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Abstract. Application-level firewalls block traffic based on the process
that is sending or receiving the network flow. They help detect bots,
worms, and backdoors that send or receive malicious packets without
the knowledge of users. Recent attacks show that these firewalls can
be disabled by knowledgeable attackers. To counter this threat, we de-
velop VMwall, a fine-grained tamper-resistant process-oriented firewall.
VMwall’s design blends the process knowledge of application-level fire-
walls with the isolation of traditional stand-alone firewalls. VMwall uses
the Xen hypervisor to provide protection from malware, and it correlates
TCP or UDP traffic with process information using virtual machine in-
trospection. Experiments show that VMwall successfully blocks numer-
ous real attacks—bots, worms, and backdoors—against a Linux system
while allowing all legitimate network flows. VMwall is performant, im-
posing only a 0–1 millisecond delay on TCP connection establishment,
less than a millisecond delay on UDP connections, and a 1–7% slowdown
on network-bound applications. Our attack analysis argues that with the
use of appropriate external protection of guest kernels, VMwall’s intro-
spection remains robust and helps identify malicious traffic.
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1 Introduction

Application-level firewalls are an important component of a computer system’s
layered defenses. They filter inbound and outbound network packets based on
an access policy that includes lists of processes allowed to make network con-
nections. This fine-grained filtering is possible because application-level firewalls
have a complete view of the system on which they execute. In contrast, network-
or host-level firewalls provide coarse-grained filtering using ports and IP ad-
dresses. Application-level firewalls help detect and block malicious processes,
such as bots, worms, backdoors, adware, and spyware, that try to send or re-
ceive network flows in violation of the fine-grained policies. To be successful,
these firewalls must be fast, mediate all network traffic, and accurately identify
executing processes.

The conventional design of application-level firewalls has a deficiency that
may prevent filtering of malicious traffic. The architectures pass packet infor-
mation from a kernel-level network tap up to a user-level firewall process that



executes alongside malicious software. The firewall is both performant and able
to identify the processes attached to a network flow, but it is exposed to direct
attack by any malicious software aware of the firewall. Baliga et al. [1] demon-
strated the ease of such attacks by manipulating the netfilter framework inside
the Linux kernel to remove the hooks to packet filtering functions. Similarly, at-
tackers can disable the Windows Firewall by halting particular services normally
running on the system. Once the firewall fails, then all network traffic will be
unmediated and the malware can send and receive data at will.

An alternative design isolates firewalls from vulnerable systems to gain pro-
tection from direct attack. Virtual machines allow construction of firewall ap-
pliances that execute outside of operating systems under attack. Such firewalls
dispense with application-level knowledge and filter inbound and outbound pack-
ets using coarse-grained rules over IP addresses and port numbers. Attacks can
easily evade these firewalls by using allowed ports directly or via tunneling.

This paper leverages the benefits of both application-level firewalls and vir-
tual machine isolation to develop tamper-resistant application-oriented firewalls.
Such a firewall needs good visibility of the system so that it can correlate net-
work flows with processes, but it also needs strong isolation from any user-level
or kernel-level malware that may be present. We architect an application-level
firewall resistant to direct attack from malicious software on the system. Our
design isolates the application-level firewall in a trusted virtual machine (VM)
and relies on the hypervisor to limit the attack surface between any untrusted
VM running malware and the trusted VM. Our firewall, executing in the trusted
VM, becomes an application-level firewall by using virtual machine introspec-
tion (VMI) [10] to identify the process in another VM that is connected to a
suspicious network flow.

Our prototype implementation, VMwall, uses the Xen [2] hypervisor to re-
main isolated from malicious software. VMwall executes entirely within Xen’s
trusted virtual machine dom0; it operates with both paravirtualized and fully
virtualized domains. A dom0 kernel component intercepts network connections
to and from untrusted virtual machines. A user-space process performs intro-
spection to correlate each flow to a sending or receiving process, and it then uses
a predefined security policy to decide whether the connection should be allowed
or blocked. Policies are straightforward whitelists of known software in the un-
trusted VM allowed to communicate over the network. To correlate network flows
with processes, VMwall’s user-space component maps the untrusted operating
system’s kernel memory into its own address space and uses programmed knowl-
edge of kernel data structures to extract the identity of the process attached to
the flow.

