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Abstract

Multilayer perceptrons (MLPs) or artificial
neural nets are popular models used for non-
linear regression and classification tasks. As
regressors, MLPs model the conditional dis-
tribution of the predictor variables y given
the input variables x. However, this predic-
tive distribution is assumed to be unimodal
(e.g. Normal distribution). For tasks such
as structured prediction problems, the condi-
tional distribution should be multi-modal, or
one-to-many mappings. By turning the hid-
den variables in a MLP into stochastic nodes
rather than deterministic ones, Sigmoid Be-
lief Nets can induce a rich multimodal dis-
tribution in the output space. Learning Sig-
moid Belief Nets is very slow and modeling
real-valued data is difficult. In this paper,
we propose a stochastic feedforward network
where its hidden layers have both determin-
istic and stochastic variables. A new Gen-
eralized EM training procedure using impor-
tance sampling allows us to efficiently learn
complicated conditional distributions. We
demonstrate the superiority of our model to
conditional Restricted Boltzmann Machines
and Mixture Density Networks on 3 syn-
thetic datasets and modeling facial expres-
sions. Moreover, we show that latent fea-
tures of our model improves classification and
provide additional qualitative results on color
images.

1. Introduction

Multilayer perceptrons (MLPs) are general purpose
function approximators. The output of a MLP can
be interpreted as the sufficient statistics (conditioned
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on the input X) of a member of the exponential family,
thereby inducing a distribution over the output space
Y . Since the nonlinear activations are all determinis-
tic, MLPs model the conditional distribution p(Y |X)
with a unimodal assumption (e.g. an isotropic Gaus-
sian).

For many structured prediction problems, we are in-
terested in modeling a conditional distribution p(Y |X)
that is multimodal and may have complicated struc-
ture1. One way to model the multi-modality is to make
the hidden variables stochastic. Given the sameX, dif-
ferent hidden configurations leads to different output
values of Y . A model that does exactly this is the Sig-
moid Belief Net (SBN) (Neal, 1992). It is a stochastic
feedforward neural network with binary hidden, input,
and output variables. SBNs can be viewed as directed
graphical models where the sigmoid function is used
to compute the degree of “belief” of a child variable
given the parent nodes.

Inference in such models is generally intractable. The
original paper by Neal (1992) proposed a Gibbs sam-
pler which cycles through the hidden nodes one at
a time. However, Gibbs sampling can be very slow
when learning large models or fitting moderately-sized
datasets. In addition, slow mixing of the Gibbs chain
would typically lead to a biased estimation of the gra-
dient during learning. A variational learning algo-
rithm based on the mean-field approximation was pro-
posed in (Saul et al., 1996) to improve the learning of
SBNs. A drawback of the variational approach is that,
similar to Gibbs, it has to cycle through the hidden
nodes one at a time. Moreover, beside the standard
mean-field variational parameters, additional parame-
ters must be introduced to lower-bound an intractable
term that shows up in the expected free energy, mak-
ing the lower-bound looser. Gaussian fields are used
in (Barber & Sollich, 1999) for inference by making
Gaussian approximations to units’ input, but there is
no longer a lower bound on the likelihood.

1An equivalent problem is learning one-to-many func-
tions from X 7→ Y .
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Figure 1. Stochastic Feedforward Neural Networks. Left: network diagram. Red nodes are stochastic and binary, while the
rest of the hiddens are deterministic sigmoid nodes. Right panel: motivation of why multimodal outputs are needed. Given
the top half of the face x, the mouth y can be different, leading to different expressions.

In this paper, we introduce a Stochastic Feedforward
Neural Network (SFNN), based on the Sigmoid Belief
Net, for modeling conditional distributions p(y|x) over
continuous real-valued Y output space. Unlike SBNs,
to better model continuous data, SFNNs have hidden
layers with both discrete stochastic and deterministic
units. We also present a novel Monte Carlo variant of
the Generalized Expectation Maximization algorithm
for learning. Importance sampling is used for the E-
step for inference, while error backpropagation is used
by the M-step to improve a variational lower bound on
the data log-likelihood.

SFNNs have several attractive properties, including:

• We can draw exact samples from the model with-
out resorting to Markov chain Monte Carlo.

• Stochastic units form a distributed code to rep-
resent an exponential number of mixture compo-
nents in output space.

