
Solving Crossword Puzzles as Probabilistic Constraint SatisfactionNoam M. Shazeer, Michael L. Littman, Greg A. KeimDepartment of Computer ScienceDuke University, Durham, NC 27708-0129fnoam,mlittman,keimg@cs.duke.eduAbstractCrossword puzzle solving is a classic constraint satis-faction problem, but, when solving a real puzzle, themapping from clues to variable domains is not perfectlycrisp. At best, clues induce a probability distributionover viable targets, which must somehow be respectedalong with the constraints of the puzzle. Motivatedby this type of problem, we describe a formal modelof constraint satisfaction with probabilistic preferenceson variable values. Two natural optimization problemsare de�ned for this model: maximizing the probabil-ity of a correct solution, and maximizing the numberof correct words (variable values) in the solution. Tothe latter, we apply an e�cient iterative approximationequivalent to turbo decoding and present results on acollection of real and arti�cial crossword puzzles.IntroductionConstraint satisfaction is a powerful and general for-malism. Crossword puzzles are frequently used as ex-amples of constraint satisfaction problems (CSPs), andsearch can be used to great e�ect in crossword-puzzlecreation (Ginsberg et al. 1990). However, we are notaware of any attempts to apply CSPs to the problem ofsolving a crossword puzzle from a set of clues. This isdue, in part, to the fact that traditional CSPs have nonotion of \better" or \worse" solutions, making it dif-�cult to express the fact that we prefer solutions that�ll the grid and match the clues to ones that simply �llthe grid.To address this problem, this paper describes a prob-abilistic extension to CSPs that induces probability dis-tributions over solutions. We study two optimizationproblems for this model. The maximum probabilitysolution corresponds to maximizing the probability ofa correct solution, while the maximum expected over-lap solution corresponds to maximizing the number ofcorrect variable values in the solution. The former canbe solved using standard constrained-optimization tech-niques. The latter is closely related to belief networkinference, and we apply an e�cient iterative approx-Copyright c1999, American Association for Arti�cial Intel-ligence (www.aaai.org). All rights reserved.

imation equivalent to Pearl's belief propagation algo-rithm (Pearl 1988) on a multiply connected network.We describe how the two optimization problems andthe approximation result in di�erent solutions on a col-lection of arti�cial puzzles. We then describe an exten-sion to our solver that has been applied to a collectionof real New York Times crossword puzzles. Our systemachieves a score of 89.5% words correct on average, upfrom 51.8% for a more naive approximation.Constraint Satisfaction ProblemsWe de�ne a (Boolean) constraint satisfaction prob-lem (Mackworth 1977), or CSP, as a set of variables andconstraints on the values of these variables. For exam-ple, consider the crossword puzzle in Figure 1. Here,variables, or slots, are the places words can be writ-ten. The binary constraints on variable instantiationsare that across and down words mesh. The domain of avariable, listed beneath the puzzles, is the set of valuesthe variable can take on; for example, variable 3A (3across) can take on values FUN or TAD). A solution toa CSP is an instantiation (assignment of values to thevariables) such that each variable is assigned a value inits domain and no constraint is violated. The crosswordCSP in Figure 1 has four solutions, which are labeledA through D in the �gure. (The probability values inthe �gure will be explained next.)Although CSPs can be applied to many real-worldproblems, some problems do not �t naturally into thisframework. The example we consider in this paper isthe problem of solving a crossword puzzle from its clues.The slots of the puzzle are nicely captured by CSP vari-ables, and the grid by CSP constraints, but how dowe transform the clues into domain values for the vari-ables? A natural approach is to take a clue like \Smallamount [3]" and generate a small set of candidate an-swers of the appropriate length to be the domain: TAD,JOT, DAB, BIT, for example.This approach has several shortcomings. First, be-cause of the exibility of natural language, almost anyword can be the answer to almost any clue; limitingdomains to small sets will likely exclude critical candi-dates. Second, even with a direct clue, imperfectionsin automated natural language processing may cause a



