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Abstract

Address-space randomization is a technique used to fortify systems against buffer overflow
attacks. The idea is to introduce artificial diversity by randomizing the memory location of
certain system components. This mechanism is available for both Linux (via PaX ASLR) and
OpenBSD. We study the effectiveness of address-space randomization and find that its utility on
32-bit architectures is limited by the number of bits available for address randomization. In par-
ticular, we demonstrate a derandomization attack that will convert any standard buffer-overflow
exploit into an exploit that works against systems protected by address-space randomization.
The resulting exploit is as effective as the original, albeit somewhat slower: on average 216 sec-
onds to compromise Apache running on a Linux PaX ASLR system. The attack does not require
running code on the stack.

We also explore various ways of strengthening address-space randomization and point out
weaknesses in each. Surprisingly, increasing the frequency of re-randomizations adds at most
1 bit of security. Furthermore, compile-time randomization appears to be more effective than
runtime randomization. We conclude that, on 32-bit architectures, the only benefit of PaX-
like address-space randomization is a small slowdown in worm propagation speed. The cost of
randomization is extra complexity in system support.

1 Introduction

Randomizing the memory-address-space layout of software has recently garnered great interest as
a means of diversifying the monoculture of software [19, 18, 26, 7]. It is widely believed that
randomizing the address-space layout of a software program prevents attackers from using the
same exploit code effectively against all instantiations of the program containing the same flaw.
The attacker must either craft a specific exploit for each instance of a randomized program or
perform brute force attacks to guess the address-space layout. Brute force attacks are supposedly
thwarted by constantly randomizing the address-space layout each time the program is restarted.
In particular, this technique seems to hold great promise in preventing the exponential propagation
of worms that scan the Internet and compromise hosts using a hard-coded attack [11, 31].

In this paper, we explore the effectiveness of address-space randomization in preventing an
attacker from using the same attack code to exploit the same flaw in multiple randomized instances
of a single software program. In particular, we implement a novel version of a return-to-libc
attack on the Apache HTTP Server [3] on a machine running Linux with PaX Address Space
Layout Randomization (ASLR) and Write or Execute Only (W⊕X) pages.
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Traditional return-to-libc exploits rely on knowledge of addresses in both the stack and the
(libc) text segments. With PaX ASLR in place, such exploits must guess the segment offsets
from a search space of either 40 bits (if stack and libc offsets are guessed concurrently) or 25 bits
(if sequentially). In contrast, our return-to-libc technique uses addresses placed by the target
program onto the stack. Attacks using our technique need only guess the libc text segment offset,
reducing the search space to an entirely practical 16 bits. While our specific attack uses only a single
entry-point in libc, the exploit technique is also applicable to chained return-to-libc attacks.

Our implementation shows that buffer overflow attacks (as used by, e.g., the Slammer worm [11])
are as effective on code randomized by PaX ASLR as on non-randomized code. Experimentally,
our attack takes on the average 216 seconds to obtain a remote shell. Brute force attacks, like our
attack, can be detected in practice, but reasonable counter-measures are difficult to design. Taking
vulnerable machines offline results in a denial of service attack, and leaving them online while a
fix is sought allows the vulnerability to be exploited. The problem of detecting and managing a
brute force attack is especially exacerbated by the speed of our attack. While PaX ASLR appears
to provide a slowdown in attack propagation, work done by Staniford et al. [31] suggests that this
slowdown may be inadequate for inhibiting worm propagation.

Although our discussion is specific to PaX ASLR, the attack is generic and applies to other
address-space randomization systems such as that in OpenBSD. The attack also applies to any
software program accessible locally or through a network connection. Our attack demonstrates
what we call a derandomization attack ; derandomization converts any standard buffer-overflow
exploit into an exploit that works against systems protected by address-space randomization. The
resulting exploit is as effective as the original, but slower. On the other hand, the slowdown is not
sufficient to prevent its being used in worms or in a targeted attack.

In the second part of the paper, we explore and analyze the effectiveness of more powerful ran-
domization techniques such as increasing the frequency of re-randomization and also finer grained
randomizations. We show that subsequent re-randomizations (regardless of frequency) after the
initial address-space randomization improve security against a brute force attack by at most a
factor of 2. This result suggests that it would be far more beneficial to focus on increasing the
entropy in the address-space layout. Furthermore, this result shows that our brute force attacks are
still feasible against network servers that are restarted with different randomization upon crashing
(unlike Apache). We also analyze the effectiveness of crash detectors in mitigating such attacks.

Our analysis suggests that runtime address-space randomization is far less effective on 32-bit
architectures than commonly believed. Compile-time address-space randomization can be more
effective than runtime randomization because the address space can be randomized at a much finer
granularity at compile-time than runtime (e.g., by reordering functions within libraries). We note
that buffer overflow mitigation techniques can prevent some attacks, including the one we present
in this paper. However, overflow mitigation by itself without any address-space randomization
also defeats many of these attacks. Thus, the security provided by overflow mitigation is largely
orthogonal to address-space randomization.