• As a directed model, learning does not need to
deal with a global partition function.

• Combination of stochastic and deterministic hid-
den units can be jointly trained using the back-
propagation algorithm.

There have been several approaches to modeling struc-
tured distributions. The Conditional Gaussian Re-
stricted Boltzmann Machines (C-GRBMs) (Taylor
et al., 2006) is a popular model for modeling the con-
ditional structured distribution p(y|x) (C-GRBM is a
type of higher-order potential). While C-GRBMs have
the advantage of exact inference, it is an energy based
model that defines different partition functions for dif-
ferent input values of X. Learning also requires Gibbs
sampling which is typically prone to poor mixing. An-
other model capable of learning multimodal output
densities is a directed model known as Mixture Den-
sity Networks (MDNs) (Bishop, 1994). As the name of

the model suggests, MDNs use a mixture of Gaussians
to model output Y . The components’ means, mixing
proportions and the output variances are all modeled
by a MLP that has input X. As with SFNNs, back-
propagation algorithm can be used to train MDNs ef-
ficiently. However, the number of mixture components
in the output Y space must be pre-specified and the
number of parameters is linear in the number of mix-
ture components. In contrast, SFNNs can model up
to 2Nh output components, where Nh is the number
of stochastic hidden nodes.

We next describe new learning and inference algo-
rithms for the proposed SFNN model. We then empir-
ically demonstrate that SFNNs can learn good density
models and are capable of extracting good representa-
tions for various classification tasks.

2. Stochastic feedforward neural
networks

Standard multilayer perceptrons (MLPs), or feed-
forward neural networks, are entirely deterministic.
Given an input vector x, MLPs produce a distribu-
tion on the output variables y by defining the suffi-
cient statistics of y (e.g. the mean) as a function of
x. For example, in a MLP with one input, one output
and one hidden layer,

p(y|x) ∼ N (y|µy, σ2
y)

µy = σ
(
W2σ(W1x + bias1) + bias2

)
where σ(a) = 1/(1 + exp(−a)) is the sigmoid function.

When modeling a structured multimodal output dis-
tribution p(y|x), one simple way is to use stochastic
hidden variables instead of deterministic ones. This
leads to a class of models called stochastic feedforward
neural networks (Neal, 1992). The left panel of Fig. 1
shows a diagram of SFNNs with multiple hidden lay-
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ers. Given an input vector x, different states of the
stochastic nodes can generates different modes in the
output space Y .

Stochastic Feedforward Neural Networks (SFNNs),
contain binary stochastic hidden variables h ∈
{0, 1}Nh , where Nh is the number of hidden nodes. For
clarity of presentation, we can construct a SFNN from
a MLP with one hidden layer by replacing the sigmoid
nodes with stochastic ones. The conditional distribu-
tion of interest, p(y|x), is obtained by marginalizing
out the latent stochastic hidden variables:

p(y|x) =
∑
h

p(y,h|x) (1)

SFNN has the same structure as a MLP, and it is also a
directed graphical model where the generative process
starts from x, flows through h, and then generates
output y. Thus, we can factorize the joint distribution
as:

p(y,h|x) = p(y|h)p(h|x) (2)

For modeling real-valued y, we can have p(y|h) =
N (y|W2h + bias2, σ

2
y) and p(h|x) = σ(W1x + bias1).

Since h ∈ {0, 1}Nh is a vector of Bernoulli random
variables, p(y|x) has potentially 2Nh different modes2,
one for every possible binary configurations of h. The
fact that h can take on different states in SFNN is
the reason why we can learn one-to-many mappings,
which would be impossible with standard MLPs.

The modeling flexibility of SFNN comes with compu-
tational costs. Since we have a mixture model with po-
tentially 2Nh components conditioned on any x, p(y|x)
does not have a closed-form expression. We can use
Monte Carlo approximation with M samples for its
estimation:

p(y|x) ' 1

M

M∑
m=1

p(y|h(m)) h(m) ∼ p(h|x) (3)

This estimator is unbiased and has relatively low vari-
ance. This is because the accuracy of the estimator
does not depend on the dimensionality of h and that
p(h|x) is factorial, meaning that we can draw exact
samples.