1

I
2

N
3

F U
4

N
5

T O

1

A
2

S
3

T A
4

D
5

G O

1

I
2

N
3

T A
4

D
5

G O

1

I
2

S
3

T A
4

D
5

G OA B C DP : 0.350 0.250 0.267 0.133Q : 2.367 2.833 3.233 2.866Q1: 2.214 2.793 3.529 3.074slot 1A slot 1Dv p q q(1) v p q q(1)AS .5 .250 .190 IT .4 .400 .496IN .3 .617 .645 IF .3 .350 .314IS .2 .133 .165 AT .3 .250 .190slot 3A slot 2Dv p q q(1) v p q q(1)FUN .7 .350 .314 NAG .4 .267 .331TAD .3 .650 .686 SAG .3 .383 .355NUT .3 .350 .314slot 5A slot 4Dv p q q(1) v p q q(1)GO .7 .650 .686 NO .7 .350 .314TO .3 .350 .314 DO .3 .650 .686Figure 1: This crossword puzzle with probabilistic pref-erences (p) on the candidate words (v) has four possiblesolutions, varying in probability (P ) and expected over-lap (Q). Posteriors (q) and their approximations (q(1))are described in the text.reasonable candidate to be excluded. To avoid thesedi�culties, we might be tempted to over-generate ourcandidate lists. Of course, this has the new shortcomingthat spurious solutions will result.This is a familiar problem in the design of grammarsfor natural language parsing: \Either the grammar as-signs too many structures ... or it incorrectly predictsthat examples...have no well-formed structure" (Ab-ney 1996). A solution in the natural language do-main is to annotate grammar rules with probabilities,so that uncommon rules can be included (for coverage)but marked as less desirable than more common rules(for correctness). Then, no grammatical structure isdeemed impossible, but better structures are assignedhigher probability.Following this line of thought for the crossword puz-zle CSP, we annotate the domain of each variable withpreferences in the form of probabilities. This gives asolver a way to distinguish better and worse solutionsto the CSP with respect to goodness of �t to the clues.Formally, we begin with a CSP speci�ed as a set ofn variables X = fx1; : : : ; xng with domain Di for eachxi 2 X . The variables are coupled through a constraintrelation match, de�ned on pairs of variables and values:if xi; xj are variables and v; w are values, the propo-sition matchxi;xj (v; w) is true if and only if the partialinstantiation fxi = v; xj = wg does not violate any con-straints. The match relation can be represented as a set

of constraint tables, one for each pair of variables in X .The variables, values, and constraints are jointly calleda constraint network . We then add preference informa-tion to the constraint network in the form of probabil-ity distributions over domains: pxi(v) is the probabilitythat we take v 2 Di to be the value of variable xi.Since pxi is a probability distribution, we insist that forall 1 � i � n, Pv2Di pxi(v) = 1 and for all v 2 Di,pxi(v) � 0. This is a special case of probabilistic CSPs(Schiex, Fargier, & Verfaillie 1995). An opportunity forfuture work is to extend the algorithms described hereto general probabilistic CSPs.In the crossword example, probabilities can be cho-sen by a statistical analysis of the relation between theclue and the candidate; we have adopted a particularapproach to this problem, which we sketch in a latersection. Extending the running example, we can an-notate the domain of each variable with probabilities,as shown in Figure 1 in the columns marked \p". (Wehave no idea what clues would produce these candidatelists and probabilities; they are intended for illustrationonly.) For example, the �gure lists p2D(NUT) = 0:3.We next need to describe how preferences on valuescan be used to induce preferences over complete so-lutions. We consider the following probability model.Imagine that solutions are \generated" by indepen-dently selecting a value for each variable according toits probability distribution p, then, if the resulting in-stantiation satis�es all constraints, we \keep" it, oth-erwise we discard it and draw again. This induces aprobability distribution over solutions to the CSP inwhich the probability of a solution is proportional tothe product of the probabilities of each of the valuesof the variables in the solution. The resulting solutionprobabilities for our example CSP are given in Figure 1in the row marked P .The solution probabilities come from taking the prod-uct of the value probabilities and then normalizingby the total probability assigned to all valid solutions(Pr(match)). For example, the probability assigned tosolution C is computed as:P (C) = p1A(IN) � p3A(TAD) � p5A(GO) � p1D(IT)�p2D(NAG) � p4D(DO)=Pr(match)= (0:3)(0:3)(0:7)(0:4)(0:4)(0:3)=Pr(match)= 0:00302=0:01134 = 0:26667:In the next section, we discuss how these values canbe used to guide the selection of a solution.Optimization ProblemsWe can use the probability distribution over solutions,as de�ned above, to select a \best" solution to the CSP.There are many possible notions of a best solution, eachwith its own optimization algorithms. In this paper,we consider two optimization problems on CSPs withprobabilistic preferences: maximum probability solu-tion and maximum expected overlap solution.



