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THE UNIVALENCE AXIOM FOR INVERSE DIAGRAMS

MICHAEL SHULMAN

Abstract. We prove that Voevodsky’s univalence axiom for the internal type
theory of a suitable category is preserved by passage to diagrams over inverse
categories, using the Reedy model structure. The basic observation which

makes this work is that Reedy fibrant inverse diagrams correspond to contexts
of a certain sort in type theory. Applying our result to Voevodsky’s univalent
model in simplicial sets, we obtain new models of univalence in a number of
(∞, 1)-toposes, answering a question raised at the Oberwolfach workshop on
homotopical type theory.

1. Introduction

Recently it has become apparent that intensional type theory admits semantics
in homotopy theory. The first such model was constructed in [HS98]; more recent
and general references include [War08, AW09, vdBG12, Voea]. The basic idea of
such models is that intensional identity types are interpreted by path spaces.

Since there can be nontrivial paths even from a point to itself, these models
make a virtue out of the failure of “uniqueness of identity proofs” in intensional
type theory. In effect, they argue that intensional type theory is naturally a theory
of “homotopy types”, and many of its traditionally uncomfortable attributes come
from trying to force it to be a theory only of sets. From the homotopical perspective,
sets should be identified only with “discrete” or “0-truncated” types. This raises the
possibility of using intensional type theory as a “natively homotopical” foundation
for mathematics.

One of the innovations of homotopical type theory, due to Voevodsky, is the
identification of the correct identity types for universes. It is natural to consider
two types “equal”, as terms belonging to a universe Type, if there is an isomorphism
between them. However, this is hard to square with uniqueness of identity proofs,
since two types can be isomorphic in more than one way, and if the equality between
them doesn’t remember which isomorphism it came from, how can we meaningfully
substitute along that equality? But homotopically, taking isomorphisms (or, more
precisely, equivalences) to form the identity type of the universe makes perfect sense
and is the right thing to do; the resulting rule is called the univalence axiom.

The univalence axiom has proven quite valuable in the formalization of mathe-
matics and homotopy theory in intensional type theory. Moreover, it is quite simi-
lar to the Lurie-Rezk notion of object classifier in (∞, 1)-topos theory (see [Lur09,
§6.1.6]). Thus, one may hope to model dependent type theory with the univa-
lence axiom in any (∞, 1)-topos. In addition to providing a source of examples
and counterexamples for the study of univalence itself, this would imply that DTT
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with univalence could serve as an internal logic for higher toposes, generalizing the
well-known internal logic of ordinary toposes. Since the existence of object clas-
sifiers more or less characterizes (∞, 1)-toposes, just as the existence of subobject
classifiers characterizes ordinary toposes, there would then be a very close match
between type theory and category theory.

The difficulty with this is that the rules of type theory are stricter than those of
(∞, 1)-categories, so we must look for strict models of (∞, 1)-toposes which contain
strict models of their object classifiers. The first set-theoretic model of univalence
was constructed by Voevodsky [Voea], in the category of simplicial sets (a strict
model for the (∞, 1)-topos ∞Gpd, which plays the same role for (∞, 1)-toposes
that Set does for ordinary toposes). The construction uses many technical details
of simplicial sets and it is unclear how to generalize it to any other context. In
fact, until now, no other truly different set-theoretic models of univalence have been
known, and the question was raised at the Oberwolfach mini-workshop [AGMLV11]
of whether any such models exist.

In this paper, we answer this question affirmatively. Specifically, we show how
to lift any model of univalence in an appropriate category C to a new model in the
functor category C I , where I is any inverse category. An inverse category is one
containing no infinite composable strings

→→→→ · · ·

of nonidentity morphisms. For instance, a finite category is inverse just when
it is skeletal and has no nonidentity endomorphisms. This property enables us
to construct diagrams and morphisms of diagrams by well-founded induction; we
exploit this to construct a universe object which models the univalence axiom.

The homotopy theory we use in C
I is familiar to homotopy theorists—it is the

Reedy model structure, which exists for diagrams on any inverse category. (It exists
more generally than this, but I do not know how to generalize the construction
presented here beyond the case of inverse categories.) In particular, if C is the
category sSet of simplicial sets, then the Reedy model structure on C I is a strict
model for the presheaf (∞, 1)-topos ∞GpdI . Thus, this is a first step towards the
goal of modeling the univalence axiom in all (∞, 1)-toposes.

Moreover, since the construction assumes nothing about C other than that it
models type theory with the univalence axiom in a canonical way, it can also be
interpreted as a “stability” result for categories that model univalence. Probably
it can even be performed internally inside of type theory. This has implications for
a hypothetical definition of “elementary (∞, 1)-topos”.

Organization. We begin in §2 by recalling how to model dependent type theory
in a category C with suitable structure. In particular, we explain in some detail a
technique (due to Voevodsky) for dealing with “coherence” for substitution, using
a universe object. Then in §3 we recall some of the basic definitions of homotopical
type theory, leading up to the statement of the univalence axiom. For each such
definition, we characterize its meaning in the categorical semantics of §2.

The heart of the paper is in §§4–6, although inverse categories in general do
not appear until §7. Sections 4–6 treat in detail the first nontrivial example of an
inverse category: the arrow category 2 = (1 → 0). Assuming a category C with
the structure of §2, in §4–5 we build the same structure on C 2, and then in §6 we
show that the universes in C

2 inherit univalence from those in C .
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Finally, in §7 we introduce general inverse categories. It turns out that once the
arguments of §§4–6 are understood, very little work is required to generalize to the
case of arbitrary inverse categories. The work of §§4–6 is almost exactly the same as
the induction step in the corresponding proof for a general inverse category. Thus,
in §7 we merely sketch the necessary modifications.

Acknowledgments. I would like to thank Steve Awodey and Peter LeFanu Lums-
daine for the many things they have taught me about homotopical type theory, and
for providing helpful feedback on drafts of this paper. I am especially grateful to
Peter for pointing out some holes in the treatment of nested universes, and also for
reminding me repeatedly of the advantages of h-isomorphisms (see (3.3)) until the
point finally sunk in.

2. Categorical models of type theory

Universes in categories play two roles in the modeling of type theory. On the
one hand, they serve as models for internal universes in the type theory; this is
their role in the context of univalence. On the other hand, Voevodsky [Voea] has
observed that a universe in a category can also be used to deal quite handily with
the traditional problems of strictness and coherence involved in the categorical
interpretation of dependent type theory. The universe used for this purpose does
not exist in the resulting type theory at all, remaining “external” to the model and
in fact defining it. Other universes which embed into the “external” universe then
serve as internal universes in the type theory. Although these two purposes are
different, in general the same universe objects can serve either purpose.

In this section, we recall how we obtain a model of type theory from a category,
using an “external” universe. Thus, let C be a category with the following structure.

(1) A terminal object 1.
(2) A subcategory F ⊂ C containing all the objects and all the isomorphisms.
• A morphism in F is called a fibration.
• An object A is called fibrant if A→ 1 is a fibration.
• A morphism i is called an acyclic cofibration if it has the left lifting
property with respect to all fibrations. This means that if p is a fibration
and pf = gi, then there is an h with f = hi and g = ph.

(3) All pullbacks of fibrations between fibrant objects exist and are fibrations.
(4) For every fibration g : A→ B between fibrant objects, the pullback functor

g∗ : C /B → C /A has a partial right adjoint Πg, defined at all fibrations over
A, and whose values are fibrations over B. This implies that g∗ preserves
acyclic cofibrations.

(5) If f : A→ B is a fibration between fibrant objects, its diagonal A→ A×BA
factors as A → PBA → A ×B A, where PBA → A × A is a fibration and
A→ PBA is an acyclic cofibration which is preserved by pullback along all

maps into B.

Remark 2.1. In type theory the terms display map and dependent projection are
usually used instead of fibration. Under this translation, conditions (1), (2), (3),
and (4) make C into a display map category (see e.g. [Jac99, §10.4]) with the well-
known additional structure required for interpreting a unit type, strong dependent
sums, and dependent products.
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Condition (5) is the analogous structure required for identity types. It is similar
to the notion of stable path objects from [War08, AW09], but weaker in that we
don’t require a functorial global choice of such path objects. We can get away with
this because we use universes for coherence, as explained below.

We have two main classes of examples in mind; here is the first.

Example 2.2. Let C be the category of contexts in a dependent type theory with
a unit type, dependent sums, dependent products, and intensional identity types.
We require the unit type, sums, and products to satisfy the definitional η-rule.

The fibrations are the closure under isomorphisms of the “dependent projections”
from any context to an initial segment thereof. Note that by η for unit types and
dependent sums, any context is isomorphic to one consisting of a single type. The
η rule for dependent products is required to make the operations Πg into actual
adjoints (rather than weak adjoints). Finally, condition (5) is implemented by
“identity contexts” as in [GG08].

The second class of examples comes from homotopy theory, so we digress briefly
to relate the above structure with notions of homotopy theory. All the abstract
homotopy theory we require can be found in [Hov99, Chapters 1 and 5], in [Hir03,
Chapters 7, 8, and 15], or in [MP12, Chapters 14–16].

