
Contractual Anonymity

An INI Master’s Thesis

Edward Schwartz

May 11, 2009





Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 CAP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Contract Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Anonymity and Group Signatures . . . . . . . . . . . . . . . . . . . . 10

2.4 Trusted Computing and Contract Enforcement . . . . . . . . . . . . . 12

3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Operation of the System . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Establishing a Secure Channel . . . . . . . . . . . . . . . . . . 15

3.2.2 Protocol Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Trusted Computing Base (TCB) . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 CAP as a Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Contract Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Threshold Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Verifier-local Revocation . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ii



Acknowledgements

I would like to thank several people for their time, suggestions, and influence. Creating

this thesis would not have been possible without them.

First, I would like to thank my thesis committee members, Drs. Adrian Perrig

and Lujo Bauer. A short year ago, I was learning much of the knowledge and skills

from these two professors that I used while creating my thesis. It seems very fitting

to me that they are now also on my thesis committee. Thank you both for agreeing

to be on my committee, and for your lasting influence in my academic career.

My sincere thanks also go to Drs. David Brumley and Jon McCune, who worked

with me on a day to day basis to create this thesis. Their guidance and direction was

instrumental in all parts of the thesis, from brainstorming the initial idea to helping

polish the final written work.

I look forward to continue working with Drs. Brumley and McCune as well as

Drs. Perrig and Bauer when I begin working on my PhD in the fall of 2009. Judging

from how much they have impacted my life in the short time that I have known them,

I am sure that I will owe many gratitudes to them in the future.

iii



List of Figures

1 The three stages of CAP: registration, anonymous communication, and

breach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The registration and anonymous communication protocols. . . . . . . . . 21

3 The key binding protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 The breach protocool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Comparison of anonymous communication time at the user between CAP

and similar systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Comparison of anonymous communication time at the service provider

between CAP and similar systems. . . . . . . . . . . . . . . . . . . . . . 27

iv



List of Tables

1 Comparison of authentication time between CAP and other systems for

reasonable parameter choices. . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Lines of code in the trusted computing base (TCB) of our implementation

as measured by sloccount [26]. . . . . . . . . . . . . . . . . . . . . . . 29

v



Abstract

Anonymity benefits a variety of applications, such as websites for whistle-blowers who

want to report abuses without fear of reprisal, online support groups for sensitive

issues such as victims of violence, and network privacy services like Tor. However,

there is a tension between the need for anonymity for well-behaved users and the need

to identify users who misbehave, e.g., by using the service to send spam or distribute

malware. Unfortunately, in most current anonymity schemes, this balance is tipped

in favor of the service providers. In particular, in most current schemes the service

provider can take action such as de-anonymizing or blacklisting a user for any reason

and at any time.

We propose and develop techniques for achieving contractual anonymity. In con-

tractual anonymity, a user and service provider enter into an anonymity contract.

The user is guaranteed anonymity and unlinkability from the contractual anonymity

system unless they break the contract (though information that is external to the

system, like network addresses, can leak identifying or linking information). Service

providers are guaranteed that they can identify users who break the contract. Both

parties are bound to the contract, and neither can change the contract without the

other’s permission. In particular and unlike other schemes, the service provider is

bound to the agreed-upon definition of malicious behavior as stated in the contract.

A service provider is not able to take any action toward a particular user (such as

revealing her identity or blacklisting her future authentications) unless she violates

her contract.

We demonstrate our techniques for contractual anonymity by building a prototype

system. In our system, anonymity of individual users is provided by group signatures.

Users are guaranteed that their anonymity will remain intact (assuming they abide

by the contract) via TPM (Trusted Platform Module) attestations to the correct

operation of the identity-maintaining system components. Our approach does not

require unjustified trust in third-party servers, and is significantly more efficient than

previous related approaches.

vi



Chapter 1

Introduction

There are a variety of reasons why users may wish to use a network service anony-

mously, and in turn why service providers may then wish to offer anonymous access to

their service. Anonymous services enable users to discuss sensitive personal issues via

a message board or chat room, such as victims of violence, cancer or AIDS patients,

and child or spousal abuse information and support groups. Anonymous services also

allow people to report abuses by governments and companies (i.e., whistle-blowing)

without fear of retaliation. In some cases, a user may not have an a priori motivation,

but may simply wish to retain some degree of personal privacy on the Internet as a

matter of preference.

A service provider (SP), however, must be able to identify misbehaving users in

order to protect their service. For example, a service may want to identify users

that use chat rooms to threaten others, use anonymous networks for denial of service

attacks, or send spam to message boards. The ability to identify misbehaving users is

important even in otherwise anonymous services, since this may be necessary to keep

the service functioning. There are a number of existing anonymous authentication

schemes that are designed to allow users to authenticate anonymously and also allow

the SP to disallow access to misbehaving users.

Unfortunately, there are currently no anonymous authentication schemes that

simultaneously guarantee that: 1) the identity of legitimate users will remain anon-

ymous and indistinguishable as long as they abide by a pre-agreed terms of service

contract, 2) network providers can identify users who misbehave by violating the

same contract, and 3) the contract is immutable and binding once all parties agree.

In particular, existing schemes for achieving anonymous authentication either rely on

a trusted third party [5, 10, 11], or are mutable and allow SPs to blacklist a user at

any time and for subjective reasons [8, 24, 25]. An immutable contract is necessary

for a user to be assured that the SP will not change the system in a way that affects

that user’s anonymity without her permission.

We propose the notion of contractual anonymity. In contractual anonymity, a

user and a SP agree to a contract such that the user’s anonymity is guaranteed as

long as they do not violate the contract, and the SP is guaranteed that they can

identify the user upon producing proof that the user violated the contract. However,

neither party can change the anonymity contract at some later date without the

other’s consensus. Service providers and users must negotiate a new contract if either
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side wishes to change the terms. Users who abide by the contract are guaranteed a

SP learns nothing about their identity from CAP when they authenticate1, and that

their authentications are indistinguishable from other users’ that have not broken

their contract.

More specifically, we propose the following properties for a contractual anonymity

scheme:

Anonymity The user can authenticate anonymously, i.e., users have an anonymous

identity. No one can relate a user’s real identity to her anonymous identity if

she has not broken her contract.

Contract-based The user and SP enter in a contract, and both parties are bound

by the contract. A contract specifies unambiguously the agreed-upon terms of

service. In contract-based anonymous authentication, the rules for revealing a

user’s real identity are specified by the contract. Neither the user nor the SP

can modify the contract; they must explicitly agree to a new contract if they

wish to change the terms.

Unlinkability Separate authentications of a single anonymous identity that has

not violated the contract cannot be correlated. For example, it should not

be possible for the SP to attribute a group of authentications (e.g., logins or

message signatures) that do not violate the contract to the same anonymous

identity. Furthermore, a SP should be unable to provide special treatment to a

user based on her past behavior, assuming that she has not broken her contract.

Revocability The SP is able to obtain a user’s identity if the SP has proof that

the user broke her contract. The SP can then take appropriate action, e.g.,

blacklisting the user.

Efficiency The protocol should be as efficienct as possible.

Our Approach In this thesis, we present the Contractual Anonymity Protocol

(CAP), a protocol for achieving contractual anonymity with all of the above proper-

ties. At a high level, CAP enables a user and a SP to agree on an anonymity contract

where the terms of the contract can be any boolean function. For example, the con-

tract may stipulate that the user should not send packets that match known attack

patterns. Once the contract is agreed upon, the user receives an anonymous identity.

