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We consider a general stochastic model of frictionless continuous trading. The price process is a 
semimartingale and the model is incomplete. Our objective is to hedge contingent claims by using trading 

strategies with a small riskiness. To this end, we introduce a notion of local R-minimality and show its 

equivalence to a new kind of stochastic optimality equation. This equation is solved by a Girsanov 

transformation to a minimal equivalent martingale measure. We prove existence and uniqueness of the 

solution, and we provide several examples. Our approach contains previous treatments of option trading 

as special cases. 
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Introduction 

The formula of Black and Scholes [l] for the valuation of options has led to the 

development of a general hedging method for contingent claims in a complete 

financial market by Harrison and Pliska [8]. In such a market, any claim can be 

replicated by a self-financing dynamic portfolio strategy which only makes use of 

the existing assets; in this sense, the claim is redundant. In an incomplete market, 

however, there exist non-redundant claims which carry an intrinsic risk, and any 

portfolio strategy generating such a claim will involve a random process of cumula- 

tive costs. In order to compare these strategies, a measure R of riskiness in terms 

of a conditional mean square error was introduced in Fijllmer and Sondermann 

[6]. Although somewhat ad hoc from an economic point of view, this formulation 

permits one to apply martingale theory in a natural way. In particular, R-minimizing 

trading strategies turn out to be mean-self-$nancing, i.e., their cost process is a 

martingale. In the case where the stock price process X is a martingale under the 

basic probability measure P, existence and uniqueness of an R-minimizing strategy 

were proved in Fiillmer and Sondermann [6], using the Kunita-Watanabe projection 

technique. 

In this paper, we consider a general incomplete model where the price process 

X is assumed to be a semimartingale under P. This assumption is quite natural 

because it is implied by the existence of an equivalent martingale measure for X, 

i.e., a probability measure P” equivalent to P such that X is a martingale under 
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P*. In turn, the existence of P* corresponds to assuming the absence of arbitrage’ 

opportunities. Our purpose is to analyze the riskiness of non-redundant contingent 

claims and to determine optimal hedging strategies in this context. To this end, we 

have to modify the approach taken in Fiillmer and Sondermann [6] since the 

Kunita-Watanabe projection technique does not apply directly to the case of a 

semimartingale. In Section 2, the idea of keeping conditional variances as small as 

possible is now formalized in a local manner, leading to the notion of a locally 

R-minimizing strategy. We show that these strategies are mean-self-financing, and 

that they can be characterized by a stochastic optimality equation. This involves new 

results of Schweizer [ 131 on the differentiation of semimartingales and their connec- 

tion to the orthogonality of martingales. In Section 3 we solve the optimality equation. 

Existence and uniqueness of the solution are established under the assumption that 

P admits a minimal equivalent martingale measure i? This measure has the property 

that it only turns X into a martingale and otherwise does not disturb the structure 

of the model. The optimal strategy for P is identified with the unique strategy which 

is R-minimizing for 15 in the sense of Follmer and Sondermann [6]. It should be 

pointed out that the minimal martingale measure plays here only the role of a tool; 

the option writer’s subjective assessment of the market structure is given by the 

measure P, and so our formulation of the optimality criterion also uses P. But the 

identification of the optimal strategy in terms of P has an important consequence. 

It shows the invariance of an R-minimizing strategy within a certain class of 

equivalent semimartingale models. Thus a key feature of the complete market 

situation treated by Harrison and Pliska [8] is preserved in our incomplete model. 

The preceding results are illustrated in Section 4 by two examples. The first one is 

an incomplete version of the Black-Scholes model with two sources of uncertainty, 

but only one stock. The second involves point processes and is related to dynamic 

reinsurance policies for stop-loss contracts; this approach was initiated by 

Sondermann [ 141. 

1. The basic model 

This section has two purposes. First of all, we describe our model for option trading 

and introduce the required notation and terminology. After that, we review some 

previous results in the literature in order to motivate the subsequent development. 

Let (a, 9, P) be a probability space with a filtration ( .9,),,s,GT satisfying the 

usual conditions of right-continuity and completeness. T E R denotes a fixed and 

finite time horizon; furthermore, we assume that so is trivial and that 9T = 9. Let 

X = (X,&,<T be a semimartingale with a decomposition 

X=X,+M+A, (1.1) 

such that: 

(Xl) M = (Ml)OS,C--T is a square-integrable martingale with MO = 0; 
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and A = (At)OSIST is a predictable process of finite variation IAl with AO= 0. 

Additional assumptions on X will be introduced later on when the need arises. By 

(Xl), M has a variance process (M) with respect to P, and we denote by PM the 

measure P x (M) on the product space fi := 0 x [0, T] with the c-algebra 9 of 

predictable sets. 

Definition. A trading strategy cp is a pair of processes 5 = (&)OsrGT, q= (v,)~~,%~ 

satisfying the following conditions: 

5 is predictable. (1.2) 

I 

t 
The process &, dX,, (0 s t s T) is a semimartingale of class Y2. 

0 

(1.3) 

77 is adapted. 

The process V(q) defined by V,(q) := 5,. X, + 7, (OS t G T) 

is right-continuous and satisfies V,(q) E x*(P), 0s t c T. 

(1.4) 

(1.5) 

The integrability condition (1.3) is equivalent to 

7 
E s’u wn.+( JOT kul WI..)*] <a 

which means that 

[E .Lf2(P,) and J oT 15ul dl4 E z2(P). 

In accordance with the usual terminology, the process V( cp) will be called the value 

process of cp and the right-continuous square-integrable process C(q) defined by 

C,(V) := V,(V) - J ’ 6, dxu, O<tsT, (1.6) 
0 

the (cumulative) cost process of cp. See Harrison and Pliska [8] and Fiillmer and 

Sondermann [6] for a detailed motivation. 