Definition 2.3. A weak factorization system (L,R) on a category consists of
two classes of maps L and R such that

• L is precisely the class of maps having the left lifting property with respect to
R, and dually.

• Every morphism factors as p ◦ i for some i ∈ L and p ∈ R.

Conditions (4) and (5) above imply that the subcategory of fibrant objects in C

admits a weak factorization system, where L is the class of acyclic cofibrations and
R is the class of retracts of fibrations. The proof is exactly that of [GG08, 4.2.1],
translated into category theory. This produces factorizations f = p ◦ i where p is a
fibration and i an acyclic cofibration; the characterization of L and R then follows
by the “retract argument” of model category theory.

In particular, if all objects are fibrant and the fibrations are closed under retracts,
then C has a weak factorization system where L is the acyclic cofibrations and R
is the fibrations. Conversely, if such a weak factorization system exists, then:

• Fibrations are automatically preserved by pullback, so (3) need only assert
that such pullbacks exist.
• If Πg is defined at fibrations, then it takes fibrations as values if and only if g∗

preserves acyclic cofibrations.
• The factorization in (5) almost follows: all that is missing is the additional
pullback-stability of A→ PBA.

Most examples from homotopy theory have the following additional structure.

Definition 2.4. A model structure on a complete and cocomplete category
consists of three classes of maps C (cofibrations), F (fibrations), and W (weak
equivalences) such that

• (C ∩W ,F) and (C,F ∩W) are weak factorization systems.
• If two of f , g, and gf are in W , so is the third.
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In a model category, the maps in C ∩ W are called acyclic cofibrations, and
similarly the maps in F ∩W are acyclic fibrations (some authors say trivial instead
of acyclic). We will mostly work only with one weak factorization system, as
above. But since that weak factorization system behaves like (C ∩W ,F) in a model
category, we use the names “acyclic cofibration” and “fibration”.

Now we can define our second main class of examples.

Definition 2.5. A type-theoretic model category is a model category C with
the following additional properties.

• C is right proper, i.e. weak equivalences are stable under pullback along fibra-
tions. This is automatic if all objects are fibrant.

• Cofibrations are stable under pullback. This is automatic if the cofibrations
are the monomorphisms.

• Pullback g∗ along a fibration between fibrant objects has a right adjoint Πg.
This is automatic if C is locally cartesian closed.

Since a model category has finite limits and a weak factorization system con-
sisting of acyclic cofibrations and fibrations, conditions (1)–(3) hold. By right
properness and pullback-stability of cofibrations, g∗ preserves acyclic cofibrations
for any fibration g; hence condition (4) also holds. Finally, condition (5) follows
for any factorization A → PBA → A ×B A into an acyclic cofibration followed by
a fibration, since cofibrations are assumed pullback-stable and weak equivalences
between fibrations are always pullback-stable.

Remark 2.6. In a type-theoretic model category, any fibration g between fibrant
objects yields a Quillen adjunction g∗ ⊣ Πg.

Examples 2.7. Here are our basic examples of type-theoretic model categories.

• Any locally cartesian closed category, equipped with the trivial model structure
in which the weak equivalences are the isomorphisms and every morphism is a
cofibration and a fibration. Of course, this sort of category will only interpret
extensional type theory.

• The category of groupoids, with its canonical model structure in which the
weak equivalences are the equivalences of categories, the fibrations are the
functors with isomorphism-lifting (“isofibrations”), and the cofibrations are the
injective-on-objects functors. All objects are fibrant, cofibrations are clearly
stable under pullback, and isofibrations are exponentiable (although the cat-
egory of groupoids is not locally cartesian closed). This was the first non-
extensional set-theoretic model of type theory [HS98].

• The category sSet of simplicial sets, with its traditional (Quillen) model struc-
ture. This is right proper (the fibrant objects are the Kan complexes), locally
cartesian closed, and the cofibrations are the monomorphisms.

We would like to say that any category C satisfying (1)–(5) models dependent
type theory, with contexts interpreted as fibrant objects, and dependent types Γ ⊢
A : Type as fibrations A → Γ. The obvious way to interpret substitution in such a
model is by pullback. However, in type theory, substitution is strictly associative
and preserves all structure strictly, but this is not generally the case for pullbacks
in a category. There are several ways to resolve this (see e.g. [Hof94,War08,AW09,
vdBG12]), but perhaps the cleanest is the following (due to Voevodsky [Voea]).
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Let p : Ũ → U be a specified fibration between fibrant objects in C , which we
refer to as the (external) universe. We then interpret a dependent type Γ ⊢ A : Type
as a morphism Γ → U . We call such a morphism a named type; the object named

by a named type is the pullback of Ũ along it (which is a fibration).
We say a fibration Y → X is small if it admits some name, i.e. it fits into some

pullback square

Y //

��

Ũ

��

X // U

In general, a small fibration may have more than one name. Of course, a fibrant
object X is small if X → 1 is small. Note that p is small, but U usually is not.

The point is that substitution for named types can now be implemented by
simple composition of maps with codomain U , and as such is strictly associative.
More precisely, we interpret a context in type theory by an equivalence class of
diagrams

Xn
//

��
✼✼

✼✼
✼✼

Xn−1

��✂✂
✂✂
✂✂
✂

· · · // X2
//

��
✼✼

✼✼
✼✼

X1
//

��
✼✼

✼✼
✼✼

��✞✞
✞✞
✞✞

X0 = 1

��✞✞
✞✞
✞✞

Ũ // U Ũ // U Ũ // U

in which every trapezoid is a pullback. We consider two such diagrams equivalent if
they are isomorphic in the obvious sense. Note that such an isomorphism is always
unique, by the universal property of pullbacks.

A type in such a context is interpreted by a name Xn → U . Since isomorphisms
of context diagrams are unique when they exist, the set of types in a given context is
independent, up to canonical bijection, of the chosen representative. The extension
of a context by a type a : Xn → U in that context is the equivalence class of
extensions by a pullback square:

Xn+1
//

��
❁❁

❁❁
❁❁

❁
Xn

//

��
✼✼

✼✼
✼✼

a

��✞✞
✞✞
✞✞

Xn−1

��✂✂
✂✂
✂✂
✂

// · · ·

Ũ // U Ũ // U

A term belonging to such a type-in-context is a lifting of its name to Ũ , or equiv-
alently a section s : Xn → Xn+1 of Xn+1 → Xn. If furthermore b : Xn+1 → U is

a type in the extended context, then the composite Xn
s
−→ Xn+1

b
−→ U is the type

in the original context obtained by substituting s into b. Again, note that this is
independent of the chosen pullback square or representative of the original context.

We can also resolve issues of strictness in the modeling of any type-forming
operation with a categorical operation, in the following way. Any such construction
takes some input (types and terms) and produces some output, both of which
correspond in the model to some fibrations in C and maps between them. If the
corresponding categorical operation in C preserves smallness and is stable under
pullback (in the usual category-theoretic sense, i.e. up to isomorphism), then we
can perform it once in the “universal” case over U and then implement the type-
theoretic operation in the model of named types by composition.



THE UNIVALENCE AXIOM FOR INVERSE DIAGRAMS 7

For instance, suppose that small fibrations (between fibrant objects) are closed
under composition. Then we can interpret dependent sums as follows. Define the
universal dependent named type to be the local exponential

U (1) = (U × U → U)(Ũ→U).

Then maps from any object X to U (1) are in bijection with pairs (a, b) where

a : X → U is a named type over X and b : a∗Ũ → U is a named type over the type
named by a. In particular, the identity map of U (1) names a pair of composable
small fibrations B → A → U (1). Their composite, being small by assumption, is
named by some map U (1) → U , and we can define the operation of dependent sum
to act on named types by composition with this map.

Analogously, suppose that when f and g are small fibrations between fibrant
objects, then so is Πg(f). In this case, the map

ΠA→U(1) (B → A) −→ U (1)

is a small fibration, and hence named by some map U (1) → U . Composing with
this map then implements dependent product on named types.

For identity types, suppose that the path fibration PAX → X ×A X of any

small fibration X → A is small. Then the path-object of Ũ → U in C /U is a

small fibration PU Ũ → Ũ ×U Ũ , which has some name Ũ ×U Ũ → U . Composing
with this map implements identity types for the model of named objects, which are
strictly preserved by substitution.

In the case of identity types, there is an additional concern: the eliminator must
also be preserved by substitution. In [War08] this is called coherence. (This issue
does not arise for dependent sums and products, since in that case all the categorical
structure is defined uniquely, whereas the eliminator for identity types is defined
by a non-unique lifting property.) However, we can also solve this problem using
the universe. Let U (�) denote the pullback

U (�) //

��

(U × Ũ → U)(Ũ→U)

��

(U × U → U)(PU Ũ→U) // (U × U → U)(Ũ→U)

Then for any object X , to give a map X → U (�) is equivalent to giving a named
type a : X → U together with a commutative square

a∗Ũ //

��

Ũ

p

��

PX(a∗Ũ) // U

This is exactly the input for the eliminator for path-types applied to the type a in
context X . In particular, we have universal such data with X = U (�). If we choose
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a solution to this universal lifting problem:

a∗
�
Ũ //

��

Ũ

p

��

PU(�)(a∗�Ũ) //

::

U

(where a� : U (�) → U is the evident projection) then we can use this to define the
eliminator J for all path types in a coherent way by composition. Thus, our type
theory models the full structure of identity types.