If y is discrete, it is sufficient to have all of the hidden
nodes be discrete. However, using only discrete hid-
dens is suboptimal when modeling real-valued output
y. This is due to the fact that while y is continu-
ous, There are still a finite number of discrete hidden
states, each one (e.g. h′) is a Gaussian: p(y|h′) =

2In practice, due to weight sharing, we will not be able
to have close to that many modes for a large Nh.

N (y|µ(h′), σ2
y), where the mean is a function of the

hidden state: µ(h′) = WT
2 h

′ + bias2. When x varies,
we only change the probability of choosing a specific
hidden state h′ via p(h′|x). However, if we allow µ(h′)
to be a deterministic function of x as well, we can learn
a smoother p(y|x), even when it is desirable to learn
small residual variances σ2

y. This can be accomplished
by allowing for both stochastic and deterministic units
in a single SFNN hidden layer. This also allows the
mean µ(h′,x) to have contributions from two compo-
nents, one from the hidden state h′, and another one
from defining a deterministic mapping from x. As we
demonstrate in our experimental results, this is crucial
for learning good density models of the real-valued y.

In SFNNs with only one hidden layer, p(h|x) is a fac-
torial Bernoulli distribution. If p(h|x) has low entropy,
only a few discrete h states out of the 2Nh would have
any significant probability mass. We can increase the
entropy over the stochastic hidden variables by adding
a second hidden layer. The second hidden layer takes
the discretized stochastic and any deterministic hid-
den nodes of the first layer as its input. This leads to
our proposed SFNN model, shown in Fig. 1.

In our SFNNs, we assume a conditional diagonal Gaus-
sian distribution on the output space:

log p(y|h,x) ∝ −1

2

∑
i

log σ2
i −

1

2

∑
i

(yi − µ(h,x))2

σ2
i

We note that we can also use any other parameterized
distribution (e.g. Student’s t) for the output variables.
This is a win compared to the Boltzmann Machine
family of models, which require the output distribution
to be from the exponential family.

2.1. Learning
We present a Monte Carlo variant of the General-
ized EM algorithm (Neal & Hinton, 1998) for learning
SFNNs. Specifically, importance sampling is used dur-
ing the E-step to approximate the posterior p(h|y,x),
while the Backprop algorithm is used during the M-
step to calculate the derivatives of the parameters of
both the stochastic and deterministic nodes. Gradi-
ent ascent using the derivatives will guarantee that
the variational lower bound of the model log-likelihood
will be improved. The drawback of our learning algo-
rithm is that we require drawing M samples for the
stochastic nodes for every weight update. However, as
we will show in the experimental results, 20 samples is
sufficient for learning very good SFNNs empirically.

The requirement of sampling is typical for models ca-
pable of structured learning. As a comparison, energy
based models, such as conditional Restricted Boltz-
mann Machines, require MCMC sampling per weight
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update to estimate the gradient of the log-partition
function. These MCMC samples do not converge to
the true distribution which in turn gives a biased esti-
mate of the gradient.

For clarity, we provide the following derivations for
SFNNs with one hidden layer containing only stochas-
tic nodes3. For any approximating distribution q(h),
we can write down the following variational lower-
bound on the data log-likelihood:

log p(y|x) = log
∑
h

p(y,h|x)

=
∑
h

p(h|y,x) log
p(y,h|x)

p(h|y,x)

=
∑
h

q(h) log
p(y,h|x; θ)

q(h)
+ KL(q(h)||p(h|y,x))

≥
∑
h

q(h) log
p(y,h|x; θ)

q(h)
(4)

We arrived at the lower bound of the log-likelihood in
Eq. 4 since the KL divergence must be greater than or
equal to zero. q(h) can be any arbitrary distribution.
For the tightest lower-bound, q(h) need to be the exact
posterior p(h|y,x).

Since the posterior p(h|y,x) is hard to compute, but
the “conditional prior” on h p(h|x) is easy (corre-
sponding to a simple feedforward pass), we can set
q(h) , p(h|x). However, this would be a very bad
approximation as learning proceeds, since the learn-
ing of the likelihood will increase the KL between the
conditional prior and the posterior. Instead, we use
importance sampling with the conditional prior as the
proposal distribution.