1In a contractual anonymity system, every unlinkable message that is sent to the service provider

must be separately authenticated, and thus such a message is called an authentication. Alternatively,

an authentication can be thought of as an authenticated message.
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An anonymous identity (e.g., set of credentials) is not linkable to the real user. The

service provider is given proof that they can recover the user’s real identity from the

anonymous identity if the contract is broken.

In CAP, we base anonymous credentials on a cryptographic primitive called group

signatures. Group signatures give CAP users cryptographically secure anonymity

and unlinkability, and guarantee to the SP the ability to detect authentications from

blacklisted users. We discuss how we use group signatures in detail in Section 2.3.

At a high level, a group signature scheme allows any member of the group (a user

in our scheme) to sign on behalf of the group. Individual members’ signatures are

indistinguishable from any other members’ signatures.

However, group signature schemes are not sufficient to offer all of the properties

required for a contractual anonymity system. We address this in CAP by leveraging

trusted computing to construct a verifiable third party, called the accountability server

(AS), that manages anonymous identities. The AS is a software module implementing

an algorithm that will only reveal a user’s real identity if the SP provides message(s)

that prove the user has violated the contract.

The particular server that an AS runs on is not arbitrarily trusted by either the

user or SP. Instead, remote parties trust that the CAP software is implemented cor-

rectly (e.g., that user identities will only be revealed when given proof of misbehavior),

and the AS proves that it is running that software. This is accomplished by leverag-

ing recent advances in trusted computing, including remote attestation and dynamic

root of trust. We discuss these primitives in detail in Chapter 2.4. In particular, the

AS proves via attestation that it is running known software in an isolated execution

environment with an extremely small trusted computing base (TCB) (e.g., leveraging

dynamic root of trust to eliminate all but a few hundred lines of additional trusted

code beyond the logic of the AS itself), and that they are interacting directly with the

AS’s TCB. The TCB code can be verified by anyone (e.g., external security experts)

to show that it returns a user’s real identity if and only if a contract is broken. Thus,

the SP and user in our protocol receive proof that the AS will enforce exactly the

desired contract.

Previous Approaches There have been several previous approaches to anonymous

authentication. However, none have satisfied the requirements of contractual anon-

ymity. At a high level, these approaches differ from CAP by not binding anonymity to

a pre-negotiated contract. For example, many existing anonymity systems require a

trusted third party (TTP) that is capable of deanonymizing or linking users [6,10,11].

These systems differ from ours in that our AS is constrained to enforce only the terms
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of the contract; previous work allowed the TTP either to link authentications through

blacklisting at any time or deanonymize users for any reason.

Recently, a number of anonymous authentication and blacklisting schemes have

been proposed that do not require a TTP [8,24,25]. However, these systems provide

no way to constrain the conditions for a SP to link a user through blacklisting, i.e.,

they allow the SP to subjectively judge malicious behavior. We can also allow for

subjective judging. However, contractual anonymity is also capable of providing a

stronger sense of security for the user, because the user and SP can agree to the

conditions for breaking unlinkability guarantees before the user commits to using the

service at all.

Finally, CAP is much more efficient than previous competing approaches. Based

on our measurements (Chapter 4.2), a single machine can perform about 106 CAP

authentications per day. A user of PEREA [8, 24, 25], the most closely related work,

can only carry out only about 2 ∗ 104 anonymous authentications per day (about 2%

of the number we can carry out)2. These limitations motivate the creation of a new

protocol that addresses these challenges.

Caveat: CAP, like previous anonymity schemes, provides a building block for

users to anonymously communicate with a SP. It does not automatically take care of

anonymizing the complete protocol stack; see Chapter 5.1 for details.

Caveat: CAP provides strong anonymity guarantees at the authentication level.

Although contractual anonymity provides stronger guarantees against SP misbehav-

ior than previous work, it does not make any guarantees about the behavior of SP

backend software. For instance, while a SP cannot blacklist a user for posting a mes-

sage allowed by the contract policy to an anonymous message board, the SP can still

remove that posting for subjective reasons.

Contributions

Contractual Anonymity We introduce the concept of contractual anonymity. In

a contractual anonymity system, users are guaranteed anonymity as long as

they do not violate the policies of their predetermined contract with the SP.

The SP is guaranteed that it can learn a user’s real identity (and thus take

appropriate action such as blacklisting) if the user breaches the contract.

Contractual Anonymity Protocol We design the Contractual Anonymity Pro-

tocol (CAP), which is the first protocol that provides contractual anonymity.

2For PEREA parameters K=30, and T = one hour.
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Efficient Implementation We implement a prototype of CAP and show that our

system is more efficient than previous competing approaches [7, 8, 24, 25]. Our

system is designed to be used with many anonymous applications, including

ones with moderate authentication rates (around 106 unlinkable messages per

day), and does not have significant rate-limiting or scalability problems.

Verifiable Escrow Unlike systems that simply assume a trusted third party (TTP),

our system runs the AS software in an isolated and verifiable execution envi-

ronment. This enables users and SPs to decide whether they want to trust the

AS based on the software it is running.
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Chapter 2

Design Overview

2.1 CAP Overview

At a high level, the Contractual Anonymity Protocol is between three parties:

The Service Provider (SP) The SP wants to provide an anonymous service, such

as an anonymous message board, chat room, or network. For now, we assume the SP

defines the contract policy, since this situation naturally maps to current networks

where the SP decides the terms of service. (Alternatives for contract negotiation are

discussed in Chapter 5.3.) In CAP, the SP is guaranteed the ability to obtain the

identity of a user that has broken an agreed-upon contract.

The User (U) Users wish to partake in the anonymous service offered by the

SP, e.g., to be able to post anonymously to a message board. When users agree to

the contract policy, they are given an anonymous identity. The identity serves as

credentials which allow them to anonymously use the service. Users are guaranteed

to remain anonymous as long as they do not break the contract. In our system, a

user’s real identity is the unique certified, public endorsement key associated with

their computer’s trusted platform module (TPM). A user’s real identity is revealed

to the SP if she breaks her contract.

The Accountability Server (AS) In CAP, the AS serves as a verifiable third

party for enforcing contracts. Specifically, the AS 1) issues anonymous credentials to

the user as described above, and 2) reveals the user’s real identity if and only if given

proof that the user violated her contract. We allow the AS to be a distinct entity so

that a SP can operate its own AS, or a single AS can provide anonymous identity

services for many SPs. A mapping from each user’s anonymous credentials to her

real identity is stored on the AS, so that the AS can determine a malicious user’s

real identity after being given evidence of misbehavior. Further, users and SPs can

remotely verify that the software running on the AS will only reveal this mapping if

given proof that the user has broken her contract.

An overview of CAP is shown in Figure 1. There are three stages in the proto-

col: registration, anonymous communication, and contract breach. These phases are

discussed in much greater detail in Chapter 3.
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Figure 1: The three stages of CAP: registration, anonymous communication, and
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Setup Before the protocol starts, all the participants must engage in some form of

setup. The user, AS, and SP must all generate public/private keypairs that can be

used for digital signatures and asymmetric encryption. The SP must also obtain a

certificate that binds its identifying name to its public key. The AS must run the

group signature key generation algorithm for each group that is needed.