Definition 2.8. By universe structure on p : Ũ → U , we will mean a choice of

particular morphisms U (1) → U , U (1) → U , Ũ ×U Ũ → U , and PU(�)(a∗�Ũ) → Ũ
implementing dependent sums, dependent products, and identity types as above.

Remark 2.9. It is possible to make U into an internal category in C , and the
universe structure into internal operations on this category, reflecting the type-
theoretic structure of C itself. This is analogous to how the subobject classifier in
a topos automatically becomes an internal complete Heyting algebra, reflecting the
logical operations on subobjects in the topos.

Remark 2.10. There are, of course, many other type constructors one might ask for
in addition to dependent sums, dependent products, and identity types. The same
techniques can be used to model all of them categorically. For instance, if C is
extensive [CLW93] and copairing preserves small fibrations, then we can interpret
disjoint union types, and if C has a small fibrant natural numbers object we can
interpret the type N. We will not require any such type constructors in this paper
(aside from cartesian products, which are just the special case of dependent sums
when the dependency is trivial), so we omit the details.

Finally, we consider the interpretation of universes in type theory (in contrast
to the use of a universe “outside” the model of type theory to make the structure
coherent). Suppose then that U and U ′ are two universes in the above sense, that
every U -small fibration is also U ′-small, and moreover that U itself is a small object
relative to U ′. From the first assumption, we can choose a pullback square

(2.11)

Ũ
ĩ

//

p

��

Ũ ′

p′

��

U
i

// U ′

and from the second we can choose some name u : 1 → U ′ for U . In the model of
type theory constructed from U ′-names, as above, we can then interpret a universe
type Type by the name u.

If we want to identify terms of type Type with certain types (rather than using
an “à la Tarski” coercion from the former to the latter), then we need an additional
assumption that the map U → U ′ is monic, and moreover strictly respects the
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universe structure of U and U ′. For example, the square

(2.12)

U (1) i(1)
//

ΣU

��

(U ′)(1)

Σ
U′

��

U
i

// U ′

must commute, where ΣU : U (1) → U and ΣU ′ : (U ′)(1) → U ′ are the maps imple-
menting dependent sums for U and U ′. The top map i(1) : U (1) → (U ′)(1) is most

easily described representably: given a pair (X
a
−→ U, a∗Ũ

b
−→ U) corresponding to

a morphism X → U (1), the pullback square (2.11) tells us that a∗Ũ ∼= (ia)∗Ũ ′, so
the pair

(X
a
−→ U

i
−→ U ′, (ia)∗Ũ ′ ∼= a∗Ũ

b
−→ U

i
−→ U ′)

corresponds to a morphism X → (U ′)(1). If (2.12) commutes, as well as the analo-
gous squares for dependent products and identity types, we say that i : U →֒ U ′ is
an embedding of universes.

Remark 2.13. Suppose that i : U →֒ U ′ is monic, and also that it adds no new

names in the sense that any U ′-name of a U -small type factors through U . Then
any morphism implementing a type-forming operation for U ′ must preserve U -
smallness, and hence induce a unique corresponding such morphism for U which
commutes with U →֒ U ′. Thus, in this case we can always choose the universe
structure of U and U ′ so as to make U →֒ U ′ an embedding of universes.

The same principle applies to arbitrarily many universes: we need one more
universe in the category than we want to have in the resulting type theory, and all
inclusions of universes must be universe embeddings as above.

Moreover, if in C we have a countably infinite sequence of universe embeddings

U1 →֒ U2 →֒ U3 →֒ . . . ,

then it is possible to model type theory with an infinite and exhaustive sequence
of universes (that is, every type belongs to some universe Typen) without requiring
an extra containing universe Uω to exist in C . We do this by interpreting contexts
as equivalence classes of diagrams

Xn
//

��
❀❀

❀❀
❀❀

❀
Xn−1

����
��
��
�

· · · // X1
//

��
✿✿

✿✿
✿✿

✿
X0 = 1

��✆✆
✆✆
✆✆
✆

Ũkn

// Ukn
Ũk1

// Uk1

for some natural numbers ki, 1 ≤ i ≤ n. Now the equivalence relation allows
not only isomorphisms of the Xis, but composition with the universe embeddings
Uk →֒ Uk′ for k ≤ k′. Since the squares (2.11) are all pullbacks, the notions of types
and terms in context, and the operation of context extension, are invariant under
this equivalence relation. And since the universe embeddings commute with all the
structure maps, the implementation of type-forming operations is also independent
of the choice of the kis. In particular, this allows us to interpret type theories with
universe polymorphism, such as the predicative Calculus of Constructions.



10 MICHAEL SHULMAN

Remark 2.14. Without a Uω, however, we cannot apply Remark 2.13 to obtain an
infinite sequence of universe embeddings. In some cases, we can ensure in some
other way that the inclusions are embeddings. However, this is rarely a problem in
practice, since any particular construction requires only finitely many universes.

The remaining problem is to find universes whose small fibrations are closed
under the type-theoretic operations. Of course, in a category of contexts, a universe
object arises from any universe type in the original type theory, but it is more
difficult to find examples in categories arising from homotopy theory.

In the extensional case of a locally cartesian closed C with the trivial model
structure, there is the following “tautological” approach. Choose a split fibration
equivalent to the self-indexing of C , and let U ∈ [C op ,Set] be its presheaf of

objects. Let Ũ be the corresponding presheaf of sections — that is, an element

of Ũ(X) is an element of U(X) together with a section of the corresponding map
A → X . Then a map is U -small just when its pullback along any map out of a
representable presheaf is representable. Such maps are closed under composition
and dependent products (since C is locally cartesian closed), so U is a universe for
the trivial model structure on [C op ,Set]. Moreover, all contexts consist only of
representables; thus the resulting model of (extensional) type theory lives entirely
in C . This essentially coincides with the classical approach to modeling extensional
type theory in locally cartesian closed categories, see e.g. [Hof94].

As an even simpler example, we can take U = Ω to be the subobject classifier in

an elementary topos, with Ũ = 1 the universal subobject. Then the small fibrations
are exactly the monomorphisms, and the resulting “propositional” model of type
theory lives entirely in the subterminal objects.

More interestingly, in the case of groupoids, we can take U to be the groupoid

of groupoids of cardinality < κ, for some cardinal number κ. We let Ũ be the
corresponding groupoid of pointed groupoids: its objects are pairs (X, x0) where X
is a κ-small groupoid and x0 an object ofX , and its morphisms (X, x0)→ (Y, y0) are

pairs (f : X ∼−→ Y, φ : f(x0) ∼= y0). Pullback of Ũ along a map A→ U implements
the classical “Grothendieck construction”; thus a fibration over A is U -small exactly
when its fibers are κ-small groupoids and it admits a splitting. If κ is inaccessible,
such split fibrations are closed under all category-theoretic operations, and if λ < κ
is also inaccessible, we have a universe embedding Uλ →֒ Uκ. We thereby obtain
the groupoid model of [HS98] with internal universes. We can also restrict to the
sub-universe of discrete groupoids (called Gpd△(Vκ) in [HS98]).

Finally, and most importantly, Voevodsky [Voea] has shown that in simplicial

sets, there is a universal Kan fibration p : Ũ → U such that U is a Kan complex,
and every Kan fibration with fibers of cardinality < κ (for some chosen cardinal κ)
is U -small. See [KLV12] for a detailed exposition. As before, if κ is inaccessible,
such fibrations are closed under category-theoretic operations, and if λ < κ is also
inaccessible, we have a universe embedding Uλ →֒ Uκ (either from Remark 2.13 or
by choosing the structure carefully). There are also sub-universes which classify
n-truncated Kan fibrations (those whose homotopy groups above n are trivial).

Thus, we obtain a model of intensional type theory, with universes, in which
the fibrations are the Kan fibrations. Perhaps the most important fact about this
model is that its internal universes satisfy the univalence axiom. We will recall this
axiom in the next section.
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3. Homotopy type theory in models

We recall some definitions, also due to Voevodsky [Voeb], for doing homotopy
theory inside of type theory. We denote the identity type of a type A by

x : A, y : A ⊢ (x = y) : Type.

The eliminator of identity types implies, in particular, that we have an operation
of transport, which we denote as follows:

A : Type, B : A→ Type, x : A, y : A, p : (x = y), b : B(x) ⊢ p∗b : B(y).

For any type A, we have the type

isContr(A) :=
∑

x : A

∏

y : A

(x = y)

which expresses the assertion that A is contractible. Similarly, we define

isProp(A) :=
∏

x : A

∏

y : A

(x = y)

which expresses the assertion that A is “(−1)-truncated”, i.e. contractible if it is
inhabited. There are many other definitions of isProp, all equivalent under function
extensionality (see below). We say A is a proposition if isProp(A) is inhabited.

