures to differ between the two, and any allocation
or deallocation in the future will cause a split. The patch in
Squid (see Section 6) suffers from this problem particularly
badly; without help, the entire heap quickly becomes delta
data.

In order to reduce the amount of false delta data from
differing heap allocations, we instrument all calls to malloc
and free that occur during split execution. As shown in Fig-
ure 4.a, if either instance makes an allocation different from
the other, we will make false allocations for both. For exam-

Requested allocation Extra allocation

Patched

Original 10 5 2

15 2

With aligning

allocations allocation

Unmodified

1510 5 2

1510 5 2

Legend

DELTA_START
//This is common code
D_ORIG_START
//This was removed in the patch
D_ORIG_END
D_MOD_START
//This was added in the patch
D_MOD_END
DELTA_STOP

(a) Increasing heap similarity

(b) Supporting small delta segments

Figure 4. Techniques to maximize merged execution.

ple, suppose the original allocates 10, 5, and then 2 bytes,
while the patched version allocates 15 and then 2 bytes. By
inserting a false 15 byte allocation in the original, and false
10 and 5 byte allocations in the patched instance, we can
force the two versions’ heaps to line up. Also, by calling all
memory management routines in the same order for both in-
stances, we prevent malloc’s internal data structures from
becoming delta data. By intercepting free calls, we track
who has free’ed what, and only actually free when there
are no more valid allocations. For Squid, these modifications
allow efficient ∆ execution.

While this reduces the impact of heap changes on ∆ ex-
ecution, it can cause some problems. Suppose the patch was
trying to fix a memory leak. We will end up replicating the
leak in both instances. Further, by changing the layout of the
heap, we may cause some memory bugs to occur differently.
Since we are targeting type-unsafe C programs, this is the
best trade-off we can manage. If we were in a type-safe en-
vironment, such as Java, we could ignore the binary value of
references and instead track if the underlying objects were
“the same”. This remains a possibility for future work.

Reducing split/merge overhead If a patch lies on a com-
monly taken execution path, we may end up needing to
split and merge quite often. Although fork() as a splitting
mechanism is relatively cheap, the time spent synchroniz-
ing during a merge is prohibitively expensive. The patch in
ATPhttpd shown in Figure 3.c, for instance, is run multiple
times per request, require multiple expensive merge opera-
tions.



To alleviate this, we propose an instrumentation based
split/merge. First, save the processor context, and run the
unmodified version. Rather than use fork() to copy pages
which are written to, the signal handler can copy the pages,
as needed, when taking faults from mprotect. When a
merge point is hit, save any modified pages, save the pro-
cessor state, and then roll back to where we split. Then run
the modified version, restoring delta state from the copy kept
in the runtime environment’s memory block. When this sec-
ond run reaches the same merge point, we do the necessary
comparisons, save any true delta data, and continue on with
merged execution as usual. Although this won’t run the two
instances simultaneously, this should be more than made up
for by avoiding synchronization time between the child and
the parent.

Handling small deltas in large functions Sometimes,
a small patch involves only one branch path of a large
function. If we flag the entire function as delta code, we
will cause unnecessary splits. To avoid this, we imple-
mented a mechanism to support smaller segments of delta
code. We label the areas of delta code, and what was was
added/subtracted, by inserting macros in the source, as il-
lustrated in Figure 4.b. DELTA START and DELTA STOP
markers wrap around the beginning and end of segments
containing delta code. The runtime environment instru-
ments the DELTA START markers with splits, and the
DELTA STOP markers with merges. D ORIG START and
D ORIG END markers wrap around code which was re-
moved in the patch (“-” lines in a diff). The runtime will
skip these segments for the instance running the modified
code. Likewise, D MOD START and D MOD END wrap
around added code (“+” lines in a diff). Given the diff of a
patch, it is trivial to decide where to place the markers, and
could easily be automated by the compiler.