VMwall is effective at identifying and blocking malicious network connec-
tions without imposing significant performance degradation upon network traf-
fic. Using a Linux system and a collection of known attacks that either send
or receive network traffic, we show that VMwall identifies all malicious connec-
tions immediately when the first packet is sent or received. In particular, VMwall
blocked 100% of the malicious connections when tested against bots, worms, and



backdoors, and it correctly allowed all legitimate network traffic. In our design,
VMwall only performs introspection for the first packet of a new connection, so
network performance remains high. Our tool adds only about 0–1 milliseconds
of overhead to the first packet of a session. This is a latency cost to network con-
nection creation that will not impact the subsequent data transfer of legitimate
connections.

VMwall looks into the state of the untrusted operating system’s memory to
find the process bound to a network connection. The system monitors network
flows, and it is not an intrustion detection system designed to detect an attack
against the OS. Hence, an attacker may try to evade VMwall either by hijacking
a process or by subverting the inspected kernel data structures. In Sect. 6.4, we
study this problem, provide an in-depth security analysis of VMwall, and suggest
appropriate measures to thwart these attacks.

We believe that our tamper-resistant application-oriented firewall represents
an appropriate use of virtualization technology for improved system security. We
feel that our paper provides the following contributions:

– Correlation between network flows and processes from outside the virtual
machine (Sect. 4).

– VMwall, an implementation of a tamper-resistant application-oriented fire-
wall (Sect. 5).

– Evidence that application-aware firewalls outside the untrusted virtual ma-
chine can block malicious network connections successfully while maintaining
network performance (Sect. 6).

2 Related Work

Prior research has contributed to the development of conventional host-based
firewalls. Mogul et al. [21] developed a kernel-resident packet filter for UNIX
that gave user processes flexibility in selecting legitimate packets. Venema [29]
designed a utility to monitor and control incoming network traffic. These tra-
ditional firewalls performed filtering based on restrictions inherent in network
topology and assumed that all parties inside the network were trusted. As part
of the security architecture of the computer system, they resided in kernel-space
and user-space, and hence were vulnerable to direct attack by malicious software.

Administration of firewalls can be cumbersome, and distributed firewalls have
been proposed to ease the burden [3,15]. In distributed firewalls, an administra-
tor manages security policies centrally but pushes enforcement of these policies
out to the individual hosts. Although we have not implemented support for dis-
tributed management, we expect VMwall to easily fit into this scheme. VMwall
policies dictate which processes can legitimately make use of network resources.
In a managed environment where administrators are knowledgeable of the soft-
ware running on the machines in the local network, preparing and distributing
VMwall policies from a central location may be an appealing solution.

The recent support for virtual machines by commodity hardware has driven
development of new security services deployed with the assistance of VMs [9,



27, 30]. Garfinkel et al. [11] showed the feasibility of implementing distributed
network-level firewalls using virtual machines. In another work [10], they pro-
posed an intrusion detection system design using virtual machine introspection
of an untrusted VM. VMwall applies virtual machine introspection to a different
problem, using it to correlate network flows with the local processes bound to
those flows.

Other research used virtual machines for malware detection. Borders et al. [4]
designed a system, Siren, that detected malware running within a virtual ma-
chine. Yin et al. [33] proposed a system to detect and analyze privacy-breaching
malware using taint analysis. Jiang et al. [17] presented an out-of-the-box VMM-
based malware detection system. Their proposed technique constructed the inter-
nal semantic views of a VM from an external vantage point. In another work [16],
they proposed a monitoring tool that observes a virtual machine based honey-
pot’s internal state from outside the honeypot. As a pleasant side-effect of mali-
cious network flow detection and process correlation, VMwall can often identify
processes in the untrusted system that comprise portions of an attack.

Previous research has developed protection strategies for different types of
hardware-level resources in the virtualized environment. Xu et al. [32] proposed
a VMM-based usage control model to protect the integrity of kernel memory.
Ta-Min et al. [28] proposed a hypervisor based system that allowed applications
to partition their system call interface into trusted and untrusted components.
VMwall, in contrast, protects network resources from attack by malware that
runs inside the untrusted virtual machine by blocking the illegitimate network
connections attempts.

These previous hypervisor-based security applications generally take either
a network-centric or host-centric view. Our work tries to correlate activity at
both levels. VMwall monitors network connections but additionally peers into
the state of the running, untrusted operating system to make its judgments
about each connection’s validity. Moreover, VMwall easily scales to collections
of virtual machines on a single physical host. A single instance of VMwall can
act as an application-level firewall for an entire network of VMs.

3 Overview

We begin with preliminaries. Section 3.1 explains our threat model, which as-
sumes that attackers have the ability to execute the real-world attacks infecting
widespread computer systems today. Section 3.2 provides a brief overview of
Xen-based virtual machine architectures and methods allowing inspection of a
running VM’s state.