We speculate that the most promising solution appears to be upgrading to a 64-bit architecture.
Randomization comes at a cost: in both 32 and 64 bit architectures, randomized executables are
more difficult to debug and support.
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1.1 Related Work

Exploits Buffer overflow exploits started with simple stack smashing techniques where the return
address of the current stack frame is overwritten to point to injected code [1]. After the easy
stack smashing vulnerabilities were discovered and exploited, a flurry of new attacks emerged that
exploited overflows in the heap [20], format string errors [28], integer overflows [35], and double-
free() errors [2].

Countermeasures Several techniques were developed to counter stack smashing —StackGuard
by Cowan et al. [14] detects stack smashing attacks by placing canary values next to the return
address. StackShield by Vendicator [32] makes a second copy of the return address to check against
before using it. These techniques are effective for reducing the number of exploitable buffer overflows
but does not completely remove the threat. For example, Bulba and Kil3r [8] show how to bypass
these buffer overflow defenses.

ProPolice by Etoh [16] extends the ideas behind StackGuard by reordering local variables and
function arguments, and placing canaries in the stack. ProPolice also copies function pointers to an
area preceding local variable buffers. ProPolice is packaged with the latest versions of OpenBSD.
PointGuard by Cowan et al. [13] prevents pointer corruption by encrypting them while in memory
and only decrypting values before dereferencing.

W⊕X Pages and Return-to-libc The techniques described so far aim to stop attackers from
seizing control of program execution. A orthogonal technique called W⊕X nullifies attacks that
inject and execute code in a process’s address space. W⊕X is based on the observation that most of
the exploits so far inject malicious code into a process’s address space and then circumvent program
control to execute the injected code. Under W⊕X, pages in the heap, stack, and other memory
segments are marked either writable (W) or executable (X), but not both. StackPatch by Solar
Designer [29] is a Linux kernel patch that makes the stack non-executable. The latest versions
of Linux (through the PaX project [26]) and of OpenBSD contain implementations of W⊕X. Our
sample attack works on a system running PaX with W⊕X.

With W⊕X memory pages, attackers cannot inject and execute code of their own choosing.
Instead, they must use existing executable code —either the program’s own code or code in libraries
loaded by the program. For example, an attacker can overwrite the stack above the return address
of the current frame and then change the return address to point to a function he wishes to call.
When the function in the current frame returns, program control flow is redirected to the attacker’s
chosen function and the overwritten portions of the stack are treated as arguments.

Traditionally, attackers have chosen to call functions in the standard C-language library, libc,
which is an attractive target because it is loaded into every Unix program and encapsulates the
system-call API by which programs access such kernel services as forking child processes and com-
municating over network sockets. This class of attacks, originally suggested by Solar Designer [30],
is therefore known as “return-to-libc.”

Implementations of W⊕X on CPUs whose memory-management units lack a per-page execute
bit — for example, current x86 chips — incur a significant performance penalty.

Another defense against malicious code injection is randomized instruction sets [6, 21]. On the
other hand, randomized instruction sets are ineffective against return-to-libc attacks for the same
reasons as those given above for W⊕X pages.
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Address-Space Randomization Observe that a “return-to-libc” attack needs to know the
virtual addresses of the libc functions to be written into a function pointer or return address. If
the base address of the memory segment containing libc is randomized, then the success rate of
such an attack significantly decreases. This idea is implemented in PaX as ASLR [27]. PaX ASLR
randomizes the base address of the stack, heap, code, and mmap()ed segments of ELF executables
and dynamic libraries at load and link time. We implemented our attack against a PaX hardened
system and will give a more detailed description of PaX in Sect. 2.1.

Previous projects have employed address randomization as a security mechanism. Yarvin et
al. [34] develop a low-overhead RPC mechanism by placing buffers and executable-but-unreadable
stubs at random locations in the address space, treating the addresses of these buffers and stubs as
capabilities. Their analysis shows that a 32-bit address space is insufficient to keep processes from
guessing such capability addresses, but that a 64-bit address space is, assuming a time penalty is
assessed on bad guesses.

Bhatkar et al. [7] define and discuss address obfuscation. Their implementation randomizes the
base address of the stack, heap, and code segments and adds random padding to stack frame and
malloc() function calls. They implemented a binary tool that rewrites executables and object files
to randomize addresses. Randomizing addresses at link and compilation time fixes the randomiza-
tions when the system is built. This approach has the shortcoming of giving an attacker a fixed
address-space layout that she can probe repeatedly to garner information. Their solution to this
problem is periodically to “re-obfuscate” executables and libraries — that is, periodically relink and
recompile executables and libraries. As pointed out in their paper, this solution interferes with host
based intrusion detection systems based on files’ integrity checksums. Our brute force attack works
just as well on the published version of this system because their published implementation only
randomizes the base address of libraries à la PaX.

Xu et al. [33] designed a runtime randomization system that does not require kernel changes,
but is otherwise similar to PaX. The primary difference between their system and PaX is that
their system randomizes the location of the Global Offset Table (GOT) and patches the Procedural
Linkage Table (PLT) accordingly. Our attack also works against their system because: (1) their
system uses 13 bits of randomness (3 bits less than PaX), and (2) our attack does not need to
determine the location of the GOT.

2 Breaking PaX ASLR

We briefly review the design of PaX and Apache before describing our attack and experimental
results.