Interpretation. The process X is a model for the price evolution of a risky asset 

(called stock). We tacitly assume that there also exists a riskless asset (called bond) 

whose value is 1 at all times. Actually, any strictly positive continuous process of 

finite variation will do for this purpose; the normalization to 1 simply means that 

we work directly with discounted prices and helps to avoid more complicated 

notations. A trading strategy is interpreted as a dynamic portfolio of stock and bond: 

at time t, we hold & shares of stock and r), unit bonds, and clearly V,(q) is the 

value of this portfolio. (1.6) expresses the fact that the cumulative costs up to time 

t are equal to the current value of the portfolio reduced by the accumulated trading 

gains. The predictability condition (1.2) on .$ means that we have to determine the 
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amount of shares before the next infinitesimal stock price movement is actually 

known. On the other hand, n is allowed to be adapted; this relaxation of the 

measurability condition on n was introduced and motivated by Fiillmer and 

Sondermann [6]. In a complete financial market, the distinction does not matter 

because there the relevant trading strategies turn out to be predictable in both 

components. But in an incomplete situation, it will give us some extra freedom in 

adjusting the portfolio value to a desired level, and this will be essential. 

A contingent claim H is intended to model the payoff at time T of some financial 

instrument. The simplest example is given by a European call option with fixed 

strike price K E R where 

H=(X7-K)+. 

This claim has the special form H = /x(X,) for some function h. More generally, H 

could depend on the whole evolution of X up to time T. One example of such a 

path-dependent option would be a call on the average value of the stock, i.e., 

H=(X+ jOTX,, dr)+. 

Depending on the structure of the filtration (sr), even some external events could 

play a role. Note, however, that payoffs will be made at the terminal time T only. 

Assuming that we have sold such a claim, this means that we shall have to pay the 

amount H at time T. However, the exact size of this obligation is in general still 

uncertain at any time t < T, and it makes sense that we should like to reduce the 

inherent dangers of this uncertainty. To achieve this end, we have to use the available 

means: buying and selling stocks and bonds. A natural approach is therefore to 

look for a trading strategy which generates the required payoff H and at the same 

time minimizes some measure of riskiness. This idea will now be made precise. 

In mathematical terms, a contingent claim is a random variable HE Z2( P). We 

shall concentrate on strategies which are H-admissible in the sense that 

VT( (o) = H P-a.s.; (1.7) 

cp is then said to generate H. Note that an H-admissible strategy always exists: we 

can simply choose 5 = 0 and n = 0 except for r)r = H. This corresponds to “doing 

nothing until one has to pay up”. As a measure of riskiness, we introduce for each 

strategy the conditional mean square error process 

R(p):= E[(G(rp)- C,bN’l~J, 0s ts T (1.8) 

defined as a right-continuous version. Following Harrison and Pliska [8], a strategy 

cp is called sel$jinancing if its cost process C(p) is constant P-a.s. It is called 

mean-self-financing if C(p) is a martingale; this notion was introduced by Follmer 

and Sondermann [6]. 



M. Schweizer / Option hedging 343 

Remarks. (1) The criterion (1.8) is essentially a mean-variance criterion; in fact, 

R,(q) is simply the conditional variance of the total cost C,(p), given the informa- 

tion up to time t, if the strategy cp is mean-self-financing. Lemma 1.2 below will 

show that we can restrict ourselves to this class of strategies. 

(2) The main reason for our use of P in the definition of R,(p) is that P is 

intended to model the subjective beliefs of the option writer. It has been suggested 

by the referee to use a risk-neutral probability (i.e., a martingale measure) P instead 

of P in (1.8). In that case, the subsequent discussion would simply reduce to the 

martingale case treated by Fijllmer and Sondermann [6]. As it turns out from 

Theorem 3.2 below, the optimal strategy can in fact be described in terms of a 

certain minimal martingale measure P, and this proves the robustness of the criterion 

(1.8) and of the corresponding optimal strategy under certain equivalent changes 

of measure. But this result is only meaningful if our analysis is done in terms of P. 

If we had used a martingale measure in the definition of R,(q), robustness would 

only hold by definition. 

Definition. A contingent claim H is called attainable if it is of the form 

I 

T 

H=HO+ 5: dX, P-a.s. (1.9) 
0 

with a constant HO and a predictable process [* satisfying (1.3). 

Proposition 1.1. Let H be a contingent claim. The following statements are equivalent: 

(1) There exists a self-jinancing H-admissible trading strategy p. 

(2) There exists an H-admissible trading strategy cp with Ro(p) = 0. 

(3) There exists an H-admissible trading strategy cp with 

R,(p)=0 P-a.s., 0~ ts T. 

(4) His attainable. 

Proof. Since (l), (2) and (3) are clearly equivalent, it is enough to show the 

equivalence of (1) and (4). But (1) yields 

ff = VT(P) = CT(p)+ 
I 

T T 

5u dX = CO(P) + 5,. dX,, P-a.s., 
0 

and (4) allows us to define p = (&*, 7) by 

Remark. The crucial equivalence between (1) and (4) was proved by Harrison and 

Pliska [8]; the explicit use of the process R(p) in (2) and (3) appears in Follmer 

and Sondermann [6]. An attainable claim H has some very special features. First 

of all, it is riskless in the following sense: If we start with the non-random initial 
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amount C,(p) = HO and then use the above self-financing strategy, we can exactly 

duplicate the cash-flow induced by H. In our idealized model of frictionless con- 

tinuous trading, H and rp are therefore equivalent. This implies that the price of H 

is uniquely determined and must be H, in order to exclude the possibility of arbitrage. 

An easy way to compute both the price Ho and the generating strategy [* is provided 

by the use of an equivalent martingale measure P* for X. (1.9) then implies 

and 

H, = E*[ H] 

sT= 
W*,W:* O<tsT 

d(X):* ’ 

where V” denotes a right-continuous version of the process 

V:‘:=E*[HIS,], OS~CT. 

Thus, the optimal strategy can be expressed in terms of P* alone. In particular, it 

does not depend on the subjective beliefs described by the original measure P = P”. 

