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Abstract

As observed in [HS] identity types in intensional type theory endow
every type with the structure of a weak higher dimensional groupoid. The
simplest and oldest notion of weak higher dimensional groupoid is given
by Kan complexes within the topos sSet of simplicial sets. This was
observed around 2006 independently by V. Voevodsky and the author.

The aim of this note is to describe in an accessible way how simplicial
sets organize into a model of Martin-Löf type theory. Moreover, we explain
Voevodsky’s Univalence Axiom which holds in this model and implements
the idea that isomorphic types are identical as suggested in [HS]. A full
exposition of the theory will be given in a longer article by Voevodsky
which is still in preparation, but see [VV]. The current note just gives a
first introduction to this circle of ideas.

1 Simplicial Sets and Kan complexes

Let ∆ be the category of finite nonempty ordinals and monotone maps between
them. We write sSet for the topos Set∆op

of simplicial sets. We write [n] for
the ordinal n+1 and ∆[n] for the corresponding representable object in sSet.
For 0 ≤ k ≤ n we write ink : Λk[n] ↪→ ∆[n] for the inclusion of the k-th horn
Λk[n] into ∆[n] which is obtained by removing the interior and the face opposite
to vertex k. As described e.g. in [GJ] there is an obvious faithful functor | · |
from ∆ into the category Sp of spaces and continuous maps. This induces
the singular functor S : Sp → sSet sending X to Sp(|−|, X) which has a left
adjoint R called geometric realization. The objects in the image of R are the
so-called CW complexes which can be obtained by glueing simplices in a way
as described by some simplicial set. The objects in the image of S are the so
called Kan complexes which can be characterized in a more combinatorial way
as we will describe in the next paragraph.
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On sSet there is a well known Quillen model structure whose class C of
cofibrations consists of all monos, whose class W of weak equivalences consists
of all maps f : X → Y whose geometric realization |f | : |X| → |Y | is a homotopy
equivalence1 and whose class F of fibrations consists of all Kan fibrations, i.e.
maps a : A→ I in sSet with ink ⊥ a for all n, k ∈ N.2 It is shown in [GJ] that a
simplicial set X is a Kan complex iff X → 1 is a Kan fibration. Moreover, a map
f : X → Y between Kan complexes is a weak equivalence iff f is a homotopy
equivalence, i.e. there is a map g : Y → X such that gf ∼ idX and fg ∼ idY .3

In sSet one can develop a fair amount of homotopy theory and as shown
in [GJ] inverting weak equivalences in sSet gives rise to the same homotopy
category as inverting weak equivalences in Sp. Thus, from a homotopy point
of view sSet and Sp are different ways of speaking about the same thing.
However, the “combinatorial” topos sSet is in many respects much nicer then
the “geometric” category Sp. This we exploit when interpreting intensional
Martin-Löf type theory in sSet.

2 Homotopy Model for Type Theory

Since sSet is a topos and thus locally cartesian closed it provides a model
of extensional type theory (since sSet contains also a natural numbers object
N). In order to obtain a non-trivial interpretation of identity types we restrict
families of types to be Kan fibrations. Apparently F contains all isos and is
closed under composition and pullbacks along arbitrary morphisms in sSet.
Using the fact that trivial cofibrations are stable under pullbacks along Kan
fibrations one easily establishes that

Theorem 2.1 Kan fibrations are closed under Π, i.e. whenever a : A→ I and
b : B → A are in F then Πa(b) is in F , too.

1i.e. there exists a continuous map g : |Y | → |X| such that both composita are homotopy
equivalent to the identities id|X| and id|Y |, respectively

2f ⊥ g means that for every commuting square kf = gh there is a diagonal filler, i.e. a
map d with df = h and gd = k as in

·
h- ·

·

f

?

k
-

d

-

·

g

?

3For f, g : A→ B we write f ∼ g iff there is a map h : ∆[1]×A→ B with h(0,−) = f and
h(1,−) = g.
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For interpreting equality on X we factor the diagonal δX : X → X ×X as

X
rX- Id(X)

X ×X

pX

?

δ
X

-

where pX ∈ F and rX ∈ C ∩ W which is possible since (C,W,F) is a Quillen
model structure. The Kan fibration pX will serve as interpretation of x, y : X `
IdX(x, y) as suggested in [AW]. For families of types as given by a Kan fibration
a : A → I one factors the fibrewise diagonal δa : A → A ×I A in an analogous
way. However, there is a problem since such factorisations are in general not
stable under pullbacks. To overcome this problem we introduce universes à la
Martin-Löf.