2.1 PaX ASLR Design

PaX applies ASLR to ELF binaries and dynamic libraries. For the purposes of ASLR, a process’s
user address space consists of three areas, called the executable, mapped, and stack areas. The
executable area contains the program’s executable code, initialized data, and uninitialized data;
the mapped area contains the heap, dynamic libraries, thread stacks, and shared memory; and the
stack area is the main user stack.

ASLR randomizes these three areas separately, adding to the base address of each one an offset
variable randomly chosen when the process is created. For the Intel x86 architecture, PaX ASLR
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provides 16, 16, and 24 bits of randomness, respectively, in these memory areas. In particular, the
mapped data offset, called delta mmap, is limited to 16 bits of randomness because (1) altering
bits 28 through 31 would limit the mmap() system call’s ability to handle large memory mappings,
and (2) altering bits 0 through 11 would cause memory mapped pages not to be aligned on page
boundaries.

Our attack takes advantage of two characteristics of the PaX ASLR system. First, because
PaX ASLR randomizes only the base addresses of the three memory areas, once any of the three
delta variables is leaked, an attacker can fix the addresses of any memory location within the
area controlled by the variable. In particular, we are interested in the delta mmap variable that
determines the randomized offset of segments allocated by mmap(). As noted above, delta mmap
only contains 16 bits of randomness. Because our return-to-libc technique does not need to guess
any stack addresses (unlike traditional return-to-libc attacks), our attack only needs to brute
force the small amount of entropy in delta mmap. Our attack only requires a linear search of the
randomized address space. That is, our exploit requires 216 = 65, 536 probes at worst and 32,768
probes on the average, which is a relatively small number.

Second, in PaX each offset variable is fixed throughout a process’s lifetime, including any
processes that fork() from a parent process. Many network daemons, specifically the Apache web
server, fork child processes to handle incoming connections, so that determining the layout of any
one of these related processes reveals that layout for all of them. Although this behavior on fork()
is not a prerequisite for our attack, we show in Sect. 3.2 that it halves the expected time to success.

2.2 Return-to-libc Attack

We give a high level overview of the attack before describing its implementation in greater detail
and giving experimental data. We emphasize that although our discussion is specific to PaX ASLR,
the attack applies to other address-space randomization systems such as that in OpenBSD.

2.2.1 Overview

We implemented our attack on the Apache web server running on Linux with PaX ASLR and W⊕X
pages. The current version of the Apache server (1.3.29) has no known overflows, so we replicated
a buffer overflow similar to one discovered in the Oracle 9 PL/SQL Apache module [10, 22]. This
Oracle hole can be exploited using a classic buffer overflow attack —an attacker injects her own
code by supplying an arbitrarily long request to the web server that overflows an internal buffer.
Nevertheless, this attack fails in an Apache server protected by PaX W⊕X. Instead, we exploit this
hole using the return-to-libc technique discussed in Sect. 1.1.

Our return-to-libc technique is non-standard. Chained return-to-libc attacks generally rely
on prior knowledge of stack addresses. PaX randomizes 24 bits of stack base addresses (on x86),
making these attacks infeasible. However, PaX does not randomize the stack layout, which allows
us to locate a pointer to attacker supplied data on the stack. Moreover, a randomized layout would
provide no protection against access to data in the top stack frame, and little protection against
access to data in adjacent frames.

Our attack against Apache occurs in two steps. We first determine the value of delta mmap
using a brute force attack that pinpoints an address in libc. Once the delta mmap value is obtained,
we mount a return-to-libc attack to obtain a shell.
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First, the attack repeatedly overflows the stack buffer exposed by the Oracle hole with guesses
for the address of the libc function usleep() in an attempt to return into the usleep() function.
An unsuccessful guess causes the Apache child process to crash, and the parent process to fork a new
child in its place, with the same randomization deltas. A successful exploit causes the connection to
hang for 16 seconds and gives enough information for us to deduce the value of delta mmap. Upon
obtaining delta mmap, we now know the location of all functions in libc, including the system()
function.1 With this information, we can now mount a return-to-libc attack on the same buffer
exposed by the Oracle hole to invoke the system() function.

Our attack searches for usleep() first only for convenience; it could instead search directly
for system() and check periodically whether it has obtained a shell. Our attack can therefore
be mounted even if libc entry points are independently randomized, a possibility we consider in
Sect. 3.3.2.

2.2.2 Implementation

We first describe the memory hole in the Oracle 9 PL/SQL Apache module.

Oracle Buffer Overflow We create a buffer overflow in Apache similar to one found in Oracle
9 [10, 22]. Specifically, we add the following lines to the function ap getline() in http protocol.c:

char buf[64];
...

strcpy(buf,s); /* Overflow buffer */

Although the buffer overflow in the Oracle exploit is 1000 bytes long, we use a shorter buffer for
the sake of brevity. In fact, a longer buffer works to the attacker’s advantage because it gives more
room to supply shell commands.

Precomputing libc Addresses In order to build the exploit, we must first determine the offsets
of the functions system(), usleep(), and a ret instruction in the libc library. The offsets are
easily obtained using the system objdump tool. With these offsets, once the exploit determines
the address of usleep(), we can deduce the value of delta mmap followed by the correct virtual
addresses of system() and ret, with the simple sum

address = 0x40000000 + offset + delta mmap.