3.1 Threat Model

We assume that attackers have abilities commonly displayed by real-world at-
tacks against commodity computer systems. Attackers can gain superuser priv-

ilege from remote. Attackers are external and have no physical access to the



attacked computers, but they may install malicious software on a victim system
by exploiting a software vulnerability in an application or operating system or
by enticing unsuspecting users to install the malware themselves. The software
exploit or the user often executes with full system privileges, so the malware
may perform administrative actions such as kernel module or driver installation.
Hence, malicious code may execute at both user and kernel levels. For ease of
explanation, we initially describe VMwall’s architecture in Sect. 4 under the as-
sumption that kernel data structure integrity is maintained. This assumption
is not valid in our threat model, and Sect. 6.4 revisits this point to describe
technical solutions ensuring that the assumption holds.

The installed malware may periodically make or receive network connections.
Many examples exist. Bots make network connections to a command and con-
trol channel to advertise their presence and receive instruction, and they send
bulk network traffic such as denial-of-service packets and email spam. Spyware

programs collect information, such as keystrokes and mouse clicks, and then
transmit the confidential data across a network to the attacker. Worms may
generate network connections to scan the network in search of additional vic-
tims suitable for infection. Backdoors open holes in machines by listening for
incoming connections from the attacker. One common feature of these different
classes of attacks is their interest in the network.

In a typical system, malware can directly affect an application-level firewall’s
execution. The architecture of these malware instances frequently combines a
user-level application performing network activity with a kernel-level module
that hides the application from the view of host-level security software. The
malicious application, likely running with full system privileges, may halt the
execution of the firewall. Similarly, the malicious kernel component may alter
the hooks used by an in-kernel module supporting the user-level firewall so that
the firewall is simply never invoked as data passes to and from the network. Con-
ventional application-level firewalls fail under these direct attacks. Our goal is to
develop a system that withstands direct attack from malware at the application
layer or the kernel layer.

Our system has requirements for correct execution. As with all requirements,
an attacker who is able to violate any requirement is likely able to escape de-
tection. Our two requirements of note center on basic expectations for the in-
memory data structures used by the kernel that may be infected by an attack.

First, we expect to be able to find the head of linked data structures, often
by extracting a kernel symbol value at boot time. An attacker could conceivably
cause our firewall to inspect the incorrect kernel information by replicating the
data structure elsewhere in kernel memory and by altering all code references to
the original structure to instead refer to the new structure. Our firewall would
then analyze stale data. It is not immediately clear that such an attack is plausi-
ble; moreover, our tool could periodically verify that code references to the data
match the symbol value extracted at boot.

Second, we expect that attacks do not alter the ordering or length of fields in
aggregate data structures. Our firewall is preprogrammed with type information
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Fig. 1. Xen networking architecture.

about kernel structures, and an attack that alters the structure types would
cause our system to read incorrect information from kernel memory. Successfully
executing this attack without kernel recompilation appears to be complex, as all
kernel code that accesses structure fields would need to be altered to use the
attacker’s structure layout. As a result, we believe that relying upon known
structure definitions is not a limiting factor to our design.

3.2 Virtual Machine Introspection

Our design makes use of virtual machine technology to provide isolation be-
tween malicious code and our security software. We use Xen [2], an open source
hypervisor that runs directly on the physical hardware of a computer. The vir-
tual machines running atop Xen are of two types: unprivileged domains, called
domU or guest domains, and a single fully-privileged domain, called dom0. We
run normal, possibly vulnerable software in domU and deploy our application-
level firewall in the isolated dom0.

Xen virtualizes the network input and output of the system. Dom0 is the de-
vice driver domain that runs the native network interface card driver software.
Unprivileged virtual machines cannot directly access the physical network card,
so Xen provides them with a virtualized network interface (VNI). The driver do-
main receives all the incoming and outgoing packets for all domU VMs executing
on the physical system. Dom0 provides an Ethernet bridge connecting the phys-
ical network card to all virtual network devices provided by Xen to the domU
VMs. (Xen offers other networking modes, such as network address translation,
that are not used in our work and will not be considered further.) Dom0 uses its
virtual bridge to multiplex and demultiplex packets between the physical net-
work interface and each unprivileged virtual machine’s VNI. Figure 1 shows the
Xen networking architecture when the virtual machines’ network interfaces are
connected through a virtual Ethernet bridge. The guest VMs send and receive
packets via either an I/O channel to dom0 or emulated virtual devices.



