
F
l

S
D

a

A
R
R
2
A
A

K
P
L
F
I

1

fi
r
s
d
i
p
o
t
e

M
i
t
a

p
b
s
f
a
[

(

1
d

Applied Soft Computing 11 (2011) 3821–3826

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

uzzy multi period portfolio selection with different rates for borrowing and
ending

.J. Sadjadi ∗, S.M. Seyedhosseini, Kh. Hassanlou
epartment of Industrial Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran

r t i c l e i n f o

rticle history:
eceived 24 August 2010
eceived in revised form
2 November 2010

a b s t r a c t

Investment strategic planning is one of the most important areas of research in financial engineering. The
primary concern of this research is to determine the amount of investment in different planning areas
especially when the rate of borrowing is greater than that of lending. The proposed research method
in this paper is a form of fuzzy linear programming which is capable of determining the amount of
ccepted 13 February 2011
vailable online 18 February 2011
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investment in different time cycles. In this paper return rates and borrowing/lending rate are presented as
fuzzy triangular numbers instead of crisp representations. The developed model can instruct the balance
between cash and margin for investors and using fuzzy set theory, their confidence level can be obtained
for each produced portfolio. The method is also implemented using some numerical examples and the
output results are discussed.
uzzy set
nvestment strategy

. Introduction

Portfolio management plays an important role for many
nancial institutions. In a typical portfolio management, one is
esponsible to allocate funding to different assets by buying and
elling them. Markowitz [1–3] is believed to be the first who intro-
uced portfolio management where a quadratic objective function

s minimized subject to some linear constraints. Markowitz has
resented three nonlinear models and explained that the unique
ptimal solution for all three models is equal. The primary objec-
ive of Markowitz model is to build a portfolio with the highest
xpected return at a given level of risk.

Modern portfolio theory (MPT) that was introduced by
arkowitz has led to a new paradigm in portfolio selecting for

nvestors. However, many researches in the field have attempted
o solve and develop Markowitz’s seminal model. Lots of these
ttempts have tried to make his model more useful and practical.

In spite of comprehensive success of Markowitz’ model, the
ortfolio selection strategy was extended for a planning horizon
y many researchers using different approaches such as Samuel-

on [4] and Merton [5] because the single-period framework suffers
rom an important problem where it is practically impossible to
pply a single framework work to a long term horizon. Merton
6,7] presents a mathematical model for the optimum consump-
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tion and the portfolio rules in a continuous time horizon. Merton
[6,7] in his work shows how to construct and analyze optimal
continuous-time allocation problems under uncertain parameters.
Merton [6,7] considers the model in which the prices of the risky
assets are generated by correlated geometric Brownian motions,
and assumes that the portfolio can be rebalanced instantly and free
of cost. His objective is to maximize the net expected utility of con-
sumption plus the expected utility of terminal wealth. Mossin [8]
also presents a multi-period optimization technique. Chryssikou [9]
uses approximate dynamic programming algorithms to provide a
near-optimal dynamic trading strategy for special types of utility
functions when a closed form solution to the discrete-time multi
period problem with quadratic transaction costs is not attainable.
Hakansson [10,11] uses mean-variance and quadratic approxima-
tions in implementing dynamic investment strategies. Techniques
from approximate dynamic programming have been successfully
employed for efficient optimal policy computations. For example,
Sadjadi et al. [12] propose a dynamic programming approach to
solve efficient frontier with the consideration of transaction cost.
Their approach led to a closed form solution of the mean variance
portfolio selection.

Li et al. [13,14] consider a two-step method where a dynamic
programming is employed to solve an auxiliary problem in the first
phase and the solution to the auxiliary problem is then manipu-

lated to obtain the optimal mean-variance portfolio policy and the
corresponding efficient frontier.

Yu et al. [15] present a model for multi-period portfolio selection
with maximum absolute deviation. Their model obtains optimal
strategy via dynamic programming in a closed form solution. Chen
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Table 1
Some of approaches reviewed in the state of the art.