Let Q be the expected complete data log-likelihood,
which is a lower bound on the log-likelihood. We wish
to maximize the lower bound:

Q(θ, θold) =
∑
h

p(h|y,x; θold) log p(y,h|x; θ) (5)

=
∑
h

p(h|y,x; θold)

p(h|x; θold)
p(h|x; θold) log p(y,h|x; θ)

' 1

M

M∑
m=1

w(m) log p(y,h(m)|x; θ), h(m) ∼ p(h|x; θold)

where w(m) is the importance weight of the m-th sam-
ple from the proposal distribution p(h|x; θold). Using

3It is straightforward to extend the model to multiple
and hybid hidden layered SFNNs.

Algorithm 1 EM algorithm for Learning Stochastic
Feedforward Networks (See Fig. 1)

Given training D dimensional data pairs: {x(n),y(n)},
n = 1 . . . N . Hidden layers h1&h4 are deterministic,
h2&h3 are hybrid. θ = {W 1,2,3,4,5, bias, σ2

y}
repeat

//Approximate E-step:

1 Compute p(h2|x(n)) = Bernoulli
(
σ(W 2σ(W 1x(n)))

)
2 h2

determ ← p(h2
determ|x(n))

for m = 1 to M (importance samples) do

3 Sample: h2
stoch ∼ p(h2

stoch|x(n)).
let h2 be the concatenation of h2

stoch and h2
determ.

4 p(h3|x(n)) = Bernoulli
(
σ(W 3h2)

)
5 h3

determ ← p(h3
determ|x(n))

6 Sample: h3
stoch ∼ p(h3

stoch|x(n))
let h3 be the concatenation of h3

stoch and h3
determ.

7 Compute p(y|x(n)) = N
(
σ(W 5σ(W 4h3));σ2

y

)
end for

8 Compute w(m) for all m, using Eq. 7.

//M-step:
4θ ← 0
for m = 1 to M do

9 Compute ∂Q(m)(θ,θold)
∂θ

by Backprop.

10 4θ = 4θ + ∂Q(m)/∂θ
end for

11 θnew = θold + α
M
4θ, //α is the learning rate.

until convergence

Bayes Theorem, we have

w(m) =
p(h(m)|y,x; θold)

p(h(m)|x; θold)
=
p(y|h(m),x; θold)

p(y|x; θold)
(6)

The denominator of the RHS can be approximated
using Eq. 3, therefore:

w(m) ' p(y|h(m); θold)
1
M

∑M
m=1 p(y|h(m); θold)

(7)

For convenience, we define the partial objective of the
m-th sample as

Q(m) , w(m)
(

log p(y|h(m); θ) + log p(h(m)|x; θ)
)
. (8)

We can then approximate our objective function
Q(θ, θold) with M samples from the proposal,

Q(θ, θold) '
1

M

M∑
m=1

Q(m)(θ, θold)

For our generalized M-step, we seek to perform gradi-
ent ascent on Q:

∂Q

∂θ
' 1

M

M∑
m=1

∂Q(m)(θ, θold)

∂θ
(9)

=
1

M

M∑
m=1

w(m) ∂

∂θ

{
log p(y|h(m); θ) + log p(h(m)|x; θ)

}
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The terms ∂
∂θ

{
.
}

can be calculated using error
backpropagation of two parts. The first part,
∂
∂θ

{
log p(y|h(m); θ)

}
, treats y as the targets and

h(m) as the input data, while the second part,
∂
∂θ

{
log p(h(m)|x; θ)

}
, treats h(m) as the targets and

x as the input data. In SFNNs with hidden layers
with mixture of deterministic and stochastic units,
backprop will additionally propagate error information
from the first part to the second part.

The full gradient is a weighted summation of the M
partial derivatives, where the weighting comes from
how well a particular state h(m) can generate the data
y. This is intuitively appealing, since learning adjusts
both the “preferred” states’ abilities to generate the
data (first part in the braces), as well as increase their
likelihood of being picked conditioning on x (second
part in the braces). The detailed EM learning algo-
rithm for SFNNs is listed in Alg. 1.

2.2. Cooperation during learning

We note that for importance sampling to work well
in general, a key requirement is that the proposal dis-
tribution not to be small where the true distribution
is significant. However, things are slightly different
when using importance sampling for during learning.
Our proposal distribution p(h|x) and the posterior
p(h|y,x) are not fixed by rather governed by model
parameters. Learning adapts these distribution in a
synergistic and cooperative fashion.