The maximum probability solution is an instantiationof the CSP that satis�es the constraints and has thelargest probability of all such instantiations (solutionA with P (A) = 0:350 from Figure 1). It can be foundby computingargmaxsoln:v1;::: ;vn P (v1; : : : ; vn)= argmaxsoln:v1;::: ;vn nYi=1 pxi(vi)=Pr(match)= argmaxsoln:v1;::: ;vn nYi=1 pxi(vi): (1)That is, we just need to search for the solution thatmaximizes the product of the preferences p. This is anNP-complete problem (Garey & Johnson 1979), but itcan be attacked by any of a number of standard searchprocedures: A*, branch and bound, integer linear pro-gramming, weighted Boolean satis�ability, etc.Another way of viewing the maximum probability so-lution is as follows. Imagine we are playing a gameagainst Nature. Nature selects a solution at randomaccording to the probability distribution described inthe previous section, and keeps its selection hidden. Wemust now propose a solution for ourselves. If our so-lution matches the one selected by Nature, we win onedollar. If not, we win nothing. If we want to selectthe solution that maximizes our expected winnings (theprobability of being completely correct), then clearlythe maximum probability solution is the best choice.The maximum expected overlap solution is a morecomplicated solution concept and is speci�c to our prob-abilistic interpretation of preferences. It is motivatedby the crossword puzzle scoring procedure used in theyearly human championship known as the AmericanCrossword Puzzle Tournament (Shortz 1990). The ideais that we can receive partial credit for a proposed so-lution to a crossword puzzle by counting the number ofwords it has in common with the true solution.In a probabilistic setting, we can view the problemas another game against Nature. Once again, Natureselects a solution at random weighted by the P distribu-tion and we propose a solution for ourselves. For everyword (variable-value pair) in common between the twosolutions (i.e., the overlap), we win one dollar. Again,we wish to select the solution that maximizes our ex-pected winnings (the number of correct words).In practice, the maximum expected overlap solutionis often highly correlated with the maximum probabilitysolution. However, they are not always the same. Theexpected overlapQ for each the four solutions in �gure 1is listed in the table; the maximum expected overlapsolution isC, with Q(C) = 3:233 whereas the maximumprobability solution is A. Thus, if we choose A as oursolution, we'd expect to have 2:367 out of six wordscorrect, whereas solution C scores almost a full wordhigher, on average.To compute the expected overlap, we use a new set