Selective scope
of related topic

Reviewed literatures

Markowitz seminal
model to multi period
case

Samuelson (1969), Merton (1969, 1971, 1996), Mossin (1968), Zenios et al.
(1998), Morey & Morey (1999), Leippold et al. (2004), Briec & Kerstens (2009)

Dynamic programming Chryssikou (1998), Hakansson (1971), Grauer & Hakansson (1993), Sadjadi
et al.(2004), Li et al. (1998), Li & Ng (2000), Yu et al. (2010), Chen et al. (2010)
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Portfolio optimization
with uncertainty

Stochastic programming

Robust optimization

t al. [16] introduce a dynamic portfolio optimization which is
dapted to change in stock prices based on a genetic network
rogramming. Their proposed model uses technical indices and
andlestick chart to generate portfolio investment advice.

Note that the primary assumption with these developed models
s that the rates of return of the assets during consecutive peri-
ds are uncorrelated. Leippold et al. [17] introduce a geometric
pproach to multi period mean variance optimization of assets and
iabilities. Morey and Morey [18] introduce the same idea in a multi-
eriod or temporal setting. They propose two types of efficiency
easures: The first efficiency measure attempts to contract all risk

imensions proportionally where the second one focuses on aug-
enting all return dimensions as much as possible in a proportional
ay.

Briec and Kerstens [19] develop a multi-horizon mean-variance
ortfolio analysis developed by Morey and Morey in the [18], in
everal ways. First, instead of either proportionally contracting risk
imensions or proportionally expanding return dimensions, a more
eneral efficiency measure simultaneously attempts to reduce the
isk and to expand the return over all time periods.

The multi period models have been developed in a variety of
irections. Zenios et al. [20] develop a fixed income portfolio model

n a multi-stage form. The uncertainty which exists on the input
nd the output parameters of the multi-period portfolio optimiza-
ion could be investigated in different forms. In Ref. [17] a method
o minimize the variance between the assets and liabilities is pro-
osed.

Wei and Ye [21] introduce a multi period portfolio selection

odel constrained with bankruptcy control in a stochastic mar-

et. They use dynamic programming to solve developed model.
alafiore [22] proposed an asset allocation model which periodic
ptimal portfolio adjustments are determined with the objective of

1

α

l m n tr
−

α r
+

α

Fig. 1. The membership function of r̃.
Leippold et al. (2004), Wei & Ye (2007), Celikyurt & Ozekici (2007), Calafiore
(2008), Costa & Araujo (2008), Rapach & Wohar (2009)
Shen & Zhang (2008), Quaranta & Zaffaroni (2008), Bertsimas & Pachamanova
(2008), Chen & Tan (2009)

minimizing a cumulative risk measure over the investment hori-
zon. In developed model, portfolio diversity constraints at each
period are satisfied. Celikyurt and Ozekici [23] consider a multi
period portfolio model where the market consists of a riskless asset
and several risky assets. They can describe the stochastic evaluation
of market by a Markov chain. Oswaldo et al. [24] propose a gener-
alized multi period mean-variance model with market parameters
such as Markov switching parameters. They can obtain some closed
formulas with necessary and sufficient conditions for obtaining an
optimal control policy for this Markovian generalized multi period
mean-variance problem. Rapach and Wohar [25] carried out a com-
parative study in eight countries to investigate the inter-temporal
hedging demands for stocks and the bonds for investors. They solve
multi period portfolio selection problem with an infinite horizon
and with asset returns which are described by a vector autoregres-
sive process.

Shen and Zhang [26] also apply the concept of robust optimiza-
tion to the portfolio selection problems. Their proposed model is
formulated based on multi-stage scenario trees. They use SeDuMi
to solve their robust portfolio selection problem. Quaranta and Zaf-
faroni [27] use robust optimization in portfolio selection problem
for the minimization of the conditional value at risk of a portfolio
of shares. They can obtain a linear robust copy of the bi-criteria
minimization model. Chen and Tan [28] can successfully incorpo-
rate interval random chance-constrained programming to robust
mean-variance portfolio selection under interval random uncer-
tainty sets in the elements of mean vector and covariance matrix.