Now given A, B and f : A→ B, we define

isEquiv(f) :=
∏

b : B

isContr

(
∑

a : A

(f(a) = b)

)

which expresses the assertion that f is an equivalence in the sense that its homotopy
fibers are contractible. Finally, for A and B we define

Equiv(A,B) :=
∑

f : A→B

isEquiv(f).

representing the “space of equivalences” from A to B.
Now let C be a category with the structure considered in §2, so that it interprets

type theory. The path objects in C give rise to a notion of (right) homotopy

and thus a notion of homotopy equivalence. It is easy to show that every acyclic
cofibration between fibrant objects is a homotopy equivalence, and that homotopy
equivalences satisfy the 2-out-of-3 property.

We will call a morphism between fibrant objects an acyclic fibration if it is
both a fibration and a homotopy equivalence. (In a type-theoretic model category
where all objects are cofibrant, every weak equivalence between fibrant objects is a
homotopy equivalence; so in that case this terminology agrees with the established
one.) We now explain the meaning of the above type-theoretic definitions in C .

Firstly, by the defining adjunction for dependent products, isProp(A) has a
global element precisely when the path fibration PA → A × A of A has a sec-
tion, which is to say that the two projections A × A ⇒ A are homotopic. This is
equivalent to saying that any two morphisms X ⇒ A are homotopic.

Similarly, to give a global element of isContr(A) is to give a global element
a : 1 → A together with a homotopy relating the composite A → 1 → A to the
identity, which is equivalent to saying that A→ 1 is a homotopy equivalence. Since
A is assumed fibrant, this is equivalent to A → 1 being an acyclic fibration. By
slicing — which corresponds to working in a nonempty context in type theory —
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we can then conclude that for any fibration A → B between fibrant objects, the
fibration represented by the dependent type

b : B ⊢ isContr(A(b)) : Type

has a section precisely when A → B is an acyclic fibration. Moreover, this is also
equivalent, by adjunction, to

∏
b : B isContr(A) having a global element.

Remark 3.1. In particular, this implies that acyclic fibrations are stable under pull-

back. Thus, if we define a “weak equivalence” to be a homotopy equivalence, the
subcategory of fibrant objects in C (which is where all the type theory lives) be-
comes a category of fibrant objects in the sense of [Bro74].

Finally, we observe that any f : A→ B (not necessarily a fibration) factors as

A −→ Pf −→ B

where Pf → B is the mapping path fibration, representing the dependent type

b : B ⊢
∑

a : A

(f(a) = b) : Type.

Moreover, A → Pf is a homotopy equivalence, so by 2-out-of-3, f is a homotopy
equivalence just when Pf → B is an acyclic fibration. But by definition of isEquiv
and the above remarks, this is precisely to say that isEquiv(f) has a global element.

In conclusion, we can say that for A, B fibrant and f : A→ B:

• isProp(A) has a global element ⇐⇒ any f, g : X ⇒ A are homotopic.
• isContr(A) has a global element ⇐⇒ A→ 1 is an acyclic fibration.
• isEquiv(f) has a global element ⇐⇒ f is a homotopy equivalence.

From now on, we will say simply equivalence rather than “homotopy equivalence”.
Still following Voevodsky, we say that function extensionality holds if we have a

term in context of the following type:

A : Type, B : A→ Type ⊢ funext :
∏

aisContr(B(a))→ isContr(
∏

aB(a))

It is shown in [Voeb] (see also [HTT]) that this implies a seemingly stronger form
of function extensionality, which states that the canonically defined term

A : Type, B : A→ Type, f :
∏

aB(a), g :
∏

aB(a)

⊢ happly : (f = g)→
∏

a(f(a) = g(a))

is an equivalence. This implies all other forms of (propositional) function exten-
sionality, such as those considered in [Gar09] (see [Lum11]). In particular, function
extensionality implies that isProp(A), isContr(A), and isEquiv(f) are propositions.

In terms of the category C , function extensionality holds just when for any

fibrations P
f
−→ X

g
−→ A between fibrant objects, there is a map

ΠgisContrX(P )→ isContrA(ΠgP ).

By Yoneda and the definition of Πg, this means that for any h : B → A, if there
exists a map from h∗X to isContrX(P ) over X , then there exists a map from B
to isContrA(ΠgP ) over A. By the above characterization of isContr, slicing, and
preservation of all structure by pullback, this means that if the pullback h∗P →
h∗X is an acyclic fibration, then so is h∗(ΠgP ) → B. In particular, this means
that whenever f : P → X is an acyclic fibration, then so is Πg(f). However, this
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special case implies the general one, by the Beck-Chevalley condition for dependent
products. Thus

• Function extensionality holds ⇐⇒ dependent products along fibrations be-
tween fibrant objects preserve acyclicity of fibrations.

Remark 3.2. If the acyclic fibrations are (the restriction to fibrant objects of) the
right class in a weak factorization system, then this condition is equivalent to requir-
ing pullback along fibrations between fibrant objects to preserve the corresponding
left class. Thus, it holds in any type-theoretic model category.

Additionally, function extensionality implies that the following type is equivalent
to isEquiv(f) (see [HTT]):

(3.3) ishIso(f) :=

(
∑

s : B→A

∏

b : B

(f(s(b)) = b)

)
×

(
∑

r : B→A

∏

a : A

(r(f(a)) = a)

)

As we will see, this type is often much simpler to work with, due to the facts that it
only involves “level-1” path types (no paths between paths), and that its two halves
appear very symmetric. It was first suggested in this context by André Joyal at the
Oberwolfach workshop [AGMLV11].

Finally, we consider Voevodsky’s univalence axiom. This axiom depends on
having an internal universe in the type theory, and is stated relative to a particular
such universe; we denote the chosen universe by Type. Since identity maps are
equivalences, we have a canonical term

A : Type ⊢ idequivA : Equiv(A,A)

By induction over paths, this gives rise to a canonically defined term

A : Type, B : Type ⊢ pathToEquivA,B : (A = B)→ Equiv(A,B).

Of course, (A = B) denotes the identity type of the universe Type. We say the
univalence axiom holds for the universe Type, or that Type is univalent, if the type

∏

A,B

isEquiv(pathToEquivA,B)

is globally inhabited.
In categorical terms, this states that the canonically defined map PU → E

over U × U is an equivalence, where E → U × U is the fibration representing the
dependent type

A : Type, B : Type ⊢ Equiv(A,B) : Type.

Since this map PU → E is defined by the lifting property of PU (i.e. path induc-
tion), by the 2-out-of-3 property this is equivalent to saying that the map U → E,
which sends a type A to its identity equivalence, is itself an equivalence.

In extensional type theory, a universe can probably only be univalent if all its
types are subterminal. (For instance, the subobject classifier in a topos is univalent.)
But in intensional type theory, we can have interesting univalent universes. For
instance, the groupoid of small sets is univalent; thus the groupoid model of [HS98]
can include one univalent universe. However, since this universe classifies only
discrete fibrations, but is not itself discrete, this model cannot contain more than
one nested univalent universe. (The groupoid of small groupoids is not univalent.)

On the other hand, Voevodsky [Voea] has shown that any universal Kan fibration
in simplicial sets is univalent (see [Moe12, KLV12] for alternative proofs). These
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universes can be nested arbitrarily, since their small fibrations are restricted only
by size and not truncation. Thus, we have:

Theorem 3.4 (Voevodsky). The model category sSet supports a model of inten-

sional type theory with dependent sums and products, identity types, and with one

fewer univalent universe than there are inaccessible cardinals.

Since the homotopy theory of simplicial sets is a model for the (∞, 1)-topos
∞Gpd, we can say informally that the above model lives in that (∞, 1)-topos.

We can obtain a few other models of type theory easily from this theorem. For
instance, since the universe of n-truncated Kan fibrations is (n + 1)-truncated,
we can also obtain a model with countably many universes in which truncation
level increases with universe level—and there are other similar modifications. (The
universe of 0-truncated Kan fibrations is of course closely related to the groupoid
of sets.) Finally, we can pull back any univalent universe to the slice category over
any fibrant object. However, it seems that until now, no other set-theoretic models
of univalence have been known.

Remark 3.5. Voevodsky has also shown that the univalence axiom implies func-
tion extensionality. Specifically, if there are two nested univalent universes, then
function extensionality holds for all types belonging to the smaller universe. In
what follows, we will need to apply function extensionality even for Type-valued
functions (that is, dependent types). This can be deduced from a third nested
univalent universe—or from the observation above that any type-theoretic model
category satisfies function extensionality.

4. The Sierpinski (∞, 1)-topos

Before considering inverse diagrams in general, we treat in detail one particular
case, which contains essentially all the ideas. Thus, let C have all the structure
considered in §2, and let C 2 denote the category of arrows (α : A1 → A0) of C . We
will construct a model of type theory in C 2 from the one in C .

Definition 4.1. A morphism

A1
α

//

f1

��

A0

f0

��

B1
β

// B0

in C 2 is a Reedy fibration if

(1) f0 is a fibration, and
(2) The induced map A1 → A0 ×B0 B1 is a fibration.

On the other hand, f is a Reedy acyclic cofibration if f0 and f1 are acyclic
cofibrations in C .

Remark 4.2. An object (α : A1 → A0) of C 2 is Reedy fibrant iff A0 is fibrant and
α is a fibration. Thus, in the type theory of C , the Reedy fibrant objects of C 2 can
be regarded as 2-type contexts of the form

a0 : A0, a1 : A0(a0).

