
Enhancing Tor Performance For
Bandwidth-Intensive Applications†

Technical Report BUCS-TR-2012-013

RAYMOND SWEHA
remos@cs.bu.edu

Computer Science Dept
Boston University, USA

AZER BESTAVROS
best@cs.bu.edu

Computer Science Dept
Boston University, USA

IBRAHIM MATTA
matta@cs.bu.edu

Computer Science Dept
Boston University, USA

Abstract—When it was first introduced a decade ago, Tor, the
anonymous onion routing protocol, aimed at providing anonymity
for latency-sensitive applications, such as web-browsing, as op-
posed to bandwidth-intensive applications, such as on-demand or
live video streaming. This emphasis on latency-sensitive applica-
tions is evident from proposed Tor circuit-scheduling techniques
[23], [10] that throttle bandwidth-intensive applications in favor
of bursty, latency-sensitive applications. In this paper, we deviate
from this traditional view by identifying key attributes and design
decisions that negatively impact Tor’s performance in general
and its ability to cater to bandwidth-intensive applications in
particular, and by proposing new capabilities that aim to enhance
Tor’s performance as it relates to anonymizing bandwidth-
intensive traffic. We present results from in-vivo measurement
studies that shed light on Tor’s approach to manage load across
relays, which manifests itself in the way source-based routing
at the end-systems (clients) is handled. We present an analytical
model that captures the key attributes of the feedback control
inherent in Tor’s approach to load management – namely,
probing and circuit selection. We show that changing some of
these key attributes yields measurable improvement in terms
of overall network utilization as well as better load balancing
of relays, resulting in better predictability of individual circuit
performance. To boost the performance of bandwidth-intensive
circuits, we propose the use of on-demand relays (angels) to
not only increase the capacity in the Tor network, but also to
implement special bandwidth-boosting functionality using multi-
path routing. Our conclusions are backed up with results from
simulation experiments.

I. INTRODUCTION

Tor, a second generation onion routing system [1], is based on
a source routing protocol that provides anonymity to its clients
by routing traffic through a randomly-constructed circuit of
intermediate relays. A client does not have to trust any node
except the directory server from which it gets the list of
relays that are presumed as independent and non-colluding.
Typically, the client chooses three relays from such a list
to construct a circuit (an overlay path) for traffic to/from
any Internet host (server). Through proper encapsulation and
encryption, traffic flows from one relay to the next in such
a way that any node (relay) in the network can only glean
a partial view of the overlay path between the client and the
server, thus breaking any association between the source and
destination of flows traversing the Tor network (and also hiding
the identity of the client from the server). Although Tor is
the most widely used anonymity network, it still suffers from

†This research was supported in part by NSF awards #0735974, #0820138,
#0963974, #1012798, and by a Google 2011 Faculty Research award.

major performance issues [10]. Tor developers and the research
community are aware of these performance limitations, as
evidenced by a plethora of studies and proposals aiming to
enhance the performance of Tor [17], [23], [13], [11]. The
main performance issue considered in these works is the highly
unpredictable performance of circuits established through the
Tor network, e.g., resulting in poor HTTP response time. There
have been two main hypotheses as to the culprit: (1) delay
through a relay – namely, the amount of time a Tor packet
(cell) spends in a Tor relay from the moment it is received
till the moment it is sent to the next relay, and (2) latency
of an overlay link: the time it takes the cell to traverse an
overlay link, from the moment it is sent from one relay till
the time it appears at the other end. For example, the authors
of Tunable Tor [20] assumed relay delays are dominant, thus
choosing relays based on their estimated throughput, whereas
Sherr et al. assumed overlay link latencies are dominant, thus
choosing relays to minimize the sum of overlay link latencies.
Motivation and Scope: When it was first introduced a
decade ago, Tor aimed at providing anonymity for latency-
sensitive applications, such as web-browsing, as opposed to
bandwidth-intensive applications, such as on-demand or live
video streaming – hence the emphasis in the aforementioned
studies on delays as the primary gauge of performance. In light
of the increasing prevalence of streaming, in this paper we
deviate from this traditional view by focusing on Tor’s ability
to deliver higher bit rates, consistently. At a very basic level,
this is a matter of provisioning: adding relay “capacity” to the
Tor network to allow it to move more bits-per-second. In prior
projects of ours [22], [21], we addressed similar provisioning
problems in peer-to-peer (P2P) overlays through the use of
angels – special resources acquired on demand (e.g., from
the cloud) for the sole purpose of improving the fidelity of
a service. Adding raw capacity to make up a deficit in a
particular resource is not a panacea. In addition to deploying
angels (if needed), it is necessary to ensure that the underlying
P2P system is able to optimally capitalize on this added
capacity. To do so, it is often necessary to make judicious
decisions, not only as it relates to the number, capacity, and
placement of angels, but also as it relates to altering the way
angels participate in the underlying P2P protocol.
Paper Outline: In this paper, we evaluate the extent to
which angels may be used in support of bandwidth-intensive
applications in a Tor network: we examine the key attributes
and design decisions that negatively impact Tor’s performance

2

in general and its ability to cater to bandwidth-intensive
applications in particular, and we propose new capabilities,
supported through the use of angels, to enhance Tor’s perfor-
mance relating to anonymizing bandwidth-intensive traffic.

We start in Section II with some background on Tor’s
operation as it relates to how clients construct circuits in a way
that is meant to achieve high utilization of Tor resources. We
also review prior work aiming to improve Tor’s performance.
In Section III we present results from in-vivo measurement
studies that we conducted to shed light on the effectiveness of
the various mechanisms used for load distribution in Tor. Our
first finding is that the primary culprit for Tor’s poor perfor-
mance is the uneven throughput of the relays that make up a
circuit. This finding implies that better and more predictable
performance would result if Tor’s relays are load balanced, i.e.,
the attainable throughput from individual relays is more even.
Indeed, our second finding is that as currently implemented
and configured, Tor results in an inadequately-balanced load
distribution over relays, resulting in lower overall utilization
and higher variance in circuit throughput – both of which are
undesirable attributes.

Load distribution in the Tor network is achieved through
a set of interacting mechanisms: a probing mechanism to es-
timate the available capacity of relays, a feedback mechanism
to compute a normalized value that corresponds to the total
capacity of the relay, and a circuit construction mechanism to
preferentially assign load to underutilized relays. To gain in-
sights into how the interaction between these processes affects
load balancing, in Section IV, we present an analytical model
that captures the key probing and circuit construction attributes
of the feedback control inherent in Tor’s load distribution
mechanisms. Using this model, we show that changing some
of these key attributes yields measurable improvement in terms
of overall network utilization as well as lower variability of
individual circuit performance. In Section V, we show that
these improvements are tangible by presenting results from
simulation experiments, in which assumptions are relaxed, and
various variant mechanisms are evaluated.

While adding angels to a well-balanced and highly uti-
lized Tor network ensures that the added capacity will be
utilized judiciously, it does not provide us with a mechanism
via which bandwidth-intensive applications are properly pro-
visioned. In Section VI, we introduce a simple angel func-
tionality that boosts the performance of bandwidth-intensive
circuits using multi-path routing.