The preceding discussion of attainable claims is of course well-known. The 

arbitrage argument yielding H,, as the fair option price in this model is exactly the 

one made already by Black and Scholes [ 11, with the small difference that they used 

stock and option to form a portfolio earning the riskless rate of return. They worked 

with a specific model where X follows a geometric Brownian motion. This was 

generalized by Harrison and Pliska [8,9] who treated the case of a so-called complete 

market, i.e., a situation where every contingent claim is attainable. Harrison and 

Pliska [9] also proved that a model is complete if and only if it admits a unique 

equivalent martingale measure P* for X. However, all these contributions were 

limited to attainable claims. But as Hakansson [7] pointed out, any attainable claim 

is essentially redundant because it can be duplicated by using the already existing 

assets, namely stock and bond. Starting from this observation, Fiillmer and Sonder- 

mann [6] introduced the process R(q) and formulated the following optimization 

problem. 

Definition. Let cp = (5, 7) be a trading strategy and t E [0, T). An admissible continu- 

ation of cp from t on is a trading strategy (p = (g, 5) satisfying 

(1.10) 

and 

VT($) = V,(p) P-a.s. (1.11) 

An admissible variation of cp from t on is a trading strategy A = (6, E) such that q + A 

is an admissible continuation of cp from t on. 
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Definition. A trading strategy cp is called R-minimizing if for any t E [0, T) and for 

any admissible continuation 4 of cp from t on we have 

R,(G) 3 R,(q) P-a.s. 

or equivalently if 

R,(cp+A)-R,(q)>0 P-a.s. (1.12) 

for every admissible variation A of cp from t on. 

Problem. Given a contingent claim H, find an H-admissible R-minimizing strategy. 

Remark. R-minimization should be viewed as a sequential regression procedure in 

the following sense: at any time t, one “lets the past be the past” and concentrates 

instead on those strategies which differ from the reference strategy only on the 

remaining time interval (t, T]. Note that this is an extension of the Black-Scholes 

approach where R( cp) can be reduced to 0; cf. Proposition 1.1. In an incomplete 

model, this is in general not possible; it is therefore important to analyze the riskiness 

of a given contingent claim in more detail. Before recalling the central result on 

R-minimizing strategies, we give a technical lemma on the improvement of trading 

strategies which will be useful later on. It says that for any H-admissible strategy 

we can find another H-admissible strategy which is mean-self-financing and which 

has smaller conditional mean square error. Thus, it suggests that any ‘good’ strategy 

ought to be mean-self-financing. Note that this excludes for example a strategy 

which is self-financing on [0, T) and makes up the balance at the end. 

Lemma 1.2. Let cp = (5, 7) be a trading strategy and t E [0, T]. Then there exists a 

trading strategy 4 satisfying: 

(a) VT($) = V,(q) P-a.s. 

(b) CS(@)=E[C,(@)(.YFv] P-a.s. fortSsST 

(c) R,7(G)~R,(~) P-a.s. fortss<T. 

If we choose t := 0, then 4 is mean-self-financing. 

Proof. Set {:= 5 and 

choosing right-continuous versions. Then V(G) is given by 
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and therefore right-continuous, since both parts are. Furthermore, since 

I 

T 

I 

T 

CT($)= vT(6)- &ML= vT(p)- &,dXu=CT(cp), 

0 0 

we have by the above that 

C,(G)=E[CT(G)(Fs] forsz t 

and therefore 

RAG) = E[(G($) - GG))‘l %I 

=E[(C*(cp)-C,((o)+C,(cp)-C,(~))*l~~l 

= &(cp)-t(G(cp) - G(aY+2 . (G(G) - G(v)) * (G(P) - G(4)) 

= R,(v) -(G(cp)- G(G))’ 

=sR,(cp) P-a.s. forszt. 0 

In the martingale case, the problem of R-minimization was completely solved by 

Fiillmer and Sondermann [6]. In order to state their result, we need to recall the 

Kunita- Watanabe decomposition : If X is a square-integrable martingale, then every 

H E x’(P) can be written as 

I 

T 

H=E[H]+ 6: dX,, + L? P-a.s., (1.13) 
0 

where 5” E Z’*(Px) and LH = (L~)o~~~T is a square-integrable martingale 

orthogonal to X with Lf = 0 P-a.s. 

Proposition 1.3. Assume that X is a square-integrable martingale. For every contingent 

claim H, there exists a unique H-admissible R-minimizing trading strategy qH. It is 

mean-self-jinancing, and its &component is given by the integrand 5” in (1.13). 

Proof. Let us first remark that cp H is determined by this description since any 

H-admissible mean-self-financing trading strategy can be characterized by its & 

component. Now fix t E [0, T) and consider an admissible continuation yo = (5, 7) 

of (Pi from t on. For the strategy 4 constructed from rp as in Lemma 1.2, we obtain 

by (1.13), 

I 

T 

CT(@)-c,(G)= vT($8- &dXu-E[CT(+)I%] 

0 

I 
T 

=H- 

0 

L,dX-+-j-oThdX I%] 

T 

= (.&&,)dX,+(L?-L?) P-a.s. 
I 
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On the other hand, 

I 

7 

G((PH)-Ct((PH)=H- 
0 

~~d~u-+j-oT&-IXu) %] 

= Ly - LF P-as. 

and therefore 

T 

=E (5i’-5,J24Wu 9, +~[(L~-Lf’)2~%l 
, I 1 

2 R,((pH) P-a.s. 

which shows that qH ’ IS R-minimizing. To prove uniqueness, we first note that any 

R-minimizing trading strategy cp* must be mean-self-financing; this follows from 

Lemma 1.2. But then the same argument as above yields 

Ro(cp*) = E 

[I 

T 

(6: - 53’ d(X), + E[(L;)21 > R,(P~) 
0 1 

unless [* = cH P,-a.e. q 

Remark. The idea of using Lemma 1.2 in the proof is taken from Schweizer [12] 

and exploited again in the next section. In Proposition 1.3, X is assumed to be a 

martingale. Unfortunately, the following example shows that the general case of a 

semimartingale is less pleasant: Consider a discrete-time model with three trading 

dates 0, 1, 2, and assume that the price increments X, - X,_, can take three distinct 

values in each period. This will prevent the model from being complete. If there 

exists an R-minimizing trading strategy cp* for a given claim H, it must minimize 

both R,( cp) and R,(p) over all admissible continuations of cp* from 0 and 1 on, 

respectively. But if P is not a martingale measure for X, it is easy to find a claim 

H and an H-admissible mean-self-financing trading strategy @ such that either 

R,(cp*) > R,(g) or R,(p*) > R,(q). This reflects the fact that it is impossible to 

minimize simultaneously R,( cpp) and R,(p) by the same strategy. Hence, there cannot 

exist any R-minimizing strategy in such a situation. For explicit computations in 

this example, see Schweizer [12]. 