Bertsimas and Pachamanova [29] suggest robust optimization

formulations of the multi period portfolio optimization problem
that are linear and computationally efficient. Robust optimization
models deal with future asset returns as uncertain coefficients in an
optimization problem. Bertsimas and Pachamanova in [29] impose
non negativity constraints on the investor’s holdings at each time

1

38204.4 4035739270.9

0.7 

38948.9 39594.6

Fig. 2. The membership function of Ũ.
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nterval which prevents any borrowing and short selling. Bertsi-
as and Pachamanova’s model considers transaction cost as part of

heir model. However, the transaction cost does not play an impor-
ant role in the optimization results since many brokerage houses
re planning to remove transaction costs in order to create a moti-
ation to absorb more investment. Table 1 demonstrates a précis
f reviewed approaches in the state of the art.

The multi-period portfolio optimization proposed by Bertsimas
nd Pachamanova could be developed to incorporate realistic fea-
ures such as borrowing and lending rates. The proposed method of
his paper considers borrowing and lending rates as part of multi-
eriod investment planning. We believe this feature makes our
roposed method more realistic since most of the brokerage houses
rovide the opportunity to make an acquisition on different assets
y borrowing the money from the brokerage. The proposed method
f the paper considers the rates in fuzzy form and the results are
iscussed using a practical example. This paper is organized as fol-

ows. We first present the problem formulation in Section 2. The
odel is reformulated in fuzzy form in Section 3. The numerical

esults are presented in Section 4 and the conclusion remarks are
iven in Section 5 to summarize the contribution of the paper.

. The proposed model formulation

The following notations and parameters are used in the problem
ormulation, M = the number of risky assets

N = the number of trading periods
Xm

t = the investor’s dollar holdings in stock m at the beginning
f period t, (which are funded with his capital); (m = 0, 1. . .M); (t = 0,
. . .N)

X ′m
t = the investor’s dollar holdings in stock m at the beginning

f period t, (which are fund with borrowing); (m = 0, 1. M); (t = 0,
. . .N)

rm
t = the return of stock m over time period (t, t + 1)]; (m = 1, 2.

)
rb
t = the riskless borrowing rate over time period (t, t + 1)]; (t = 0,

. . .N)
rl
t = the riskless lending rate over time period (t, t + 1)]; (t = 0, 1

)
um

t = the amount of stock m which is sold in period t; (m = 1. M);
t = 1. . .N)

vm
t = the amount of stock m which is purchased in period t;

m = 1. . .M); (t = 1. . .N)
u′m

t = the amount of X ′m
t−1 which is sold in period t; (m = 1. . .M);

t = 1. . .N)
v′m

t = the amount of stock m which is purchased using credit in
eriod t; (m = 1. . .M); (t = 1. . .N)

V = the maximum permitted amount of buying for each stock in
ach period

WN = the investor’s final wealth at period N
U(X) = the investor utility function
In this model, there are M risky assets and one riskless asset

asset 0) with rl
t = rb

t = ro
t . Therefore, in each period we have,

m
t =

(
1 + rm

t−1

) (
Xm

t−1 − um
t−1 + vm

t−1

)
, t = 1 . . . N,

m = 1 . . . M, (1)

0
t =
(

1 + r0
t−1

) (
X0

t−1 +
M∑

�m
t−1 −

M∑
vm

t−1

)
, t = 1 . . . N. (2)
m=1 m=1

Note that there is no borrowing or lending rates used in Eq. (1)
nd (2). Let rb

t and rl
t be the risk-less borrowing and the risk-less

ending rates with rb
t ≥ rl

t , respectively. Now, one may invest using
he existing cash or purchase more shares using the credit with the
puting 11 (2011) 3821–3826 3823

borrowing rate. Let Xm
t and X ′m

t be the asset allocation held using
the cash and the credit, respectively. Therefore, we have,

Max U

(
M∑

m=0

Xm
N +

M∑
m=0

X ′m
N

)
(P)

s.t.