Competitive analysis for worst case situation In some
cases, ∆ execution may work poorly. It may also be that
most of the execution between the two versions actually is
different. This may be due to a trickle-down effect in the data
(where one change begets another and then another), or per-
haps due to the differing code leading to large differences in
execution. Alternatively, the executions could be quite sim-
ilar, but because the change is in a hotspot most of the time
is lost to splitting and merging overhead. To alleviate such
cases, we have a competitive fallback mechanism. We divide
the execution into epochs, and monitor how much of each
epoch is spent split, merged, splitting, and merging. Given
an estimate of how inefficient running two instances side-
by-side is, we can calculate if during the epoch we would
have been better off without ∆ execution. More formally,
we should continue with ∆ execution only if

ε · time merged + time split

epoch length
≥ 1

where ε is the slowdown imposed by running two instances.
If this inequality does not hold for 3 epochs in a row, we

dynamically remove the ∆ execution runtime environment,
and revert to a fallback side-by-side validation. Later, if the
load on the system is reduced, ∆ execution can be re-enabled
for high-quality validation.

Type changes A final issue which we are incapable of
completely addressing is type changes. While changes in the
layout of the stack are acceptable, type changes, especially
of heap objects, are not well handled by our implementation.
The simple change of adding a field to a structure completely
breaks our implementation. However, although it is difficult,
changes in type can be dealt with given sufficient language or
compiler support (Segal and Frieder 1993). For arbitrary C
programs, however, it is much more difficult, and we simply
do not support such patches.

4.3 Threads
Given the current trend of increasing numbers of multicore
processors, we would be remiss if we did not address the
issues raised by threads. Beyond the increased complexity
of writing thread safe instrumentation, threads raise several
difficulties. First, threads are more difficult to split because
the fork() system call doesn’t duplicate threads. Further,
we must deal with thread creation or destruction during split
execution.

There are 3 ways to deal with fork() not duplicating
threads. One can create a modified fork() call, which does
duplicate threads. This has the advantage of supporting the
widest variety of changes and programs. The disadvantage
is requiring a modified system call; this is fairly intrusive.
Alternatively, one can use instrumentation to recreate the
threads. By directing a signal at each specific thread, on
can trap them in a barrier. Then, the splitting thread can
copy their execution contexts and then fork. The parent can
then resume the stopped threads, while in the child process,
we recreate all of the threads before continuing. Although
this does not require modifications to the kernel, it is much
more expensive. Finally one can temporarily disable other
threads for the duration of split execution. Again, a signal
can be used to pause the other threads; we don’t have to
recreate them. This is simple, inexpensive, and minimally
intrusive. The downside is the potential for deadlock if the
thread which caused the split needs a resource which has
been locked by one of the suspended threads. Such deadlock
situations can be avoided by temporarily merging execution,
executing the thread that holds the resource, and then split-
ting again. For our primary implementation, we have chosen
this option. We have never observed such deadlock in prac-
tice, and we can avoid requiring changes to the kernel.

Thread creation and destruction during delta execution is
more complex. If both versions create (or destroy) a thread,
then issues are minimized. However, if only one version
does, then we will have a mismatch in the number of threads.
The number of live threads is in some ways state intrinsic
to the entire process, and may prevent merging. However,
aside from contrived cases (e.g. changing a MAX THREADS



Benchmark Program Change Description Baseline DE
crafty Chess Program Code refactoring fails–kibitzes differ pass

raytrace Raytracer Fixed bug in result reporting large fail–nondeterminism pass
tar Archive Utility Fixed incremental archiving pass pass

Apache 1 Web Server Fixed overflow in mod alias fails–randomized etags pass
Apache 2 Web Server Fixed overflow in mime parser fails–randomized etags pass
ATPhttpd Web Server Fixed overflow in HTTP parsing small fails–timestamps pass

DNSCache DNS Cache Behavior change fails–timing & random Tx IDs pass
MySQL 5.0 Database Server Extra permission checks large fail–nondeterminism pass

OpenSSL Security Library Added bug in TLS handling MAJOR fail–cannot validate pass
squid Web Cache Fixed overflow in FTP parsing pass pass

Table 3. Test applications and the effectiveness of their validation for running twice and delta execution. The baseline
validation fails 8 of the 10 applications when they should pass; 3 of these (MySQL, OpenSSL, & raytrace) fail badly enough
to be considered unvalidatable.

variable) such a situation is extremely rare; if it were to
happen we can fail-back to side-by-side validation.