Technically speaking, the above concept of R-minimization fails in the general 

case because we cannot control the influence of the term j 5 dA on the process 

R(q). More precisely, there is no analogue to the Kunita-Watanabe projection 

theorem allowing us to decompose a claim H into a stochastic integral I[ dX (with 

respect to X) and an orthogonal component. From an intuitive point of view, the 

class of permissible variations of a trading strategy is too large. We must use a 

weaker approach by restricting our attention to variations which are small enough 

in some sense. This is quite straightforward in a discrete-time model; see Schweizer 

[ 121, and Fijllmer and Schweizer [4] for an expository account. The rather delicate 

situation in continuous time will be treated in the next section. 
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2. Local R-minimization and the optimality equation 

In this section, we introduce the concept of a locally R-minimizing trading strategy. 

Being an infinitesimal concept, it will involve limit considerations, and under suitable 

assumptions on the price process, the required limits actually exist. This will enable 

us to prove that a trading strategy is locally R-minimizing if and only if it is 

mean-self-financing and satisfies a certain equation. We shall call this the optimality 

equation. 

Definition. A trading strategy A = (6, e) is called a small perturbation if it satisfies 

the following conditions: 

6 is bounded. (2.1) 

I 

T 

IS,, d]A], is bounded. (2.2) 
0 

fsT=FT=O. (2.3) 

Remark. Due to (l.l), the price process X can be thought of as having two 

components: the ‘unpredictable’ martingale term M and the ‘drift’ or ‘trend’ A. 

jt 6, dA, therefore represents the systematic part of the trading gains from A, and 

condition (2.2) says that A is meant to be small in the sense of limited systematic 

gains. (2.3) has two consequences: V,(A) = 0 P-a.s., so that cp +A is an H-admissible 

trading strategy for every H-admissible cp, and the restriction of A to any subinterval 

of [0, T] is again a small perturbation. 

As mentioned in the last section, our idea is to introduce the notion of a local 

variation of a trading strategy. To this end, we consider partitions 7= (ti)OGiGN of 

the interval [0, T]. Such partitions will always satisfy 

O=to<t,<...<tN=T, 

and their mesh will be defined by IT]:= max,GiGN (ti- tipI). A sequence (T,),,~ of 

partitions will be called increasing if T,, c r,,+, for all n; it will be called O-convergent 

if it satisfies 

lim ]7,] =O. 
*-as 

If A is a small perturbation and (s, t] a subinterval of [0, T], we define the small 

perturbation 

Al(v,:= (sl,,,,, EIL,,,J 
by setting 

61[,,j(O, u) := &J(w) * &,,,(u>, El[,t,(W, u) := E,(W) . &J,(U). 

The asymmetry corresponds to the fact that 6 is predictable and E merely adapted. 
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Definition. Let cp be a trading strategy, A a small perturbation and T a partition of 

[0, T]. Then we can define the R-quotient 

The strategy cp is called locally R-minimizing if 

lim inf r7~ [ cp, A] 2 0 P,,,,-a.e. 
*+‘x (2.5) 

for every small perturbation A and every increasing O-convergent sequence (7,) of 

partitions of [0, T]. 

Remark. Obviously, r’[cp, A] is a stochastic process which is well-defined PM-a.e. 

on fi. It can be interpreted as a measure for the total change of riskiness if cp is 

locally perturbed by A along the partition T. The denominator in (2.4) describes 

the appropriate time scale for these measurements. Note that (2.5) is the infinitesimal 

analogue of the condition (1.12). 

For our next result, we need an additional assumption on X. 

(X2) For P-almost all w, the measure on [0, T] induced by (M).(w) has the whole 

interval [0, T] as its support. 

Equivalently, we could postulate that (M).( ) w is strictly increasing P-a.s. This 

nondegeneracy condition prevents the martingale M from being locally constant. 

For example, both a diffusion process with a strictly positive diffusion coefficient 

and a point process with a strictly positive intensity satisfy (X2). 

Lemma 2.1. Assume that X satisjes (Xl) and (X2). If a trading strategy cp is locally 

R-minimizing, it is mean-self--financing. 

Proof. Construct 4 from cp as in Lemma 1.2 with t = 0. A := 6 - cp is then a small 

perturbation. Let T,, be the nth dyadic partition of [0, T], and denote by d’:= 

(d + 22” * T) A T the successor in T,, of d E T,,. Since 

Vd((~+Adlcqd,,)= v,(P’)+rjd-77d = b(d), 

it follows from (2.3) that 

CT((P+Adl(d,d’,)-Cd((P+Al(d,d’])= co-ed 

for any n EN and d E TV. The proof of Lemma 1.2 now yields 

Rd((P+Al(d,d’,)-Rd(~O)=Rd(~)-Rd((P) 