This point of view will be crucial in what follows.
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It is easy (and standard, see [Hov99, Hir03]) to prove that the Reedy acyclic
cofibrations and Reedy fibrations form a weak factorization system on C 2. Since
fibrations are closed under pullback and composition, if f is a Reedy fibration, then
f1 is also a fibration — thus Reedy fibrations are in particular levelwise fibrations.
Since limits are also levelwise in C

2, it follows that all pullbacks of Reedy fibrations
between Reedy fibrant objects exist, and such pullback preserves Reedy acyclic
cofibrations. Therefore, to construct a model of type theory in C 2, it remains
only to construct dependent sums and products, path objects, and one or more
universes.

Remark 4.3. If C is a model category, then the Reedy fibrations are the fibrations
in a model structure on C 2 whose cofibrations and weak equivalences are both
defined levelwise. If C is simplicial sets, then the Reedy model structure on sSet2

presents the (∞, 1)-category ∞Gpd2.
Moreover, if C is right proper, locally cartesian closed, and has pullback-stable

cofibrations, then C 2 inherits all of these properties; thus all it lacks is a universe.
However, the detailed constructions of dependent sums and products and path
objects we present below are still necessary for our proof of univalence in §6.

Thus, assume that a universe p : Ũ → U is given in C , defining a notion of small

fibration in C which is closed under composition, dependent product, and path

objects in the senses described in §2. We define a morphism q : Ṽ → V in C 2 as

follows. Set V0 = U , Ṽ0 = Ũ , and q0 = p. Let V1 = U (1) = (U × U → U)(Ũ→U),
with V1 → V0 being the projection U (1) → U ; since this is a fibration, V is Reedy

fibrant. Finally, by definition V1 comes with an evaluation map V1 ×U Ũ → U × U

over U , which is to say an arbitrary map V1 ×U Ũ → U ; define Ṽ1 → V1 ×V0 Ṽ0 to
be the fibration named by this map. Then by construction, q is a Reedy fibration.

In the type theory of C , V0 is the universe Type, while the fibration V1 → V0

represents the dependent type

A : Type ⊢ (A→ Type) : Type1.

The fibration Ṽ0 → V0 is of course the universal dependent type A : Type ⊢ A : Type

in C , while Ṽ1 → V1 ×V0 Ṽ0 represents the dependent type

A0 : Type, A1 : A0 → Type, a0 : A0 ⊢ A1(a0) : Type.

Definition 4.4. A map f : A → B in C 2 is called a Reedy small-fibration if
both f0 and the induced map A1 → A0 ×B0 B1 are small fibrations in C .

Proposition 4.5. A map f : A→ B is a Reedy small-fibration if and only if it is

small with respect to V , i.e. it is a pullback of q along some map B → V .

Proof. By construction, q is a Reedy small-fibration, and this property is evi-
dently preserved under pullback. Conversely, suppose f : A→ B is a Reedy small-
fibration. Since f0 is a small fibration, it is named by some map a0 : B0 → U = V0.

Then the composite B1
β
−→ B0

a0−→ U names the pullback A0 ×B0 B1. Since
A1 → A0×B0 B1 is a small fibration, it has a name which supplies a lifting, say a1,
of a0β to U (1) = V1. Then a : B → V is a name for f with respect to V . �

Thus, for V to be a universe in C 2, it suffices to check that the Reedy small-
fibrations are closed under all desired type-theoretic operations.
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Proposition 4.6. If small fibrations in C are closed under composition, then so

are Reedy small-fibrations in C 2.

Proof. Suppose given small fibrations A
f
−→ B

g
−→ C. Then (gf)0 = g0f0 is small by

assumption. Moreover, the induced map A1 → A0 ×C0 C1 is the composite

A1 −→ A0 ×B0 B1 −→ A0 ×B0 (B0 ×C0 C1)
∼=
−→ A0 ×C0 C1

where the first map is small since f is small, and the second is small since it is a
pullback of B1 → B0 ×C0 C1, which is small since g is small. �

Remark 4.7. If small fibrations in C are closed under composition, then a Reedy
small-fibration f : A→ B has the property that both f0 and f1 are small fibrations.
Conversely, if the small fibrations in C are “left-cancellable” (i.e. if g and f are
fibrations and g and g◦f are small, then f is also small), then a Reedy fibration with
this property is automatically a Reedy small-fibration. Left-cancellability holds
whenever smallness is characterized by a downward-closed cardinality condition on
the fibers, as is the case for the univalent universe in simplicial sets.

Proposition 4.8. If small fibrations in C are closed under dependent products,

then so are Reedy small-fibrations in C 2.

Proof. Let f : A → C and g : B → A be Reedy small-fibrations, and consider the
following diagram.

(4.9) Q

%%❑
❑❑

❑❑
❑❑

❑

��

Π
f̃
(Q)

((◗◗
◗◗◗

◗◗◗

P

��

((PP
PPP

PPP
P

f̃
//❴❴❴❴❴❴❴❴❴ C1 ×C0 Πf0B0

((◗◗
◗◗◗

◗

��

B1

&&▲
▲▲

▲▲
▲ f∗

0Πf0B0

��

// Πf0B0

��

A1 ×A0 B0

((◗◗
◗◗◗

◗◗◗

��

B0

g0

��

A1

((◗◗
◗◗◗

◗◗◗
◗◗

f1
// C1

((❘❘
❘❘❘

❘❘❘
❘❘

A0
f0

// C0

Here the objects P and Q are defined so as to make the squares

P //

��

f∗
0Πf0B0

��

A1 ×A0 B0
// B0

and

Q //

��

P

��

B1
// A1 ×A0 B0

(which appear in the above diagram) pullback squares. By the pasting law for
pullbacks, the left-hand face of the cube shown is a pullback, and since the front
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and right-hand faces are also pullbacks by definition, so is the back face:

P
f̃

//

��

C1 ×C0 Πf0B0

��

A1
f1

// C1.

The map f̃ , of course, is induced by the universal property of C1 ×C0 Πf0B0.
Now, since f0 and g0 are small fibrations, so is Πf0B0 → C0. And since f1 is a

composite of two small fibrations

A1 → C1 ×C0 A0 → C1,

(using the assumption that f is a Reedy small-fibration) so is its pullback f̃ . By
assumption, this implies that Π

f̃
preserves small fibrations.

However, since g is a Reedy small-fibration, the map B1 → A1×A0 B0 is a small
fibration, and hence so is its pullback Q→ P ; thus the map Π

f̃
(Q)→ C1×C0Πf0B0

is also a small fibration. So if we define (ΠfB)0 = Πf0B0 and (ΠfB)1 = Π
f̃
(Q),

we have a Reedy small-fibration ΠfB → C. It is straightforward to verify that this
is actually the dependent product of B → A along f in C 2. �

In the type theory of C , the construction of Proposition 4.8 can be described as
follows. We are given dependent types

⊢ C0 : Type1

c0 : C0 ⊢ C1(c0) : Type1

c0 : C0 ⊢ A0(c0) : Type

c0 : C0, c1 : C1(c0), a0 : A0(c0) ⊢ A1(c0, c1, a0) : Type

c0 : C0, a0 : A0(c0) ⊢ B0(c0, a0) : Type

. . . , a1 : A1(c0, c1, a0), b0 : B0(c0, a0) ⊢ B1(c0, c1, a0, a1, b0) : Type

and we define

c0 : C0 ⊢ (ΠfB)0(c0) :=
∏

a0 : A0(c0)
B0(c0, a0)

and

c0 : C0, c1 : C1(c0), f0 :
∏

a0 : A0(c0)
B0(c0, a0)

⊢ (ΠfB)1(c0, c1, f0) :=
∏

a0 : A0(c0)

∏
a1 : A0(c0,c1,a0)

B1(c0, c1, a0, a1, f0(a0))

Since small types are closed under all type-theoretic operations, this is clearly small
if all the relevant inputs are. (Note that C0 and C1 need not be small.)

Proposition 4.10. If C has small stable path objects in the sense of §2, then so

does C 2.

Proof. Suppose A → B is a Reedy small-fibration. Let PB0A0 → A0 ×B0 A0 and
PA0A1 → A1 ×A0 A1 be small stable path objects in C . Define (PBA)0 = PB0A0;
then (PBA)0 → (A×B A)0 is a small fibration. For PBA→ A×B A to be a Reedy
small-fibration, we need a small fibration

(PBA)1 → (A1 ×B1 A1)×(A0×B0A0) PB0A0.
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We will obtain this as the pullback of PA0A1 → A1 ×A0 A1 along a map

(A1 ×B1 A1)×(A0×B0A0) PB0A0 −→ A1 ×A0 A1.

Such a map is, of course, determined by two maps

(4.11) (A1 ×B1 A1)×(A0×B0A0) PB0A0 ⇒ A1

which agree in A0. We take one of these maps to be simply the projection onto
the second factor A1 appearing in the domain. We cannot take the other to be
projection onto the first factor, however, since these two projections do not agree
in A0. Instead, we consider the following square:

(4.12)

(A1 ×B1 A1)×(A0×B0A0) A0

∼=
//

��

A1 ×A0 A1
π1

// A1

��

(A1 ×B1 A1)×(A0×B0A0) PB0A0 π2

// A0

Here π1 denotes the projection onto the first factor of A1×A0 A1, while π2 denotes
projection onto the second factor of A0 appearing in its domain. The reader will
easily verify that this square nevertheless commutes. Since the right-hand map is
a fibration, and the left-hand map is an acyclic cofibration (being the pullback of
the acyclic cofibration A0 → PB0A0 along a fibration of fibrant objects), there is a
lift, and indeed a specified coherent one (using the assumed universe U). We take
this coherent lift as the second map in (4.11).