The strong isolation provided by a hypervisor between dom0 and the guest
domains complicates the ability to correlate network flows with software execut-
ing in a guest domain. Yet, dom0 has complete access to the entire state of the
guest operating systems running in untrusted virtual machines. Virtual machine

introspection (VMI) [10] is a technique by which dom0 can determine execution
properties of guest VMs by monitoring their runtime state, generally through di-
rect memory inspection. VMI allows security software to remain protected from
direct attack by malicious software executing in a guest VM while still able to
observe critical system state.

Xen offers low-level APIs to allow dom0 to map arbitrary memory pages
of domU as shared memory. XenAccess [31] is a dom0 userspace introspection
library developed for Xen that builds onto the low-level functionality provided by
Xen. VMwall uses XenAccess APIs to map raw memory pages of domU’s kernel
inside dom0. It then builds higher-level memory abstractions, such as aggregate
structures and linked data types, from the contents of raw memory pages by
using the known coding semantics of the guest operating system’s kernel. Our
application-level firewall inspects these meaningful, higher-level abstractions to
determine how applications executing in the guest VM use network resources.

4 Tamper Resistant Architecture of VMwall

VMwall is our application-level firewall designed to resist the direct attacks pos-
sible in our threat model. The architecture of VMwall is driven by the following
three goals:

– Tamper Resistance: VMwall should continue to function reliably and ver-
ify all network connections even if an attacker gains entry into the monitored
system. In particular, the design should not rely on components installed in
the monitored host as processes or kernel modules, as these have been points
of direct attack in previous application-level firewalls.

– Independence: VMwall should work without any cooperation from the
monitored system. In fact, the system may not be aware of the presence of
the firewall.

– Lightweight Verification: Our intent is to use VMwall for online verifi-
cation of network connections to real systems. The design should allow for
efficient monitoring of network traffic and correlation to applications sending
and receiving that traffic.

Our firewall design satisfies these goals by leveraging virtual machine iso-
lation and virtual machine introspection. Its entire software runs within the
privileged dom0 VM, and it hooks into Xen’s virtual network interface to col-
lect and filter all guest domains’ network packets. Since the hypervisor provides
strong isolation among the virtual machines, this design achieves the first goal
of tamper-resistance.

In order to provide application-level firewalling, VMwall must identify the
process that is sending or receiving packets inside domU. VMwall correlates
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packet and process information by directly inspecting the domU virtual ma-
chine’s memory via virtual machine introspection. It looks into the kernel’s mem-
ory and traverses the data structures to map process and network information.
This achieves our second design goal of independence, as there are no compo-
nents of VMwall inside domU. Our introspection procedure rapidly analyzes the
kernel’s data structures, satisfying the third goal of lightweight verification.

The high-level design of VMwall has two components: a kernel module and
user agent, both in dom0 (Fig. 2). The VMwall kernel component enforces a
per-packet policy given by the user agent and either allows or drops each packet.
The user agent determines policy by performing introspection to extract infor-
mation about processes executing in guest VMs and evaluating the legitimacy
of those processes. Sections 4.1 and 4.2 present detailed information about the
two components.

4.1 Kernel Component

VMwall’s kernel component is a module loaded inside the dom0 Linux kernel.
It intercepts all network packets to or from untrusted virtual machines and uses
security policies to decide whether each packet should be allowed or dropped.
Interception occurs by hooking into Xen’s network bridge between the physical
interface card and virtual network interface. When the kernel component inter-
cepts a packet, it checks a rule table to see if a firewall rule already exists for
the packet, as determined by the local endpoint IP address and port. If so, it
takes the allow or block action specified in the rule. If there is no rule, then it
invokes the VMwall user agent to analyze the packet and create a rule. The user
agent performs introspection, generates a rule for the packet, and sends this rule
back to the kernel module. The kernel module adds this new rule to its policy
table and processes the packet. Further packets from the same connection are
processed using the rule present in the kernel component without invoking the
user agent and without performing introspection.

As kernel code, the kernel component cannot block and must take action
on a packet before the user agent completes introspection. VMwall solves this
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problem for packets of unknown legitimacy by queuing the packets while waiting
for the user agent’s reply. When the user agent sends a reply, the module adds
a rule for the connection. If the rule’s action is to block the connection, then
it drops all the packets that are queued. Otherwise, it re-injects all the packets
into the network.

Figure 3 presents the kernel module’s complete architecture. It illustrates
the steps involved in processing the packet inside the kernel. It shows the queue
architecture, where packets are stored inside the kernel during introspection.

4.2 User Agent

The VMwall user agent uses virtual machine introspection to correlate network
packets and processes. It receives introspection requests from the kernel com-
ponent containing network information such as source port, source IP address,
destination port, destination IP address, and protocol. It first uses the packet’s
source (or destination) IP address to identify the VM that is sending (or receiv-
ing) the packet. When it finds the VM, it then tries to find the process that is
bound to the source (or destination) port.