II. BACKGROUND AND RELATED WORK

Tor Protocol Basics: Tor [1] is a source routing protocol
that provides anonymity to its clients by means of routing
their traffic through an encrypted circuit of intermediate relays
(muxes). Tor relies on a core set of around 2, 900 persistent
relays, typically operated by research institutes or privacy
activists. Around 400, 000 clients make use of the Tor network,
daily, with around 120, 000 active at any point in time [2].
Tor leverages the (processing and communication) resources
of clients by allowing them to function as relays, boosting
the overall capacity of the Tor network, which can be seen
as a P2P overlay. A Tor client contacts a directory server
to get a list of Tor relays, from which it constructs circuits

(overlay paths). A relay in a circuit cannot identify other nodes
in the circuit except for the relay that precedes it and the
one that follows it. When a client wants to send a message
(e.g., an HTTP request), it recursively encrypts the message
with symmetric keys shared with the relays in the circuit,
starting with the exit relay (the relay that sends the HTTP
request to, and receives the response from the web server). In
the forward direction, each relay peels a layer of encryption
(a layer of the onion), sending the resulting message along
the path towards the exit relay. In the reverse direction, each
relay, starting with the exit relay, adds an onion layer of
encryption, sending the resulting message along the reverse
path towards the client. Upon receiving such a message, the
client recursively peels all layers and consumes the content
(displays a web page). By construction, each byte of data sent
or received by a client needs to traverse at least three relays,
consuming communication and processing capacities at each.
Acquisition and Management of Relay Capacities in Tor:
Given documented, chronic performance issues, an important
aspect of the Tor protocol (and the subject of much research)
relates to how Tor manages the capacity and utilization of
various relays. In this paper, we use relay capacity to refer to
the number of bytes that a relay can forward per second on
all circuits going through it; we use relay utilization to mean
the fraction of the relay capacity that is in use at any point in
time; we use normalized relay capacity to refer to the relative
overall capacity of a relay; and we use relay available capacity
to mean the throughput that a circuit is able to command from
the relay at any point in time, which is a function of the (raw)
relay capacity as well as the number of circuits using that relay
in a max-min fair fashion.

As we alluded before, Tor’s load/resource management is
done through three interacting mechanisms: a probing mecha-
nism, a feedback mechanism, and a circuit construction mech-
anism. Tor’s circuit construction mechanism seeks to improve
the overall system utilization by increasing the selection prob-
ability of relays deemed to have higher capacities. In earlier
versions of Tor, each relay self-reported its capacity. To protect
against untruthful clients, the current implementation of Tor
uses directory authorities (DAs) to estimate the normalized
relay capacities [14]. Every hour, based on previous estimates,
each DA partitions the list of relays into groups of 50, and
constructs two-relay circuits using relays in the same group to
download a file for the purpose of estimating the available
capacity of the constituent relays. These available capacity
estimates are fed to a PID controller [14] that implements
the feedback mechanism for estimating the normalized relay
capacities. Let Fi be the average throughput of the DA’s relay-
pair probes involving relay i. Fi ∀i is fed into a PID controller
[14], which produces an estimate of the normalized capacity
for each relay at time t as follows:

EST ti = EST t−1i ∗ Fi∑
∀j∈R{Fj}/|R|

∀i ∈ R

The controller increases (decreases) its estimate of a relay’s
normalized capacity when the probe throughput through that
relay is above (below) average, thus encouraging (discour-
aging) clients to (from) using this higher-capacity (lower-
capacity) relay in circuits they construct in the future.

When a client contacts a set of DAs, it gets from each

3

DA the list of relays, as well as estimates of their normalized
capacities, ESTi, according to that DA. A client takes the
average of those estimates, also called the consensus capacity.
When a client constructs a new circuit, it chooses the con-
stituent relays with probability proportional to the consensus
capacity of the relays. Tor clients construct up to twelve
circuits and alternate their usage.
Link and Relay Delays in Tor: Concerned with the per-
formance of latency-sensitive applications, Dhungel et al. [9]
conducted a measurement study to dissect the delay character-
istics of Tor circuits. They showed that the delay of a circuit
depends on two components: the delay through the relays,
and the delay attributed to the latency of traversed overlay
links. They concluded that while relay delays are the principal
contributor of circuit delays, a sizable minority of circuits
are dominated by overlay link delays. More importantly,
they found no correlation between the delay introduced by
a relay and its advertised or consensus capacity. Moreover,
they showed that relay delay fluctuates over time, except for
relays with very high capacity. They suggested that Tor’s
token-bucket scheduler – for multiplexing the use of a relay
among all circuits going through it – needed more frequent
replenishment, as circuits using less congested relays end up
exhausting their quota of tokens, resulting in underutilization
of these relays. Dhungel et al. stopped short of proposing
circuit construction algorithms.
Relay-based vs Link-based Circuit Construction: In an
attempt to address Tor’s performance issues, two classes of
circuit construction algorithms emerged: (1) relay-based circuit
construction, and (2) link-based circuit construction.

Under the hypothesis that selecting powerful relays results
in better performance, the authors of Tunable Tor [20] propose
having relays (as opposed to DAs) estimate the relay available
capacity, and having the consensus capacity be calculated by
one authority that distills the normalized capacity estimates of
all relays using EigenSpeed, a principle component analysis
estimator. To minimize overhead, a relay does not actively
probe other relays, but rather uses the circuits routed through
those relays to passively estimate their available capacities.
Tunable Tor allows Tor clients to trade-off anonymity for
enhanced performance. A parameter α governs this tradeoff
by decreasing the probability of choosing a relay exponentially
with the product of α times the rank of the relay with respect
to available capacity. If α equals zero, all relays are chosen
with equal probability, achieving maximum anonymity at the
expense of performance; as α grows, the more powerful relays
are chosen with an increasingly higher probability.

Under the hypothesis that circuit construction should
avoid overlay links that are congested or suffer from long
delays due BGP routing, Sherr et al. [18], [19] proposed using
Vivaldi [7], a decentralized coordinate system, to measure the
distances between different relays. The virtual coordinate of
each relay is adjusted every time a new RTT measurement to
another relay is available. Any client can measure the overall
delay of a circuit by summing the delay of each link in
the circuit. A circuit is chosen with probability exponentially
proportional to a tuning parameter α times the rank of the
circuit in the sorted list of all possible circuits based on the es-
timated circuit delay. Again, the parameter α tunes the tradeoff

between performance and anonymity. Panchenko et al. [15]
advocate link-based measurement to enhance path selection in
Tor. They propose two link-based measurements: (1) actively
measuring RTTs of circuits, (2) passively estimating link delay
using the circuits passing through it. They acknowledge that
estimating link statistics is quadratic in the number of relays
and suggest selecting relays based on average link-distance
to all other relays. They also mention a hybrid approach
that combines relay capacity and link delay; they suggest
ranking circuits with probability inversely proportional to their
aggregate link delay and directly proportional to the minimum
relay capacity.