(Here 0x40000000 is the standard base address for memory obtained with mmap() under Linux.)

Exploit Step 1 As mentioned in the overview, the first step is to determine the value of
delta mmap. We do this by repeatedly overflowing the stack buffer exposed by the Oracle hole
with guesses for usleep()’s address in an attempt to return into the usleep() function in libc.
More specifically, the brute force attack works as follows:

1. Iterate over all possible values for delta mmap starting from 0 and ending at 65535.
1The system() function executes user-supplied commands via the standard shell (usually /bin/sh).
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top of stack (higher addresses)
...

ap getline() arguments
saved EIP
saved EBP

64 byte buffer
...

bottom of stack (lower addresses)

Figure 1: Apache child process stack before
probe

top of stack (higher addresses)
...

0x01010101
0xdeadbeef

guessed address of usleep()
0xdeadbeef

64 byte buffer, now filled with A’s
...

bottom of stack (lower addresses)

Figure 2: Stack after one probe

2. For each value of delta mmap, compute the guess for the randomized virtual address of
usleep() from its offset.

3. Create the attack buffer (described later) and send it to the Apache web server.

4. If the connection closes immediately, continue with the next value of delta mmap. If the
connection hangs for 16 seconds, then the current guess for delta mmap is correct.

The contents of the attack buffer sent to Apache are best described by illustrations of the Apache
child process’s stack before and after overflowing the buffer with the current guess for usleep()’s
address. Figure 1 shows the Apache child process’s stack before the attack is mounted and Figure 2
shows the same stack after one guess for the address of usleep().

The saved return address of ap getline() (saved EIP) is overwritten with the guessed ad-
dress of the usleep() function in the libc library, the saved EBP pointer is overwritten with
usleep()’s return address 0xdeadbeef, and 0x01010101 (decimal 16,843,009) is the argument
passed to usleep() (the sleep time in microseconds). Any shorter time interval results in null
bytes being included in the attack buffer.2 Note that the method for placing null bytes onto
the stack by Nergal [24] is infeasible because stack addresses are strongly randomized. Finally,
when ap getline() returns, control passes to the guessed address of usleep(). If the value of
delta mmap (and hence the address of usleep()) is guessed correctly, Apache will hang for ap-
proximately 16 seconds and then terminate the connection. If the address of usleep() is guessed
incorrectly, the connection terminates immediately. This difference in behavior tells us when we
have guessed the correct value of delta mmap.

Exploit Step 2 Once delta mmap has been determined, we can compute the addresses of all
other functions in libc with certainty. The second step of the attack uses the same Oracle buffer
overflow hole to conduct a return-to-libc attack. The composition of the attack buffer sent to the
Apache web server is the critical component of step 2. Again, the contents of the attack buffer
are best described by illustrations of the Apache child process’s stack before and after the step 2
attack. Figure 3 shows the Apache child process’s stack before the attack and Figure 4 shows the
stack immediately after the strcpy() call in ap getline() (the attack buffer has already been
injected).

2Null bytes act as C string terminators, causing strcpy() (our attack vector) to terminate before overflowing the
entire buffer.
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top of stack (higher addresses)
...

ap getline() arguments
saved EIP
saved EBP

64 byte buffer
...

bottom of stack (lower addresses)

Figure 3: Apache child process stack before
overflow

top of stack (higher addresses)
...

pointer into 64 byte buffer
0xdeadbeef

address of system()
address of ret instruction

...
address of ret instruction

0xdeadbeef
64 byte buffer (contains shell commands)

...
bottom of stack (lower addresses)

Figure 4: Stack after buffer overflow

The first 64 bytes of the attack buffer is filled with the shell command that we want system()
to execute on a successful exploit. The shell command is followed by a series of pointers to ret
instructions that serves as a “stack pop” sequence. Recall that the ret instruction pops 4 bytes
from the stack into the EIP register, and program execution continues from the address now in EIP.
Thus, the effect of this sequence of rets is to pop a desired number of 32-bit words off the stack.
Just above the pointers to ret instructions, the attack buffer contains the address of system().
The stack pop sequence “eats up” the stack until it reaches a pointer pointing into the original 64
byte buffer, which serves as the argument to the system() function. We find such a pointer in the
stack frame of ap getline()’s calling function.

After executing strcpy() on the exploited buffer, Apache returns into the sequence of ret in-
structions until it reaches system(). Apache then executes the system() function with the supplied
commands. In our attack, the shell command is “wget http://www.example.com/dropshell ;
chmod +x dropshell ; ./dropshell ;” where dropshell is a program that listens on a speci-
fied port and provides a remote shell with the user id of the Apache process. Note that any shell
command can be executed.

2.2.3 Experiments

The brute force exploit was executed on a 2.4 GHz Pentium 4 machine against a PaX ASLR (for
Linux kernel version 2.6.1) protected Apache server (version 1.3.29) running on a Athlon 1.8 GHz
machine. The two machines were connected over a 100 Mbps network.