5. Methodology
For our evaluation, we implemented both ∆ execution and
traditional side-by-side on-line validation. For ∆ execution,
we used Pin (Luk et al. 2005), a dynamic instrumentation
tool, to insert split/merge, to add appropriate signal handlers,
to intercept system calls, etc. Our traditional validation is
implemented as a network proxy in front of two separate
instances (for network applications) or as a script wrapping
two calls and verification (for command line applications).

Table 3 shows the test cases we used, including the ap-
plication and a short description of the change. We tested
10 different applications, 7 of which were server programs.
Further, 5 of the applications can use multiple cores. The
workloads were as close to standard benchmark workloads
as possible (e.g. the included workload from SPEC for
crafty). However since the benchmark versions aren’t buggy,
and since the benchmark workloads won’t exercise patches,
these are not the standard benchmarks. All of the exper-
iments were run on a 2-way SMP system with 2.4 GHz
Pentium 4 Xeons and 2.5 GB of memory. The network was
gigabit, and (as appropriate) the client machine was identi-
cally configured to the server machine.

For our performance evaluation, we compared the perfor-
mance of three cases: (1) performing validation by running
two copies side by side; (2) performing validation by run-
ning two copies side by side and using a null pintool, which
performs no true work but exposes the underlying overhead
of Pin’s dynamic recompilation and code cache mechanism;
and (3) performing validation using delta execution. All of
our results are normalized to the performance of the same
workload for one non-validated instance running in isola-
tion.

6. Experimental Results
6.1 Effectiveness in Patch Validation
Table 3 shows the false positives generated during on-line
validation. The baseline validation has trouble with 8 of the
10 runs. Only tar and Squid pass completely cleanly. Five ap-
plications file validation in smaller ways. Crafty continually
prints what it is thinking; this differs slightly from run to run
due to timing effects. For both Apaches, the randomly gen-
erated “Etag” field in the HTTP response (used for caching)
fools the baseline into failing the patch. ATPhttpd occasion-
ally fails because of time stamp differences, but for the most
part the outputs are the same. Finally, DNSCache is sensi-
tive to timing, and uses randomized transaction IDs; both
of these cause differences in most of its replies. For these
five failures, it wouldn’t be insurmountable to create a de-
tector to determine if the difference is a false positive or not.
However, for MySQL, OpenSSL, and raytrace, this is not the
case. Due to non-determinism in the thread interleaving, the
output of both raytrace and MySQL will differ from run to
run, even though it remains correct. Verifying that the output
is still correct is difficult.

OpenSSL is hopeless for the baseline validation. The
SSL handshake exchanges random numbers between the
client and the server; since the client only sees the random
numbers from the production instance, the replies it sends
seem nonsensical to the testing instance. The test instance,
therefore, reports an error and stops running; indeed, the
proxy appears to be a man-in-the-middle attack, which SSL
is supposed to detect. Due to the non-determinism involved,
the baseline validation does not work at all.

In contrast with the baseline validation, delta execution
correctly identifies all of the passing runs. Since the bulk
of the execution occurs only once for “both” copies, delta
execution ensures that non-deterministic effects don’t cause
differences in the output. Hence validation is greatly simpli-
fied.
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Figure 5. Overhead of validation: ∆ execution (DE) compared to on-line validation with side-by-side and side-by-side running
a null pintool. 1x is normalized to the performance of a single, unvalidated instance of the application.

6.2 Performance
Figure 5 shows the results of running delta execution. For
crafty, raytrace, tar, and Squid, delta execution shows lower
overhead than running twice, even after paying the cost of
instrumentation. The best result is tar, for which ∆ execution
is 128% faster than the side-by-side validation. Overall, ∆
execution is 12% faster. If the overhead of Pin is taken into
account, ∆ execution does much better; every application is
faster using ∆ execution, for an overall average increase in
performance of 74%.

The “black sheep” performance-wise is MySQL. ∆ exe-
cution is 37% slower than the side-by-side validation. Fur-
ther, our adaptive mechanism fails to notice this. However, ∆
execution is still 63% faster than side-by-side with nullpin. It
turns out that Pin imposes a very large overhead even with-
out instrumentation for MySQL, running 3.23 times more
slowly even with nullpin. ∆ execution is only 9.6% slower
than this. Since the slowdown comes from the instrumenta-
tion, our adaptive mechanism believes ∆ execution is doing
well, and doesn’t fail over.