III. A MEASUREMENT STUDY ON LIVE TOR

Experimental Setup: We used a client machine at Boston
University (BU) to create 1, 000 circuits, one after the other,
over the course of a few days. The client uses Tor to down-
load files from an FTP server, located at BU as well. Both
the client and the FTP server are machines with powerful
CPUs and 1Gbps connections to the internet, ensuring that
any bandwidth bottleneck is in the Tor network, not in the
client, the server, or their links. The three relays – entry,
intermediate, and exit relays – vary from a circuit to another,
in accordance with Tor’s circuit construction mechanism. Tor
maintains multiple circuits (typically twelve) at a time and
chooses the one to use at random. In our experiment, we
limit the number of established circuits to one, by setting
the parameter ‘‘__DisablePredictedCircuits 1’’. We
mine the log files produced by Tor to get the ID and IP
address of the constituent circuit relays. Using a GeoIP service
[3], we find the longitude and latitude coordinates of the
relay, from which we are able to calculate the geographical
distance between adjacent relays in a circuit. Although the
geo-distance between two relays does not directly correspond
to the propagation delay between these relays, it could serve as
a meaningful first-order approximation [12], [16]. In addition,
we mine the consensus file when each circuit is established
(hourly) to collect the consensus capacity estimate for each
constituent relay. We use each of the constructed circuits to
measure the average download time of a 3MB file and that of
a one-byte file (both averaged over eight trials).
Results: The first question to consider is whether the delays
introduced by circuit links (as estimated by the sum of the
distances between adjacent relays in a circuit) is correlated
with the circuit throughput. If strong correlation exists, link-
based circuit selection would be justified. Figure 1-left shows
the correlation between the sum of link-distances in the circuit
(x-axis) and the average duration to download a 3MB file (y-
axis). The Pearson product-moment correlation coefficient is
found to be r = 0.1243.1 This result suggests that there is a
very weak (negligible) correlation between the throughput of
a circuit and the aggregate link distances (delays) between its
relays.

The second question to consider is whether the latency
of a circuit is correlated to its throughput. We define circuit
latency to be the time it takes to download a minimal-size

1The average duration is the file size (3MB) divided by the throughput. We
plot duration against distance since any correlation between the two is likely
to be linear, and hence possible to gauge using the r statistic.

4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400 450

D
ur

at
io

n
(s

ec
)

GeoIP Distance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10

D
ur

at
io

n
(s

ec
)

Latency (sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000 70000

C
irc

ui
t T

hr
ou

gh
pu

t

Min Estimated Normalized Capacity

Fig. 1. Download time using a circuit shown on the y-axis versus the sum of its constituent link geo-distances (left), its latency, (middle) and the raw
capacity of its constituent relays (right) shown on the x-axis.

(one-byte) file using that circuit. Clearly, latency captures
the delays due to links (propagation delay) as well as relays
(packet processing delays). Figure 1-middle shows the rela-
tionship between 3MB download times (as proxy for circuit
throughput) on the y-axis and latencies on the x-axis. The
correlation is evident as r equals 0.6553, suggesting that using
latency as a first-order approximation of download duration is
justifiable.

 0

 0.05

 0.1

 0.15

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
D

F

Relay Available Capacity (MB/sec)

Fig. 2. PDF of relay available capacities, decaying exponentially.

The third question is whether the throughput of a circuit
is correlated with the normalized capacities of the constituent
relays. Figure 1-right shows the relationship between the
throughput of a circuit in Mbps (x-axis) and the minimum
of the consensus capacity estimates of the relays that make up
the circuit (y-axis). The correlation is weak, as r = 0.1496,
suggesting that Tor’s three-pronged approach (using the prob-
ing, feedback control, and circuit construction mechanisms)
to distribute load results in a good utilization across relays.
In [24], the authors considered this lack of correlation as an
evidence of failure. On the contrary, we argue that the lack of
correlation is indicative of evenly utilized relays, which is one
of the goals of the system.

The fourth question we consider is whether the clients’
experience (the throughput observed by different clients or by
the same client over time) is consistent. This is a fairness
question, corresponding to a recurring complaint from Tor
clients that sometimes they are stuck with low-throughput
circuits [10]. Here we note that even though relays may be
evenly utilized (as suggested by the results in Figure 1-right),
it might be the case that the constructed circuits exhibit highly
uneven performance. For the circuits we constructed, we
noticed that the coefficient of variation (the standard deviation
divided by the mean) of their achieved throughput is large
– CV = 0.62576 – confirming that the fidelity (measured
in terms of achievable bit rates) of Tor circuits is highly

unpredictable.
The last question we consider is whether Tor’s three-

pronged approach to load distribution yields any particular
probability distribution function (PDF) of relay available ca-
pacities. Recall that the available capacity of a Tor relay is the
expected throughput of a circuit traversing that relay. For a
fully-utilized relay, the available capacity is nothing other than
the max-min fair-share for a circuit going through that relay.
For a relay that is not fully utilized, the available capacity
is the expected throughput of a newly created circuit going
through that relay. To characterize relay available capacities,
we construct a special two-relay circuit where the exit node
is our local BU Tor relay BostonUCompSci. The circuit
downloads three files of size 3MB each from a powerful BU
server to a powerful BU client. This set-up is our best attempt
to make sure that the circuit bottleneck is the entry relay. The
average throughput of the circuit is recorded for each of the
2,917 relays that were present in the Tor network at the time
of the experiment. Figure 2 shows the PDF of relay available
capacities. It suggests that most relays have small available
capacities, and that the number of relays with higher available
capacity decays at an exponential rate.2

Summary: Our live measurements on Tor lead us to the
following conclusions: (1) the throughput of a Tor circuit can
be assumed to be largely independent from the geographical
link-distance between relays in that circuit; (2) the latency of
a circuit and its throughput are inversely, strongly correlated;
(3) the throughput of a circuit is largely independent of the
overall (normalized) capacity of its relays, suggesting that Tor
is relatively efficient in its use of resources by keeping an even
utilization of relays; (4) the throughput of different circuits
vary greatly, suggesting that some clients suffer significant
performance degradation; and (5) the distribution of the relay
available capacity can be approximated using an exponential
distribution.

IV. TOR CIRCUIT THROUGHPUT: ANALYTICAL MODEL

Assuming that relay available capacities follow a certain prob-
ability distribution,3 can we characterize the probability mass
function of the throughput of a circuit constructed as a result
of Tor (current or proposed) circuit construction mechanisms?

2This is important as it allows us to assume that relay available capacities
follow an exponential distribution in Section IV-A.

3We derive two models: the first is under the assumption (verified through
measurement) that relay available capacities are exponentially distributed,
whereas the second is under the assumption that they are uniformly distributed.

5

In this section, we develop an analytical model that allows
us to obtain such characterization, and consequently quantify
the performance implications from variants of Tor circuit
construction mechanisms, as well as variants of Tor probing
mechanism.

A. Variability of Tor Circuit Throughput

As previously defined, the available capacity of a relay is the
expected throughput of a circuit traversing that relay. In this
subsection, we assume that the available capacity of a relay
follows an exponential distribution with parameter λ: f(x) =
exp(λ) = λe−λx. The throughput of a circuit is the minimum
throughput of its three constituent relays. From the literature
of order statistics [8], the minimum of three random variables
is a random variable of density function:

f1:3(x) = 3(1−F (x))2f(x) = 3(1− (1− e−λx))2 ∗ (λe−λx)

= 3λe−3λx = exp(3λ)

which is itself an exponentially distributed variable with a
parameter three times the one for the relay available capacity.
Knowing that the mean and standard deviation equal 1

3λ ,
the coefficient of variation (CV) would equal one. This is a
surprising result, CV is independent from λ, which suggests
that if we manage to decrease the skewness in the distribution
of the relay available capacity, the variability experienced by
clients (due to different circuit capacities) would stay the
same. We attribute this result to the memoryless nature of
the exponential distribution.