Each probe sent by our exploit program results in a total of approximately 200 bytes of network
traffic, including Ethernet, IP, and TCP headers. Therefore, our brute force attack only sends a
total of 12.8 MB of network data at worst, and 6.4 MB of network data on expectation.

After running 10 trials, we obtained the following timing measurements (in seconds) for our
attack against the PaX ASLR protected Apache server:

Average Max Min
216 810 29
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The speed of our attack is limited by the rate at which Apache respawns children, and by the
number of child processes Apache allows to run concurrently. We used the default concurrency
setting of 150 in our experiment.

2.3 Information Leakage Attacks

In the presence of information leakage, attacks can be crafted that require fewer probes and are
therefore more effective than our brute force attack in defeating randomized layouts. For instance,
Durden [15] shows how to obtain the delta_mmap variable from the stack by retrieving the return
address of the main() function using a format string vulnerability. Durden also shows how to
convert a special class of buffer overflow vulnerabilities into a format string vulnerability.

Not all overflows, however, can be exploited to create a format string bug. Furthermore, for a
remote exploit, the leaked information has to be conveyed back to the attacker over the network,
which may be difficult when attacking a network daemon. Note that the brute force attack described
in the previous section works against any buffer overflows and does not make any assumptions about
the network server.

3 Improvements to Address-Space Randomization Architecture

Our attack on address-space randomization relied on several characteristics of the implementation
of PaX ASLR. In particular, our attack exploited the low entropy (16 bits) of PaX ASLR on 32-bit
x86 processors, and the feature that address-space layouts are randomized only at program loading
and do not change during the process lifetime. This section explores the consequences of changing
either of these assumptions by moving to a 64-bit architecture or making the randomization more
frequent or more fine-grained.

3.1 64-Bit Architectures

In case of Linux on 32-bit x86 machines, 16 of the 32 address bits are available for randomization.
As our results show, 16 bits of address randomization can be defeated by a brute force attack in a
matter of minutes. Any 64-bit machine, on the other hand, is unlikely to have fewer than 32 address
bits available for randomization given that memory pages are usually between 4 kB and 4 MB in
size, even if not all 64 bits of address space can actually be addressed. Online brute force attacks
that need to guess at least 32 bits of randomness can be ruled out as a threat, since an attack
of this magnitude is unlikely to go unnoticed. Although 64-bit machines are now beginning to be
more widely deployed, 32-bit machines are likely to remain the most widely deployed machines in
the short and medium term. Furthermore, applications that run in 32-bit compatibility mode on a
64-bit machine are no less vulnerable than when running on a 32-bit machine.

Some proposed 64-bit systems implement a global virtual address space: that is, all applications
share a single 64-bit address space [12]. Analyzing the effectiveness of address randomization in
these operating systems is beyond the scope of this paper.

3.2 Randomization Frequency

PaX ASLR randomizes a process’s memory segments only at process creation. If we randomize the
address space layout of a process more frequently, we might naively expect a significant increase in
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security. However, we will demonstrate that after the initial address space randomization, periodic
re-randomizing adds no more than 1 bit of security against brute force attacks regardless of the
frequency, providing little extra security. This also shows that brute force attacks are feasible even
against non-forking network daemons that crash on every probe. On the other hand, frequent
re-randomizations can mitigate the damage when the layout of a fixed randomized address space
is leaked through other channels.

We analyze the security implications of increasing the frequency of address-space randomization
by considering two brute force attack scenarios:

1. The address-space randomization is fixed during the duration of an attack. For example, this
scenario applies to our brute force attack against the current implementation of PaX ASLR
or in any situation where the randomized address space is fixed at compile-time.

2. The address-space randomization changes with each probe. It is pointless to re-randomize the
address space more than once between any two probes. Therefore, this scenario represents the
best re-randomization frequency for a ASLR program. This scenario applies, for example, to
brute force attacks attacks against non-forking servers protected by PaX ASLR that crash on
every probe; these servers are restarted each time with a different randomized address-space
layout.

The brute force attacks in the two scenarios are different. In scenario 1, a brute force attack can
linear search the address space through its probes before launching the exploit (exactly our attack
in Sect. 2). In scenario 2, a brute force attack guesses the layout of the address space randomly,
tailors the exploit to the guessed layout, and launches the exploit.

We now analyze the expected number of probe attempts for a brute force attack to succeed
against a network server in both scenarios. In each case, let n be the number of bits of randomness
that must be guessed to successfully mount the attack, implying that there are 2n possibilities.
Furthermore, only 1 out of these 2n possibilities is correct. The brute force attack succeeds once it
has determined the correct state.

Scenario 1 In this scenario, the server has a fixed address-space randomization throughout the
attack. Since the randomization is fixed, we can compute the expected number of probes required by
a brute force attack by viewing the problem as a standard sampling without replacement problem.
The probability that the brute force attack succeeds only after taking exactly t probes is

2n − 1
2n

· 2n − 2
2n − 1

. . .
2n − t− 1

2n − t︸ ︷︷ ︸
Pr[first t− 1 probes fail]

· 1
2n − t− 1

=
1
2n

,

where n is the number of bits of randomness in the address space. Therefore, the expected number
of probes required for scenario 1 is

2n∑
t=1

t · 1
2n

=
1
2n

·
2n∑
t=1

t = (2n + 1)/2 ≈ 2n−1.
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Scenario 2 In this scenario, the server’s address space is re-randomized with every probe. There-
fore, the expected number of probes required by a brute force attack can be computed by viewing
the problem as a sampling with replacement problem. The probability that the brute force attack
succeeds only after taking exactly t probes is given by the geometric random variable with p = 1/2n.
The expected number of probes required is 1/p = 2n.