Registration Phase In the initial registration phase a SP and user agree on a spe-

cific contract policy. The contract policy stipulates the rules that users are expected

to adhere to. For example, the contract policy may specify that users should not send

known attack messages. We discuss policies further in Section 2.2.

In the default CAP implementation, the user receives a contract policy proposed

by the SP. If she agrees to the policy, then she requests a contract with that policy

from the AS. (Alternatives to this arrangement are discussed in Section 5.3.) The

AS returns an anonymous identity and a contract for the user to be used with the

SP. The contract is a statement that the AS has bound the user’s real identity,

anonymous identity, and the contract policy. It provides assurance to the SP that

the AS knows the true identity of the user with the anonymous credentials, and will

reveal the identity if given proof that the user has broken the policy in her contract

(we often refer to this as simply breaking or breaching the contract). As mentioned

previously, we use group signatures to implement anonymous identities. We describe

group signatures and how CAP uses them below in Section 2.3.

At the completion of the registration phase, the SP and user have a contract that

guarantees the user’s real identity will only be revealed by the AS if the SP can submit

evidence (i.e., a set of messages) that the user violated the contract.

Anonymous Communication Phase In the anonymous communication phase

the user uses her anonymous identity to interact with the SP. In particular, the user

communicates with the service by digitally signing a message with her anonymous

identity private key. A SP then verifies that the message was created by a user with

a valid contract by verifying the signed message with the public key specified in the

contract.

Authenticated messages are both anonymous and unlinkable. For this reason, we

also refer to communicating messages to the SP as performing a separate authenti-

cation. An anonymous communication operation is analogous to the authentication

operation of an anonymous authentication protocol.
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Breach of Contract Phase A breach of contract happens when the user sends

messages prohibited by the contract policy to the SP. The SP can identify which

user violated the contract by presenting the prohibited messages to the AS. Upon

confirming that the messages violate the agreed-upon contract, the AS reveals the

user’s identity to the SP, and also allows the SP to identify any subsequent and prior

communication using the revealed anonymous credentials.

At the end of the breach phase, the SP has the capability to identify the user that

breached their contract, and thus can take appropriate action. To be concrete, we

assume the SP will blacklist the user. The blacklist (BL) is a list of users who have

violated the contract and are no longer allowed to use the service. However, CAP

can certainly be extended to support other actions, such as anonymous blacklisting,

in which SPs are given the ability to blacklist users without needing to know their

identities.

2.2 Contract Policies

An anonymity contract is a binding agreement that states a user’s identity may be

exposed if they violate the contract terms. We call those terms the contract policy.

A contract policy is a Boolean predicate f : {msg1,msg2, . . . ,msgn} → {breach,

ok}. The status breach indicates that the messages violate the contract terms, and

thus the user is in breach of contract. ok indicates that the messages do not violate

the policy.

Recall that CAP allows for messages by the same user to be unlinkable. Note that

f does not reveal which user created the messages, but only whether the included

messages are in violation of the policy. This allows the SP to run f without the

aide of the AS. However, the SP may have difficulty enforcing policies that require

analyzing multiple messages from the same user, because the SP cannot determine

if the messages were created by the same user or not. Instead, if the SP suspects

that the messages violate the policy and were created by the same user, it must send

them to the AS which can determine if they were created by the same user using the

AS’s group manager abilities. As an example, CAP has difficulty enforcing threshold

policies, which are described in Section 5.4.

One advantage of contractual anonymity is that contract policies are immutable

once both parties have agreed to the contract. In contrast, other anonymity schemes

such as PEREA [25] allow the SP to decide at any time that a user is misbehaving

and blacklist them.
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Filter-Based Policies One type of policy may be to disallow messages that are

known to be malicious. For example, the SP may have an intrusion detection system

that implements a set of rules for determining when messages are malicious. Note

that such a policy should have one-sided error, e.g., never mistake a safe message

for a malicious one. Previous work has shown how to automatically generate rules

that have one-sided error, e.g., researchers have shown [9, 12] how to automatically

generate rules that will only match exploits for a known vulnerability, and never

match a safe input.

Digital Signature Policies Another type of policy could be to allow privileged

users to map an anonymous message to a real user. For example, an anonymous

message board intended to provide anonymity to victims of cancer could be mis-

used to post unrelated content anonymously (e.g., posting terrorist threats). Such a

service may wish to allow law enforcement the ability to relate particular posts to

individuals. The SP for the service can achieve this by specifying in the contract the

ability for a pre-arranged key belonging to law enforcement to retrieve the mapping

between anonymous ID and user ID. Note that the users of the service would have

had to explicitly agree to such a policy as a term for using the service. We can use

digital signature policies to implement subjective judging [24] by specifying that a

pre-arranged key belonging to the SP can be used to deanonymize a user.

2.3 Anonymity and Group Signatures

CAP uses group signatures [2, 5, 6] to implement anonymous identities. We describe

group signature schemes and show how we use them to implement anonymous iden-

tities.

Group Signatures Group signature schemes provide anonymity among members

of the group. Each group member has a private signing key which allows them to

sign messages on behalf of the group. We require the group signature scheme to have

a designated group manager [2, 5, 6]. Group signature schemes provide anonymity

because given a signed message, it is computationally infeasible for anyone other

than the group manager to determine which group member signed the message.

A group signature scheme suitable for CAP has four procedures: GS KeyGen,

GS Sign, GS Verify, and GS Open.

GS KeyGen(n, k) The GS KeyGen algorithm takes in a security parameter k and

the number of group members n. The algorithm outputs a group public key

KGPK , the group private key K−1
GMSK

, and a list of n group member private
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keys K−1
GSK

[i]. In a regular group signature setting (but not in CAP), the group

member private keys and group public key are distributed to group members.

The group manager retains the group private key K−1
GMSK

.

GS Sign(KGPK , K−1
GSK

[i],M) GS Sign signs a message M with the group member

i’s private key K−1
GSK

[i].

GS Verify(KGPK ,M
K

−1

GSK
[i],BL) GS Verify ensures that the given signed message

M
K

−1

GSK
[i] has a valid signature for message M . We use a variant of group sig-

natures that allow for verifier-local revocation [6]. In a verifier-local revocation

scheme, GS Verify also checks if the user who signed M
K

−1

GSK
[i] is on the list of

blacklisted users BL. Note that the verify algorithm cannot add members to the

BL without possessing a special revocation token that must be released by the

group manager, and cannot distinguish between signatures made by members

not on BL.

GS Open(K−1
GMSK

,M
K

−1

GSK
[i]) GS Open determines which group member signed mes-

sage M and outputs a revocation token for that user. The revocation token can

be distributed to group members and added to their BL.

Group signature schemes, and thus authentications in CAP have the following

security properties:

Correctness Signatures produced by a group member using the GS Sign algorithm

are accepted as valid signatures by the GS Verify algorithm, as long as the

group member is not on the blacklist.

Unforgeability It is computationally infeasible for an adversary who is not a group

member to produce a signature that is accepted by the GS Verify algorithm.

Anonymity It is also computationally infeasible to determine which member of a

group created a particular signature without the use of K−1
GMSK

.

Traceability By using the GS Open algorithm, the group manager can always iden-

tify at least one member of a coalition of one or more dishonest members that

collude to produce a signature.

Unlinkability It is computationally infeasible to determine if two messages were

signed by the same group member without possessing K−1
GMSK

or the signer’s

revocation token.
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Exculpability Group member i cannot create a signature M
K

−1

GSK
[i] such that

GS Open (M
K

−1

GSK
[i]) = j if i 6= j.