As described in [VV] a universe in sSet is a Kan fibration pU : Ũ → U . We
write DU for the class of Kan fibrations which can be obtained as pullbacks of
pU along some map in sSet. In [VV] Voevodsky has shown how such a universe
induces a contextual category CC[pU ] which interprets dependent sums if DU
is closed under composition and which interprets dependent products if DU is
closed under Π.

Some time ago M. Hofmann and the author observed how to lift a Grothendieck
universe U in Set to a type theoretic universe pU : Ũ → U in a presheaf topos
Ĉ = SetC

op

. The object U is defined as

U(I) = U (C/I)op U(α) = UΣop
α

where for α : J → I the functor Σα : C/J → C/I is postcomposition with α. The
idea behind this definition is that U (C/I)op is equivalent to the full subcategory
of Ĉ/Y(I) on those maps whose fibres are small in the sense of U . The presheaf

Ũ is defined as

Ũ(I) = {〈A, a〉 | A ∈ U(I) and a ∈ A(idI)}

and
Ũ(α)(〈A, a〉) = 〈U(α)(A), A(α

α→ idI)(a)〉

for α : J → I in C. The map pU : Ũ → U sends 〈A, a〉 to A. One easily checks
that pU is generic for maps with fibres small in the sense of U , i.e. these maps
are up to isomorphism precisely those which can be obtained as pullback of pU
along some map in Ĉ.

Now for C = ∆ we adapt this idea in such a way that pU is generic for Kan
fibrations with fibres small in the sense of U . For this purpose we redefine U as

U([n]) = {A ∈ U (∆/[n])op | PA is a Kan fibration}

where PA : Elts(A) → ∆[n] is obtained from A by the Grothendieck construc-
tion. For maps α in ∆ we can define U(α) as above since Kan fibrations are
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stable under pullbacks. We also define Ũ and pU using the same formulas as
above but understood as restricted to U in its present form.

Theorem 2.2 The simplicial set U is a Kan complex.

This has been shown in [VV] for a different construction of the universe. A
simpler proof of Theorem 2.2 for the above construction of U has been found
recently by A. Joyal.

Theorem 2.3 The map pU : Ũ → U is universal for Kan fibrations which are
small in the sense of U .

Proof: For showing that pU is a Kan fibration suppose

Λk[n]
a- Ũ

∆[n]

ink
?

∩

A
- U

pU
?

commutes. Since the pullback of pU along A is the Kan fibration PA : Elts(A)→
∆[n] there exists a diagonal filler a : ∆[n]→ Ũ making

Λk[n]
a- Ũ

∆[n]

ink
?

∩

A
-
a

-

U

pU
?

commute.
For showing that pU is universal suppose that a : A → I is a Kan fibration

small in the sense of U . Then one gets a as pullback of pU along the morphism
A : I → U sending x ∈ I([n]) to an U-valued presheaf over ∆/[n] which via the
Grothendieck construction is isomorphic to x∗a. 2

Thus pU provides us with a universe in sSet which is closed under dependent
sums and products. Since N = ∆(N) is a small Kan complex this universe also
hosts the natural numbers object N .

For interpreting identity types in this universe we consider the map δŨ :

Ũ → Ũ ×U Ũ with πi ◦ δŨ = id for i = 0, 1 where

Ũ ×U Ũ
π1- Ũ

Ũ

π0 ?

pU
- U

pU
?
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and consider a factorisation

Ũ
rŨ- IdŨ

Ũ ×U Ũ

pŨ?
δ
Ũ -

with pŨ ∈ F and rU ∈ C ∩W.
For interpreting the eliminator J for Id-types we pull back the whole situa-

tion along the projection p from the generic context

Γ ≡ C : IdŨ→UU
∗U, d : ΠU (r∗

Ũ
C)

to U . Since p is a Kan fibration and pullbacks along Kan fibrations preserve weak
equivalences we have p∗rŨ ∈ C ∩ W. Let q : C̃ → p∗IdŨ be the interpretation

of the type family Γ, x, y:A, z:IdA(x, y, z) ` C(x, y, z) and d : p∗Ũ → C̃ be the
interpretation of the term Γ, x, y:A, z:IdA(x, y, z) ` d(x) : C(x, y, z). Obviously,
we have q ◦ d = p∗rŨ . Since q is a Kan fibration and p∗rŨ ∈ C ∩ W by the
defining properties of Quillen model structures there is a map J making the
diagram