B. Effect of “Best-Of-K” Circuit Selection

Tor clients typically create between two and twelve circuits
and choose the one to use at random. In this section, we ask
the question what if each client uses the best (as opposed to
a random) circuit from the set of circuits it created? Doing
that would eliminate slow circuits, such as those observed by
Dhungel in [9]. Since circuit throughput is an exponentially
distributed random variable with parameter 3λ, order statistics
tells us that the maximum of k such circuits is also a random
variable with PDF:

fk:k(x) = k(F (x))k−1f(x) = k(1− e−3λx)k−13λe−3λx

This random variable has an expected value:

µk =

∫ ∞
0

xfk:k(x)dx =

∫ ∞
0

xk(1− e−3λx)k−13λe−3λxdx

=
1

3λ

∫ ∞
0

ky(1− e−y)k−1e−ydy =
Hk

3λ

where y = 3λx and Hk =
∑k
i=1

1
i . See Appendix A for the

detailed derivation. Similarly, we can compute the variance of
the random variable governing the circuit throughput:

vark(x) =

∫ ∞
0

(x− µk)2fk:k(x)dx

=

∫ ∞
0

(x− Hk

3λ
)2k(1− e−3λx)k−13λe−3λxdx

=
1

9λ2

∫ ∞
0

k(y −Hk)
2(1− e−y)k−1e−ydy =

bk
λ2

where y = 3λx and bk = 2
9

∑k
i=1

1
iHi − H2

k

9 . See Appendix
B for the detailed derivation.

While the coefficient of variance CVk =

√
vark(x)

µk
=

√
bk

Hk/3
is independent of λ, the skewness of the relay available

capacity distribution, it does depend on k, the number of
circuits from which the best is chosen. Figure 3 shows CV as
a function of k. CV decreases with the increase in the number
of circuits, k.

Figure 3 also shows CV as a function of k, under the
assumption that the relay available capacities follow a uniform
distribution U(a, b). In this case,

µk = b+ (b− a)
k∑
i=0

Cki
(−1)i+1

3i+ 1

vark(x) = (b− a)2(2
k∑
i=0

[Cki
(−1)i

3i+ 2
]− [

k∑
i=0

Cki
(−1)i+1

3i+ 1
]2)

See Appendix C for the detailed derivation. Again, the CV
of circuit throughput decreases with k. This result suggests
that choosing the best-of-k circuit is not a mere byproduct
of assuming an exponential distribution for the relay available
capacities, thus it is a recommended practice. We will verify
this result through simulation in the next section.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

C
V

k

Exponential
Uniform

Fig. 3. The CV of the throughput of the best-of-k circuit.

C. Effect of Filtering out Probes with Below-Average
Throughput on the Performance of the PID Controller

As we discussed earlier, the Directory Authority (DA) probes
all relays regularly and feeds the PID controller with the
average throughput of (typically five) probes as an estimate
for the relay available capacity. The designers of the PID
controller were concerned that some bad relay pairings would
result in probes with very low throughput, lowering the
estimate of available capacity, thus skewing the feedback
signal to the PID controller. To mitigate this, the average of
the five probes is calculated, and probes with below-average
throughput are filtered out. The PID controller is fed with the
filtered average probe throughput as the estimate for available
capacity. This probe filtering mechanism turns out to have the
inverse effect of what it was intended to achieve, resulting in an
average estimate that is heavily skewed towards the maximum
throughput (indeed, mostly equal to it).4

4Using our simulator, described in Section V, we noticed that typically, one
of the five probes has a throughput that is significantly higher than the other
probes. As a result, this maximum probe is the only one with throughput
above the average probe throughput before filtering, effectively equating the
filtered average with the maximum of the probes throughput.

6

To quantify the impact of probe filtering, we analytically
derive the CV of the signal sent to PID controller with and
without probe filtering. The estimate of the relay normalized
capacity is EST ti = EST t−1i ∗ Fi∑

∀j∈R{Fj}/|R| ∀i ∈ R, where
Fi is a random variable representing the throughput of the
average-of-l (no filtering) or max-of-l probe (filtering). A good
controller would have the feedback signal: s = Fi∑

∀j∈R{Fj}/|R|
approach one quickly. For a large set of relays, it is safe to
assume that

∑
∀j∈R{Fj}/|R| ' E(Fi). The feedback signal

is a random variable s = Fi

E(Fi)
with a mean of one and

a standard deviation of σ(Fi)
E(Fi)

. Hence, CV = σ(Fi)
E(Fi)

. In the
case of filtering, Fi is the max-of-l, which is mathematically
identical to the derivation of best-of-k circuit selection in the
previous section. In this case CV =

√∑l
i=1

2
iHi −H2

l ∗
1
Hl

,

where Hl =
∑l
i=1

1
i . In the case of no filtering, Fi is the

average-of-l probes, each is exponentially distributed, which
is an Erlang-l distribution divided by l with a mean of 1

2λ and
standard deviation of

√
l

l∗2λ . Hence CV = 1√
l
.

Figure 4 plots the ratio between the CV of the signal sent
to the PID controller with and without filtering. It suggests
that the current version of Tor, with l = 5, feeds the PID
controller a feedback signal that is 18.5% noisier (with higher
variability) than our proposed version without filtering. Such
a noisy feedback signal would negatively impact the normal-
ized relay capacity estimates produced by the PID controller
and, consequently, compromising the efficiency of the whole
system.

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 2 4 6 8 10

C
V

 in
cr

ea
se

 ra
tio

of probes

Fig. 4. The ratio between the CV of the signal sent the PID controller with
filtering and without filtering as a function in the number of probes.

V. EXPERIMENTAL EVALUATION

To confirm the conclusions from the analytical models in
Section IV under relaxed assumptions (and additional parame-
ters), to capture the feedback dynamics between Tor’s probing,
feedback control, and circuit construction mechanisms, and to
evaluate our proposed improvements to these mechanisms, we
built our own Tor simulator. In this section, after describing
our simulator, we show a representative set of the experiments
we conducted that give more insights into the behavior of Tor,
and confirm our findings.

A. The Simulator

Our simulation model consists of three modules. The first
module mimics the behavior of a large number of clients.
Each client constructs a circuit, using three relays out of the
available relays. The second module assigns throughput to

constructed circuits given max-min fairness5 and estimates
relay available capacities, which determines the throughput
available to a new circuit (probe). The third module models
Tor’s measurement infrastructure, which regularly probes all
the relays, and uses PID control to update the normalized
capacity estimates, hourly.