This completes the definition of a Reedy small-fibration PA→ A× A. Now we
need the diagonal to factor through it by an acyclic cofibration. Consider first the
following diagram

(4.13)

PA0A1
//

��

(PB1A)1 //

��

PA0A1

��

A1 ×A0 A1
//

��

(A1 ×B1 A1)×(A0×B0A0) PB0A0
//

��

A1 ×A0 A1

A0
// PB0A0

The upper-right square is a pullback by definition, and the lower-left square is a
pullback by inspection. The composite across the middle is the identity morphism of
A1×A0A1, and thus the outer top rectangle is also a pullback. Hence, by the pasting
law for pullback squares, the upper-left square is also a pullback. However, all the
vertical maps are fibrations of fibrant objects, and the lower map A0 → PB0A0 is an
acyclic cofibration; hence its pullback PA0A1 → (PB0A)1 is also. Composing this
with the defining acyclic cofibration A1 → PA0A1 gives our desired factorization.
Finally, coherency of the lift in (4.12), and stability of path objects in C , imply
stability for these path objects in C

2. �

In terms of the type theory of C , the path objects in C 2 are defined as follows:

a0 : A0, a
′

0 : A0 ⊢ (PA)0(a0, a
′

0) := (a0 = a′0)

. . . , a1 : A1(a0), a
′

1 : A1(a
′

0), p : a0 = a′0 ⊢ (PA)1(a0, a
′

0, a1, a
′

1, p) := (p∗a1 = a′1)

where, as in §3, p∗ denotes transport in the fibration A1 → A0 along the path p.
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In conclusion, we have proven the following theorem.

Theorem 4.14. If C models dependent type theory with dependent sums and prod-

ucts and identity types using a universe U as described in §2, then so does C 2 using

the universe V . �

We end this section with two further important observations about the type
theory of C 2.

Proposition 4.15. Under the hypotheses of Proposition 4.10, the homotopy equiv-

alences in C 2 are the levelwise homotopy equivalences in C .

By the observations in §2, this is immediate when C is a type-theoretic model
category, since in that case C 2 has its own model structure with levelwise weak
equivalences. Thus, we will only sketch the general case.

Sketch of proof. Since fibrations and acyclic cofibrations in C 2 are in particular
levelwise, so are homotopy equivalences. For the converse, it suffices to show that
any Reedy fibration which is a levelwise equivalence is a homotopy equivalence. For
such an f : A→ B, in the diagram

A1

%%❏
❏❏

❏❏
❏❏

❏❏
❏

��
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
f1

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

A0 ×B0 B1
//

��

B1

��

A0
f0

// B0

the map A0 ×B0 B1 → B1 is the pullback of an acyclic fibration along a fibration
of fibrant objects, hence itself an acyclic fibration. Since f1 is also an equivalence,
the map A1 → A0 ×B0 B1 is also an acyclic fibration.

Since acyclic fibrations are deformation retractions, we can find a section g0 of f0
with a homotopy g0f0 ∼ id. By pullback, we obtain a section h of A0×B0 B1 → B1

lying over f0, with a corresponding homotopy that lies over the homotopy g0f0 ∼ id
in a suitable sense. Similarly, we have a section k of A1 → A0×B0 B1 with a similar
homotopy, all lying over A0. Defining g1 := kh, and composing the homotopies,
then gives a deformation section of f in C 2. �

Proposition 4.16. If C satisfies function extensionality, then so does C 2.

Proof. Let g be a Reedy acyclic fibration in C 2. By Proposition 4.15, this amounts
to saying that g is a Reedy fibration and g0 and g1 are acyclic fibrations in C , or
equivalently (by the 2-out-of-3 property and pullback-stability of acyclic fibrations)
that g0 and the induced map B1 → A1 ×A0 B0 are acyclic fibrations.

Now the construction of Πg in (4.9) works regardless of smallness hypotheses.
Thus, using again the pullback-stability of acyclic fibrations and the assumption
on C , we see that Πf0B0 → C0 and Π

f̃
(Q)→ C1 ×C0 Πf0B0 are acyclic fibrations.

Hence ΠfB → C is an acyclic fibration in C 2, as desired. �
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5. Universes in the Sierpinski (∞, 1)-topos

We now consider how internal universes in the type theory of C lift to C
2. By

§2, it suffices to show that any universe embedding in C lifts to C 2.

Remark 5.1. Suppose i : U →֒ U ′ is a monomorphism of universes in C such that
U is U ′-small, every U -small fibration is U ′-small, and i adds no new names (in the
sense of Remark 2.13); thus i can be made into a universe embedding. Let V and
V ′ be the corresponding universes in C 2; then it is easy to see that V is V ′-small,
every Reedy V -small fibration is Reedy V ′-small, and we have a monomorphism
j : V →֒ V ′ which adds no new names. Hence j : V →֒ V ′ can be made into a
universe embedding as well.

In the rest of this section, we show that the same is true for any universe em-
bedding in C , whether or not it adds new names. In particular, this shows that
a countably infinite sequence of universe embeddings can also be lifted to C 2. A
reader who is uninterested in this generalization can freely skip this section.

To show that universe embeddings are preserved, we have to be a little careful
about the universe structure on the universe V defined in §4. Propositions 4.6, 4.8,
and 4.10 only tell us that we can make some choice of universe structure on V , but
in fact, any choice of universe structure on U canonically induces universe struc-
ture on V . To obtain this structure, we simply phrase the constructions of small
dependent sums, products, and path-objects from Propositions 4.6, 4.8, and 4.10
in type theory, then translate them into morphisms in C using the given universe
structure of U .

For instance, consider dependent sums. The Reedy fibration V (1) → V can be
written in terms of C as

U (1×1) //

��

U (1)

��

U (1) // U

where U (1×1) has the universal property that maps X → U (1×1) correspond natu-
rally to quadruples

(5.2)
(
X

a
−→ U, a∗Ũ

b
−→ U, a∗Ũ

c
−→ U, b∗Ũ ×

a∗Ũ
c∗Ũ

d
−→ U

)
.

If we denote by ΣU : U (1) → U the specified morphism implementing dependent
sums for U in C , then we can define a morphism ΣV : V (1) → V :

U (1×1) //

(ΣV )1
��

U (1)

(ΣV )0=ΣU

��

U (1) // U.

Here (ΣV )1 is defined representably as follows. Given a quadruple (5.2), we have a

named type ΣU (a, c) : X → U such that (ΣU (a, c))
∗Ũ ∼= c∗Ũ . Now the composite

c∗Ũ → a∗Ũ
b
−→ U is a name for b∗Ũ ×

a∗Ũ
c∗Ũ , so this composite together with d

gives us a map c∗Ũ → U (1). Composing with ΣU : U (1) → U , we obtain a map

(ΣU (a, c))
∗Ũ → U . Together with ΣU (a, c) : X → U , this gives us a map X → U (1),

as desired. It is easy to check that this map implements dependent sums for C
2.
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The corresponding definitions for dependent products and identity types are
similar. Using this canonical structure, we can deal with universe embeddings.

Proposition 5.3. If i : U →֒ U ′ is a universe embedding in C , then there is an

induced universe embedding j : V →֒ V ′ in C
2.

Proof. We define j0 : V0 → (V ′)0 to be i : U → U ′, and j1 : V1 → (V ′)1 to be the
map i(1) : U (1) → (U ′)(1) defined after (2.12). To start with, we need a pullback
square

Ṽ //

��

Ṽ ′

��

V // V ′

in C 2, which will be a cube

(5.4)

(evU )
∗Ũ //

$$❍
❍❍

❍❍
❍

��

(evU ′)∗Ũ ′

��

%%❑
❑❑

❑❑
❑

Ũ //

��

Ũ ′

��

U (1) //

$$■
■■

■■
■■

(U ′)(1)

%%▲
▲▲

▲▲
▲

U
i

// U ′.

Here Ṽ1 = (evU )
∗Ũ has the universal property that maps X → (evU )

∗Ũ correspond
naturally to triples

(
X

a
−→ U, a∗Ũ

b
−→ U, X

s
−→ b∗Ũ

)

where s is a section of b∗Ũ → a∗Ũ → X . Of course, (Ṽ ′)1 = (evU ′)∗Ũ ′ is analogous,

and the map Ṽ1 → (Ṽ ′)1 is given by composing the components a and b with i.
Now the front face of (5.4) is a pullback since i is a universe embedding in C ,

so it remains to show that the back face is also. However, the back vertical maps
simply forget the sections s, so the back face being a pullback simply says that a

map X → (Ṽ ′)1 corresponding to a triple

(
X

a
−→ U ′, a∗Ũ ′ b

−→ U ′, X
s
−→ b∗Ũ ′

)

factors through Ṽ1 just when a and b factor through U — which is clear.
Next, we need a pullback square

V //

��

Ṽ ′

��

1
v

// V ′
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in C 2, which will be a cube

U (1) //

  ❆
❆❆

❆❆
❆

��

(evU ′)∗Ũ ′

��

%%❑
❑❑

❑❑
❑

U //

��

Ũ ′

��

1
v1

//

!!❈
❈❈

❈❈
❈ (U ′)(1)

%%▲
▲▲

▲▲
▲

1
v0

// U ′.

in C . Of course, with v0 := u, the front face of this cube is given. We define
v1 : 1 → (U ′)(1) to name the dependent U ′-named type U (1) → U , where U is
named by u and U (1) → U is named by i : U → U ′. It is then easy to see that the
back face is also a pullback.