VMwall’s user agent maps a network port to the domU process that is bound
to the port, shown in Fig. 4. As needed, it maps domU kernel data structures
into dom0 memory. Process and network information is likely not available in a
single data structure but instead is scattered over many data structures. VMwall
works in steps by first identifying the domU kernel data structures that store IP
address and port information. Then, VMwall identifies the process handling this
network connection by iterating over the list of running processes and checking
each process to see if it is bound to the port. When it finds the process bound
to the port, it extracts the process’ identifier, its name, and the full path to its
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executable. If the user agent does not find any process bound to the port, it
considers this to be an anomaly and will block the network connection.

VMwall uses information about the process to create a firewall rule enforce-
able by the kernel component. The user agent maintains a whitelist of processes
that are allowed to make network connections. When the user agent extracts the
name of a process corresponding to the network packet, it searches the whitelist
for the same name. VMwall allows the connection if it finds a match and blocks
the connection otherwise. It then generates a rule for this connection that it
passes to the VMwall kernel component. This rule contains the network connec-
tion information and either an allow or block action. The kernel component then
uses this rule to filter subsequent packets in this attempted connection.

5 Implementation

We have implemented a prototype of VMwall using the Xen hypervisor and a
Linux guest operating system. VMwall supports both paravirtualized and fully-
virtualized (HVM) Linux guest operating systems. Its implementation consists
of two parts corresponding to the two pieces described in the previous section:
the kernel module and the user agent. The following sections describe specific
details affecting implementation of the two architectural components.

5.1 Extending ebtables

Our kernel module uses a modified ebtables packet filter to intercept all pack-
ets sent to or from a guest domain. Ebtables [7] is an open source utility that
filters packets at an Ethernet bridge. VMwall supplements the existing coarse-
grained firewall provided by ebtables. Whenever ebtables accepts packets based



on its coarse-grained rules, we hook the operation and invoke the VMwall ker-
nel module for our additional application-level checks. We modified ebtables to
implement this hook, which passes a reference to the packet to VMwall.

Ebtables does not provide the ability to queue packets. Were it present,
queuing would enable filters present inside the kernel to store packets for future
processing and reinjection back into the network. To allow the VMwall kernel
module to queue packets currently under inspection by the user agent, we altered
ebtables to incorporate packet queuing and packet reinjection features.

5.2 Accessing DomU Kernel Memory

VMwall uses the XenAccess introspection library [31] to accesses domU kernel
memory from dom0. It maps domU memory pages containing kernel data struc-
tures into the virtual memory space of the user agent executing in the trusted
VM. XenAccess provides APIs that map domU kernel memory pages identi-
fied either by explicit kernel virtual addresses or by exported kernel symbols. In
Linux, the exported symbols are stored in the file named System.map. VMwall
uses certain domU data structures that are exported by the kernel and hence
mapped with the help of kernel symbols. Other data structures reachable by
pointers from the known structures are mapped using kernel virtual addresses.
The domU virtual machine presented in Fig. 4 shows the internal mechanism in-
volved to map the memory page that contains the desired kernel data structure.

5.3 Parsing Kernel Data Structures

To identify processes using the network, VMwall must be able to parse high-
level kernel data structures from the raw memory pages provided by XenAccess.
Extracting kernel data structures from the mapped memory pages is a non-trivial
task. For example, Linux maintains a doubly-linked list that stores the kernel’s
private data for all running processes. The head pointer of this list is stored in
the exported kernel symbol init task. If we want to extract the list of processes
running inside domU, we can map the memory page of domU that contains the
init task symbol. However, VMwall must traverse the complete linked list and
hence requires the offset to the next member in the process structure. We extract
this information offline directly from the kernel source code and use these values
in the user agent. This source code inspection is not the optimal way to identify
offsets because the offset values often change with the kernel versions. However,
there are other automatic ways to extract this information from the kernel binary
if it was compiled with a debug option [18].

This provides VMwall with sufficient information to traverse kernel data
structures. VMwall uses known field offsets to extract the virtual addresses of
pointer field members from the mapped memory pages. It then maps domU
memory pages by specifying the extracted virtual addresses. This process is
performed recursively until VMwall traverses the data structures necessary to
extract the process name corresponding to the source or destination port of a
network communication. Figure 5 shows the list of the kernel data structures
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traversed by the user agent to correlate a TCP packet and process information.
First, it tries to obtain a reference to the socket bound to the port number
specified in the packet. After acquiring this reference, it iterates over the list of
processes to find the process owning the socket.