These three modules greatly influence each other as
constructed circuits affect the throughput of the measurement
probes, which in turn are used by Tor’s PID controller to
estimate each relay’s normalized capacity, to be used by clients
to bias their relay selection for circuits constructed in the
next hour. Thus, over time, the simulator captures the change
in relay capacity estimates and its effect on the achieved
throughput of the constructed circuits. In particular, we adopt
a quasi-static discrete-time simulation model wherein probing
is performed at each time step (representing, say, 12 minutes),
and weights for circuit selection are updated every n > 1
steps. We take n = 5 (representing an hour), and we assume
that the system reaches steady state between time steps so
circuits achieve their steady-state max-min fair share.
Circuits Construction: To model the circuits selected by Tor
clients at a certain point in time, we create a certain number of
circuits M at each time step, with a default of M = 120, 000.
We choose a circuit’s constituent relays proportionally to their
PID-provided capacity estimates as described in Section II. To
simulate our modification of choosing the best-of-k circuit, a
client builds k candidate circuits, compares their anticipated
throughput, and chooses the best, with k between one and six.
Because the selection of the best circuit depends on observed
performance of already established circuits, while constructing
the M circuits, we re-estimate the relay available capacities,
and hence throughput of established circuits, every m < M
circuits, with a default of m = M/10. As noted earlier, the
throughput of circuits is calculated assuming a max-min fair
capacity allocation.
The PID Controller: As described in Section II, every hour,
Tor probes each relay a number of times, at least five by
default. Those probes provide the PID controller with an
estimate of each relay’s available capacity, i.e., throughput
of a circuit passing through the relay. If the average probe
throughput for a relay is higher (lower) than the average for all
relays, this indicates that this relay is relatively under-utilized
(over-utilized), and the PID controller increases (decreases) its
estimate of the relay normalized capacity and hence the relay’s
selection weight, enticing more circuits to (not) use this relay.

As noted earlier, we simulate probing at each time step.
The probes are conducted over two-relay circuits. A probe
throughput is computed in the same way as a circuit through-
put, based on max-min capacity allocation. After probing all
relays, we apply a filtering technique to drop some (or none)
of each relay’s probes. Tor’s default behavior is to drop probes
that have throughput that is below the average of all probes.
Besides Tor’s default behavior, our simulator supports: (1)
no filtering, i.e., use all probes; (2) drop the probe with the
maximum throughput for each relay; or (3) drop the minimum
and the maximum throughput probes for each relay. The PID
updates its estimate of each relay normalized capacity (weight)
and publishes it to clients (cf. Section II).

5Max-min fairness is typical of how resources are shared on the Internet.

7

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6

C
V

best_of_k

Drop max
No Filtering

Drop max and min
Filtering

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6

U
til

iz
at

io
n

best_of_k

Fig. 5. The performance of different probe filtering technique against an increasing number of circuits from which the best is chosen.

To obtain performance metrics, each simulation runs for
a duration of 25×n time steps, equivalent to updating circuit
selection weights 25 times. Our simulation results follow.

B. Simulation Results

The base model for the following experiments mimics Tor’s
current default behavior. In it, a client constructs only one
circuit and all the below-average probe values are filtered
out. The number of probes is five. The relay capacities
follows a bounded-Pareto distribution between 1,000 Kbps
and 1,000,000 Kbps and a shape parameter α = 2. We vary
the number of relays (around 2,000 relays) while keeping the
sum of the relay capacities (the aggregate capacity of the Tor
network) equal to 3,900,000 Kbps. The number of circuits
constructed is 120,000. Ideally, the capacity of relays would
be assigned to the circuits allowing each one of them to have a
throughput of around 35 Kbps. We set a limit on the through-
put of each circuit that is uniformly distributed between 70
and 100 Kbps. This limit is introduced to mimic Tor’s flow-
control window mechanism [6], which limits the throughput of
circuits to protect the Tor network from bandwidth-intensive
clients like P2P applications.

The first experiment compares different probe filtering
techniques against an increasing number of circuits k from
which the client chooses the best. In Figure 5-left, the y-
axis is the coefficient-of-variation (CV) of the constructed
circuits, while the x-axis is the number of circuits from which
the client chooses the best. When k = 1, the current Tor
filtering technique (i.e., drop probes that are below average) is
outperformed by “drop max” but still beats the “no filtering”
technique. For k > 1, “no filtering” outperforms other filtering
techniques. Figure 5-right shows the aggregate utilization of
relays (on the y-axis) with similar conclusions. Henceforth,
the results are shown in a pair of graphs: one CV on the y-
axis, and another utilization. All results show 95% confidence
intervals.

For the same experiment, in Figure 6, we plot the PDF and

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25 30 35

P
D

F

Relay Available Capacity

Filtering, k=1
No Filtering, k=6

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35

C
D

F

Relay Available Capacity

Filtering, k=1
No Filtering, k=6

Fig. 6. The PDF and CDF of relay available capacities under two
configurations: (1) Filtering, k = 1, and (2) No filtering, k = 6.

CDF of the relay available capacities for two configurations:
(1) vanilla Tor configuration with filtering deployed and k =
1, and (2) our proposed configuration with no filtering and
k = 6. This result validates the model in Section IV in that
the available relay capacity decays exponentially. It is worth
noting though that vanilla Tor has a heavier tail, indicating that
a few relays are left with a lot of available capacity, indicating
inefficiency (bad load balancing).

The following set of experiments examine the effect of
changing certain parameters on Tor performance. The first is
increasing the minimum number of probes that Tor conducts
per relay. Figure 7 shows that as the number of probes
increases, the utilization increases and the variation in client
experience (circuit throughput) decreases. The improvement is
limited though.

The next experiment studies the effect of changing the
shape parameter α used to generate the relay capacities. It is
important to note that we kept the aggregate capacity the same.
Thus, a higher α results in fewer relays with more variable
capacities. The higher variability of relay capacities results
in a reduction in utilization (with wider confidence intervals)
and also in more variability in the throughput of constructed
circuits.

The next experiment considers the effect of increasing
the aggregate capacity of the Tor network. The x-axis shows
the factor by which the aggregate capacity of all relays is
increased, e.g., by a factor of 1, 1.2 and 1.4. The increased
aggregate capacity translates into an increase in the number
of relays, while the number of circuits remains the same. This
does not seem to affect the utilization of relays but it lowers
the CV of circuits, due to the decreased load on each relay
(less circuits per relay).

Lastly, we study the effect of increasing the bound on
the allowable circuit throughput. The average throughput is
35 Kbps, and we set the upper limit to be uniformly dis-
tributed U(70,70), U(70,100), U(70,140). As expected, allow-
ing circuits to have higher throughput results in higher circuit
throughput CV without a significant effect on the utilization
of the relays.

VI. BANDWIDTH BOOSTING USING MULTI-PATH ROUTING

So far, our effort has been to increase the utilization of the
relays in the Tor network while limiting the unpredictability of
clients’ circuit throughput. In this section we propose enhanc-
ing the performance of certain clients using angels. Angels
are special exit nodes with a lot of capacity. However, the

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6

C
V

of probes per relay per iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4
Alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.2 1.4
Capacity %

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 70 100 140
Maximum Circuit Throughput

Filtering, k=1
No Filtering, k=6

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

U
til

iz
at

io
n

of probes per relay per iteration

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4
Alpha

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4
Capacity %

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 70 100 140
Maximum Circuit Throughput

Filtering, k=1
No Filtering, k=6

Fig. 7. The effects of various parameters on CV of circuit throughput (top) and utilization of relays (bottom).

throughput of a circuit is governed by the minimum available
capacity of its constituent relays. To mitigate this problem,
we adopt an approach originally proposed by AlSabah et al.
[5], [4]. This approach uses multi-path forwarding to enhance
the performance of constructed circuits. Figure 8 illustrates
the idea. The angel (the exit node), is responsible for fetching
content from, say, a web server and routing it back to the
client. The angel can split the reply into segments, routing each
through a different reverse path. The client receiving those
segments reorders the received cells to reconstruct the original
content (before being split by angels). For this to work, the
client needs to actively construct those different paths and to
inform the angel that those paths belong to the same circuit.
This can be achieved through a nonce. When a path is extended
to the angel, it will have a random nonce, if the angel has
another concurrent circuit with the same nonce, it knows that
both are paths of the same circuit. It is important to note
that this capability doesn’t require any modification to regular
Tor relays (i.e., relays that are not angels). Indeed, regular
relays cannot even discern whether or not a circuit going
through it is part of a multi-routed circuit. More importantly,
angels performing the split functionality cannot glean any
information pertaining to the identity of the client – only that
some anonymous client wants to use a multi-path circuit. In
this section, we show analytically and verify experimentally
that angel-assisted multi-path circuit construction increases the
throughput for clients and reduces the variance of constructed
circuits. Analytically, we show that if all clients use multi-
paths, the variance in their throughput will decrease.