Let’s hypothesize that at a particular learning itera-
tion, the conditional prior p(h|x) is small in certain
regions where p(h|y,x) is large, which is bad for im-
portance sampling. The E-step will draw M samples
and weight them according to Eq. 7. While all sam-
ples h(m) will have very low log-likelihood due to the
bad conditional prior, there will be certain preferred
state ĥ since the importance weighting is normalized
to sum to 1. Learning in Eq. 9 will to two things. 1)
it will adjust the generative weights so to allow pre-
ferred states to better generate the observed y; 2) it
will make the conditional prior better by making it
more likely to predict ĥ given x. Since the generative
weights are shared, the fact that ĥ generates y accu-
rately will probably reduce the likelihood of y under
another state h. The updated conditional prior tends
to be a proposal distribution for the updated model.
The cooperative interaction between the conditional
prior and posterior during learning provides some ro-
bustness to the importance sampler.

Empirically, we can see this effect as learning progress
on Dataset A of Sec. 3.1 in Fig. 2. The plot shows the

Figure 2. KL divergence and log-likelihoods. Best viewed
in color.

model log-likelihood given the training data as learn-
ing progresses until 3000 weight updates. 30 impor-
tance samples are used during learning with 2 hidden
layers of 5 stochastic nodes. We chose 5 nodes be-
cause it is small enough that the true log-likelihood
can be computed using brute-force integration. As
learning progresses, the Monte Carlo approximation
is very close to the true log-likelihood using only 30
samples. As expected, the KL from the posterior and
prior diverges as the generative weights better mod-
els the multi-modalities around x = 0.5. We also
compared the KL divergence between our empirical
weighted importance sampled distribution and true
posterior, which converges toward zero. This demon-
strate that the prior distribution have learned to not
be small in regions of large posterior. In another words
this shows that the E-step in the learning of SFNNs is
close to exact for this dataset and model.

3. Experiments

We first demonstrate the effectiveness of SFNN on
synthetic one dimensional one-to-many mapping data.
We then use SFNNs to model face images with varying
facial expressions and emotions. SFNNs outperform
other competing density models by a large margin.
We also demonstrate the usefulness of latent features
learned by SFNNs for expression classification. Fi-
nally, we train SFNNs on a dataset with in-depth head
rotations, a database with colored objects, and a im-
age segmentation database. By drawing samples from
these trained SFNNs, we obtain qualitative results and
insights into the modeling capacity of SFNNs.

3.1. Synthetic datasets

As a proof of concept, we used three one dimen-
sional one-to-many mapping datasets, shown in Fig. 3.
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(a) Dataset A (b) Dataset B (c) Dataset C
Figure 3. Three synthetic datasets of 1-dimensional one-to-many mappings. For any given x, multiple modes in y exist.
Blue stars are the training data, red pluses are exact samples from SFNNs. Best viewed in color.

Gaussian MDN C-GRBM SBN SFNN
A 0.078±0.02 1.05±0.02 0.57±0.01 0.79±0.03 1.04±0.03
B -2.40±0.07 -1.58±0.11 -2.14±0.04 -1.33±0.10 -0.98±0.06
C 0.37±0.07 2.03±0.05 1.36±0.05 1.74±0.08 2.21±0.16

Table 1. Average test log-probability on synthetic 1D
datasets.

Our goal is to model p(y|x). Dataset A was used
by (Bishop, 1994) to evaluate the performance of the
Mixture Density Networks (MDNs). Dataset B has
a large number of tight modes when x is negative,
which is useful for testing a model’s ability to learn
many modes and a small residual variance. Dataset C
is used for testing whether a model can learn modes
that are far apart from each other.

We randomly split the data into a training, validation
and a test set. We report the average test set log-
probability averaged over 5 folds for different mod-
els in Table 1. The method called ‘Gaussian’ is a
2D Gaussian estimated on (x, y) jointly, and we re-
port log p(y|x) which can be obtained easily in closed-
form. C-GRBM is the Conditional Gaussian Re-
stricted Boltzmann Machine where we used 25-step
Contrastive Divergence (Hinton, 2002) (CD-25) to es-
timate the gradient of the log partition function. SBN
is a Sigmoid Belief Net with three hidden stochastic
binary layers between the input and the output layer.
It is trained in the same way as SFNN, but there are
no deterministic units. Finally, SFNN has four hid-
den layers with the inner two being hybrid stochas-
tic/deterministic layers (See Fig. 1). We used 30 im-
portance samples to approximate the posterior during
the E-step. All other hyper-parameters for all of the
models were chosen to maximize the validation perfor-
mance.