5.4 Policy Design and Rules

VMwall identifies legitimate connections via a whitelist-based policy listing pro-
cesses allowed to send or receive data. Each process that wants to communicate
over the network must be specified in the whitelist a priori. This whitelist resides
inside dom0 and can only be updated by administrators in a manner similar to
traditional application-level firewalls. The whitelist based design of VMwall in-
troduces some usability issues because all applications that should be allowed
to make network connections must be specified in the list. This limitation is
not specific to VMwall and is inherent to the whitelist based products and solu-
tions [6, 12].

VMwall’s kernel module maintains its own rule table containing rules that
are dynamically generated by the user agent after performing introspection. A
rule contains source and destination port and IP address information, an action,
and a timeout value used by the kernel module to expire and purge old rules
for UDP connections. In the case of TCP connections, the kernel module purges
TCP rules automatically whenever it processes a packet with the TCP fin or
rst flag set. In an abnormal termination of a TCP connection, VMwall uses the
timeout mechanism to purge the rules.

6 Evaluation

The basic requirement of an application-level firewall is to block connections to
or from malicious software and allow connections to or from benign applications.
We evaluated the ability of VMwall to filter out packets made by several dif-
ferent classes of attacks while allowing packets from known processes to pass



unimpeded. We tested VMwall against Linux-based backdoors, worms, and bots
that attempt to use the network for malicious activity. Section 6.1 tests VMwall
against attacks that receive inbound connections from attackers or connect out to
remote systems. Section 6.2 tests legitimate software in the presence of VMwall.
We measure VMwall’s performance impact in Sect. 6.3, and lastly analyze its
robustness to a knowledgeable attacker in Sect. 6.4.

6.1 Illegitimate Connections

We first tested attacks that receive inbound connections from remote attackers.
These attacks are rootkits that install backdoor programs. The backdoors run as
user processes, listen for connections on a port known to the attacker, and receive
and execute requests sent by the attacker. We used the following backdoors:

– Blackhole runs a TCP server on port 12345 [22].

– Gummo runs a TCP server at port 31337 [22].

– Bdoor runs a backdoor daemon on port 8080 [22].

– Ovas0n runs a TCP server on port 29369 [22].

– Cheetah runs a TCP server at the attacker’s specified port number [22].

Once installed on a vulnerable system, attacks such as worms and bots may
attempt to make outbound connections without prompting from a remote at-
tacker. We tested VMwall with the following pieces of malware that generate
outbound traffic:

– Apache-ssl is a variant of the Slapper worm that self-propagates by opening
TCP connections for port scanning [23].

– Apache-linux is a worm that exploits vulnerable Apache servers and spawns
a shell on port 30464 [23].

– BackDoor-Rev.b is a tool that is be used by a worm to make network
connections to arbitrary Internet addresses and ports [20].

– Q8 is an IRC-based bot that opens TCP connections to contact an IRC
server to receive commands from the botmaster [14].

– Kaiten is a bot that opens TCP connections to contact an IRC server [24].

– Coromputer Dunno is an IRC-based bot providing basic functionalities
such as port scanning [13].

VMwall successfully blocked all illegitimate connections attempted by mal-
ware instances. In all cases, both sending and receiving, VMwall intercepted the
first SYN packet of each connection and passed it to the userspace component.
Since these malicious processes were not in the whitelist, the VMwall user space
component informed the VMwall kernel component to block these malicious con-
nections. As we used VMwall in packet queuing mode, no malicious packets were
ever passed through VMwall.



Name Connection Type Result

rcp Outbound Allowed

rsh Outbound Allowed

yum Outbound Allowed

rlogin Outbound Allowed

ssh Outbound Allowed

scp Outbound Allowed

wget Outbound Allowed

tcp client Outbound Allowed

thttpd Inbound Allowed

tcp server Inbound Allowed

sshd Inbound Allowed

Table 1. Results of executing legitimate soft-
ware in the presence of VMwall. “Allowed” in-
dicates that the network connections to or from
the processes were passed as though a firewall
was not present.

6.2 Legitimate Connections

We also evaluated VMwall’s ability to allow legitimate connections made by
processes running inside domU. We selected a few network applications and
added their name to VMwall’s whitelist. We then ran these applications inside
domU. Table 1 shows the list of processes that we tested, the type of connections
used by the processes, and the effect of VMwall upon those connections. To be
correct, all connections should be allowed.

VMwall allowed all connections made by these applications. The yum applica-
tion, a package manager for Fedora Core Linux, had runtime behavior of interest.
In our test, we updated domU with the yum update command. During the pack-
age update, yum created many child processes with the same name yum and these
child processes made network connections. VMwall successfully validated all the
connections via introspection and allowed their network connections.