of probabilities: qx(v) is the probability that variablex has value v in a solution. It is de�ned as the sumof the probabilities of all solutions that assign v to x.Whereas px(v) is a prior probability on setting variablex to value v, qx(v) is a posterior probability. Note thatfor some slots, like 3A, the prior p and posterior q ofthe values di�er substantially.As a concrete example of where the q values comefrom, consider q2D(SAG) = Pr(B) + Pr(D) = 0:250 +0:133 = 0:383. For the expected overlap Q, we haveQ(D) = q1A(IS) + q3A(TAD) + q5A(GO) +q1D(IT) + q2D(SAG) + q4D(DO)= 0:133+ 0:650 + 0:650+ 0:400 +0:383 + 0:650 = 2:867By the linearity of expectation,argmaxsoln:v1;::: ;vnQ(v1; : : : ; vn)= argmaxsoln:v1;::: ;vn nXi=1 qxi(vi); (2)thus, computing the maximum expected overlap solu-tion is a matter of �nding the solution that maximizesthe sum of a set of weights, q. The weights are very hardto compute in the worst case because they involve a sumover all solutions. The complexity is #P-complete, likebelief network inference (Roth 1996).In the next section, we develop a procedure for e�-ciently approximating q. We will then give results onthe use of the resulting approximations for solving ar-ti�cial and real crossword puzzles.Estimating the PosteriorsConstraint satisfaction problems with probabilisticpreferences have elements in common with both con-straint networks and belief networks (Pearl 1988). So,it is not surprising that, although computing posteriorprobabilities in general CSPs with probabilistic prefer-ences is intractable, when the constraint relations forma tree (no loops), computing posterior probabilities iseasy.Given a constraint network N with cycles, a variablex with domain D, and value v 2 D, we want to ap-proximate the posterior probability qx(v) that variablex gets value v in a complete solution. We develop aseries of approximations of N around x described next.Let the \unwrapped network" U (d)x be the breadth-�rst search tree of depth d around x where revisita-tion of variables is allowed, but immediate backtrackingis not. For example, Figure 2(a) gives the constraintnetwork form of the crossword puzzle from Figure 1.Figures 2(b){(f) give a sequence of breadth-�rst searchtreesU (d)3A of di�ering depths around 3A. The graph U (d)xis acyclic for all d. The limiting case U (1)x , is a possiblyin�nite acyclic network locally similar to N in the sensethat the labels on neighbors in the in�nite tree match



3A

2D

1D

1A

4D

5A

3A 3A

2D

1D 4D

3A

5A

4D

2D

2D1A

1D

5A

2D1A

1D

4D

3A

2D1A

1D
3A

5A 5A

4D

2D

3A

1A

2D

3A 4D

5A

3A1D

1A 2D

3A1D

1A

3A 4D

5A

1A

1A 5A

5A

1D

2D

3A 4D

3A
(0)

U

(g)

N

(c)

(f)

(e)

(d)

(b)(a)

U3A

U3A

U3A

U3A

(1)

(2)

(3)

(4) B
(3)

3A, 2DFigure 2: A cyclic constraint network can be approxi-mated by tractable tree-structured constraint networks.those in the cyclic network. This construction parallelsthe notion of a universal covering space from topologytheory (Munkres 1975).We consider U (d)x as a constraint network. We giveeach variable an independent prior distribution equalto that of the variable in N with the same label.Let q(d)x (v) be the posterior probability that x takesvalue v in the network U (d)x . As d increases, we'd expectq(d)x (v) to become a better estimate of qx(v) since thestructure of U (d) becomes more similar to N . (In fact,there is no guarantee this will be the case, but it is truein the examples we've studied.)Computing the posteriors on unwrapped networkshas been shown equivalent to Pearl's belief propaga-tion algorithm (Weiss 1997), which is exact on singlyconnected networks but only approximate on loopyones (Pearl 1988).We will now derive e�cient iterative equationsfor q(d)x (v). Consider a variable x with neighborsy1; : : : ; ym. We de�ne B(d)x;yi as the yi-branch of U (d+1)x ,or equivalently, U (d)yi with the x-branch removed (seeFigure 2(g)). Let b(d)x;yi(w) be the posterior probabil-ity that yi takes value w in the network B(d)x;yi . Note