Table 1 reveals that SFNNs consistently outperform all
other methods. Fig. 3 further shows samples drawn

Figure 5. Facial Expression Training Data. Images are a
subset of the Toronto Face Database.

from SFNNs as red ’pluses’. Note that SFNNs can
learn small residual variances to accurately model
Dataset B. Comparing SBNs to SFNNs, it is clear that
having deterministic hidden nodes is a huge win for
modeling continuous y.

3.2. Modeling Facial Expression

Conditioned on a subject’s face with neutral expres-
sion, the distribution of all possible emotions or ex-
pressions of this particular individual is multimodal in
pixel space. We learn SFNNs to model facial expres-
sions in the Toronto Face Database (Susskind, 2011).
The Toronto Face Database consist of 4000 images of
900 individuals with 7 different expressions. Of the
900 subjects, there are 124 with 10 or more images
per subject, which we used as our data. We randomly
selected 100 subjects with 1385 total images for train-
ing, while 24 subjects with a total of 344 images were
selected as the test set. Figure 5 shows sample face
images of the TFD dataset.

For each subject, we take the average of its face im-
ages as x (mean face), and learn to model this subject’s
varying expressions y. Both x and y are grayscale and
downsampled to a resolution of 48 × 48. We trained
a SFNN with 4 hidden layers of size 128 on these fa-
cial expression images. The second and third “hybrid”
hidden layers contained 32 stochastic binary and 96 de-
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(a) Conditional Gaussian Restricted Boltzmann Machines. (b) Mixture Density Networks.

(c) Mixture of Factor Analyzers. (d) Stochastic Feedforward Neural Nets.

Figure 4. Samples generated from various models.

terministic hidden nodes, while the first and the fourth
hidden layers consisted of only deterministic sigmoids.
We refer this model as SFNN2. For comparisons, we
also tested the same model but with only one hybrid
hidden layer, that we call SFNN1. We used mini-
batches of size 100 and and 30 importance samples
for the E-step. A total of 2500 weight updates were
performed. Weights were randomly initialized with
standard deviation of 0.1, and the residual variance
σ2
y was initialized to the variance of y.

For comparisons with other models, we trained a Mix-
ture of Factor Analyzers (MFA) (Ghahramani & Hin-
ton, 1996), Mixture Density Networks (MDN), and
Conditional Gaussian Restricted Boltzmann Machines
(C-GRBM) on this task. For the Mixture of Factor
Analyzers model, we trained a mixture with 100 com-
ponents, one for each training individual. Given a new
test face xtest, we first find the training x̂ which is clos-
est in Euclidean distance. We then take the parame-
ters of the x̂’s FA component, while replacing the FA’s
mean with xtest. Mixture Density Networks is trained
using code provided by the NETLAB package (Nab-
ney, 2002). The number of Gaussian mixture compo-
nents and the number of hidden nodes were selected
using a validation set. Optimization is performed us-
ing the scaled conjugate gradient algorithm until con-
vergence. For C-GRBMs, we used CD-25 for train-
ing. The optimal number of hidden units, selected
via validation, was 1024. A population sparsity ob-
jective on the hidden activations was also part of the
objective (Nair & Hinton, 2009). The residual diag-
onal covariance matrix is also learned. Optimization
used stochastic gradient descent with mini-batches of
100 samples each.

MFA MDN C-GRBM SFNN1 SFNN2
Nats 1406±52 1321±16 1146±113 1488±18 1534±27
Time 10 secs. 6 mins. 158 mins. 112 secs. 113 secs.

Table 2. Average test log-probability and total training
time on facial expression images.

Table 2 displays the average log-probabilities4 along
with standard errors of the 344 test images. We also
recorded the total training time of each algorithm,
although this depends on the number of weight up-
dates and whether or not GPUs are used (see Sec. 3.4
for more details). For MFA and MDN, the log-
probabilities were computed exactly. For C-GRBMs
we used Annealed Importance Sampling (Neal, 2001;
Salakhutdinov & Murray, 2008) with 50,000 interme-
diate temperatures to estimate the partition function
for each test image x. For SFNNs, we used Eq. 3 with
1000 samples. We can see that SFNNs substantially
outperform all other models. Having two hybrid hid-
den layers (SFNN2) improves model performance over
SFNN1, which has only one hybrid hidden layer.