Conclusions We can easily see that a brute force attack in scenario 2 requires approximately
2n/2n−1 = 2 times as many probes compared to scenario 1. Since scenario 2 represents the best
possible frequency that an ASLR program can do, we conclude that increasing the frequency of
address-space re-randomization is at best equivalent to increasing the entropy of the address space
by only 1 bit.

The difference between a forking server and a non-forking server for the purposes of our brute
force attack is that for the forking server the address-space randomization is the same for all the
probes, whereas the non-forking server crashes and has a different address-space randomization
on every probe. This difference is exactly that between scenarios 1 and 2. Therefore, the brute
force attack is also feasible against non-forking servers if the address-space entropy is low. For
example, in the case of Apache protected by PaX ASLR, we expect to perform 215 = 32, 768
probes before fixing the value of delta mmap, whereas if Apache were a single-process event-driven
server that crashes on each probe, the expected number of probes required would double to a mere
216 = 65, 536.

3.3 Randomization Granularity

PaX ASLR only randomizes the offset location of an entire shared library. Below, we discuss
the feasibility of randomizing addresses at an even finer granularity. For example, in addition
to randomizing segment base addresses, we could also randomize function and variable addresses
within memory segments. Finer grained address randomization can potentially stymie brute force
attacks by increasing the randomness in the address space. For example, if the delta mmap variable
in PaX ASLR contained 28 bits of randomness instead of 16 bits, then our brute force attack would
become infeasible. We divide our analysis by considering address randomization at both runtime
and compile-time.

3.3.1 Randomizing At Compile-Time

Beyond simple randomization of segments’ base addresses, the compiler and linker can be eas-
ily modified to randomize variable and function addresses within their segments, or to introduce
random padding into stack frames. Increasing the granularity of address-space randomization at
compile and link time is easier than at the start of program execution because source code contains
more relocation information than precompiled and prelinked program binaries.

Compile-time randomization was used by Bhatkar et al. [7] to implement address randomization
with a modified compiler and linker. Unfortunately, their published implementation does not
randomize more than the base addresses of library and executable segments and therefore gives no
greater security than PaX ASLR against our derandomization attack.

On the other hand, compile-time randomization is not limited by the page granularity of the
virtual memory system. By placing entry points in a random order within a library, a compiler can
provide 10–12 additional bits of entropy (depending on architecture). Since shared libraries are by
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their nature shared, however, the location of entry points within these libraries can be discovered by
any user or revealed by any compromised daemon on the same machine. Recompiling the standard
libraries in a Unix distribution is a lengthy and computation-intensive process, and is unlikely to
be undertaken frequently. However, some form of dynamic binary re-writing may be possible.

3.3.2 Randomizing at Runtime

Next we consider implementing finer granularity randomization such as function reordering within
a shared library or executable at runtime.

Randomizing More than 16 Bits Since at most 16 bits of the available 32 bits are random-
ized by PaX ASLR and other ASLR systems on 32 bit architectures, we examine the possibility
of increasing the number of randomized bits at runtime. On typical systems, 12 of the 32 address
bits are page offset bits, which cannot be randomized at runtime without significant modification
to the underlying virtual memory system or memory management hardware. From the remaining
20 bits, the PaX system randomizes only 16 bits. The top 4 bits are not randomized so as to pre-
vent fragmentation of virtual address space. Since significant modifications to the virtual memory
system are best avoided, we see that at most 20 bits can be randomized. Given our results for
derandomizing 16 random bits, guessing 20 bits would take roughly only 24 = 16 times longer,
which is still within the range of a practical attack.

Reordering Functions At first glance, randomizing the order in which individual functions
appear within a library or executable appears effective in preventing an attacker from extending
knowledge of the actual address of one function in a library into knowledge of every function address
in that library. Nevertheless, this technique does not make it any more difficult to guess a single
function’s address. Because our attack can be modified so that it only needs to find one function’s
address — that of the system() function— this technique is ineffective against such brute force
attacks. On the other hand, this technique is effective against return-to-libc attacks that use
multiple libc function calls, so it is worth exploring the technical issues in implementing it.

The process of compiling and linking fixes many relationships between runtime addresses. For
example, in a standard shared library, the difference in the addresses of any two given functions
remains constant between library loads. As a result, internal function calls within a shared library
may use direct relative jumps. Such relative jumps prevent reordering of function addresses as part
of dynamic linking at runtime. By modifying the compiler and linker, we can eliminate relative
jumps at compile-time and defer resolution of offsets until runtime dynamic linking, which allows us
to order functions arbitrarily or even load functions from one library into arbitrary, non-contiguous
portions of virtual memory. The same applies to executables. Because indirect jumps through
pointers are more expensive than direct relative jumps, these changes will exact a small runtime
performance penalty.