that U (0)x and B(0)x;yi contain the single variables x andyi respectively. Thus,q(0)x (v) = px(v) and b(0)x;yi(w) = pyi(w):For positive d, we view U (d)x as a tree with root x andbranches B(d�1)x;yi . According to our model, a solutionon U (d)x is generated by independently instantiating allvariables according to their priors, and discarding thesolution if constraints are violated. This is equivalentto �rst instantiating all of the branches and checkingfor violations, then instantiating x and checking for vi-olations. Furthermore, since the branches are disjoint,they can each be instantiated separately. After instan-tiating and checking the branches, the neighbors y1through ym are independent and yi has probability dis-tribution b(d�1)x;yi . The posterior probability q(d)x (v) thatx takes the value v is then proportional to the probabil-ity px(v) that v is chosen multiplied by the probabilitythat x = v does not violate a constraint between x andone of its neighbors. We getq(d)x (v) = k(d)x px(v) �mYi=1 Xwjmatchyi;x(w;v) b(d�1)x;yi (w);where k(d)x is the normalization constant necessary tomake the probabilities sum to one. Since B(d)yi;x is sim-ply U (d)x with one branch removed1, the equation forb(d)yi;x(v) is very similar to the one for q(d)x (v):b(d)yi;x(v) = k(d)yi;xpx(v) �Yj=1::m;j 6=i Xwjmatchyj ;x(w;v) b(d�1)x;yj (w):Note that, as long as the constraint network N is 2-consistent, the candidate lists are non-empty and thenormalization factors are non-zero.The sequence fq(d)x (v)g does not always converge.However, it converges in all of our arti�cial experiments.If it converges, we call its limit q(1)x (v).In the case in which N is a tree of maximum depth k,U (d)x = U (1)x = N for all d � k. Thus, q(1)x (v) = qx(v),the true posterior probability. However, in the generalcase in which N contains cycles, U (1)x is in�nite. Wehope that its local similarity toN makes q(1)x (v) a goodestimator of qx(v).The running time of the calculation of q(d) is poly-nomial. If there are n variables, each of which is con-strained by at most � other variables, and the maximumsize of any of the constraint tables is s, then fb(d)g andfq(d)g can be computed from b(d�1) in O(n�2s) time. Inour crossword solver, the candidate lists are very large,so s is enormous. To reduce the value of s, we inserted1We reversed subscripts in B(d) to maintain parallelism.



1 2 3 4 5

6

7

8

9

1 2 3 4

5

6

7

8

1 2 3

4 5

6

7

8

1 2 3

4 5

6

7

8

1 2 3

4 5

6 7

8

9

1 2 3

4

5 6

7

8A B C D E FFigure 3: After symmetries have been removed, thereare six tournament-legal 5� 5 crossword grids.Maximized Qty. P Q PP (maxP ) QQ(maxQ)P /Q p .0552 3.433 1.00 .943Q =P q .0476 3.639 .862 1.00Q(100) =P q(100) .0453 3.613 .820 .993Table 1: The solution with maximumQ p is most likely,while the solution with maximum P q has the most incommon on average with a randomly generated solu-tion. Averages are taken over the 600 randomly gener-ated puzzles.an extra variable for each square of the puzzle. Theseletter variables can only take on twenty-six values andare assigned equal prior probabilities. Each of the con-straints in the revised network relates a letter variableand a word variable. Thus, s is only linear in the lengthof the candidate lists, instead of quadratic.Crossword ResultsWe applied the iterative approximation method to op-timize the expected overlap of a set of arti�cial and realcrossword puzzles.Arti�cial PuzzlesTo explore how the expected overlap and solution prob-ability relate, and how the iterative estimate comparesto these, we randomly generated 100 puzzles for each ofthe six possible 5�5 crossword grids2, as shown in Fig-ure 3. Candidates were random binary strings. Eachslot was assigned a random 50% of the possible stringsof the right length. The prior probabilities were pickeduniformly at random from the interval [0; 1], then nor-malized to sum to 1. We discarded puzzles with nosolution; this only happened twice, both times on gridF.For each puzzle, we computed the complete set ofsolutions and their probabilities (average number of so-lutions are shown in Table 2), from which we derivedthe exact posteriors q on each slot. We also used theiterative approximation to compute approximate poste-riors q(0); : : : ; q(100). We found the solutions with max-imum probability (maxP ), maximum expected overlap(maxQ), and maximum approximate expected over-lap (maxQ(0) : : :maxQ(100)). For each of these solu-2By convention, all slots in American crossword puzzlesmust have at least three letters, and all grid cells must par-ticipate in an across and down slot. We fold out reectionsand rotations because candidates are randomly created andare thus symmetric on average.