Readers interested in the security arguments are invited to consult the appropriate

references [5, 6].

Anonymous Identities We use group signatures to create anonymous identities.

Each user is a member of a group for her particular SP and contract policy. The AS

is the group manager. Our use of group signatures achieves the desired properties

(from Chapter 1) of anonymity, unlinkability, revocability, and efficiency.

The CAP protocol provides anonymity because each message endorsed by a user

is a group signature, and signatures among (unrevoked) group members are indistin-

guishable. The endorsement signatures also provide unlinkability between messages,

even if those messages are signed by the same user. Users’ keys can be revoked via

the GS Open algorithm. Finally, group signatures are efficient. For example, we use a

group signature scheme [6] that requires about 8 exponentiations (and an additional

2 bilinear map computations) to sign a message. Verification takes 6 exponentiations.

Verification with revocation with perfect unlinkability can be performed in O(|BL|)

time, while revocation which slightly decreases unlinkability (see Section 5.5) can be

done in O(1) time.

2.4 Trusted Computing and Contract Enforcement

CAP meets several requirements for a contractual anonymity scheme by leveraging

trusted computing, specifically the contract-based and efficiency properties. The

contract-based property is achieved by using a verifiable third party that can securely

bind user identities to contract policies and convince remote parties that it will do so.

As a side-effect of using trusted computing, we avoid the need for Zero-Knowledge

Proofs in CAP, since an AS can prove that it will not misuse sensitive information.

This makes our system efficient and scalable. These properties can be achieved using

technologies that are available on recent commodity platforms [1,17,23]. Specifically,

trusted computing is used (1) to execute sensitive code in an isolated, verifiable

environment on the AS’s and user’s platforms; (2) to cryptographically seal data so

that it is only available to specific code that executes within the isolated environment;

(3) to attest to a remote party what code executed within the isolated environment,

and its inputs and outputs; and (4) to provide unique identifiers for the AS and users.

Isolated and Verifiable Execution The AS is a third-party server that users must

trust to protect their anonymity, and SPs simultaneously trust to reveal misbehaving
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users’ identities. CAP builds trust in the AS by executing its critical components

(i.e., those which handle users’ true identities) in an isolated, verifiable environment.

The isolation is achieved using the dynamic root of trust primitive [16] available

on commodity systems today [1, 17]. This primitive reinitializes the platform into a

known trusted state and records a measurement (cryptographic hash) of the code that

will be executed in the isolated environment. Once the execution has been recorded,

sealed storage and remote attestation become possible.

Protecting Sensitive Data Sensitive data is protected using TPM-based sealed

storage, whereby data can by encrypted such that subsequent decryption is only

possible if the platform is executing specific software. Thus, AS code can seal the

mapping between users’ true identities and their anonymous credentials such that

only that same AS code running in the isolated execution environment will be able

to unseal (decrypt) it.

Proving the AS Behaves Properly to a Remote Party One system can prove

to another that it has loaded certain code for execution within an isolated environ-

ment using TPM-based attestation. An attestation demonstrates to a remote verifier

that the platform in which a particular TPM resides has instantiated an isolated

execution environment with a particular code module. In CAP, this is the AS’s

identity-mapping module.

A remote verifier can make a trust decision regarding the operation of the attesting

AS based on its knowledge of the attested software. We expect that a known-good

implementation of CAP will be released. Rather than releasing a formal proof that

the implementation is correct, we expect that this implementation will be endorsed by

security experts to have the desired properties: that a user’s identity will be released

if and only if there is evidence that the user broke her contract. This enables users to

achieve a similar level of control over their identity as in a TTP-less scheme, because

they can control what code has access to their identity. SPs gain a similar level of

control over the code that can issue anonymous credentials allowing access to their

service. The verification process takes place during the establishment of the secure

channel in CAP (see Section 3.2.1).

We denote the process of creating an attestation of the currently running code

module with input i as Gen Attest(i). A third party can compute the value an attesta-

tion should have for code module running with input i as Ver Attest(code module, i).

A remote party can verify an attestation by confirming that the attestation’s value

is correct, and then verifying that there is valid signature on the attestation from a
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key whose private component is known only to a TPM.

Unique Identities For a contractual anonymity scheme to be deployed, users must

have a unique identity that they cannot readily change. If users could change their

identity, they could register the new identities at will to bypass blacklisting. CAP

uses the Endorsement Credential [23] that is included in Trusted Platform Modules

(TPMs) as the globally unique identity for the users. It is this identity that the AS

keeps in escrow. If a user violates their contract, this identity is released to the SP,

which can add it to its blacklist to prevent the user from obtaining new anonymous

credentials. Alternatively, users’ identities can be readily tied to some other unique

identifier (e.g., driver’s license or social security number) if desired. We discuss this

further in Section 3.3.
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Chapter 3

Architecture

We now describe CAP in detail. We describe the setup and roles of the user, service

provider, and accountability server, and also layout the protocols that they use.

3.1 Setup

Before the user, service provider, and accountability server begin participating in

CAP, they must complete the necessary setup steps. The user and the AS must a

generate public/private keypair that is valid for digital signatures and asymmetric

encryption. The private components of these keys must kept secret to the trusted

CAP code, however, so they must be generated and sealed using the TPM when the

trusted code is running in isolation. The user and AS do not need certificates other

than their TPM endorsement key certificates; they are able to convince others of their

public keys using attestation.

The SP must also generate a public/private keypair, but does not do so inside

the trusted execution environment. Since the SP lacks any TPM support, it must

also obtain a certificate that binds its name to a public key (e.g., a commodity SSL

certificate).

The AS is also responsible for generating group signature keys for each contract

policy and SP combination in use. As with the private components of the signa-

ture/encryption keypairs, the group manager secret key and group private keys must

be generated and sealed in the isolated environment. Although there are a number

of ways to arrange for this to occur, CAP’s standard behavior is to generate a new

group when a user is requesting a contract for a previously unseen (SP, contract

policy) tuple.

3.2 Operation of the System

We now describe how a secure channel is established between parties, and then de-

scribe the phases of CAP. Figure 1 gives a depiction of the different phases (registra-

tion, anonymous communication, and breach).

3.2.1 Establishing a Secure Channel

Many parts of CAP rely on the ability to create a secure channel between the protocol

participants. Although the general problem of creating a secure channel between

participants possessing authenticated public keys is well understood, CAP must create
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a secure channel between actors whose corresponding private keys are sealed (using

the TPM) so that only the CAP software can access them, which requires a slightly

different protocol. Specifically, a CAP secure channel must be able to provide 1)

confidentiality and integrity of any messages sent inside the channel, and 2) assurance

that the remote party’s private key is sealed so that only the trusted CAP software can

access it. These combined properties 1) allow messages to be delivered confidentially

to the trusted CAP software without being read or modified (even though they must

pass through untrusted components such as the operating system), and 2) allow a

remote party to certfify that messages received from the channel could only have been

generated by the trusted CAP software. This is needed when communicating with the

AS, because the user and SP’s trust in the AS is based on the trusted CAP software.