Fig. 8. An exit angel relay splits the response from the server to achieve
better throughput using multiple circuits on the reverse path to the client.

We consider a multi-path enabled Tor network. Let there
be n circuits at a certain point in time where each circuit
has m-paths. Also, let the aggregate capacity of angels be Ca
and the throughput of path i of circuit j be tji . Consequently,
the sum of the throughput of all paths of all circuits must
not exceed the angel capacity, i.e.,

∑m
i=1

∑n
j=1 t

j
i ≤ Ca.

Assuming tji follows an exponential distribution, then its
parameter must be λ = m∗n

Ca
. Thus the throughput of a

circuit is the sum of the throughput of its paths which is
an Erlang distribution (sum of exponentials) with variance
= m

λ2 =
C2

a

m∗n2 . For vanilla Tor, i.e., no multi-path routing,
the sum of the throughput of all circuits must not exceed the
angel capacity, i.e.,

∑n
j=1 t

j ≤ Ca. Assuming tj follows an
exponential distribution, then its parameter must be λ = n

Ca
,

and its variance 1
λ2 =

C2
a

n2 . This suggests that the variance in
circuit throughput in case of multi-path construction is 1

m that
of the vanilla Tor protocol.

The above analysis assumes that all clients use multi-
path routing with the same number of paths. To evaluate
the effect of deploying a limited number of angels, catering
to a fraction of the traffic, we revert to simulation. We set
up our simulator in such a way that 10% of the aggregate
capacity of the network is provided through angels capable of
the splitting functionality. Clients equipped with bandwidth-
boosting capabilities inform angels acting as exit relays of
the number of paths they require using special bit marking
when setting up a circuit. In our simulation, this is set up as a
uniformly random integer between one and five. We evaluate
multi-path routing under three configurations: (1) “F, k=1”
is Tor’s default behavior, using probe filtering and best-of-1
circuit selection, (2) “NF, k=3” uses no filtering and best-of-3,
and (3) “F, k=3” uses filtering and best-of-3.

Figure 9 is a scatter plot showing the results. On the x-axis
is the number of paths a circuit is requesting and the y-axis is
the average circuit throughput. The “NF, k=3” setting provides
the highest utilization and the most predictable results. For
example the relay utilization is 99% while the average circuit
throughput when the number of paths is five is 4.99 (almost

9

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5

A
vg

 C
irc

ui
t T

hr
ou

gh
pu

t

of Paths

F, k=1
NF, k=3

F, k=3

Fig. 9. The effects of splitting a circuit into multi-paths.

five) times the throughput of circuits with one path. The CV of
constructed circuits is between 0.079 and 0.045 (near zero).
These results should be contrasted to the “F, k=1” setting,
where the relay utilization is 0.78 and the CV is between 1.2
and 0.6. The third “F, k=3” setting corresponds to the case
when we have no influence on the directory authority (which
uses filtering), with clients choosing the best-of-3 circuits, with
multi-path forwarding enabled through angels. In this case
the relay utilization is 0.91 and the CV is between 0.78 and
0.38. These results highlight the premise of multi-path angel-
enabled routing as explained at the outset.

VII. CONCLUSION

In this paper, we set out to understand the behavior of Tor
and how it could be possibly influenced to yield better, more
predictable performance. We started with a characterization of
throughput and delay performance for small and large data
transfers, which we correlated to a number of relay/circuit
attributes. We concluded that the mechanisms that Tor employs
to distribute load across relays achieve the basic goal of high
relay utilization, but that they leave much to be desired in
terms of predictability due to the high variability of circuit
throughput.

Armed with these observations, we used order statis-
tics to analyze the coefficient-of-variation (CV) of through-
put achieved by circuits, under Tor’s default random circuit
selection versus our proposed best-of-k strategy, and also
under Tor’s approach to probe filtering (of relay available
capacity measurements) versus other variant probe filtering
strategies, including no-filtering. We analytically showed a
lower CV under the no-filtering and best-of-k approaches. We
then validated this using a simulation model that captures
the feedback dynamics between the processes responsible
for measuring/estimating relay available/normalized capaci-
ties, and the circuit construction mechanism used by clients.
To further improve performance, we proposed and evaluated
the deployment of special relays (angels) capable of supporting
multi-path routing of some client circuits. We show that even
without disabling Tor’s default filtering, we can achieve lower
CV, and scalable higher throughput to multi-path capable,
throughput-sensitive clients.

Our on-going work incorporates these improvements into

the Tor system, by modifying only angel relays and clients
empowered to use multi-path circuits, and by assessing the
effectiveness of these improvements in the presence of legacy
relays and clients. Another research direction of ours is to
evaluate the effectiveness of angels in mitigating timing at-
tacks, which create congestion to de-anonymize their victims.
By alleviating this congestion, angels have the potential of
improve the anonymity characteristics of Tor clients.

ACKNOWLEDGMENT

We would like to thank Vatche Ishakian for helpful discussions
and feedback on many aspects of this work.

REFERENCES

[1] The Tor Project, Inc. www.torproject.org.
[2] Tor Live Measurements. https://metrics.torproject.org/.
[3] FreeGeoIP. http://freegeoip.net/.
[4] ALSABAH, M., BAUER, K., ELAHI, T., AND GOLDBERG, I. The path

less travelled: Overcoming tors bottlenecks with multipaths.
[5] ALSABAH, M., BAUER, K., ELAHI, T., AND GOLDBERG, I. Tempura:

Improved tor performance with multipath routing.
[6] ALSABAH, M., BAUER, K., GOLDBERG, I., GRUNWALD, D., MCCOY,

D., SAVAGE, S., AND VOELKER, G. Defenestrator: Throwing out
windows in tor. In Privacy Enhancing Technologies (2011), Springer.

[7] DABEK, F., COX, R., KAASHOEK, F., AND MORRIS, R. Vivaldi:
a decentralized network coordinate system. SIGCOMM ’04, ACM,
pp. 15–26.

[8] DAVID, H., AND NAGARAJA, H. Order statistics. Wiley Online Library,
1970.

[9] DHUNGEL, P., STEINER, M., RIMAC, I., HILT, V., AND ROSS, K.
Waiting for anonymity: Understanding delays in the tor overlay. In
P2P (2010), IEEE, pp. 1–4.

[10] DINGLEDINE, R., AND MURDOCH, S. Performance improvements on
tor or, why tor is slow and what were going to do about it. Online:
http://www. torproject. org/press/presskit/2009-03-11-performance. pdf
(2009).

[11] HE, J., SUCHARA, M., BRESLER, M., REXFORD, J., AND CHIANG, M.
Rethinking internet traffic management: From multiple decompositions
to a practical protocol. In CoNEXT 2007.