#solns P (maxP ) Q(maxQ) Q(maxP )Q(maxQ) Q(maxQ(100))Q(maxQ)A: 32846 .004 1.815 .854 .994B: 7930.8 .014 2.555 .921 .991C: 2110.2 .033 3.459 .925 .992D: 2025.4 .034 3.546 .940 .994E: 520.9 .079 4.567 .961 .992F: 131.1 .167 5.894 .980 .993Table 2: Di�erent grid patterns generated di�erentnumbers of solutions. The probability and expectedoverlap of solutions varied with grid pattern. All num-bers in the table are averages over 100 random puzzles.

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 5 10 15 20
iteration (d)

Results for Artificial Puzzles

Frac. of Optimal Expected Overlap
Correlation

Figure 4: Successive iterations yield better approxima-tions of the posteriors.tions, we calculated its probability (P ), expected over-lap (Q), and the percent of optimum achieved. The re-sults, given in Table 1, con�rm the di�erence betweenthe maximum probability solution and the maximumexpected overlap solution. The solution obtained bymaximizing the approximate expected overlap (Q(100))scored an expected overlap 5% higher than the maxi-mum probability solution, less than 1% below optimum.Over the six grids, the �nal approximation(maxQ(100)) consistently achieved an expected overlapof between 99.1% and 99.4% of the optimal expectedoverlap Q(maxQ) (see Table 2). The expected over-lap of the maximum probability solution Q(maxP ) fellfrom 98.0% to 85.4% of optimal expected overlap aspuzzles became less constrained (F to A). One possibleexplanation is that puzzles with fewer solutions tend tohave one \best" solution, which is both most likely andhas a high expected overlap with random solutions.The approximation tended to improve with iteration.The lower curve of Figure 4 shows the correlation of theapproximate posterior q(d) with the true posterior q.The upper curve shows the expected overlap of the solu-tion that maximizes Q(d) (maxQ(d)) divided by that ofthe maximum expected overlap solution. The approxi-



10

100

1000

10000

100000

0 5 10 15 20 25

St
ep

s 
in

 A
*

iteraton (d)

Steps in A* by Iteration

Selected NYT Puzzles
Artificial Puzzles

Figure 5: Maximizing the approximate expected over-lap with A* tended to get faster with successive itera-tions of our approximation.mate posteriors q(d) seemed to converge in all cases, andfor all of the 600 test puzzles, the maximum expectedoverlap solution was constant after iteration 38.Computing the maximum probability solution andthe maximum approximate expected overlap solutionboth involve �nding an instantiation that maximizesthe sum of a set of weights. In the �rst case, our weightsare log(px(v)) and, in the second case, they are q(d)x (v).This is an NP-complete problem, and in both cases,we solve it with an A* search. Our heuristic estimateof the value of a state is the sum of the weights ofthe values of all of its assigned variables and of themaximum weight of the not-yet-considered values of theunassigned variables.In our set of arti�cial puzzles, this A* search is muchfaster when maximizing P q(100) than when maximiz-ing Q p. The former took an average of 47.3 steps, andthe latter 247.6 steps. MaximizingP q(d) got faster forsuccessive iterations d as shown in Figure 5.We believe that optimizing P q(d) is faster becausethe top candidates have already shown themselves to�t well into a similar network (U (d)), and therefore aremore likely to �t with each other in the puzzle grid.Real PuzzlesWe adapted our approach to solve published crosswordpuzzles. Candidate lists are generated by a set of thirtyexpert modules using a variety of databases and tech-niques for information retrieval (Keim et al. 1999).Each module returns a weighted list of candidates, andthese lists are combined according to a set of parameterstrained to optimize the mean log probability assignedto the correct target.Without returning all possible letter combinations, itis impossible for our expert modules to always returnthe correct target in their candidate lists; in fact, they