6.3 Performance Evaluation

A firewall verifying all packets traversing a network may impact the performance
of applications relying on timely delivery of those packets. We investigated the
performance impact of VMwall as perceived by network applications running
inside the untrusted virtual machine. We performed experiments both with and
without VMwall running inside dom0. All experiments were conducted on a
machine with an Intel Core 2 Duo T7500 processor at 2.20 GHz with 2 GB RAM.
Both dom0 and domU virtual machines ran 32 bit Fedora Core 5 Linux. DomU
had 512 MB of physical memory, and dom0 had the remaining 1.5 GB. The
versions of Xen and XenAccess were 3.0.4 and 0.3, respectively. We performed our
experiments using both TCP and UDP connections. All reported results show
the median time taken from five measurements. We measured microbenchmarks
with the Linux gettimeofday system call and longer executions with the time

command-line utility.
VMwall’s performance depends on the introspection time taken by the user

component. Since network packets are queued inside the kernel during intro-
spection, the introspection time is critical for the performance of the complete



Configuration TCP Introspection Time UDP Introspection Time

Inbound Connection to domU 251 438

Outbound Connection from domU 1080 445

Table 2. Introspection time (µs) taken by VMwall to perform correlation of network
flow with the process executing inside domU.

system. We measured the introspection time both for incoming and outgoing
connections to and from domU. Table 2 shows the results of experiments mea-
suring introspection time.

It is evident that the introspection time for incoming TCP connections is very
small. Strangely, the introspection time for outgoing TCP connections is notably
higher. The reason for this difference lies in the way that the Linux kernel stores
information for TCP connections. It maintains TCP connection information for
listening and established connections in two different tables. TCP sockets in a
listening state reside in a table of size 32, whereas the established sockets are
stored in a table of size 65536. Since the newly established TCP sockets can be
placed at any index inside the table, the introspection routine that iterates on
this table from dom0 must search half of the table on average.

We also measured the introspection time for UDP data streams. Table 2
shows the result for UDP inbound and outbound packets. In this case, the in-
trospection time for inbound and outbound data varies little. The Linux kernel
keeps the information for UDP streams in a single table of size 128, which is
why the introspection time is similar in both cases.

To measure VMwall’s performance overhead on network applications that run
inside domU, we performed experiments with two different metrics for both in-
bound and outbound connections. In the first experiment, we measured VMwall’s
impact on network I/O by transferring a 175 MB video file over the virtual net-
work via wget. Our second experiment measured the time necessary to establish
a TCP connection or transfer UDP data round-trip as perceived by software in
domU.

We first transferred the video file from dom0 to domU and back again with
VMwall running inside dom0. Table 3 shows the result of our experiments. The
median overhead imposed by VMwall is less than 7% when transferring from
dom0 to domU, and less than 1% when executing the reverse transfer.

Direction Without VMwall With VMwall Overhead

File Transfer from Dom0 to DomU 1.105 1.179 7%

File Transfer from DomU to Dom0 1.133 1.140 1%

Table 3. Time (seconds) to transfer a 175 MB file between dom0 and domU, with and
without VMwall.



Direction Without VMwall With VMwall Overhead

Connection from Dom0 to DomU 197 465 268

Connection from DomU to Dom0 143 1266 1123

Table 4. Single TCP connection setup time (µs) measured both with and without
VMwall inside dom0.

Our second metric evaluated the impact of VMwall upon connection or data
stream setup time as perceived by applications executing in domU. For processes
using TCP, we measured both the inbound and outbound TCP connection setup
time. For software using UDP, we measured the time to transfer a small block
of data to a process in the other domain and to have the block echoed back.

We created a simple TCP client-server program to measure TCP connec-
tion times. The client program measured the time required to connect to the
server, shown in Table 4. Inbound connections completed quickly, exhibiting
median overhead of only 268 µs. Outbound connections setup from domU to
dom0 had a greater median overhead of 1123 µs, due directly to the fact that
the introspection time for outbound connections is also high. Though VMwall’s
connection setup overhead may look high as a percentage, the actual overhead
remains slight. Moreover, the introspection cost occurring at connection setup
is a one-time cost that gets amortized across the duration of the connection.

We lastly measured the time required to transmit a small block of data and
receive an echo reply to evaluate UDP stream setup cost. We wrote a simple
UDP echo client and server and measured the round-trip time required for the
echo reply. Note that only the first UDP packet required introspection; the echo
reply was rapidly handled by a rule in the VMwall kernel module created when
processing the first packet. We again have both inbound and outbound measure-
ments, shown in Table 5. The cost of VMwall is small, incurring slowdowns of
381 µs and 577 µs, respectively.

