
6 • VIRUS BULLETIN MARCH 2001

VIRUS BULLETIN ©2001 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2001/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

VIRUS ANALYSIS 1

Zmist Opportunities
Peter Ferrie & Péter Ször
SARC, USA

At VB2000 in Florida, IBM’s Dave Chess and Steve White
demonstrated their research findings on ‘Undetectable
Computer Viruses’. Early this year, the Russian virus writer
Zombie released his ‘Total Zombification’ magazine
complete with a set of articles and viruses of his own.
Ominously, one of the articles in the magazine was titled
‘Undetectable Virus Technology’.

Zombie has already demonstrated his set of polymorphic
and metamorphic virus-writing skills. His viruses have been
distributed for years in source format and other virus
writers have modified them to create new variants. Cer-
tainly this will be the case again with Zombie’s latest
creation – W95/Zmist.

Many of us will not have seen a virus approaching this
complexity for a few years. We could easily call Zmist one
of the most complex binary viruses ever written. W95/SK,
One_Half, ACG, and a few others come to mind in com-
parison. Zmist is a little bit of everything: it is an entry
point obscuring virus that is metamorphic. Moreover, the
virus randomly uses an additional polymorphic decryptor.

This virus supports a unique new technique: code integra-
tion. The Mistfall engine contained in it is capable of
decompiling Portable Executable files to its smallest
elements, requiring 32 MB of memory. Zmist will insert
itself into the code: it moves code blocks out of the way,
inserts itself, regenerates code and data references, includ-
ing relocation information, and rebuilds the executable.
This is something never seen before in previous viruses.

Zmist occasionally inserts jump instructions after every
single instruction of the code section, each of which will
point to the next instruction. Amazingly, these horribly
modified applications will still run as before, just like the
infected executables do, from generation to generation. In
fact, we did not see a single crash during the test replica-
tions. Nobody expected this to work, not even Zombie.
However, it is not foolproof – it takes some time for a
human to find the virus in infected files. Due to its extreme
camouflage Zmist is clearly the perfect anti-heuristics virus.

Initialisation

Zmist does not alter the entry point of the host. Instead it
merges itself with the existing code, becoming part of the
instruction flow. However, the random location of the code
means that sometimes the virus will never receive control.
If the virus does run, then it will immediately launch the
host as a separate process, and hide the original process (if

the RegisterServiceProcess () API is supported on the
current platform) until the infection routine completes.
Meanwhile, the virus will begin searching for files to infect.

Direct Action Infection

After launching the host process, Zmist will check if there
are at least 16 MB of physical memory installed and that it
is not running in console mode. If these checks pass, then it
will allocate several memory blocks, including a 32 MB
area for the Mistfall workspace, permutate the virus body,
and begin a recursive search for Portable Executable .EXE
files. This search will take place in the Windows directory
and all subdirectories, the directories referred to by the
PATH environment variable, then all fixed or remote drives
from A to Z. This is a brute force approach to spreading.

Permutation

The permutation is fairly slow because it is done only once
per infection of a machine. It consists of instruction
replacement, such as the reversing of branch conditions,
register moves replaced by push/pop sequences, alternative
opcode encoding, xor/sub and or/test interchanging, and
garbage instruction generation. The same engine, Real
Permutating Engine (RPME), is used in several viruses
including W95/Zperm, also written by Zombie.

Infection of Portable Executable Files

A file is considered infectable if it is smaller than 448 KB,
if it begins with ‘MZ’ (Windows does not support the ‘ZM’
form), if it is not infected already (the infection marker is
‘Z’ at offset 0x1C in the MZ header – this field is not
generally used by Windows applications), and if it is a
Portable Executable file. The virus will read the entire file
into memory, then choose from one of three possible
infection types.

There is a one in ten chance that only jump instructions will
be inserted between every existing instruction (if the
instruction was not a jump already), and the file will not be
infected. There is the same probability that the file will be
infected by an unencrypted copy of the virus; otherwise, the
file will be infected by a polymorphically encrypted copy.

The infection process is protected by Structured Exception
Handling which prevents crashes in the case of errors.
When the rebuilding of the executable is completed, the
original file is deleted and the infected file is created in its
place. However, if an error occurs during the file creation,
then the original file is lost and nothing will replace it.

The polymorphic decryptor consists of ‘islands’ of code
that are integrated into random locations throughout the
host code section and linked together by jumps. The

VIRUS BULLETIN MARCH 2001 • 7

VIRUS BULLETIN ©2001 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2001/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

decryptor integration is performed in the same way as for
the virus body integration – existing instructions are moved
to either side, and a block of code is placed in between
them. The polymorphic decryptor uses absolute references
to the data section, but the Mistfall engine will update the
relocation information for these references too.