C̃
q- p∗IdŨ

p∗Ũ

d

6

p∗rŨ

- p∗IdŨ

wwwwwwwww
�

J

commute. This map J serves as interpretation of the eliminator for identity
types associated with types in the universe U .
NB Factoring δŨ and d relative to the generic context Γ prevents one from
proving that r and J satisfy BCC, i.e. are stable under pullbacks. However, since
trivial cofibrations are not stable under arbitrary pullpacks the instantiations
of rŨ are not guaranteed to be trivial cofibrations. This problem, however, can

be avoided when choosing rŨ as the canonical map Ũ → Ũ∆[1] in the fibre over
U because such maps are stable under arbitary pullbacks.

If one starts from the universe U = {∅, {∅}} one obtains a universe pU :

Ũ → U where U([n]) is the set of those subobobjects m : P ↪→ ∆[n] which are
Kan fibrations. One easily shows by induction over n that such subobjects are
trivial in the sense that m is an isomorphism whenever P is not initial.4 Thus
pU is obtained by restricting > : 1 � ΩsSet along the mono 2 � ΩsSet. When
interpreting Prop by this pU one obtains a boolean, 2-valued proof-irrelevant
interpreation of Coq.

4It is an open question, however, whether for any Kan fibration p : E → B its image is a
union of connected components of B.
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Finally we want to emphasize that the model sketched in this section im-
plements the idea that types are weak higher dimensional groupoids which are
here realized as Kan complexes. Moreover, it keeps the interpretation of Prop
from the naive model in Set.

3 Voevodsky’s Univalence Axiom

We now give the formulation of Voevodsky’s Univalence Axiom which as shown
in [VV] holds in the model described in the previous section. For this purpose
we first introduce a few abbreviations

iscontr(X:Set) = (Σx:X)(Πy:Y ) IdX(x, y)

hfiber(X,Y :Set)(f :X→Y )(y:Y ) = (Σx:X) IdY (f(x), y)

isweq(X,Y :Set)(f :X→Y ) = (Πy:Y ) iscontr(hfiber(X,Y, f, y))

Weq(X,Y :Set) = (Σf :X→Y ) isweq(X,Y, f)

Using the eliminator J for identity types one constructs a canonical map

eqweq(X,Y :Set) : IdSet(X,Y )→Weq(X,Y )

The Univalence Axiom5 then claims that all maps eqweq(X,Y ) are themselves
weak equivalences, i.e.

UnivAx : (ΠX,Y :Set) isweq(eqweq(X,Y ))

which, alas, doesn’t seem to have any computational meaning.
Notice, moreover, that isweq(X,Y )(f) is equivalent to

isiso(X,Y )(f) ≡ (Σg:Y→X)
(
(Πx:X)IdX(g(fx), x)

)
×
(
(Πy:Y )IdY (f(gy), y)

)
which formally says that f is an isomorphism but due to the interpretation of
identity types in sSet rather claims that f is a homotopy equivalence. This
equivalence is provable in type theory without the Univalence Axiom (see [VV]
for a Coq file containing a machine checked proof). It is in accordance with the
fact that in sSet morphisms to Kan complexes are weak equivalences iff they
are homotopy equivalences. The type theoretic argument may be seen as an
example for a “synthetic” version of a theorem in homotopy theory.

A suprising consequence of the Univalence Axiom is that it allows one to
prove the function extensionality principle(

(Πx:X) IdY (fx, gx)
)
→ IdX→Y (f, g)

for f, g : X → Y (see [VV] for a Coq file containing a machine checked proof).

5The name “univalent” insinuates that the universe Set contains up to propositional equal-
ity only one representative of each class of weakly equivalent types.
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4 Conclusion

The model of intensional type theory in sSet realizes the idea from [HS] that
propositional equality of types should coincide with isomorphism. It is not clear
so far what are the benefits of this identification for the formalisation of category
theory.

However, as described in various Coq files from [VV] one may use type
theory as an internal language for developing homotopy theory synthetically.
The basic idea is that the type of paths from x to y in X is given by IdX(x, y).
For information on more recent developments within this rapidly developing
new field of research consult the blog http://homotopytypetheory.org.
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