miss it about 2.1% of the time. To ensure that solu-tions exist and that the correct solution is assigned apositive probability, we implicitly represent the prob-ability distribution over all letter strings according toa letter-bigram model. The total probability assignedto this model is learned along with the weights on theexpert modules. Because of its simple form, the sys-tem is able to manipulate this distribution e�ciently tocalculate b(d) and q(d) correctly on the explicit candi-dates. The full solver includes a combination of severalof these \implicit distribution modules."Note that, because of the implicit bigram distribu-tion, all possible patterns of letters have non-zero prob-ability of being a solution. As noted in Table 2, themaximum probability solution tends to give a poor ap-proximation of the maximum overlap solution whenthere are many solutions; thus, the iterative approxi-mation plays an important role in this type of puzzle.The solver itself used an implementation of A* to �ndthe solution that maximizes the approximate expectedoverlap score Q(d) for each iteration d from 0 to 25. Ina small number of instances, however, A* required toomuch memory to complete, and we switched to a heuris-tic estimate that was slightly inadmissible (admissibleplus a small amount) to ensure that some solution wasfound. Maximizing Q(d) tended to be easier for greaterd. The inadmissible heuristic was required in 47 of 70test puzzles in maximizing Q(1) but only once in max-imizing Q(25). Figure 5 plots the number of steps re-quired by A* for each iteration, averaged over the 23puzzles where the inadmissible heuristic was unused.Because of some of the broad-coverage expert mod-ules, candidate lists are extremely long (often over 105candidates), which makes the calculation of our ap-proximate posteriors q(d) expensive. To save time, wecompute b(d) using truncated candidate lists. To begin,these lists contain the candidates with the greatest pri-ors: We remove all candidates with prior probabilityless than 10�3 of the greatest prior from the list. Doingthis usually throws out some of the correct targets, butmakes the lists shorter. To bring back a possibly correcttarget once the approximation has improved, at everyiteration we \refresh" the candidate lists: We computeq(d) for all candidates in the full list (based on b(d�1)of only the truncated list). We discard our old abbrevi-ated list and replace it with the list of candidates withthe greatest q(d) values (at least 10�3 of the maximum).The missing probability mass is distributed among can-didates in the implicit bigram-letter model. (In a fasterversion of the solver we only refresh the candidate listsonce every seven iterations. This does not appear toa�ect accuracy.)Figure 6 shows the fraction of words correct for thesolutions that maximized Q(0) through Q(25). Perfor-mance increased substantially, from 51.8% words cor-rect at iteration zero to 89.5% before iteration 25. Fig-ure 6 also shows the fraction of slots for which the candi-date with the maximum q(d) is the correct target. This



0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Fr
ac

. W
or

ds
 C

or
re

ct

iteraton (d)