Before the secure channel is established, participants with a TPM (e.g., the user

and AS) must possess an endorsement key certificate issued by a trusted manufacturer

that indicates that the TPM is created by that manufacturer. The user and SP must

have a list of known trusted code signatures for the AS, and the AS must have a

list of known trusted code signatures for the user. All the trusted code signatures

should be written in such a way that the trusted private key they utilize is sealed so

that only the trusted code can access it. All participants must have a public/private

keypair that can be used for asymmetric encryption and digital signatures. After the

secure channel is established, any participant communicating with a TPM-equipped

participant will believe that the TPM participant’s private key is sealed so that only

the trusted code can access it, because the AS has proved it is running code that

is trusted to do this. Because of this, the remote party can infer that any data

encrypted to the corresponding public key will be known only to the trusted code,

and any message signed with the private key could only have been created by the

trusted code.

We now explain the secure channel establishment in the registration protocol

between the user and AS (Figure 2, Lines 4–17). A secure channel is established in

the breach protocol as well, but the process is very similar (Figure 4, Lines 1–11).

On Lines 4–5, the user generates an untrusted nonce1 and sends the nonce and its

public key to the AS. The AS generates its own nonce and creates an attestation to

prove that is running the CAP software in response to the user’s request (Lines 6–7).

A verified attestation proves several important facts to the verifier (in this case,

the user). First, by including NU and NAS in the attestation, the AS proves that it

is responding to the user’s request, which ensures freshness, i.e., the isolated execu-

1The nonces in CAP are known by the untrusted software. This is in contrast to the random

numbers, which are known only by the trusted part of the code.
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tion environment ran in response to the user’s request. Second, the AS proves that

messages encrypted to KAS or digitally signed by K−1
AS can only be read or created by

the AS. This is because the AS keeps security-sensitive data like K−1
AS sealed so that

only CAP software can access it. The user can verify this, because they can verify

the exact code the AS is running. Last, the AS also conveys that it has received the

user’s key, KU .

After creating the attestation, the AS sends the attestation, nonce, its public

key and its TPM Endorsement Key Certificate (Line 8). At this point, the user

verifies that the attestation is correct; if it is not, she aborts the protocol (Lines 9–

10). Otherwise, she encrypts and signs her random number, and expects the AS to

increment it in response to prove that it can decrypt and sign using K−1
AS (Line 11). In

response, the AS sends RU +1 and its own random number (Line 12). When the user

receives its incremented random number, it believes that KAS is bound to the trusted

CAP code, and is willing to send its Endorsement Key (EK) Certificate encrypted

under that key as part of an attestation, because the CAP code will only disclose

the user’s EK if the user breaks her contract. The user generates an attestation

which provides similar properties to the AS, and sends it with its EK certificate, and

the AS’s incremented random number (Lines 13–14). Upon receiving the incremented

random number, the AS verifies the user’s attestation (Lines 15–16), and both parties

then switch to more efficient symmetric cryptography (Line 17). This can be done

with standard techniques [20].

3.2.2 Protocol Phases

We now present CAP in detail. The protocol is split into three parts: the registration,

anonymous communication, and breach phases. The registration phase is required

before a user can start sending messages to the SP. The anonymous communication

phase serves to mark messages as coming from a user that has a valid contract. The

breach phase takes place when the SP wants to know who created messages that are

in violation of the contract.

Registration Phase CAP begins with the user connecting to the SP (Line 1 in

Figure 2). The user does not have a contract, since it is her first time connecting, and

indicates this in her initial message. The SP replies with a message indicating that a

contract is required to use the service (Lines 2–3). Specifically, the user must obtain

a contract from the SP-specified AS and the contract must have the SP-specified

contract policy (CP), which is the policy that the user must agree to. If the user

agrees to abide by the CP, she connects to the AS and begins to create a contract.
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Otherwise, she aborts.

To obtain a contract, the client connects to the AS and begins the U-AS protocol

(Line 4). As was described in Section 3.2.1, the user and AS establish a secure channel

(Lines 4–17). Once the channel is established, the client sends 1) the contract policy

that the SP requires, and 2) the address of the SP (Line 18). The AS maintains a

list of users that have been blacklisted by the SP, and aborts if one of those users is

attempting to register (Line 19).

At this point in the protocol, the AS connects directly to the SP and executes the

key binding protocol (Line 20). This allows the SP to ensure that the AS is running

the CAP software, and to verify that K−1
AS is bound to that software. This convinces

the SP that a user’s identity will be revealed if she breaks her contract. The AS also

learns the SP’s public key during this protocol. This protocol is expressed in detail in

Figure 3, and is actually a subset of the messages needed to establish a secure channel

(Section 3.2.1).

After the key binding, the AS will proceed to create a contract. The contract

consists of the contract policy the user agrees to, the public key of the group signature

group that the user is part of, and the SP’s public key. The AS sends the contract

and a group private key to the user (Figure 2, Line 21). Finally, the user sends the

contract to the SP, and she is ready to start endorsing messages (Line 22). The SP

ensures that the contract is signed by a key that it knows about from the AS-SP key

binding protocol (Figure 3).

Anonymous Communication Phase To endorse a message, the user simply signs

the message m using her group private key K−1
GSK

[i], and sends the signed message

to the SP (Line 22). When the SP receives a signed message, it ensures that it has

received a valid contract that included that group public key. The SP also verifies

that the message has a valid signature by executing the group signature verification

operation (Line 23).

Breach Phase When a user generates message(s) that violate the SP’s policies, the

SP delivers the offending message(s) to the AS. This protocol is shown in Figure 4.

After establishing a secure channel (Lines 1–11), the AS verifies that the received

messages are signed by a group that the AS manages (Lines 12–13). Then, the AS

verifies that the messages violate the contract (Line 14). The AS obtains the group

private key2 that violated the contract, by using the GS Open operation (Line 15).

2We assume for simplicity here that all messages in violation of the contract policy are signed

with the same private key, i.e., that there is only a single malicious user.
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It then reveals 1) the user’s group signature revocation token, and 2) the user’s TPM

Endorsement Key Certificate to the SP (Line 16). With that information, the SP can

add the user’s current group key to the group signature revocation list so that her

messages will no longer be accepted.

3.3 Features

Contract + Unlinkability = Anti-discrimination CAP prevents a SP and

its AS from discriminating against anonymous users based on their past messages.

Previous systems with TTP’s have not appropriately limited the power of the TTP

to revoke [6, 10, 11], thus the TTP could potentially revoke well-behaved users. For

example, someone could compromise the TTP and revoke users, or bribe the TTP

itself to misbehave. Thus, such systems can discriminate.

Previous TTP-free systems allowed subjective judging [24, 25], i.e., users can be

blacklisted for any reason. The ability to subjectively judge means that a SP can

block all future authentications from a user for any reason whatsoever. For example,

a user could post a message the SP simply decides it does not like, and the SP would

be free to block all future authentication. Thus, the SP could discriminate against a

user without knowing their real identity in such systems.

In CAP, anyone can verify that the AS will only reveal a user’s identity if their

contract is violated. Further, the AS seals the contract, which results in an encrypted

blob that can only be decrypted when the trusted CAP code is running in a verifiable

execution environment. Thus, even if the untrusted part of the CAP software, the

operating system, or the BIOS is compromised, the AS cannot reveal a behaving

user’s real identity. A SP cannot discriminate against users not in breach of contract

because multiple authentications are unlinkable; there is no way to link multiple

anonymous authentications of a single user.

Verifiable Blacklists Blacklists are commonly used in network services to block

known malicious identities. Current blacklists, however, typically do not provide

much information as to why a particular identity is on the list. CAP can easily be

extended to implement verifiable blacklists. We say a blacklist is verifiable if each

identity on the blacklist is accompanied by a proof of the malicious activity that led

to its being blacklisted.