= -(cd(q) - E[CT 

and therefore 

r’n[cp, A] = - C 
(cd((P) -‘%CTbo)i %dd1j2 

d t i, E[(“)d’-(M)d 1 $dl 

((P)i9dl)2 

(2.6) 
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Now assume that for some dyadic rational do, there is a set B of positive probability 

such that 

Cd&V)(W) # P[C*(p) I ~dJ(w) 

for all w E B. Since both C.(q) and E[C,((p) 19.1 have been chosen to be right- 

continuous, there exist for any w E B constants y(w) > 0 and p(w) > 0 such that 

ICd((P)-E[CT(rp)I~~lI(w)~y(w)>O 

for every dyadic rational d E [do, do+ p (co)]. But then (2.6) implies for all o E B that 

lim inf r’m[(~, A](@, t) < 0 
n+oO 

for any t in the open interval (d,, do+p(w)), in contradiction to (X2) and to the 

assumption that 

liminfr’n[cp,A](w, t)>O 
n-m 

holds for (M).(w)-almost all t outside of a set of probability 0. Hence we conclude 

that 

C,(q) = E[C,((p) 1 Td] for every dyadic rational d 

holds P-a.s., and the assertion follows from right-continuity. 0 

The next step furnishes us with the key result of this section. It is technically 

somewhat involved, but essentially it tells us that we can find a locally R-minimizing 

trading strategy by varying only the &component. This turns out to be very important 

since it enables us to use again martingale techniques. Let H be a fixed contingent 

claim and cp = (5, 7) an H-admissible mean-self-financing trading strategy. Since 

C(q) is a martingale with terminal value 

I 

7 

C,(p)=H- .$, dX, P-a.s., (2.7) 
0 

cp is uniquely determined by 5, and we write C(t):= C(q) and R(t):= R(p). Now 

take a small perturbation A = (6, E) and a partition r of [0, T]. For ti E T, we are 

going to compare the H-admissible (but not necessarily mean-self-financing) trading 

strategy cp + Al W+,I with the H-admissible mean-self-financing trading strategy 

associated to 5+ 6]~t,,r,+,1. These strategies have the same &component, but may 

differ in the n-component. Because of (2.3), we obtain 
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Furthermore, we have 

351 

and 

since cp is mean-self-financing. This implies 

G((P +Al (r,,r,+,,) - G,((P fAlL4+,1) 

and therefore by the martingale property of C(5+ 61,,,,+,,), 

Summing up, we conclude that 

+ c (q + E[j::+’ 6, d& 1 %,I)'. Ic , , 

fzEi a(M),,+, -W),, I S!,l 
h, 1+1 . (2.8) 

In accordance with previous notations, we denote the first term on the right-hand 

side of (2.8) by r7[& 61. 

Now it is time to introduce our final assumptions on X. They will enable us to 

show that the last term in (2.8) is asymptotically negligible. 

(X3) A is continuous. 

(X4) A is absolutely continuous with respect to (M) with a density (Y satisfying 

EM[J(Y] * log+]Q)] <co. 

(X5) X is continuous at TP-as. 

Condition (X5) means that X does not have a fixed time of discontinuity at T. 

Because of (X3), it implies that A4 does not jump at T so that (M) does not have 

any mass in T. 

Lemma 2.2. Assume that X satisfies (X1)-(X5). Let H be a contingent claim and 

cp = (6, 17) an H-admissible trading strategy. Then the following statements are 

equivalent : 

(1) q is locally R-minimizing. 

(2) p is mean-self-jinancing, and 

lim inf rrn[ 5, 612 0 PM-a.e. 
n-m 

(2.9) 
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for every bounded predictable process 6 satisfying (2.2) and (2.3), and for every 

increasing O-convergent sequence (7,) of partitions of [0, T]. 

Proof. Due to Lemma 2.1, we may assume cp to be mean-self-financing. But then 

(2.8) immediately shows that (1) follows from (2). For the converse, we first note 

that we may choose all E,, to be 0 in (2.8). The estimate 

then yields 

c (R[j::” 4, dA, 1 %,,I)’ . I 
GET, mmo,+, - (kqt, 1 St;,] (tL,‘c+ll 

s llsll: . c “EIIl~)y~y 2; . 4r,,r,+,1- 
f, E 7. 1, 1, 

If (?vQ~ = t and A is absolutely continuous with respect to Lebesgue measure with 

a bounded density, it is easy to see that this last expression converges to 0 PM-a.e. 

In the general case, the required convergence follows from (X1)-(X5) by Proposition 

3.1 of Schweizer [13]. Therefore, (2.8) shows that (2) follows from (1). 0 

By its definition, local R-minimality is a variational concept involving two vari- 

ables 5 and r]. Lemma 2.2 splits this into two separate and simpler problems; it tells 

us to vary only 5 and to determine 17 from the side condition that cp is mean-self- 

financing. Put differently, this amounts to studying the following question: If we 

consider the martingale C(t) and the locally perturbed process 

Cr(5+Sl u,,t,+,,) = E [ i.:‘;‘S,,dX./&], O<t<T, CT(&) - 

how do their R-quotients compare? This problem is resolved in Schweizer [ 131 for 

a general martingale Y instead of C(t). It is shown there that R-minimality under 

such local perturbations is equivalent to orthogonality of Y and M. Hence, we now 

obtain a martingale-theoretic characterization of locally R-minimizing trading 

strategies. 

Proposition 2.3. Assume that X satisfies (X1)-(X5). Let H be a contingent claim and 

cp an H-admissible trading strategy. Then the following statements are equivalent: 

(1) cp is locally R-minimizing. 

(2) cp is mean-self-financing, and the martingale C( cp) is orthogonal to M. 

Proof. Due to Lemma 2.2, this follows directly from Theorem 3.2 of Schweizer 

[13]. 0 

Having established Proposition 2.3, it is now straightforward to derive the optimal- 

ity equation for a locally R-minimizing trading strategy. All we have to do is to find 
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the Kunita-Watanabe decomposition of C,(q) with respect to P and M. From the 

decompositions 

T 

H= E[H]+ pfip dM, •t LFGp P-as. (2.10) 

and (using (1.3)) 

T 

,.dA,,=EIJoTt,,dA,,]+ JoTp:^;pdMu+L+A’P P-a.s., (2.11) 

we conclude that it is given by 

J 
T 

C,(cp)=C,,(cp)+ (~~‘P-~u-~~A’P)dM,,+L~‘P-L~A~P P-a.s. (2.12) 
0 

due to (2.7). 