An anti-heuristic trick is used for decrypting the virus code:
instead of making the section writable in order to alter its
code directly, the host is required to have, as one of the first
three sections, a section containing writable, initialised
data. The virtual size of this section is increased by 32 KB,
large enough for the decrypted body and all the variables
used during decryption. This allows the virus to decrypt
code directly into the data section, and transfer control to
there. If such a section cannot be found, then the virus will
infect the file without using encryption.

The decryptor will receive control in one of four ways: via
an absolute indirect call (0xFF 0x15), a relative call (0xE8),
a relative jump (0xE9), or as part of the instruction flow
itself. If one of the first three methods is used, the transfer
of control will usually appear soon after the entry point. In
the case of the last method, though, an island of the
decryptor is simply inserted into the middle of a subroutine,
somewhere in the code (including before the entry point).

All used registers are preserved before decryption and
restored afterwards, so the original code will behave as
before. Zombie calls this last method ‘UEP’, perhaps an
acronym for Unknown Entry Point, because there is no
direct pointer anywhere in the file to the decryptor.

When encryption is used, the code is encrypted with ADD/
SUB/XOR with a random key, and this key is altered on
each iteration by ADD/SUB/XOR with a second random
key. In between the decryption instructions are various
garbage instructions, using a random number of registers,
and a random choice of loop instruction, all produced by
the Executable Trash Generator engine (ETG), also written
by Zombie. It is clear that randomness features very heavily
in this virus.

Code Integration

The integration algorithm requires that the host has fixups,
in order to distinguish between offsets and constants.
However, after infection, the fixup data are not required by
the virus. Therefore, though it is tempting to look for an
approximately 20 KB long gap in the fixup area, which
would suggest that the virus body is located there, it would
be dangerous to rely on this during scanning.

If another application (such as one of an increasing number
of viruses) were to remove the fixup data, then the infection
will be hidden. The algorithm also requires that the name of
each section in the host is one of the following: CODE,
DATA, AUTO, BSS, TLS, .bss, .tls, .CRT, .INIT, .text,
.data, .rsrc, .reloc, .idata, .rdata, .edata, .debug, DGROUP.
These section names are produced by the most common

compilers and assemblers in use, those of Microsoft,
Borland, and Watcom. The names are not visible in the
virus code, because the strings are encrypted.

A block of memory is allocated which is equivalent to the
size of the host memory image, and each section is loaded
into this array at the section’s relative virtual address. The
location is noted of every interesting virtual address (import
and export functions, resources, fixup destinations, and the
entry point), and then the instruction parsing begins. This is
used in order to rebuild the executable.

When an instruction is inserted into the code, all following
code and data references must be updated. Some of these
references might be branch destinations, and in some cases
the size of these branches will increase as a result of the
modification. When this occurs, more code and data
references must be updated, some of which might be branch
destinations, and the cycle repeats.

Fortunately – at least from Zombie’s point of view – this
regression is not infinite, so that while a significant number
of changes might be required, the number is limited. The
instruction parsing consists of identifying the type and
length of each instruction. Flags are used to describe the
types, such as instruction is an absolute offset requiring a
fixup entry, or instruction is a code reference, etc. There are
cases where an instruction cannot be resolved in an unam-
biguous manner to either code or data. In that case, Zmist
will not infect the file.

After the parsing stage is completed, the mutation engine is
called, which inserts the jump instructions after every
instruction, or generates a decryptor and inserts the islands
into the file. Then the file is rebuilt, the relocation informa-
tion is updated, the offsets are recalculated, and the file
checksum is restored. If there are overlay data appended to
the original file, then they are copied to the new file too.

Conclusion

A few years ago several anti-virus researchers claimed that
algorithmic detection had no future. We would like to take
this opportunity to turn that around, by claiming that virus
scanners will have no future if they do not support algorith-
mic detection at the database level.

It is amazing to see how polymorphic viruses become more
and more advanced over the years. Such metamorphic
creations will come very close to the concept of a theoreti-
cally undetectable virus. The computing environment had
to change and it did change. Now, modern viruses com-
pletely support this new environment. In the next couple of
years we will be able to see how complex DOS viruses
would be today if the environment had not changed during
the last few years.

But for the time being, we are once again one step ahead of
the virus writers. ‘So, poly-encrypted permutated viral body
is completely integrated with target file. Hmm … check-
mate?’ Not this time, Zombie.