NYT Puzzles

Constrained
Unconstrained

Figure 6: Average number of words correct on a sam-ple of 70 New York Times puzzles increases with thenumber of iterations. This graph shows two measures,one for solutions constrained to �t the grid, and oneunconstrained.would be our score if our solution did not need to satisfythe constraints. Note that the same candidate lists areused throughout|the improvement in performance isdue to better grid �lling and not to improved clue solv-ing. We have also run the solver on puzzles less chal-lenging than those published in the New York Timesand achieved even better results; the average score on50 LA Times puzzles, was 98.0% words correct.Relationship to Turbo CodesTo perform our approximate inference, we use Pearl'sbelief propagation algorithm on loopy networks. Thisapproximation is best known for its success in decod-ing turbo codes (McEliece, MacKay, & Cheng 1998),achieving error correcting code performance near thetheoretical limit. In retrospect it is not surprising thatthe same approximation should yield such positive re-sults in both cases. Both problems involve reconstruct-ing data based on multiple noisy encodings. Both net-works contain many cycles, and both are bipartite, soall cycles have length at least four.ConclusionsFaced with the problem of solving real crossword puz-zles, we applied an extension of CSPs that includesprobabilistic preferences on variable values. The prob-lem of maximizing the number of correct words in apuzzle was formalized as the problem of �nding themaximum expected overlap in the CSP. We applied aniterative approximation algorithm for this problem andshowed that it is accurate on a collection of arti�cialpuzzles. As a happy side e�ect, the proposed iterativeapproximation algorithm speeds optimization. Afterextending the resulting algorithm to handle real puz-zles with implicitly de�ned candidate lists, the solver

scored 89.5% words correct on a sample of challengingNew York Times crossword puzzles.Having identi�ed the importance of maximum over-lap score in the crossword domain, we believe that thismeasure could be useful in other problems. For ex-ample, in machine vision, we might be interested in aconsistent interpretation for a scene that is expected tohave as much in common with the true scene as possi-ble; this could be formalized in a manner similar to ourcrossword puzzle problem.All in all, this work suggests that combinationsof probability theory and constraint satisfaction holdpromise for attacking a wide array of problems.Acknowledgments. Thanks to Rina Dechter, Moi-ses Goldszmidt, Martin Mundhenk, Mark Peot, WillShortz, and Yair Weiss for feedback and suggestions.ReferencesAbney, S. 1996. Statistical methods and linguistics. InKlavans, J., and Resnik, P., eds., The Balancing Act.Cambridge, MA: The MIT Press. chapter 1, 2{26.Garey, M. R., and Johnson, D. S. 1979. Comput-ers and Intractability: A Guide to the Theory of NP-completeness. San Francisco, CA: Freeman.Ginsberg, M. L.; Frank, M.; Halpin, M. P.; and Tor-rance, M. C. 1990. Search lessons learned from cross-word puzzles. In Proceedings of the Eighth NationalConference on Arti�cial Intelligence, 210{215.Keim, G. A.; Shazeer, N.; Littman, M. L.; Agarwal, S.;Cheves, C. M.; Fitzgerald, J.; Grosland, J.; Jiang, F.;Pollard, S.; and Weinmeister, K. 1999. Proverb: Theprobabilistic cruciverbalist. In Proceedings of the Six-teenth National Conference on Arti�cial Intelligence.Mackworth, A. K. 1977. Consistency in networks ofrelations. Arti�cial Intelligence 8(1):99{118.McEliece, R.; MacKay, D.; and Cheng, J. 1998. Turbodecoding as an instance of Pearl's `belief propagation'algorithm. IEEE Journal on Selected Areas in Com-munication 16(2):140{152.Munkres, J. R. 1975. Topology, A First Course. En-glewood Cli�s, New Jersey: Prentice-Hall, Inc.Pearl, J. 1988. Probabilistic Reasoning in IntelligentSystems. San Mateo, CA: Morgan Kaufmann, 2ndedition.Roth, D. 1996. On the hardness of approximate rea-soning. Arti�cial Intelligence 82(1{2):273{302.Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valuedconstraint satisfaction problems: Hard and easy prob-lems. In Proceedings of the 14th International JointConference on Arti�cial Intelligence (IJCAI-95), 631{637.Shortz, W., ed. 1990. American Championship Cross-words. Fawcett Columbine.Weiss, Y. 1997. Belief propagation and revision in net-works with loops. Technical Report Technical Report1616, MIT AI lab.