Another interesting thing is the high efficiency of valida-
tion of ATPhttpd and OpenSSL. Both applications are CPU
bound, yet neither program is capable of taking advantage
of the multiple cores they had available. Hence, when run-
ning two copies side-by-side, there is an unusually low level
of overhead. Indeed, because OpenSSL detects the network
proxy as a man in the middle attack, the second copy doesn’t
even perform any work, and aborts the connection prema-
turely.

6.3 Detailed performance characteristics
Table 4 shows a detailed listing of where each program spent
its time while running under delta execution. 8 of the 10 ap-
plications spend most of their time merged. The exceptions
are tar (45% merged) and ATPhttpd (only 12% merged). Tar
is especially interesting because it in fact performs better
under ∆ execution than any other application. Yet that tar
spends 10.5% of its runtime split, and 40.6% of its runtime
merging would imply that tar should have terrible perfor-
mance. It turns out that most of the contention in tar is due
not to the CPU but due to I/O. Although a large amount of
CPU cycles are spend in merging, most of that time would
have otherwise been spent waiting for the disk. Further, al-

though tar has the most time spent split, most of that time is
composed of waiting for I/O. Even when split, delta execu-
tion will issue only one I/O operation to the system if both
versions are issuing the same operation. This allows tar to
perform well under delta execution despite its large amount
of split execution and merge overhead.

ATPhttpd, on the other hand, has the highest number
of splits per second, at 19.1. On average among all of the
benchmarks, a split takes 9.81 ms and a merge takes 105.9
ms. At 19 split/merges per second, ATPhttpd should spend
2.2 seconds per second either splitting or merging. Clearly
it would make no forward progress at all if it weren’t for
the fact that it takes far less time per merge than average,
only 35.3 ms. Since ATPhttpd is completely serial it does
not suffer from scheduling contention while merging. Even
so, ATPhttpd still spends over two thirds of its running time
in merging back together. Unfortunately, although the patch
in ATPhttpd does not change the path of execution in nearly
all cases, the patch is called a minimum of three times per
request. Cases like ATPhttpd motivate working on more
efficient methods of merging.

7. Related Work
7.1 Systems administration
As “bits don’t rot”, we expect software systems to break only
when something changes. We are far from the first to address
this. Lowell et. al.’s devirtualizable virtual machines (Low-
ell et al. 2004) are thin VMs which may be inserted and re-
moved as necessary; maintenance can be performed on a dy-
namic VM instance which can be then be rolled into produc-
tion with minimal downtime. Although the primary goal is to
limit downtime, the maintenance environment is turned into
the production environment, allowing testing in an environ-
ment which is identical to what the new production environ-
ment will be. Unfortunately, validation on a full workload
will still involve competition for resources with the produc-
tion environment, and the previously discussed difficulties
in actually validating correctness still stand. Similarly, Na-
garaja et. al. measured real operator errors during various
administrative tasks (Nagaraja et al. 2004). Based on their
findings, they built a validation system which supported both
on-line (“replica-based”) and off-line (“trace-based”) vali-



crafty raytrace tar Apache1 Apache2 ATPhttpd DNSCache MySQL OpenSSL squid
splits/sec .005 .037 5.36 .368 6.560 19.10 9.638 .520 11.700 .903
%merged 99.996 99.134 45.40 94.500 72.900 12.10 55.691 87.827 59.500 88.200

%split .001 .696 10.50 .002 .081 3.85 2.164 5.122 .229 .358
%splitting .011 .130 3.08 .072 1.800 16.30 17.178 .469 6.290 0.896
%merging .035 .055 40.60 2.420 25.20 67.60 24.917 7.440 33.900 10.500

Table 4. Detailed accounting of where time was spent in each application. Columns may not sum to 100% due to rounding.

dation. A “shunt” can capture requests and replies; the re-
quests can be sent to a test instance which is tested against
the shunted replies. Their capability to test against the full
live workload makes the result of the validation trustwor-
thy; however, they measure nearly a doubling of CPU us-
age while performing validation. Especially due to the trend
of consolidating multiple servers onto one physical system
with virtual machines, this CPU overhead is troublesome2.
Additionally, they discuss the problems of non-determinism
causing spurious differences in response.