During registration, a user and SP agree to the contract policy. The user will

register their TPM’s Endorsement Key (EK) Certificate CTPM−U with the AS and

receive an anonymous credential K−1
GSK

[i]. During contract breach, the AS is pro-

vided with a sequence of signed messages that violate the contract. A blacklist will
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contain both K−1
GSK

[i] (so that subsequent messages from the user can be identified)

and CTPM−U (so that the blacklisted user cannot ask another AS to create a new

credential).

In CAP, the AS can publish those messages as proof that a breach has oc-

cured to enable verifiable blacklists. More specifically, the AS publishes the tuple

({CP,KGPK , KSP}K−1

AS

, {M}
K

−1

GSK
[i], K

−1
GSK

[i],Gen Attest(K−1
GSK

[i] → CTPM−U)), such

that {CP,KGPK , KSP}K−1

AS

is the user’s contract, {M}
K

−1

GSK
[i] is the offending mes-

sage(s), and the AS attests to the fact that the anonymous identity was issued to

the referenced real identity. No trusted maintainer is required because the blacklist

entries contain proof that the contract was violated.

Solving the Sybil Attack In the Sybil attack [15] a user can subvert security by

forging new identities. In our system, users cannot create new identities themselves

without breaking the security of group signatures. Thus, in our setting a Sybil attack

corresponds to a user successfully receiving a new identity from an AS, since the

newly forged identity could bypass the blacklist.

To the best of our knowledge, no other implemented anonymous authentication

system has solved this problem in a practical manner. For instance, in PEREA [25],

a suggested method is for the user to register with the SP by presenting her driver’s

license in person3. However, we argue that this is impractical for typical network

services.

Our architecture solves the Sybil problem by binding the anonymous identity to

the the unique endorsement key found in each user’s TPM as the user’s identity. A

user cannot practically obtain a new endorsement key without replacing the TPM

(since the TPM is a physical device and there is no programmatic way to replace

it). Thus, while an attacker can bypass blacklists by purchasing new equipment, she

cannot do so without incurring relative expense.

3This still preserves anonymity because the registration is not linkable to future authentications.
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U-SP registration protocol

1. U → SP: {message, contract = ⊥}

2. SP: if contract = ⊥, execute Line 3, else Line 23

3. SP → U: {Get-Contract, AS,CP}
K

−1

SP

U-AS registration protocol

4. U: NU

R
← {0, 1}α, RU

R
← {0, 1}α

5. U → AS: {KU , NU}

6. AS: NAS

R
← {0, 1}α, RAS

R
← {0, 1}α

7. AS: a← Gen Attest(KU |NU |KAS|NAS)

8. AS → U: {KAS, NAS, a, CTPM−AS}

9. U:
a′ ← Ver Attest(Trusted CAP Code,

KU |NU |KAS|NAS)

10. U: abort if a 6= a′

11. U → AS: {{RU}K−1

U

}KAS

12. AS → U: {{RU + 1, RAS}K−1

AS

}KU

13. U: a← Gen Attest(KU |NU |KAS|NAS)

14. U → AS: {{RAS + 1, a, CTPM−U}K−1

U

}KAS

15. AS:
a′ ← Ver Attest(Trusted CAP Code,

KU |NU |KAS|NAS)

16. AS: abort if a 6= a′

17. Setup symmetric encryption and MAC

18. U → AS: {AddrSP , {Get-Contract, AS,CP}
K

−1

SP

}

19. AS: abort if CTPM−U on SP’s blacklist

20. AS: executes key binding protocol

21. AS → U: {{CP,KGPK , KSP}K−1

AS

, K−1
GSK

[i]}

U-SP anonymous communication protocol

22. U → SP:
{{message}

K
−1

GSK
[i], contract =

{CP,KGPK , KSP}K−1

AS

}

23. SP:
if GS Verify(KGPK , {message}

K
−1

GSK
[i],BL) = 1,

accept message, else abort.

Figure 2: The registration and anonymous communication protocols. The user ob-

tains a contract using the registration protocol. The anonymous communication

protocol is then used to send anonymous messages to the service provider (SP). All

messages after Line 17 are implicitly encrypted and MACed using symmetric cryp-

tography.

21



AS-SP key binding protocol

1. AS: NAS

R
← {0, 1}α

2. AS → SP: {KAS, NAS}

3. SP: NSP

R
← {0, 1}α

4. SP → AS: {KSP , NSP , CSP}

5. AS: a← Gen Attest(KSP |NSP |KAS|NAS)

6. AS → SP: {a, CTPM−AS, {{RAS}K−1

AS

}KSP
}

7. SP:
a′ ← Ver Attest(Trusted CAP Code,

KSP |NSP |KAS|NAS)

8. SP: abort if a 6= a′

Figure 3: The key binding protocol.
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Breach protocol

1. AS: NAS

R
← {0, 1}α, RAS

R
← {0, 1}α

2. AS → SP: {KAS, NAS}

3. SP: NSP

R
← {0, 1}α, RSP

R
← {0, 1}α

4. SP → AS: {KSP , NSP}

5. AS: a← Gen Attest(KSP |NSP |KAS|NAS)

6. AS → SP: {a, CTPM−AS, {{RAS}K−1

AS

}KSP
}

7. SP:
a′ ← Ver Attest(Trusted CAP Code,

KSP |NSP |KAS|NAS)

8. SP: abort if a 6= a′

9. SP → AS: {{RAS + 1, RSP}K−1

SP

}KAS

10. AS → SP: {{RSP + 1}
K

−1

AS

}KSP

11. Setup symmetric encryption and MAC

12. SP → AS:
{m = {{message1}K−1

GSK
[x], . . . ,

{messagen}K−1

GSK
[z]}}

13. AS:
∀msgi ∈ m, abort if

GS Verify(KGPK ,msgi,BL) = 0

14. AS: abort if CP (m) 6= 1

15. AS: gid← GS Open(message1, K
−1
GMSK

)

16. AS → SP: {gid,GidToEKcert[gid]}

Figure 4: The breach protocol. The service provider (SP) submits any messages

suspected to be in violation of the contract to the accountability server (AS). The

AS verifies the messages, and returns the identity of the users that violated their

contracts, if any. All messages after Line 11 are implicitly encrypted and MACed

using symmetric cryptography.
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Chapter 4

Implementation

We now describe our implementation of the CAP system, and note security-relevant

implementation decisions.

We implemented CAP using two cryptographic libraries: the PBC SIG group

signature library [18] that implements the BBS [6] group signature scheme, and the

XySSL library [27] for implementations of RSA, AES, SHA-1, and HMAC. We use

256-bit AES keys, HMAC keys, nonces and random values. RSA keys are 1024-bit.

The BBS signature scheme is configured to use a “Type A” pairing that offers security

similar to that of a 1024-bit RSA key [5]. We do not currently implement efficient

verifier-local revocation for the group signature keys [6], because we are unaware of a

publicly available implementation, although we intend to implement this ourselves in

future work. We note that we plan on implementing a O(1)-time revocation scheme

that adds a single table look-up per verification, which is unlikely to significantly

change our performance measurements. Options for implementing such revocation

are discussed in Section 5.5.