Qualitatively, Fig. 4 shows samples drawn from the
trained models. The leftmost column are the mean
faces of 3 test subjects, followed by 7 samples from
the distribution p(y|x). For C-GRBM, samples are
generated from a Gibbs chain, where each successive
image is taken after 1000 steps. For the other 3 mod-
els, displayed samples are exact. MFAs overfit on the
training set, generating samples with significant arti-
facts. MDNs can model many modes, but the identity
of the test subject is changed, which is undesirable.
Samples produced by C-GRBMs suffer from poor mix-
ing and get stuck at a local mode. SFNN samples show

4For continuous data, these are probabilities densities
and can be positive.
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(a) (b) (c)

Figure 6. Plots demonstrate how hyperparameters affect the evaluation and learning of SFNNs.

Linear C-GRBM SFNN MLP SFNN
+Linear +Linear +MLP

clean 80.0% 81.4% 82.4% 83.2% 83.8 %

10% noise 78.9% 79.7% 80.8% 82.0% 81.7 %
50% noise 72.4% 74.3% 71.8% 79.1% 78.5%
75% noise 52.6% 58.1% 59.8% 71.9% 73.1%

10% occl. 76.2% 79.5% 80.1% 80.3% 81.5%
50% occl. 54.1% 59.9% 62.5% 58.5% 63.4%
75% occl. 28.2% 33.9% 37.5% 33.2% 39.2%

Table 3. Recognition accuracy over 5 folds. Bold numbers
indicates that the difference in accuracy is statistically sig-
nificant than the competitor models, for both the linear
and nonlinear classifier groups.

that the model was able to capture a combination of
mutli-modality and preserved much of the identity of
the test subjects.

We further explored how different hyperparameters,
such as the number of stochastic layers, and the num-
ber of Monte Carlo samples, can affect the learning and
evaluation of SFNNs. We used face images and SFNN2
for these experiments. First, we wanted to know the
number of M (Eq. 3) needed to give a reasonable esti-
mate of the log-probabilities. Fig. 6(a) shows the esti-
mates of the log-probability as a function of the num-
ber of samples. We can see that having about 500 sam-
ples is reasonable, but more samples provides a slightly
better estimate. The general shape of the plot is sim-
ilar for all other datasets and SFNN models. When
M is small, we typically underestimate the true log-
probabilities. While 500 or more samples are needed
for accurate model evaluation, only 20 or 30 samples
are sufficient for learning good models (as shown in
Fig. 6(b). This is because while M = 20 gives sub-
optimal approximation to the true posterior, learning
still improves the variational lower-bound. In fact, we
can see that the difference between using 30 and 200
samples during learning results in only about 20 nats
of the final average test log-probability. In Fig. 6(c),
we varied the number of binary stochastic hidden vari-
ables in the 2 inner hybrid layers. We did not observe
significant improvements beyond more than 32 nodes.

(a) Random noise

(b) Block occlusion
Figure 7. SFNNs is robust to noise (a) and occlusions (b).
Left panel shows a noisy test images y. Posterior inference
in SFNN finds Ep(h|x,y)[h]. Right panel shows generated y
images from the expected hidden activations.

With more hidden nodes, over-fitting can also be a
problem.

3.2.1. Expression Classification

The internal hidden representations learned by SFNNs
are also useful for classification of facial expressions.
For each {x,y} image pair, there are 7 possible ex-
pression types: neutral, angry, happy, sad, surprised,
fear, and disgust.

As baselines, we used regularized linear softmax classi-
fiers and multilayer perceptron classifier taking pixels
as input. The mean of every pixel across on cases was
set to 0 and standard deviation was set to 1.0. We
then append the learned hidden features of SFNNs and
C-GRBMs to the image pixels and re-train the same
classifiers. The results are shown in the first row of Ta-
ble 3. Adding hidden features from the SFNN trained
in an unsupervised manner (without expression labels)
improves accuracy for both linear and nonlinear clas-
sifiers.

SFNNs are also useful when dealing with noise. As a
generative model of y, it is somewhat robust to noisy
and occluded pixels. For example, the left panels of
Fig. 7, show corrupted test y images. Using the im-
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(a) Generated Objects (b) Generated Horses

Figure 8. Samples generated from a SFNN after training on an object database. Conditioned on a given foreground mask,
the appearance is multimodal (different color and texture). Best viewed in color.