Theorem 2.4. Assume that X satisfies (X1)-(X5). Let H be a contingent claim and 

cp = (5, 77) an H-admissible trading strategy. Then cp is locally R-minimizing if and 

only if cp is mean-self-financing and 5 satisjes the optimality equation 

(2.13) 

Proof. This follows immediately from Proposition 2.3 and the decomposition 

(2.12). 0 

The importance of Theorem 2.4 lies in the fact that it reduces the variational 

problem of finding a locally R-minimizing trading strategy to the solving of a 

stochastic optimality equation. Of course, equation (2.13) still remains to be solved. 

We shall give an existence and uniqueness result in the next section. 

Remark. Since the concept of an R-minimizing strategy has a direct and intuitive 

interpretation, it is natural to ask in which sense a locally R-minimizing strategy is 

optimal. To answer this question, we shall focus on mean-self-financing strategies 

which is quite reasonable in view of Lemmas 1.2 and 2.2. Using Proposition 3.1 of 

Schweizer [13], we first note that 

lim r’~[5,6]=62-2.6.(~LH’P-5-/1.5,A’P) P,-a.e. 
n-m 

(2.14) 

holds for all 5 satisfying (1.3) and for all bounded predictable S satisfying (2.2). If 

cp is locally R-minimizing, this implies by Theorem 2.4 that 

lim r7n[&, S] = 6’ P,-a.e. 
n-00 

Therefore, we conclude that for PM-almost all (w, t) the inequality 

&(5+4, ,,,z,+,,)(w) Z= R,(5)(w) 
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holds for all n 3 no(w, t), ti E T, and t E (t,, tit,]. This means that any bounded 

perturbation of 5 on a small enough time interval leads to an increase of R. 

This formulation is still not quite satisfactory since: ;t Aoes not allow us to compare 

5 directly with another trading strategy ,$ But if we assume that both cy and (M)7 

are bounded, (2.14) holds even for all predictable processes 6 satisfying (1.3), and 

choosing 6 := g- 5 then implies that for P,,,_,-almost all (w, t), 

R&+&5)1 c,,,t,+,,)(w) 2 &g(5)(w) (2.15) 

for all n 2 n,(w, t), ti E T, and t E (tip t,+l]. Hence, we can say that any modification 

of 5 by another mean-self-financing trading strategy on a small interval will increase 

R, and this is exactly what the term ‘locally R-minimizing’ suggests. 

3. Solving the optimality equation 

In this section, we show how the optimality equation (2.13) can be solved. This 

yields a locally R-minimizing trading strategy by Theorem 2.4. The basic idea for 

solving (2.13) is both simple and intuitive; however, it requires quite a lot of technical 

machinery in the general case. To provide a better insight, we therefore concentrate 

here on a situation with additional explicit structure. 

Definition. We say that M and Nform a P-basis of Z2( P) if the following conditions 

are satisfied: 

Both M and N are square-integrable martingales under 

M -MO and N - N,, are P-orthogonal (as martingales). 

Every H E Z2(P) has a unique representation 

I 

7- T 
H=E[H]+ prip dM, •c vy;’ dN,, P-as. 

0 

P. (3.1) 

(3.2) 

for two predictable processes /*Hi’ E Z2( PM) and vHiP E Z2( P,,,). (3.3) 

Condition (3.3) is equivalent to assuming that the stable subspace generated by 

M and N coincides with the whole space of square-integrable martingales under P. 

From now on we add the following assumptions to our initial model: 

(Pl) There exists a process N = ( Nt)Or,ST such that M and N form a P-basis 

of 2?(P). 

(P2) There exists a probability measure P equivalent to P such that X and N 

form a p-basis of Z2(p). 
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Remarks. (1) (3.1) alone would entail that F is an equivalent martingale measure 

for X, i.e., a probability measure P= P such that X is a martingale under i! 

Assuming the existence of such a measure is quite familiar in this context since it 

corresponds to a no-arbitrage condition. Here, however, we require a minimal 

martingale measure: Apart from turning X into a martingale, it should !eave intact 

the remaining structure of the model; in particular, orthogonality relations should 

be preserved. See Fiillmer and Schweizer [5] for a generalization of this concept. 

(2) (3.3) and Theorem 11.2 of Jacod [lo] clearly show that P is not extremal in 

the set .&(X) of martingale measures for X since X does not span _Y?*(~). But due 

to Corollary 11.4 of Jacod [lo] and the remark following it, assumption (P2) implies 

that I? is extremal in the set A(X, N) of probability measures turning both X and 

N into (local) martingales. 

Lemma 3.1. Assume that X satisfies (Xl) and that (Pl) and (P2) hold. If in addition 

(3.4) 

then A is absolutely continuous with respect to (IvI)~ with a density a, and a right- 

continuous version of the process 2, := E [.&- IS,] (0~ t s T) is given by 

(J 
f := exp - a, dh4, -;. J ’ Id* dWf’),P 
0 0 > n (1 -a,-AMU).e”=‘AM= 

OGU=Sr 

(3.5) 

P-a.s. for all t E [0, T]. Here MC denotes the continuous martingale part of M, and 

AM,, := MU - MU- is the jump of M in u. 

Proof. (3.4) and (3.3) yield the Kunita-Watanabe decomposition T T 

Z,=1+ J EL, dM, + J Y,, dN,, P-a.s. 
0 0 

Since N is a F-martingale by (P2), it must be P-orthogonal to 2. This implies that 

2.5 v dN is a P-martingale, hence 

by the orthogonality of M and N - No under P. Therefore v = 0 PN-a.e., and 2 is 

given by 

(3.6) 
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Furthermore, the process (M, 2)’ exists and is given by 

By Theorem 13.14 of Elliott [3], this implies that M is a special &semimartingale 

with the canonical decomposition 

> I 

’ 1 
+ --d(M,&,P 

0 z- 

-=-d(M);, O< ts T. 