VMwall currently partially optimizes its performance, and additional im-
provements are clearly possible. VMwall performs introspection once per con-
nection so that further packets from the same connection are allowed or blocked
based on the in-kernel rule table. VMwall’s performance could be improved in
future work by introducing a caching mechanism to the introspection operation.
The VMwall introspection routine traverses the guest OS data structures to per-
form correlation. In order to traverse a data structure, the memory page that
contains the data structure needs to be mapped, which is a costly operation. One
possible improvement would be to support caching mechanisms inside VMwall’s
user agent to cache frequently used memory pages to avoid costly memory map-
ping operations each time.

6.4 Security Analysis

VMwall relies on particular data structures maintained by the domU kernel. An
attacker who fully controls domU could violate the integrity of these data struc-



Direction Without VMwall With VMwall Overhead

Inbound Initiated 434 815 381

Outbound Initiated 271 848 577

Table 5. Single UDP echo-reply stream setup time (µs) with and without VMwall. In
an inbound-initiated echo, dom0 sent data to domU and domU echoed the data back
to dom0. An outbound-initiated echo is the reverse.

tures in an attempt to bypass VMwall’s introspection. To counter such attacks,
we rely on previous work in kernel integrity protection. Petroni et al. [26] pro-
posed a framework for detecting attacks against dynamic kernel data structures
such as task struct. Their monitoring system executed outside the monitored
kernel and detected any semantic integrity violation against the kernel’s dynamic
data. The system protected the integrity of the data structures with an external
monitor that enforced high-level integrity policies. In another work, Loscocco
et al. [19] introduced a system that used virtualization technology to monitor a
Linux kernel’s operational integrity. These types of techniques ensure that the
kernel data structures read by VMwall remain valid.

Attackers can also try to cloak their malware by appearing to be whitelisted
software. An attacker can guess processes that are in VMwall’s whitelist by ob-
serving the incoming and outgoing traffic from the host and determining them-
selves what processes legally communicate over the network. They can then
rename their malicious binary to the name of a process in the whitelist. VMwall
counters this problem by extracting the full path to the process on the guest
machine. Attackers could then replace the complete program binary with a tro-
janed version to evade the full path verification. VMwall itself has no defenses
against this attack, but previous research has already addressed this problem
with disk monitoring utilities that protect critical files [8, 25].

An attacker could hijack a process by exploiting a vulnerability, and they
could then change its in-memory image. To address this problem, VMwall user-
space process can perform checksumming of the in-memory image of the process
through introspection and compare it with previously stored hash value. How-
ever, this process is time consuming and may affect the connection setup time
for an application.

An attacker could also hijack a connection after it has been established and
verified by VMwall as legitimate. They could take control of the process bound
to the port via a software exploit, or they could use a malicious kernel module to
alter packet data before sending it to the virtual network interface. VMwall can
counter certain instances of connection hijacking by timing out entries in its ker-
nel rule table periodically. Subtle hijacking may require deep packet inspection
within VMwall.

VMwall’s kernel module internally maintains a small buffer to keep a copy of
a packet while performing introspection. An attacker may try to launch a denial
of service (DoS) attack, such as a SYN flood [5], against VMwall by saturating
its internal buffer. VMwall remains robust to such attempted attacks because



its buffer is independent of connection status. As soon as VMwall resolves the
process name bound to a connection, it removes the packet from the buffer and
does not wait for a TCP handshake to complete.

7 Conclusions and Future Work

We set out to design an application-oriented firewall resistant to the direct at-
tacks that bring down these security utilities today. Our system, VMwall, re-
mains protected from attack by leveraging virtual machine isolation. Although
it is a distinct virtual machine, it can recover process-level information of the vul-
nerable system by using virtual machine introspection to correlate network flows
with processes bound to those flows. We have shown the efficacy of VMwall by
blocking backdoor, bot, and worm traffic emanating from the monitored system.
Our malicious connection detection operates with reasonable overheads upon
system performance.

Our current implementation operates for guest Linux kernels. VMwall could
be made to work with Microsoft Windows operating systems if it can be pro-
grammed with knowledge of the data structures used by the Windows kernel.
Since VMwall depends on the guest operating system’s data structures to per-
form network and process correlation, it currently cannot be used for Windows-
based guest systems. Recently, XenAccess started providing the ability to map
Windows kernel memory into dom0 in the same way as done for Linux. If we
have a means to identify and map Windows kernel data structures, then network
and process correlation becomes possible.
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