A naive implementation of function address randomization runs into an additional problem: a
page can only be shared among processes if it has the same content in each. Because functions are
not generally page-aligned or an exact multiple of a page in length, shuffling them causes library
pages to differ from one process to another. Thus, naively shuffling functions eliminates sharing,
an important advantage of shared libraries, with accompanying cost in time and space. Fixing the
problem is not difficult, requiring only clustering functions into page-size (or page-multiple) groups,
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then shuffling the groups instead of individual functions. The result yields less diversity, because
fewer (and larger) units are shuffled, but should perform much better.

Finally, regardless of how well functions are randomized, code that needs to call these functions
must be able to locate them quickly. In modern ELF-based Unix-like systems, shared library
functions are found by consulting the Global Offset Table (GOT), an array of pointers initialized
by the runtime dynamic linker. Each dynamic object normally maintains its own GOT and refers
to it via relative offsets fixed at link time. Shuffling functions changes relative offsets, rendering
this simple approach untenable. Thus, we need some new way to find shared library functions,
either one based on the GOT or an entirely new technique.

Any acceptable replacement or fix for the GOT must satisfy several constraints. Lookups must
be fast, because function calls are common and with shuffling almost every function call requires
a lookup (without shuffling, only inter-library calls require lookups). Lookups must require little
code because they must be inlined (otherwise we need a way to find the code to do a lookup, which
is a recursive instance of our problem). The GOT replacement must not break sharing of code
pages, because of the associated memory cost and cache penalties. Finally, the GOT replacement
must not place data or code in fixed or easily calculated memory locations or replicate data so
many times that it becomes easy to locate.

We have not found any solution that satisfies all of these constraints. If we discard the concept
of a GOT entirely and use the dynamic loader to fix up addresses in objects at load time, we also
prevent code page sharing. If we make multiple copies of the GOT in virtual memory, positioning
one at a fixed relative offset to each code page, we substantially increase an attacker’s chance of
locating a copy via random probing. If we reserve a register for locating the current library’s GOT,
we exacerbate register scarcity on the x86, although we could use the frame pointer register (EBP)
at the cost of making code difficult to debug. (Moreover, each library must manage its own GOT, so
the value in the register must change and be restored in inter-library calls.) All other solutions we
have considered are similarly problematic. Designing a linking architecture that facilitates function
shuffling in shared code pages efficiently and securely is an open problem and a direction for future
research.

We have seen that, by randomizing segment offsets, PaX ASLR provides approximately 16
bits of entropy against brute force attack, in either forking or non-forking servers. Designing a
runtime randomization system that randomizes with page granularity but maintains fidelity to
the traditional Unix dynamic-linking system is nontrivial. Also, re-randomization of a running
C program is not feasible; and if it were feasible, such a technique would also not deliver additional
entropy. Thus, on 32-bit systems, runtime randomization cannot provide more than 16–20 bits of
entropy.

3.4 Monitoring and Catching Errors

The PaX developers suggest that ASLR be combined with “a crash detection and reaction mech-
anism” [27], which we call a watcher. An attacker who attempts to discover addresses within
ASLR-protected executables will, in the process, trigger segmentation violations through his in-
evitably incorrect guesses. The watcher can detect these segmentation violations and take action
to impede the attacker; for example, shut down the program under attack.

We do not believe that the crash watcher is a viable defense mechanism because of the limited
actions the crash watcher can undertake when it discovers that a PaX-protected forking daemon
is experiencing segmentation faults. Either the watcher alerts an administrator or it acts on its
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own. If it acts on its own, it can either shut down the daemon entirely or attempt to prevent the
attacker from exploiting it.

If the watcher alerts an administrator, then it is difficult to see how the administrator can
react in time. Our demonstrated attack can be completed in 216 seconds on the average, less time
than would be necessary to diagnose the network traffic, read BugTraq, assess the severity of the
situation, and take corrective measures. The administrator could also shut down the daemon before
attempting a diagnosis, but in this case he would be acting no more intelligently than the watcher
might.

If, indeed, the watcher shuts down the daemon altogether pending an administrator’s attention,
then it in effect acts as a force multiplier for denial of service. If Amazon.com’s Apache servers are
PaX-protected and watched, and a vulnerability is discovered in Apache that allows a segmentation
violation to be induced, then Amazon can be taken offline persistently, with a minimum of attacker
effort. Being taken offline persistently can be costly; reports in 2000 show that Amazon loses about
$180,000 per hour of downtime [25].

While it may be true that Amazon would do better with disabled servers than compromised
servers — that, in the end, is an economic question— it is, nevertheless, also true that it is difficult
to distinguish exploitable vulnerabilities from mere (segfault-inducing) denial of service. Neither
an automated watcher program nor a system administrator working under time pressure can be
expected to make the correct determination.