[12] HUFFAKER, B., FOMENKOV, M., PLUMMER, D., MOORE, D., AND
CLAFFY, K. Distance metrics in the internet. In Proc. of IEEE
International Telecommunications Symposium (ITS) (2002).

[13] JANSEN, R., HOPPER, N., AND KIM, Y. Recruiting new tor relays with
braids. In Proceedings of the 17th ACM conference on Computer and
communications security (2010), ACM, pp. 319–328.

[14] LOESING, K., PERRY, M., AND GIBSON, A. Bandwidth Scanner
Specification, 2011. https://gitweb.torproject.org/torflow.git/blob plain/
HEAD:/NetworkScanners/BwAuthority/README.spec.txt.

[15] PANCHENKO, A., AND RENNER, J. Path selection metrics for
performance-improved onion routing. In SAINT’09 (2009), IEEE,
pp. 114–120.

[16] PASTOR-SATORRAS, R., AND VESPIGNANI, A. Evolution and structure
of the Internet: A statistical physics approach. Section 10.2. 2007.

[17] REARDON, J., AND GOLDBERG, I. Improving tor using a tcp-over-
dtls tunnel. In Proceedings of the 18th conference on USENIX security
symposium (2009), USENIX Association, pp. 119–134.

[18] SHERR, M., BLAZE, M., AND LOO, B. Scalable link-based relay
selection for anonymous routing. In Privacy Enhancing Technologies
(2009), Springer, pp. 73–93.

[19] SHERR, M., LOO, B., AND BLAZE, M. Towards application-aware
anonymous routing. In Proceedings of the 2nd USENIX workshop on
Hot topics in security (2007), USENIX Association, p. 4.

[20] SNADER, R., AND BORISOV, N. Improving security and performance in
the tor network through tunable path selection. Dependable and Secure
Computing, IEEE Transactions on, 99 (2010), 1–1.

[21] SWEHA, R., ISHAKIAN, V., AND BESTAVROS, A. Angels In The Cloud:
A Peer-Assisted Bulk-Synchronous Content Distribution Service. In
CLOUD’2011 (Washington DC, USA, 2011).

[22] SWEHA, R., ISHAKIAN, V., AND BESTAVROS, A. Angelcast: Cloud-
based peer-assisted live streaming using optimized multi-tree construc-
tion. In MMSys (2012), ACM.

[23] TANG, C., AND GOLDBERG, I. An improved algorithm for tor circuit
scheduling. In Proceedings of the 17th ACM conference on Computer
and communications security (2010), ACM, pp. 329–339.

https://gitweb.torproject.org/torflow.git/blob_plain/HEAD:/NetworkScanners/BwAuthority/README.spec.txt
https://gitweb.torproject.org/torflow.git/blob_plain/HEAD:/NetworkScanners/BwAuthority/README.spec.txt

10

[24] WANG, T., BAUER, K., FORERO, C., AND GOLDBERG, I. Congestion-
aware path selection for tor? In 16th International Conference on
Financial Cryptography and Data Security (Feb 2012).

APPENDIX A
CALCULATE µk FOR EXPONENTIAL DISTRIBUTION

µk =
1

3λ

∫ ∞
0

yd(1− e−y)k

=
1

3λ

∫ 1

0

−ln(1− z)dzk

Where : z = (1− e−y)

µk =
−1

3λ
[ln(1− z)zk]10 −

∫ 1

0

zk ∗ −1

1− z
dz

=
−1

3λ
[ln(1− z)zk]10 −

∫ 1

0

∗ (1− zk)− 1

1− z
dz

=
−1

3λ
[ln(1− z)zk]10 −

∫ 1

0

k−1∑
i=0

zidz +

∫ 1

0

1

1− z
dz

=
−1

3λ
[ln(1− z)zk −

k−1∑
i=0

zi+1

i+ 1
− ln(1− z)]10

=
1

3λ

k∑
i=1

1

i
+

1

3λ
lim
z→1

[(1− zk)ln(1− z)

=
1

3λ

k∑
i=1

1

i
+

1

3λ
lim
z→1

(

k−1∑
i=0

zi)
ln(1− z)

(1− z)

Using l’Hopital rule by differentiating the nominator and the
denominator:

µk =
1

3λ

k∑
i=1

1

i
+

k

3λ
lim
z→1

1/(1− z)

−1/(1− z)2

=
1

3λ

k∑
i=1

1

i
+

k

3λ
lim
z→1

−(1− z)

µk =
1

3λ

k∑
i=1

1

i
=
Hk
3λ

APPENDIX B
CALCULATE vark(x) FOR EXPONENTIAL DISTRIBUTION

vark(x) =

∫ ∞
0

(x− µk)
2fk:k(x)dx

=

∫ ∞
0

(x− Hk
3λ

)2k(1− e−3λx)k−13λe−3λxdx

=
1

9λ2

∫ ∞
0

k(y −Hk)
2(1− e−y)k−1e−ydy

Where : y = 3λx

vark(x) =
1

9λ2

∫ ∞
0

(y −Hk)
2d(1− e−y)k

=
1

9λ2

∫ 1

0

(−ln(1− z)−Hk)
2dzk

Where : z = (1− e−y)

vark(x) =
1

9λ2
[(ln(1− z) +Hk)

2zk]10

+
−1

9λ2

∫ 1

0

zk ∗ 2(ln(1− z) +Hk) ∗
−1

1− z
dz

vark(x) =
1

9λ2
[(ln(1− z) +Hk)

2zk]10

+
−1

9λ2

∫ 1

0

2(ln(1− z) +Hk) ∗
(1− zk)− 1

1− z
dz

vark(x) =
1

9λ2
[(ln(1− z) +Hk)

2zk]10

+
−1

9λ2

∫ 1

0

2(ln(1− z) +Hk) ∗
−1

1− z
dz

+
−1

9λ2

∫ 1

0

2(ln(1− z) +Hk)

k−1∑
i=0

zidz

vark(x) =
1

9λ2
[(ln(1− z) +Hk)

2zk]10

+
−1

9λ2

∫ 1

0

2(ln(1− z) +Hk) ∗ dln(1− z)

+
−1

9λ2

∫ 1

0

2ln(1− z)

k−1∑
i=0

zidz +
−1

9λ2
[2Hk

k−1∑
i=0

zi+1

i+ 1
]10

vark(x) =
1

9λ2
[(ln2(1− z) + 2Hkln(1− z) +H2

k)z
k]10

+
−1

9λ2
[ln2(1− z) + 2Hkln(1− z)]10

+
−1

9λ2

k−1∑
i=0

2

i+ 1

∫ 1

0

(i+ 1)ln(1− z)zidz +
−1

9λ2
[2Hk ∗Hk]

vark(x) =
1

9λ2
[(ln2(1− z) + 2Hkln(1− z))(zk − 1)]10 +

1

9λ2
[H2

k]

+
1

9λ2

k−1∑
i=0

2

i+ 1
Hi+1 +

−2H2
k

9λ2

vark(x) =
1

9λ2
[(ln2(1− z) + 2Hkln(1− z))(zk − 1)]10 +

1

9λ2
[H2

k]

+
1

9λ2

k−1∑
i=0

2

i+ 1
Hi+1 +

−2H2
k

9λ2

vark(x) =
1

9λ2
lim
z→1

ln2(1− z) + 2Hkln(1− z)