Now I claim that if we give V and V ′ their canonical universe structures induced
from those of U and U ′, as above, then j : V →֒ V ′ is a universe embedding.
Consider, for instance, the case of dependent sums; we want the following cube to
commute:

(5.5)

U (1×1) i(1×1)
//

##●
●●

●●
●●

●

(ΣV )1

��

(U ′)(1×1)

(Σ
V ′ )1

��

%%▲
▲▲

▲▲
▲▲

U (1) i(1)
//

ΣU

��

(U ′)(1)

Σ
U′

��

U (1) i(1)
//

$$■
■■

■■
■■

■ (U ′)(1)

&&▼
▼▼

▼▼
▼▼

▼

U
i

// U ′.

The front face commutes since i is a universe embedding, so consider the back face.
A map X → U (1×1) corresponds to a quadruple

(
X

a
−→ U, a∗Ũ

b
−→ U, a∗Ũ

c
−→ U, b∗Ũ ×

a∗Ũ
c∗Ũ

d
−→ U

)
.

as in (5.2). The map i(1×1) acts by composing all the named types a, b, c, d with
i : U →֒ U ′ (which, of course, doesn’t change the types that they name, up to canon-
ical isomorphism). Since we defined (ΣV )1 with two applications of ΣU applied to
these named types, and i commutes with ΣU and ΣU ′ , it follows that the back
square in (5.5) commutes as desired. The cases of dependent products and identity
types are similar. �

Thus, however many internal universes there are in the type theory of C , we can
find the same number in the type theory of C 2.

6. Univalence in the Sierpinski (∞, 1)-topos

We continue with the notations of the last two sections; our goal is now to prove
the following theorem.
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Theorem 6.1. Suppose that U is a universe in C , closed under all the type-forming

operations, which satisfies the univalence axiom. Then the corresponding universe

V in C 2 also satisfies the univalence axiom.

To be precise, in order to interpret U as an internal universe in the type theory
of C , we must assume at least one further universe U ′ with a universe embedding
U →֒ U ′. However, as we saw in §3, we can say what univalence means in terms of
C without explicit reference to U ′.

Proof. Let E → V ×V be the universal space of equivalences in C
2; we must show

that the section V → E, which assigns to each type its identity equivalence, is itself
an equivalence. Since all the structure at level 0 is exactly as in C , the univalence
of U directly implies that V0 → E0 is an equivalence; thus it remains to consider
V1 → E1.

Now since the last step in the construction of Equiv is a dependent sum, we have
a pair of Reedy fibrations

E1
//

��

E0

��

F1
//

��

F0

��

V1 × V1
// V0 × V0

in which F → V × V represents the dependent type

A : Type, B : Type ⊢ (A→ B) : Type

in the internal type theory of C 2. By construction, this means that F0 → V0 × V0

represents

A0 : Type, B0 : Type ⊢ (A0 → B0) : Type

in C , whereas F1 → (V1 × V1)×V0×V0 F0 represents

A0 : Type, A1 : A0 → Type, B0 : Type, B1 : B0 → Type, f0 : A0 → B0

⊢
∏

a0 : A0
(A1(a0)→ B1(f0(a0)))

Our goal is to describe E1 in terms of the internal type theory of C , so that we can
apply univalence there. By definition, E → F represents the dependent type

A : Type, B : Type, f : A→ B ⊢ isEquiv(f) : Type

constructed in the internal type theory of C 2. However, because C 2 satisfies func-
tion extensionality by Proposition 4.16, we are free to consider instead the depen-
dent type (see (3.3))

A : Type, B : Type, f : A→ B ⊢ ishIso(f) : Type.

We now evaluate this in terms of C , considering separately the two factors

A : Type, B : Type, f : A→ B ⊢
∑

s : B→A

∏
b : B(f(s(b)) = b) : Type(6.2)

A : Type, B : Type, f : A→ B ⊢
∑

r : B→A

∏
a : A(r(f(a)) = a) : Type(6.3)

which are of course closely analogous.
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(
. . . , p1 : (p0)∗

(
f1(s0(b0), s1(b0, b1))

)
= b1

)
//

��

(. . . , p0 : f0(s0(b0)) = b0)

��

(. . . , b1 : B0(b1)) //

��

(. . . , b0 : B0)

��(
. . . , s1 :

∏
b0 : B0

B1(b0)→ A1(s0(b0))
)

//

��

(. . . , s0 : B0 → A0)

��(
. . . , f1 :

∏
a0 : A0

A1(a0)→ B1(f0(a0))
)

//

��

(. . . , f0 : A0 → B0)

��

(. . . , B1 : B0 → Type)

��

// (. . . , B0 : Type)

��

(. . . , A1 : A0 → Type) // (A0 : Type)

Figure 1. Path spaces for the universal section

Firstly, by definition of path-spaces and pullback in C 2, the dependent type

A : Type, B : Type, f : A→ B, s : B → A, b : B ⊢ (f(s(b)) = b) : Type

is represented by the tower of Reedy fibrations shown in Figure 1. In this diagram,
each morphism is a fibration and each square is a Reedy fibration. The ellipses
in each context stand for all the variables appearing in contexts below and to the
right of it.

Now, applying dependent product to the top two morphisms, and using the
construction from Proposition 4.8, we find that the dependent type

A : Type, B : Type, f : A→ B, s : B → A ⊢
∏

b : B(f(s(b)) = b) : Type

is represented by the tower in Figure 2. (For brevity, we have omitted the types of
some variables.) Therefore, (6.2) is simply obtained by composing the top squares
in Figure 2. And of course, (6.3) is directly analogous.

Now, recall that we are interested in the map V → E, and specifically its 1-
component V1 → E1. This map factors through the pullback V0×E0 E1. Moreover,
since V0 ×E0 E1 → E1 is a pullback of the equivalence V0 → E0 along the fibration
E1 → E0 of fibrant objects, it is also an equivalence. Thus, by 2-out-of-3, V1 → E1

is an equivalence if and only if V1 → V0 ×E0 E1 is so.
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(

. . . , q1 :
∏

b0,b1

(

(q0(b0))∗
(

f1(s0(b0), s1(b0, b1))
)

= b1
)

)

//

��

(. . . , q0 :
∏

b0
(f0(s0(b0)) = b0))

��(

. . . , s1 :
∏

b0
B1(b0) → A1(s0(b0))

)

//

��

(. . . , s0 : B0 → A0)

��(

. . . , f1 :
∏

a0
A1(a0) → B1(f0(a0))

)

//

��

(. . . , f0 : A0 → B0)

��

(. . . , B1 : B0 → Type)

��

// (. . . , B0 : Type)

��

(. . . , A1 : A0 → Type) // (A0 : Type)

Figure 2. Section homotopies for the universal section

In terms of the variables appearing in Figure 2, the map V0 → E0 acting on
A0 : Type is defined by

B0 := A0

f0 := idA0

s0 := idA0

q0 := λb0 : A0 . idpathb0

and similarly for the corresponding data for r. Therefore, upon pullback along this
map, the types of the data in E1 become

f1 :
∏

a0
A1(a0)→ B1(a0)

s1 :
∏

a0
B1(a0)→ A1(a0)

q1 :
∏

a0,a1

(
f1(a0, s1(a0, a1)) = a1

)

and similarly for r. (We have used the fact that transporting along the identity
path is the identity.) Hence, the fibration V0×E0 E1 → V0×F0 F1 is represented by
the dependent type

A0, A1, B1, f1 ⊢
∑

s1

∏

a0,a1

(
f1(a0, s1(a0, a1)) = a1

)
×
∑

r1

∏

a0,a1

(
r1(a0, f1(a0, a1)) = a1

)

(all variables have the same types as above). However, in the presence of function
extensionality, it is not hard to show that this type is naturally equivalent to

A0, A1, B1, f1 ⊢
∏

a0

(
∑

s1 : B1(a0)→A1(a0)

∏

a1

(
f1(a0, s1(a1)) = a1

)
×

∑

r1 : B1(a0)→A1(a0)

∏

a1

(
r1(f1(a0, a1)) = a1

)
)
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i.e. to

A0, A1, B1, f1 ⊢
∏

a0

ishIso(f1(a0))

Therefore (using function extensionality again), the fibration V0×E0E1 → V1×V0V1

may be represented by

A0, A1, B1 ⊢
∏

a0

Equiv(A1(a0), B1(a0))

Now we have a commutative square

V1
//

��

V0 ×E0 E1

��

PV0V1
// V1 ×V0 V1

in C /V0, in which the left-hand map is an acyclic cofibration and the right-hand
map is a fibration. Therefore, we have an induced map PV0V1 → V0 ×E0 E1 of
fibrations over V1 ×V0 V1, which it suffices to show to be an equivalence. This map
is represented by a section of the dependent type

A0, A1, B1 ⊢ (A1 = B1)→
∏

a0

Equiv(A1(a0), B1(a0)) : Type.

obtained from the eliminator for the path type (A1 = B1). But this map factors,
up to homotopy, as a composite

(A1 = B1)→
∏

a0

(A1(a0) = B1(a0))→
∏

a0

Equiv(A1(a0), B1(a0))

in which the first map is an equivalence by function extensionality, and the second by
function extensionality and by univalence in C . Thus, our desired map is internally
a fiberwise equivalence over V1 ×V0 V1, hence also an equivalence on total spaces
externally. Hence V is univalent. �

Corollary 6.4. The Reedy model category sSet2 supports a model of intensional

type theory with dependent sums and products, identity types, and with one fewer

univalent universe than there are inaccessible cardinals.