It is worth illustrating how difficult these two cases are to distinguish, even for expert program-
mers. The Apache chunked-encoding vulnerability [9] was for several days believed, by the Apache
developers themselves, not to be exploitable on 32-bit platforms: “Due to the nature of the overflow
on 32-bit Unix platforms this will cause a segmentation violation and the child will terminate” [4].
After the release of a working exploit for 32-bit BSD platforms, the Apache developers revised their
analysis: “Though we previously reported that 32-bit platforms were not remotely exploitable, it
has since been proven by Gobbles that certain conditions allowing exploitation do exist” [5].

Furthermore, unless the segfault watcher shuts down the daemon permanently after a single
segmentation violation, an attacker can still slip under the radar. For example, if the watcher acts
after observing ten crashes in a one-minute period, the attacker can seek addresses by brute force
at the rate of nine attempts per minute. The same holds if the watcher keeps a daemon shut down
for several seconds after a crash. Such a watcher is, furthermore, as much a force multiplier for
denial of service as one that shuts down the watched daemon after a single crash.

Finally, a watcher could attempt to prevent an attacker from exploiting a vulnerability while
allowing the daemon to continue running. It might, for example, attempt to determine the network
source of the offending requests and selectively firewall the source away from the daemon. But
this assumes that the attacker can be effectively localized. With zombie networks numbering
hundreds of thousands of compromised hosts available for use as launchpads [17, 23], attackers
can design and deploy worms that attack vulnerable daemons in a coordinated fashion: no source
machine needs to connect to the attacked machine more than once, so a firewalling watcher is of no
value. Properly-engineered automated threats, therefore, are capable of bypassing even firewalling
watchers unimpeded.

Sites that run large numbers of servers often load-balance incoming requests. In such situations
clients are not always guaranteed persistent sessions with a single server, but instead get a different
server assigned to each request. (Load balancing slows down our attack only by a factor of 2.)
A watcher running locally on one of these servers would be unable to detect an attack, since
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subsequent segfault-inducing requests are likely to be routed to different servers. In order to detect
such an attack, a networked watcher is required that can correlate segfault-inducing requests. Such
a networked watcher would be difficult to implement and would not be much better at making
watcher decisions than a host based watcher, due to the inherent difficulty of implementing a
realistic watcher strategy.

In summary, the discussion above suggests that any reasonable implementation of the crash
watcher suggested by the PaX documentation cannot prevent an attack such as we describe above
from succeeding, except at the cost of facilitating and exacerbating denial-of-service vulnerabilities
in the watched daemon.

3.5 Anti-Buffer Overflow Techniques

Overflow mitigation systems that protect the stack, such as StackGuard [14], ProPolice [16], and
PointGuard [13], make it more difficult for an attacker to use a stack-based overflow to write
arbitrary data onto the stack. (PointGuard also encrypts pointers.) Some vulnerabilities, including
the one we exploited in Sect. 2.2, can no longer be exploited in the presence of overflow mitigation.
However, overflow mitigation by itself, without address-space randomization, also defeats many of
these attacks. Thus, the security provided by overflow mitigation is largely orthogonal to address-
space randomization.

4 Conclusions

We showed that any buffer-overflow attack can be made to work against Apache running under
PaX Address Space Layout Randomization and Write or Execute Only pages. Experimentally, our
attack took, on the average, 216 seconds to obtain a remote shell.

Our exploit employed a novel return-to-libc technique in which it is not necessary for the
attacker to guess addresses on the stack. Brute force was needed only to find a single 16-bit delta.
Although our implemented exploit was specific to PaX ASLR and Apache, the attack is generic
and applies to other address-space randomization systems such as that in OpenBSD. The attack
also applies to any software program that accepts connections from the network. This attack is
an instance of a derandomization attack, which converts any standard buffer-overflow exploit into
an exploit that works against systems protected by address-space randomization. The resulting
exploit is as effective as the original, but slower; the slowdown is not sufficient to frustrate worms
or targeted attacks.

Our results suggest that, for current 32-bit architectures, (1) address-space randomization is
ineffective against the possibility of generic exploit code for a single flaw; and (2) brute force attacks
can be efficient, and hence effective.

In addition, we have analyzed the effectiveness of more powerful randomization techniques
such as increasing the frequency and granularity of randomization. Subsequent re-randomizations
(regardless of frequency) after the initial address-space randomization increases resistance to brute
force attack by at most a factor of 2. We also argue that one cannot effectively prevent our attack
without introducing a serious denial-of-service vulnerability.

Compile-time address-space randomization is more effective than runtime randomization be-
cause it can randomize addresses at a finer granularity, but the randomization it produces is more
vulnerable to information leakage. To protect against information leakage, sensitive daemons should
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be placed within a chroot environment along with their libraries, so that user accounts and other
daemons running on the same machine cannot be subverted into revealing the compile-time random-
ization used in the sensitive daemons. Buffer overflow mitigation techniques can protect against our
attack, even in the absence of address-space randomization. Thus, the use of overflow mitigation
is largely orthogonal to address-space randomization.

While compile-time and runtime randomization can be combined to yield better security, the
most promising solution appears to be upgrading to a 64-bit architecture. Our attack is ineffective
on 64-bit architectures. On 32-bit architectures, it is difficult to design randomized systems that
resist brute force attacks. Applications that run in 32-bit compatibility mode on a 64-bit machine
are no less vulnerable than when running on a 32-bit machine.
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