1/(z − 1)

k−1∑
i=0

zi

+
2

9λ2

k∑
i=1

1

i
Hi +

−H2
k

9λ2

vark(x) =
k

9λ2
lim
z→1

[
2ln(1− z)/− (1− z)

−1/(z − 1)2
+ 0] +

2

9λ2

k∑
i=1

1

i
Hi +

−H2
k

9λ2

vark(x) =
2

9λ2

k∑
i=1

1

i
Hi −

H2
k

9λ2

APPENDIX C
THE MODEL ASSUMING A UNIFORM DISTRIBUTION

In this appendix we assume that the relay available capac-
ities follow a uniform distribution: f(x) = u(a, b) = 1

b−a . The
throughput of a circuit is the minimum throughput of its three
constituent relays. The minimum of three random variables is

11

a random variable of density function:

f1:3(x) = 3(1− F (x))2f(x) = 3(1− x− a

b− a
)2 ∗ 1

b− a

=
3

(b− a)3
∗ (b− x)2

F1:3(x) =

∫ x

a

f1:3(x)dx =

∫ x

a

3

(b− a)3
∗ (x2 − 2bx+ b2)dx

=
3

(b− a)3
[
x3

3
− bx2 + b2x]xa

=
x3 − 3bx2 + 3ba2 − b3 + b3 − 3b2a+ 3ba2 − a3

(b− a)3

= 1− (
b− x

b− a
)3

The expected value of the circuit throughput will be:

µ =

∫ b

a

xf1:3(x)dx =

∫ b

a

x
3

(b− a)3
∗ (b− x)2dx

=

∫ b

a

−xd (b− x)3

(b− a)3
=

∫ 0

1

((b− a)y1/3 − b)dy

=
3(b− a)

4
[y4/3]01 − b[y]01 =

b

4
+

3a

4

The variance:

var(x) =

∫ b

a

(x− µk)
2f1:3(x)dx

=
3

(b− a)3

∫ b

a

(x− b

4
− 3a

4
)2(b− x)2dx

=
3

(b− a)3

∫ b

a

((x− b) +
3(b− a)

4
)2(x− b)2d(x− b)

=
3

(b− a)3

∫ 0

a−b
(y +

3(b− a)

4
)2 ∗ y2dy

where y = x− b

var(x) =
3

(b− a)3

∫ 0

a−b
(y4 +

6(b− a)y3

4
+

9(b− a)2y2

16
)dy

=
3

(b− a)3
[
y5

5
+

6(b− a)y4

16
+

9(b− a)2y3

16 ∗ 3]0a−b

=
3

(b− a)3
[
−(a− b)5

5
− 6(b− a)(a− b)4

16

−3(b− a)2(a− b)3

16
]

=
3

(b− a)3
[
(b− a)5

5
− 3(b− a)5

8
+

3(b− a)5

16
]

= 3(b− a)2[
1

5
− 3

8
+

3

16
] =

3

80
(b− a)2

The coefficient of variation then equals:

CVk =

√
var(x)

µ
=

√
3/80(b− a)

b− 3/4(b− a)
Which means that the CV increases with the increase of the
width of the support [a, b]. Thus if angels can be used to
decrease this support, the client experience would be more
predictable.

In the case of best-of-k circuit selection.

fk:k(x) = k(F (x))k−1f(x) = k(1− (
b− x
b− a

)3)k−1
3(b− x)2

(b− a)3

The mean circuit throughput in this case would be:

µk =

∫ b

a

xfk:k(x)dx =

∫ b

a

x ∗ k(1− (
b− x

b− a
)3)k−1 3(b− x)2

(b− a)3
dx

=

∫ b

a

xd(1− (
b− x

b− a
)3)k

= [x(1− (
b− x

b− a
)3)k]ba −

∫ b

a

(1− (
b− x

b− a
)3)kdx

= [b− 0] +

∫ 0

1

(1− y3)k(b− a)dy

Where y = b−x
b−a

µk = b+ (b− a)
∫ 0

1

(1− y3)kdy = b+ (b− a) ∗ ak

Where

ak =

∫ 0

1

(1− y3)kdy

=

∫ 0

1

k∑
i=0

Cki (−y3)idy

= (−1)i
k∑
i=0

Cki

∫ 0

1

(y3i)dy

= (−1)i
k∑
i=0

Cki [
y3i+1

3i+ 1
]01

=

k∑
i=0

Cki
(−1)i+1

3i+ 1

µk = b+ (b− a)
k∑
i=0

Cki
(−1)i+1

3i+ 1

As for the variance of the circuit throughput:

vark(x) =

∫ b

a

(x− µk)2fk:k(x)dx

=

∫ b

a

(x− µk)2 ∗ k(1− (
b− x
b− a

)3)k−1
3(b− x)2

(b− a)3
dx

=

∫ b

a

(x− µk)2d(1− (
b− x
b− a

)3)k

= [(x− µk)2(1− (
b− x
b− a

)3)k]ba

−
∫ b

a

(1− (
b− x
b− a

)3)k(2(x− µk))dx

= (b− µk)2

−
∫ 0

1

(1− y3)k(2(b− (b− a)y − µk))(−(b− a))dy

12

= ((b− a)ak)2 − 2(b− a)2
∫ 0

1

(1− y3)k(y + ak)dy

= ((b− a)ak)2 − 2(b− a)2
∫ 0

1

(1− y3)kydy

−2(b− a)2ak
∫ 0

1

(1− y3)kdy

= ((b− a)ak)2 − 2(b− a)2
∫ 0

1

y

k∑
i=0

Cki (−y3)idy

−2(b− a)2a2k

= −((b− a)ak)2 − 2(b− a)2
k∑
i=0

(−1)i
∫ 0

1

Cki y
3i+1dy

= −((b− a)ak)2 − 2(b− a)2
k∑
i=0

(−1)i[Cki
y3i+2

3i+ 2
]01

= −((b− a)ak)2 + 2(b− a)2
k∑
i=0

[Cki
(−1)i

3i+ 2
]

= (b− a)2(2
k∑
i=0

[Cki
(−1)i

3i+ 2
]− a2k)

= (b− a)2 ∗ bk
Where

bk = 2

k∑
i=0

[Cki
(−1)i

3i+ 2
]− a2k

The coefficient of variation in this case would be:

CVk =

√
vark(x)

µk
=

(b− a)
√
bk

b+ ak(b− a)

If a = 0 then CVk =
√
bk

(1+ak)
. Figure 3 shows that CVk

decreases in this case as well with the increase of k, the
number of circuits a client chooses from. This results suggests
that choosing the best-of-k circuit is a recommended practice,
regardless of the skewness of the underlying distribution of
the relay available capacities as a uniform distribution is flat
compared to the exponential distribution.

	Introduction
	Background and Related Work
	A Measurement Study on Live Tor
	Tor Circuit Throughput: Analytical Model
	Variability of Tor Circuit Throughput
	Effect of ``Best-Of-K'' Circuit Selection
	Effect of Filtering out Probes with Below-Average Throughput on the Performance of the PID Controller

	Experimental Evaluation
	The Simulator
	Simulation Results

	Bandwidth Boosting using Multi-Path Routing
	Conclusion
	References
	Appendix A: Calculate k for Exponential Distribution
	Appendix B: Calculate vark(x) for Exponential Distribution
	Appendix C: The Model Assuming a Uniform Distribution