Portions of the code that execute on the user’s and AS’s platforms constitute the

security-sensitive, trusted components of CAP. Our implementation uses the Flicker

system [19] to provide verifiable, hardware-supported isolation of security-sensitive

code from all other software and devices on a platform by using a TPM [23] and

hardware-supported dynamic root of trust [16]. As a result, the Trusted Computing

Base (TCB) for security-sensitive CAP code includes only the Flicker stub code, and

excludes the legacy operating system, BIOS, and all DMA-capable devices. These

trusted components will be the same across all uses of CAP, i.e., their code will be

publicly known and evaluated to be “known-good.”

The registration and breach phases of CAP (Figure 1) involve processing inside

the Flicker isolation environment, because the protocol requires access to information

that must be kept secret. However, Flicker does not support direct access to a network

stack. Therefore, software that directly interfaces with the network stack must run

on the untrusted host operating system. The untrusted portion of CAP is responsible

for launching the Flicker sessions on the user’s and AS’s platforms. We note that the

untrusted code could choose not to launch the Flicker session. This is equivalent to the

power-off attack described in Section 5.2, but the untrusted code cannot impersonate

trusted code.

The trusted CAP components that run in the Flicker environment are responsible
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for protecting their state using TPM Seal and TPM Unseal. Many protocol messages

in the registration and breach phases are passed as input to the Flicker environment,

along with the sealed copy of any sensitive data that may be required. The trusted

code will then unseal the information it needs and create its reply message. It will

then output the reply message to be sent over the network, and seal and output any

updated sensitive state before returning to the host operating system.

Sealed state on the user’s platform includes NU , NAS, RU , RAS, K−1
U , KAS, and

KU−AS. Sealed state on the AS’s platform includes, for each registered user Ui:

NAS, NUi
, RAS, RUi

, K−1
AS, KUi

, KAS−Ui
, and the registered users’ endorsement key

certificates (true identities) CTPM−Ui
. It further includes the entire set of private

group signature keys K−1
GSK

[i] (i.e., keys for each registered member, and unused keys

that may be assigned to future members), and the group manager secret key K−1
GMSK

.

4.1 Evaluation

Our test machine is an off-the-shelf Lenovo Thinkpad T400 with a 2.53 GHz Intel

Core 2 Duo processor and 2 GB of RAM. It runs Ubuntu 8.10 with Linux kernel 2.6.24.

Our current implementation only utilizes one core, but a more sophisticated imple-

mentation could use multiple CPUs to improve performance. We perform all of our

experiments on this one machine, i.e., we execute the SP, AS, and user code on the

same machine. This configuration gives a conservative estimate of the protocol’s

end-to-end running time in a real system (excluding network latency), since only one

Flicker session can be running at a time.

4.2 Performance

Anonymous Communication Once a contract is established, no Flicker sessions

are needed to anonymously endorse messages by the user. We do not protect the

user’s private group signing key within Flicker because it is not required for the

security of the system (although it is the user’s responsibility to safeguard their keys)1.

Consequently, the common-case operation of CAP is efficient. On average, message

endorsement takes 86 ms ± 0.4 ms on the user’s platform, and message verification

takes 87 ms ± 0.2 ms on the SP’s platform. Signature generation requires calculations

equivalent to 8 exponentiations and 2 bilinear map computations, and verification

takes 6 exponentiations and 3 computations of the bilinear map [6]. Figures 5 and 6

show that the endorsement time of CAP scales well with the size of the blacklist for

1It is straightforward to put the user’s private group key inside Flicker at the cost of invoking a

Flicker session for every sign operation.
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Figure 5: Comparison of anonymous communication time at the user for CAP,

PEREA [25], and BLAC [24]. Note that data points for BLAC and PEREA were

extrapolated from figures in the original publications.

both the user and SP. Table 1 compares the asymptotic and empirical performance

measurements reported by prior works [24,25].

Registration We have measured the end-to-end time it takes for a user to nego-

tiate a contract using the registration protocol. Although the contract negotiation

protocol takes O(|blacklist|) time between the AS and SP to determine if the user

is on the blacklist, the total time is largely dominated by the time it takes to enter

and resume from the Flicker execution environment, including the time it takes to

execute the TPM Seal and TPM Unseal commands. The blacklist would have to be

impractically large for the linear time component of the runtime to have any impact.

In our implementation, contract negotiation averages 7.99 ± 0.04 s. Although this

may seem like a long time, it is faster than the time it takes many users to enter

their login information, and is needed infrequently (only when a user registers to use

a new service, or the SP changes its policies). The majority of the time spent during

registration is spent executing the TPM Unseal command. Thus, by batching mul-
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Figure 6: Comparison of anonymous communication time at the service provider

(SP) for CAP, PEREA [25], and BLAC [24]. Note that data points for BLAC were

extrapolated from figures in the original publication.

tiple requests together in a single Flicker session, the cost of unsealing data can be

amortized to achieve reasonable throughput. It may also be possible to replace the

use of the TPM’s (relatively slow) sealed storage with its (relatively fast) non-volatile

RAM facilities [19], though our current implementation does not support TPM NV

RAM.

Breach Lastly, we also examine the end-to-end time for a SP to determine the

identity of a misbehaving user. Our implementation of the breach protocol takes 0.32

± 0.09 s on average from the time the SP detects a malicious message to the time it

receives the user’s identity from the AS, excluding the time to establish the secure

channel as described in Chapter 3 for the breach protocol.

4.3 Trusted Computing Base (TCB)

CAP has a relatively small trusted computing base that needs to run in the Flicker

isolated execution environment [19]. Table 2 shows the lines of code in the TCB for
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System Auth. (U) Auth. (SP) Auth. (U) Auth. (SP) Parameters

CAP 86 ms 87 ms O(1) O(1)

PEREA [25] 5900 ms 160 ms O(K|BL|)† O(K) KSP = 30, KU = 10

BLAC [24] 1450 ms 870 ms O(|BL|) O(|BL|)

Table 1: Comparison of authentication time between CAP and other systems for

reasonable parameter choices (|BL| = 800). We do not include string comparisons in

the asymptotic analysis. Measurements for PEREA and BLAC are taken from the

relevant works, as we were unable to obtain the source code for these schemes [24,25].

†: The amount of computation needed for PEREA is O(K∆|BL|), but the actual time

required to authenticate is O(K|BL|) because of the risk of timing attacks.

the user and the AS. The majority of the code is the PBC cryptographic libraries for

implementing group signatures, which also depend on portions of the GNU Multiple

Precision Arithmetic Library. RSA and the symmetric cryptographic functions, as

well as the TPM driver and supporting code for TPM Seal and TPM Unseal also

make significant contributions to code size. The actual logic for CAP comprises a

relatively small overall portion of the TCB, suggesting that formal verification or

manual audit are realistic options. We also note that we have made no effort to

strip unused content from the cryptographic and mathematical libraries. Significant

additional reductions in code size are readily attainable. Even so, our entire TCB

measures in a few tens of thousands of lines. This is orders of magnitude less than

the TCB for code running on top of a commodity operating system.
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Component Language SLOC

Flicker: User .c/.S 953

Flicker: User .h 1590

Flicker: AS .c/.S 1173

Flicker: AS .h 1549

Flicker: Shared

Crypto / TPM .c 4134

Crypto / TPM .h 202

Crypto .c 2698

Crypto .h 1791

PBC .c/.S 11527

PBC .h 1160

GMP .c/.S 4859

GMP .h 5802

Table 2: Lines of code in the trusted computing base (TCB) of our implementation

as measured by sloccount [26].
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Chapter 5

Discussion

5.1 CAP as a Primitive

CAP provides a mechanism for users to anonymously sign messages, and thus it is

a component in a larger, overall protocol. For example, CAP may be run on top of

TCP/IP, and as part of a larger chat protocol.