As before, since the homotopy theory of sSet2 models the “Sierpinski (∞, 1)-
topos”∞Gpd2 , we can say informally that we have a model of type theory in this
(∞, 1)-topos.

7. Inverse categories in general

As we have observed, what makes §§4–6 work is that a Reedy fibrant object
A1 → A0 of C

2 can be represented by a context in type theory:

a0 : A0, a1 : A1(a0).

A corresponding fact is true for Reedy fibrant diagrams on some other categories.
For instance, spans of fibrations A1 → A0 ← A2 correspond to contexts of the form

a0 : A0, a1 : A1(a0), a2 : A2(a0).
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whereas cospans A0 ← A2 → A1 such that A2 → A0×A1 is a fibration correspond
to contexts of the form

a0 : A0, a1 : A1, a2 : A2(a0, a1).

(This correspondence between diagrams and contexts has also been used elsewhere,
e.g. [Mak95].) In this section we sketch an extension of §§4–6 to such cases (we will
need a few extra assumptions in places).

Definition 7.1. An inverse category is a category I such that the relation “x
receives a nonidentity arrow from y” on its objects is well-founded.

When I is an inverse category, we write ≺ for the above well-founded relation.
The point of the definition is that we can construct diagrams on I and maps between
them by well-founded induction, as follows.

For an object x ∈ I, we write x�I for the full subcategory of the co-slice category
x/I which excludes only the identity idx.

Assumption 7.2. C admits limits over all the categories x � I.

If A is a diagram in C defined (at least) on the full subcategory { y | y ≺ x } ⊂ I,
then we can restrict it to x � I; we define the matching object MxA to be the
limit

MxA := lim
x�I

A

To give an extension of A to x, then, is precisely to give an object Ax with a map
Ax → MxA. Similarly, given a natural transformation f : A → B of diagrams on
{ y | y ≺ x }, if A and B have extensions to x, then to give an extension of f to x
is precisely to give a map

Ax →MxA×MxB Bx.

Note that if x has no ≺-predecessors, then x � I is empty and MxA is terminal.

Assumption 7.3. C has the structure considered in §2.

Definition 7.4. AReedy fibration in C I is a map f : A→ B between I-diagrams
such that each map

Ax →MxA×MxB Bx.

is a fibration in C . A Reedy acyclic cofibration in C I is a levelwise acyclic
cofibration.

In particular, A is Reedy fibrant iff each map Ax → MxA is a fibration. If I is
finite, then Reedy fibrant I-diagrams can be regarded as contexts of a certain form
in the type theory of C . In the general case, we can regard them as a certain type
of “infinite context”.

It is easy (and standard) to show that the Reedy acyclic cofibrations and the
Reedy fibrations form a weak factorization system on C I . In particular, this implies:

Lemma 7.5. The limit functor lim: C I → C takes Reedy fibrations to fibrations.

Proof. It suffices to observe that its left adjoint, the constant diagram functor, takes
acyclic cofibrations to Reedy (i.e. levelwise) acyclic cofibrations. �

If C is a model category, then there is a whole Reedy model structure, with the
cofibrations and weak equivalences levelwise. (See, for instance, [Hov99, Ch. 5].)
This implies:
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Lemma 7.6. If C is a type-theoretic model category, then lim: C I → C takes

levelwise equivalences between Reedy fibrant diagrams to equivalences, respectively.

Proof. The limit is a right Quillen functor, hence preserves weak equivalences be-
tween (Reedy) fibrant objects. �

Note that this can be proven by induction for arbitrary C if I is finite.
All our examples of type-theoretic model categories also have the property that

limits preserve cofibrations, and hence that lim: C I → C also takes levelwise acyclic
cofibrations between Reedy fibrant diagrams to acyclic cofibrations.

Assumption 7.7. Each functor lim: C x�I → C takes levelwise weak equivalences

and levelwise acyclic cofibrations between Reedy fibrant diagrams to weak equiva-

lences and acyclic cofibrations, respectively.

Now suppose given a universe Ũ → U in C ; we define a Reedy fibration Ṽ → V

of Reedy fibrant objects in C I as follows. For x ∈ I, by induction suppose Ṽ → V

is defined on { y | y ≺ x }. Taking limits, we have a fibration MxṼ →MxV . Define

Vx := (MxV × U →MxV )(MxṼ →MxV )

equipped with the evident fibration Vx → MxV . By definition, we have an eval-

uation map Vx ×MxV MxṼ → MxV × U over MxV , hence a plain morphism

Vx ×MxV MxṼ → U . Let Ṽx → Vx ×MxV MxṼ be the fibration named by this

map. Then by construction, V is Reedy fibrant and Ṽ → V is a Reedy fibration.

Assumption 7.8. Small fibrations in C are closed under limits over all the cate-

gories x � I.

This assumption can be proven by induction if each x� I is finite. On the other
hand, if small fibrations are defined by a cardinality condition on the fibers, as for
the univalent universes in groupoids and simplicial sets, then it holds as long as the
cardinality class in question is closed under limits of the size of each x � I.

All the proofs in §§4–6 now go through almost exactly as before. The construc-
tions there of 1-level data from 0-level data can be easily modified into the induction
steps of constructions by well-founded induction over I, making x-level data from
the corresponding matching data. Fibrations such as A1 → A0 are replaced by
Ax → MxA, pullbacks such as B1 ×B0 A0 are replaced by Bx ×MxB MxA, and so
on. Assumption 7.8 ensures that the 0-level fibrations in §§4–6 which were small
by definition remain small when replaced by matching data.

Possible infiniteness of I is not a problem, since the corresponding “infinite
contexts” are always represented by single objects of C and hence can be incarnated
by single types in its internal type theory. However, we make a few remarks about
places where a little thought is required.

• In the proof of Proposition 4.8, the dependent product Πf0B0 must be replaced,
not by ΠMxf (MxB), but by Mx(ΠfB). However, this does not affect the proof
in any other way.
• Similarly, in the proof of Proposition 4.10, the path object PB0A0 must be re-
placed, not by PMxB(MxA), but by Mx(PBA). We need the acyclic-cofibration
part of Assumption 7.7 in order to conclude that the induced map MxA →
Mx(PBA), forming the lowest horizontal morphism in the analogue of (4.13),
is an acyclic cofibration.
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• By the equivalence part of Assumption 7.7, limits over the categories x � I
also take Reedy fibrations which are levelwise equivalences (“Reedy acyclic
fibrations”) to acyclic fibrations. By 2-out-of-3, this implies that a Reedy
fibration is a levelwise equivalence if and only if each Ax → MxA ×MxB Bx

is an acyclic fibration. These facts are used in the proof of Proposition 4.15
to conclude that Mxf : MxA → MxB (hence also its pullback) is an acyclic
fibration, and in the proof of Proposition 4.16 to conclude that Mx(ΠfB) →
MxC is an acyclic fibration.
• The equivalence part of Assumption 7.7 is also used in the proof of Theorem 6.1
to conclude by induction that MxV →MxE is an equivalence.

Since Voevodsky’s univalent model in simplicial sets is a type-theoretic model
category in which the cofibrations are the monomorphisms, it satisfies all the as-
sumptions of this section. Thus we conclude:

Theorem 7.9. For any inverse category I, the Reedy model category sSetI supports

a model of intensional type theory with dependent sums and products, identity types,

and with one fewer univalent universe than there are inaccessible cardinals. �

As before, we may say that this model lives in the (∞, 1)-topos ∞GpdI .

Remark 7.10. The Reedy model structure on C I exists more generally than when I
is an inverse category: we only need I to be a Reedy category or some generalization
thereof (see e.g. [Ree, BM11,Cis06]). In general, however, Reedy cofibrations are
not levelwise (though the weak equivalences are), and so far I have been unable to
generalize the above methods to Reedy categories that are not inverse.

On the other hand, for suitable C (including simplicial sets) and any I, the
category C I has an injective model structure in which the weak equivalences and
cofibrations are levelwise. (It just so happens that when I is inverse — or, more
generally, elegant [BR11] — the Reedy and injective model structures coincide.) In
general, however, the injective fibrations seem to admit no simple description, so
the methods of this paper probably do not apply in that generality.
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