Figure 9. Samples from SFNN trained on rotated faces.

portance sampler described in Sec. 2.1 we can compute
the expected values of the binary stochastic hidden
variables given the corrupted test y images5. In the
right panels of Fig. 7, we show the corresponding gen-
erated y from the inferred average hidden states. After
this denoising process, we can then feed the denoised
y and E[h] to the classifiers. This compares favorably
to simply filling in the missing pixels with the average
of that pixel from the training set. Classification ac-
curacies under noise are also presented in Table 3. For
example 10% noise means that 10 percent of the pix-
els of both x and y are corrupted, selected randomly.
50% occlusion means that a square block with 50%
of the original area is randomly positioned in both x
and y. Gains in recognition performance from using
SFNN are particularly pronounced when dealing with
large amounts of random noise and occlusions.

3.3. Additional Qualitative Experiments

Not only SFNNs are capable of modeling facial expres-
sion of aligned face images, they can also model com-
plex real-valued conditional distributions. In this sec-
tion, we present some qualitative samples drawn from
SFNNs trained on more complicated distributions. We
start by learning the UMIST faces database (Graham
& Allinson, 1998), which contains in-depth 3D rotation

5For this task we assume that we have knowledge of
which pixels is corrupted.

of heads. We then tested SFNNs on modeling generat-
ing colorful images of common objects from the ALOI
dataset (Geusebroek et al., 2005), conditioned on the
foreground masks. Finally, we tested on the Weizmann
segmentation database (Borenstein & Ullman, 2002)
of horses, learning a conditional distribution of horse
appearances conditioned on the segmentation mask.

We trained the same SFNNs as described in the pre-
vious section on the 16 training subjects, using 4 sub-
jects for testing. Conditioned on the profile view, we
are modeling the distribution of rotations up to 90
degrees. Fig. 9 displays 3 test subjects’ profile view
along with seven exact samples drawn from the model
(plotted on the right hand side). This is a particularly
difficult task, as the model must learn to generate face
parts, such as eyes and nose.

Amsterdam Library of Objects database (Geusebroek
et al., 2005) is a database of 1000 everyday objects
under various lighting, rotations, and viewpoints. Ev-
ery object also comes with a foreground segmentation
mask. For every object, we selected the image un-
der frontal lighting without any rotations, and trained
a SFNN conditioned on the foreground mask. Our
goal is to model the appearance (color and texture) of
these objects. We note that out of 1000 objects, there
are many objects with similar foreground masks ( e.g.
round or rectangular). Conditioned on the test fore-
ground masks, Fig. 8 shows random samples from the
learned SFNN model.

3.4. Computation Time

Despite having to draw M samples during learning,
Fig. 6 empirically demonstrated that 20 samples is of-
ten sufficient6. This is in part due to the fact that

6We note that this is still M times more expensive than
standard backprop.
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samples from the conditional prior are exact and in
part due to the cooperation that occurs during learn-
ing (Sec. 2.2). Regarding hardware, our experiments
are performed on nVidia GTX580 GPUs. This gives
us over 10x speedup over CPUs. For example, a 4
hidden layer SFNN with 2304 input and output di-
mensions, 128 stochastic hidden nodes, and 50 samples
per E-step, can update its parameters in 0.15 secs on
a minibatch of 100 cases.

In Table 2, C-GRBM is also trained on the GPU, but
is much slower due to its use of a large hidden layer
and 25 CD steps. For example, the C-GRBM requires
1.16 secs per parameter update. MFA and MDNs are
run on CPUs and we can also expect 10x speedup from
moving to GPUs.

4. Discussions

In this paper we introduced a novel model with hybrid
stochastic and deterministic hidden nodes. We have
also proposed an efficient learning algorithm that al-
lows us to learn rich multi-modal conditional distribu-
tions, supported by quantitative and qualitative em-
pirical results.

The major drawback of SFNNs is that inference is not
trivial and M samples are needed for the importance
sampler. While this is sufficiently fast for our exper-
iments we can accelerate inference by learning a sep-
arate recognition network to perform inference in one
feedforward pass. These techniques have previously
been used by (Hinton et al., 1995; Salakhutdinov &
Larochelle, 2010) with success.
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