We do not make anonymity guarantees about the complete protocol stack: only

the CAP component. For example, a user who types in their personal information to a

chat service could circumvent any security otherwise offered from CAP. Similarly, the

chat protocol may run CAP on top of TCP/IP, which may allow chat servers to log IP

addresses. Although CAP does not solve the complete protocol stack problem, CAP

can be used at each layer of the stack. For example, Tor is a widely-used network-level

service that is intended to help create network-level privacy for higher-level services

by preventing a network server from learning the IP address of a network client. Tor

could use CAP to enforce policies regarding proper use. A chat application could run

on top of Tor, and use CAP for anonymous communication to provide contractual

anonymity for chat sessions.

5.2 Security

There are several potential attacks against CAP. The first potential attack is that the

AS could be powered off or otherwise made unavailable. An AS that is unavailable

cannot reveal the identity of users who misbehave. There are several possible ways to

counter this problem. First, an SP could insist upon an AS that has been designed

with high availability in mind, e.g., by having a network of ASs that could each reveal

a users identity. Attacks on availability are present in most protocols, and can be

addressed by standard methods in fault-tolerant computing and cryptography.

Another attack is that a malicious SP could require each user to obtain a unique

contract policy such that every user would be a member of a different group signature

group. Although such a user would remain anonymous, all of their requests would

be linkable. All anonymity systems offer weak unlinkability guarantees if some party

can determine that the pool of active users is small. Because CAP relies on trusted

computing, it can solve this problem in a unique way: the AS can reveal the number

of active registered users upon request. Each user can then create her own threshold

for the number of active users. If the number of active users is below the user’s
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threshold, then the service should not be used. To the best of our knowledge, TTP-

less systems [7,8,24,25] are also vulnerable to this type of attack, but have no defense

against it since there is not a neutral third party that can attest to the number of

active users.

We assume that the TPM on the AS is tamper-proof. However, real systems may

only be able to provide tamper-resistant TPM’s that are potentially vulnerable to

physical attacks. CAP can easily be extended to use standard threshold cryptography

techniques [14] such that a coalition of AS’s are needed to reveal a misbehaving users

identity. Threshold cryptography would distribute the secret AS key for unlocking

a user’s real identity across t servers where some number n of them need to be

compromised to successfully carry out this attack.

5.3 Contract Negotiation

We assume that the user can retrieve the contract policy directly from the SP, and

that the user will not be able to contribute to the policies. We make this assumption

because there is a bootstrapping problem involved in having full negotiation of the

contracts in which both parties can contribute, specifically: how can a user and SP

negotiate a contract without the SP learning anything about the user during the

negotiation? We leave negotiable contracts as future work.

5.4 Threshold Policies

Some policies in our system may be inefficient to implement. For example, threshold

policies are commonly used to prevent spamming, e.g., users should not send more

than k messages per day. Our architecture provides message unlinkability, which

by its very nature prevents the linking needed for the SP to check threshold policies.

(One could implement a threshold policy by having the SP send a large set of messages

to the AS, but doing so is clearly very inefficient.) We leave contractual anonymity

that allows for threshold policies as an open problem.

5.5 Verifier-local Revocation

In the group signature scheme we use there is a tradeoff between unlinkability and

the runtime of GS Verify in the size of the blacklist [6]. Verifying that a message

signer is not on the blacklist can be performed in O(1) time by the SP if the scheme

allows for a small probability that messages can be linked, and in O(|BL|) time for

perfect unlinkability. For example, if |BL| = 1024, each table entry in a precomputed

lookup table is about 128 bytes long, and the SP devotes 128Mb to create a lookup

table, then there is about a 1/1024 chance that two messages sent by the same user
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can be linked. In CAP, the SP, AS, and users will all know which scheme is used, and

thus will know whether there is a chance messages will be linkable. Paranoid users

can always insist on using services that rely on the O(|BL|) algorithm.
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Chapter 6

Related Work

CAP is similar to existing anonymous authentication systems. However, it should be

noted that these existing systems, unlike CAP, do not provide all of the properties

required to achieve contractual anonymity.

The existing anonymous authentication systems can be divided into several cat-

egories. Members of the first class of anonymous authentication systems utilize a

trusted third party (TTP) server [10,11]. In these schemes, users escrow their identi-

ties on a TTP, which is able to reveal the identity of the user to the service provider

(SP) if there is evidence of misbehavior. However, a user has no assurance that the

TTP will keep her identity secret if she behaves. Although TTPs can use rich policies

for defining malicious behavior, they lack any mechanism for proving that a user’s

identity is bound to those policies. While CAP’s accountability server (AS) is a third

party server, the physical server and its operator do not have to be trusted. Instead,

the user and service provider can remotely verify the code that the AS is running us-

ing trusted computing and choose to trust it based on their knowledge of the code’s

semantics.

Because of the risk of storing identities on a TTP that cannot be verified, re-

searchers have created other anonymous authentication systems that eliminate the

need for TTPs. One class of these TTP-less systems are those based on e-cash

[3, 4, 21, 22]. In these schemes, users remain anonymous unless they authenticate

too many times. In e-cash systems, spending currency is considered authentication,

and so de-anonymization is important to thwart the double spending of e-cash. These

systems have been generalized into anonymous credential systems that provide anon-

ymity and unlinkability unless a user authenticates k or more times. Unfortunately,

these systems can only define policies in terms of thresholds, and so many types of

misbehavior can not be expressed. CAP is not restricted to enforcing any one type

of policy.

The last class of systems are those that do not rely on a TTP but also allow for

rich policies to be enforced. The systems in this class allow for subjective judging, in

which the SP can choose to link a user’s authentications for any reason by adding

her to a blacklist. Unfortunately, there is no pre-negotiated anonymity policy, and

so the user has no guarantees about when her access might be revoked. Systems in

this category also have scalability issues [7,8,24] or require considerable rate-limiting

to function [25]. Because an authentication must occur for each unlinkable message,

33



these systems are not practical for applications that send messages at moderate rates

(106 unlinkable messages a day). We show that CAP is efficient and scales well (see

Section 4.1) in comparison to PEREA [25] and BLAC [24], the most efficient of these

schemes. Unlike PEREA and BLAC, CAP allows users and service providers to

negotiate the terms for the user’s anonymity such that a user can not be blacklisted

unless she breaks her contract.

We use trusted computing so that the AS can be verified to be running a known

implementation of the anonymity software. In particular, we base our work on

Flicker [19]. Datta et al. [13] have proven that dynamic root of trust systems like

Flicker allow verifiers to make strong conclusions about the software state on a ma-

chine performing an attestation.
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Chapter 7

Conclusion

We introduce the notion of contractual anonymity, a type of anonymous authentica-

tion that provides strong guarantees for the user and service provider, and present

CAP, a protocol that achieves the contractual anonymity properties. We utilized

trusted computing to overcome the scalability limitations of cryptography in other

anonymous systems. CAP scales well with respect to the size of the blacklist, sup-

ports services with moderate message rates, and does not blindly rely on a trusted

third party that can deanonymize well-behaved users. Finally, we implemented the

end-to-end CAP system, and show through our experiments that CAP is scalable and

practical.
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