7.2 Model checking
As we mention in previous work (Zhou et al. 2007), another
use for delta execution is model checking (d’Amorim et al.
2007). By exhaustively exploring program states, model
checking will expose bugs prior to release. Unlike in this
work, (d’Amorim et al. 2007) focuses on running one in-
stance of a program on many different inputs simultane-
ously. Modifications to the Java Path Finder model checker
allow thousands of executions to run while sharing large
amounts of state and execution. If only a few different exe-
cutions are run simultaneously, (d’Amorim et al. 2007) will
not share sufficient execution between different instances
to overcome their base overhead. That it works terribly for
validation, which has only two instances, is unsurprising;
system extensions to support running two versions of x86
binaries is fundamentally different from JVM support for
model checking.

7.3 Differences in software versions
The efficiency of delta execution relies on the observation
that between versions, software remains mostly the same.
If different versions of software were highly different, then
all of the execution would be split execution. Fortunately,
this is not the case. Work in binary differencing (Baker et al.
1999) and binary matching (Wang and Pierce 2000) shows
that executables can be highly similar between versions.
Further, although we use the compiler to create a binary
with both the original and changed code linked in, binary
differencing could extract delta code without the compiler’s
assistance. This would allow delta execution even if the
vendor is unwilling to supply binaries with dual-versions of
changed code. This remains as our future work.

In dynamic software update (e.g. (Hicks et al. 2001;
Makris and Ryu 2007)), a program may be patched while

2 Client-perceived overhead was not measured

it is still running. Of particular interest to us are procedure-
based dynamic update systems, where individual procedures
within a program may be updated. The PODUS system is an
example of such (Segal and Frieder 1993). Although “any
program can be so poorly written that it cannot be dynam-
ically updated”, most well-structured systems are suitable.
During the update, two different versions will be resident
at once. This is similar to how two versions are available
in delta execution. However, dynamic update provides no
checking that the two versions behave similarly, nor is it the
intent that the two versions co-exist for any significant length
of time. Also, unlike in our implementation of delta execu-
tion, the new version does not have to be available when the
old version is compiled. Using the techniques of dynamic
update, delta execution could be extended to support begin-
ning validation without stopping the old version and starting
a merged version of a program. Of course, the issues and
limitations that dynamic-update systems suffer would then
apply. Some (e.g. difficulty in changing data structures) cur-
rently apply to delta execution, while others (e.g. changes
cannot be made at a granularity smaller than a procedure)
would be more limiting than what delta execution currently
supports.

Another technique similar to dynamic software update is
band-aid patching (Sidiroglou et al. 2007). Band-aid patch-
ing will run the old and new versions of patched code in
sequence. It then must immediately determine which ver-
sion to use. The unused instance is then squashed; unfortu-
nately this prevents dealing with faults with even short la-
tent periods. Hence band-aid patching only handles cases
where the change is isolated to one function, unlike ∆ ex-
ecution, which provides two logical versions throughout ar-
bitrary lengths of time, and detects problems that require in-
teraction between disparate code segments.

8. Conclusions
Given the likelihood of a change to a system causing a
failure, the suspicion with which users and administrators
view change is well warranted. Our proposed mechanism, ∆
execution, allows them to assuage their concerns with on-
line validation with their own workloads.

Our basic implementation of ∆ execution reduces the
overhead of on-line validation. It also reduces the spurious
differences which frustrate traditional on-line validation, be
they from thread interleavings, timing events, random num-
bers, or another source. Further, our study of real patches



indicates that ∆ execution should be applicable to a wide
variety of cases.

Of course, although we have demonstrated a first practi-
cal implementation of ∆ execution for validating program
changes, there is more to be done. Changes that result in
new types are not well dealt with, and require further lan-
guage support, while some complex threading behaviors are
not fully resolved. We would like to further explore meth-
ods for keeping the overhead better in check, and we hope
to widen the applicability of ∆ execution to include not only
patches but configuration changes as well.
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