But M can also be written as 

M,=X,-X,-A,, Osts T, 

under P; since A is predictable, uniqueness of the canonical decomposition implies 

that 

A, = - 

with 

Inserting this into (3.6), we conclude that 2 satisfies the equation 

I 
f 

2,=1- &(Y, dM,,, 0s ts T, 
0 

whose unique solution is given by (3.5); cf. Elliott [3, Theorem 13.51. 0 

Remarks. (1) Lemma 3.1 has several implications. First of all, it tells us that p, if 

it exists, is essentially unique. Secondly, (3.5) shows the effect of switching from P 

to P: this change of measure is achieved by a Girsanov transformation which 

removes the drift A from X. Furthermore, (3.5) can be used as a starting point for 

constructing 13. We simply define 2 by (3.9, and the question to decide is then 

whether this yields an equivalent probability measure P or not. General integrability 

conditions for this are given by Jacod [lo] and Novikov [ 111. Finally, (3.5) shows 

another minimality property of F: only the information about X is required for its 

construction. 

(2) The existence of any equivalent martingale measure P* for X already implies 

the absolute continuity of A with respect to (M)P; this can be seen from the proof 

of Lemma 3.1. Thus, the assumption (X4) reduces to an integrability condition. 



M. Schweizer / Option hedging 351 

Let us now consider a contingent claim H E Z2(1?). Due to (P2) and Proposition 

1.3, there exists a unique trading strategy (pHiP = ( tHQP, 7 Hi’) which is R-minimizing 

with respect to E The process 6”” . IS given by the Kunita-Watanabe decomposition 

(with respect to F) 

T 

H=E’[H]+ 

I 
6:;” dX,, + T v,“‘” dN, p-a.s.; 

I 
(3.7) 

0 0 

77 HiP is then determined by the condition 

V,(cpH;‘)=EIHISt] E-a.s., OstsT. (3.8) 

cp H;B might seem to be a candidate for a locally R-minimizing strategy under P, 

and the next result tells us that this is indeed the case. 

Theorem 3.2. Assume that X satisfies (Xl) and that (Pl) and (P2) hold. Let 

HE ,Ce’( P) be a contingent claim and assume that HE Z2(p), v”;’ E Z”(P,) and 

that 5”;” sutisjies (1.3). Then the following assertions hold : 

(1) tHiP is a solution of the optimulity equation (2.13). 

(2) IfvHiP E Z2(FN) and if 5 is a solution of (2.13) which sutisjies the conditions 

(1.3), [E ,Ce’(F,) and v f,A;P E _Y2(pN), then 5 = 5”;’ F,-u.e. 

(3) If X also sutisjies (X2)-(X5), then (pH” is locally R-minimizing with respect 

to P 

Proof. (1) Let us first note that we need not qualify as. because P and F are 

equivalent. Since gHiP satisfies (1.3), we obtain from (Pl), 

Again using (1.3), we can therefore rewrite (3.7) as 

i 

T 

H=&H]+ [;;“dM,+ 
I 

Tt;ii)dAU+ 
I 

T v,H+dN,, 
0 0 0 

T 

= E[H]+ (S,H++& 
5”%;‘) dM, + ( v,H;P+ v,5”+?%‘) dN, ; 

note that (P2) implies 

EIH]=i[H]+e[l:5:“~dA,]. 

From the uniqueness of the Kunita-Watanabe decomposition (2.10), we now con- 

clude that 

IJ 
H;P = E&F+ ,/?A;P P,_~.~. 

so that (2.13) is indeed satisfied. 
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(2) Setting 6 := gH;” -6, we obviously have 

~ =pLH;p,A;P_p&A;P S,A;P 

and therefore 

s+@A;P = 0 PM-a.e., 

since both lHGB and 5 are solutions of (2.13). From the Kunita-Watanabe decomposi- 

tion (with respect to P) 

T 
~.dX.=~[~oT~,,dX~]+~oT(6.+p:A~P)d~~+~or~~A:PdN~, 

we conclude that 

T 
6,dX,=E[I:6.dX.]t~orv~A’pdN, p-a.,, 

But since X -X0 and N - No are F-orthogonal by (P2), we must have 

6 = 0 Px-a.e. 

so that (2) holds. 

(3) Because of (1) and Theorem 2.4, it is sufficient to show that cp Hi’ is mean-self- 

financing with respect to P. But (3.7) yields 

C,(cp”‘“)=H- 
I 

r[;;“dX,=&H]+ T~;:lidNU, 
0 I 0 

and (3.8) implies by (3.7), 

C,(cp”‘“)=&H]~,]- ‘tU”‘“dX,, 
I 0 

i 

f 

=E[H]+ vf;‘dN,, 0s tc T, 

0 

since both X and N are martingales under i Hence, the assertion follows from 

V H’P E JZ2( PN) and the fact that N is also a martingale under P. 0 

Theorem 3.2 has several aspects. First of all, it gives an existence and uniqueness 

result for the solution of the optimality equation (2.13). Furthermore, it also provides 

us with a procedure for finding a locally R-minimizing trading strategy. In a first 

step, we have to look for the minimal equivalent martingale measure k Then we 

can take the strategy (pHiP which is (strongly) R-minimizing with respect to F and 

whose existence and uniqueness is guaranteed by Proposition 1.3. Due to (3.7) and 

(3.8), this optimal strategy can be described in terms of P alone, in analogy to the 

complete case where [* and V* were determined by P*. The uniqueness of P* in 

the complete case now corresponds to the uniqueness of the minimal martingale 

measure p, and the optimal value process 

fi:=&H]s,], octsT, (3.9) 
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of (3.8) can therefore be viewed as a plausible candidate for the valuation of the 

option H. 

If we combine Proposition 1.3 and Theorem 3.2, we obtain an interesting stability 

result. In a complete model, every contingent claim H can be reproduced with 

R = 0, and the generating self-financing strategy is independent of the initial measure 

P in the sense that any equivalent measure will yield the same optimal strategy. If 

the model is incomplete, both these aspects become more subtle. In a martingale 

model, Proposition 1.3 shows that we can at least still generate H with an R- 

minimizing strategy. Furthermore, Theorem 3.2 tells us that this strategy is robust: 

it will again be optimal for a whole class of semimartingale models P, namely all 

those which admit I? as their minimal equivalent martingale measure. In this sense, 

two key properties of complete models are at least partially preserved. 

4. Special cases and examples 

This section is devoted to several special cases and examples of the preceding results. 

We begin by showing that local R-minimization can be viewed as an extension of 

R-minimization and then give two explicit examples where we use the methods of 

Section 3. 

4.1. Let us first consider an attainable claim H with a representation (1.9). Combin- 

ing this with (2.11), we obtain the Kunita-Watanabe decomposition 

H=H,,+EII:S’dA.]+~~~(P:+~:,*,A’P)dM.+LC”:P P-a.s. (4.1) 

The resulting optimality equation is 

5*_t~US*.A;P_5_~LS.A;P=O PMae. (4.2) 

with the obvious solution 5 = &*. Of course, this is not surprising: The self-financing 

trading strategy cp in Proposition 1.1 has R = 0 and is therefore a fortiori locally 

R-minimizing. 

4.2. Next we examine the case where X is not a general semimartingale, but a 

martingale under P. This means that M = X - X0 and A = 0. The optimality equation 

(2.13) simplifies to 

5”-5=0 P,-a.e. 

so that the unique locally R-minimizing trading strategy coincides with the R- 

minimizing strategy cp H given by Proposition 1.3. Hence, local R-minimization 

generalizes R-minimization. 
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4.3. Example 

Let ( W’, W’) be a 2-dimensional Brownian motion, (St;) its natural filtration and 

P = (Pt)OSIST a bounded adapted process. Defining X and N by 

dX,=X,dW:+X,+P,dt, 

dN,=N,dW:, 

yields 

Furthermore, it is clear that W’ and W2 form a P-basis of =Y2( P). A suitable Girsanov 

transformation will remove the drift /I and yield the unique equivalent measure P 

with respect to which 

and W2 form a 2-dimensional Brownian motion and therefore a F-basis of 9’(p). 

Note that X satisfies 

dX,=X,dW; 
. 

with respect to P so that stochastic integrals with respect to WI’ can be rewritten 

as stochastic integrals with respect to X. Hence, for every contingent claim H 

satisfying certain integrability conditions, there exists by Theorem 3.2 a unique 

locally R-minimizing trading strategy. Its &component can be computed quite 

explicitly: If we set 

~:=~[H]&], OstsT, 

it is given as 

(4.3) 

Note that (4.3) can be evaluated path by path since both ? and X can be taken as 

continuous. 

If the claim H is of the special form 

H = ~(XT, NT) 
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for some function h, we can give even more explicit formulas. Let us denote by 

g(x, y, t) the solution of the partial differential equation 

g,+~.(x2g,,+y2.gy1.)=0 (4.4) 

with the boundary condition 

g(x, y, T) = h(x, y) for all x, y E R. (4.5) 

Then it is well-known that 

P,=g(X,,N,,t), OctsT, 

and It8’s formula implies 

cp”=gx(X,,N,,t), 0srsT. (4.6) 

Thus, we have solved the optimality equation (2.13) by solving a partial differential 

equation which is independent of p -although (2.13) does depend on p because 

of the term p fA’P This is explained by Theorem 3.2 which allows us to work again . 

in a martingale model. Of course, there are many equivalent martingale measures 

P* for X in this example; removing the drift p in the first coordinate and adding 

any drift y in the second is enough. Only the minimal martingale measure I’, however, 

will give such a simple solution. Finally, note that the n-component of the optimal 

strategy (pHiP is also independent of /3 due to (3.8). This ‘stability’ of the model F 

corresponds exactly to the fact that in the Black-Scholes model, both price and 

hedging strategy do not depend on the drift parameter. 

Remark. In this example, one could also think of translating the optimality equation 

(2.13) directly into a partial differential equation. Assuming that p is of the form 

Pt = b(X,, N,, t), 

that the optimal strategy 5 can be written as 

and that H is of the form 

H = h(X,, N-J 

for suitably regular functions b, f and h, one would then need explicit expressions 

for the integrands p H’P and p’9A,p in the representations (2.10) and (2.11), respec- 

tively. Such expressions are provided by the Haussmann filtering formula (cf. Davis 

[2]); however, the required computations turn out to be rather involved. It is fortunate 

that they are not really necessary for our purposes: thanks to Theorem 3.2, we can 

work with the martingale measure r’, and this easily yields (4.4) and (4.5). 
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4.4. Example 

Let (S’, S*) be a 2-variate point process with P-intensities A i = (hf)os,sT (i = 1,2), 

and take (9,) to be the natural filtration of (S’, S2). Let @’ = (@i),=,=, be a positive 

adapted process and define 

x,:=x,+s:- 
I 

f 
@;du, OstsT. (4.7) 

0 

Setting 

, 
&I::= S;- 

I 
Audu, O<t<T (i=1,2), 

0 

M := M’, N := M*, 

this yields 

X=X,+M+A, 

(M):= j’ A:du, OstsT, 
0 

Under suitable integrability and boundedness conditions (see Schweizer [I21 for 

more specific details) on the processes A ‘, A* and d’, M and N will form a P-basis 

of Z2( P). Now we use a Girsanov transformation to construct the unique equivalent 

measure I? such that S’ has the p-intensity d’. It can then be shown that X and N 

form a F-basis of Z’(P) so that again every suitable contingent claim H admits a 

unique locally R-minimizing trading strategy. Its &component can be computed as 

OstsT, (4.8) 

with 

as before. In the special case where Ij’ is deterministic and H = (Sk--K)+, (4.8) 

can be written explicitly as 

e-(~‘(T)-~‘(0). (p’(T)-p’(t))’ 
jzmax(O,K-.S-) j! 

with 
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Remark. If one thinks of S’ as a cumulative claim process and of p’ as the 

corresponding cumulative premium process, then the special contingent claim H in 

our example describes a stop-loss contract. The observation that this is the exact 

analogue of a call option was made by Sondermann [14]. He used the methods of 

option pricing in order to analyze stop-loss contracts in a complete model with a 

single process. Example 4.4 shows how this approach can be extended to an 

incomplete situation. 
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