Xm
t = (1 + rm

t−1)(Xm
t−1 − um

t−1 + vm
t−1),

t = (1...N); m = (1...M), (3)

X0
t = (1 + rl

t−1)

(
X0

t−1 +
M∑

m=1

um
t−1 −

M∑
m=1

vm
t−1

)
, t = (1...N) (4)

X ′m
t = (1 + rm

t−1)
(

X ′0
t−1 − u′m

t−1 − v′m
t−1

)
,

t = (1...N); m = (1...M), (5)

X ′0
t = (1 − rb

t−1)

(
X ′0

t−1 +
M∑

m=1

u′m
t−1 −

M∑
m=1

v′m
t−1

)
, t = (1...N),

(6)

M∑
m=0

Xm
t ≥ ˇ

(
M∑

m=o

X ′m
t

)
, t = (1 . . . N) , (7)

vm
t ≤ V t = (1 . . . N; ) , m = (1 . . . M) , (8)

ˇ ∈ [0,1]
Future returns are not known at time 0, realistically. Practically,

the investor has to treat the portfolio optimization problem as a
rolling horizon problem, i.e., he has to act upon the information
available at time t, and rebalance his portfolio at time t + 1 after
obtaining additional information over time period (t, t + 1]. It is
assumed that at each time period, the investor takes only the first
step of the optimal allocation strategy computed with the informa-
tion up to that time period.

In the classical literature on portfolio optimization, the
investor’s utility function is assumed to be concave to reflect aver-
sion to risk. We consider a linear objective instead:

U

(
M∑

m=0

Xm
N +

M∑
m=0

X ′m
N

)
≈

M∑
m=0

Xm
N +

M∑
m=0

X ′m
N

Note that any brokerage fund asks its investors to have a balance
between the margin and the cash which are allocated on differ-
ent risky assets and this regulation is imposed on Eq. (7) where ˇ
determines the rate of balance.

3. The proposed fuzzy multi-period investment strategy

As explained before, the proposed method of this paper is used
to allocate the assets in different periods. However, the rates of
borrowing and lending are not exactly known for future planning.
In other words, the rates of borrowing and lending are normally

adjusted based on the prime rate and the prime rate is determined
by Federal Reserve of central banks based on what is happening on
macro economy. Therefore, a decision maker may speculate on rate
hikes in future horizon and one good way of treating this issue is
to handle it through fuzzy logic [30]. One simple way to use fuzzy
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umbers is to use the triangular fuzzy number, r̃ = (l, m, n), and its
embership function which is defined as follows:

r̃ =

⎧⎪⎨
⎪⎩

(t − l)/(m − l); l ≤ t ≤ m
l; t = m
(n − t)/(n − m); m ≤ t ≤ n
0; t ≤ l or t ≥ n

(9)

The triangular fuzzy number is shown in Fig. 1.
A simple implementation of ˛-cut on membership function

ields the ˛-level confidence of r̃ in terms of interval values cor-
esponding to the triangular fuzzy number r̃ = (l, m, n):

˜˛ = [r−
˛ , r+

˛ ] = [(m − 1)˛ + 1, n − (n − m)˛]; ∀˛ ∈ [0, 1] (10)

Hereby the lower and upper bounds of ˛-level confidence can
e obtained easily. The fuzzy portfolio selection model (P) can be
epresented with fuzzy return rates as follow:

ax U =
M∑

m=0

Xm
N +

M∑
m=0

X ′m
N (P1)

.t.Xm
t =

(
1 + r̃m

t−1

)(
Xm

t−1 − um
t−1 + vm

t−1

)
, t = (1...N); m =

1...M),X0
t =
(

1 + r̃l
t−1

)(
X0

t−1 +
M∑

m=1

um
t−1 −

M∑
m=1

vm
t−1

)
, t =

1...N),

X ′m
t =

(
1 + r̃m

t−1

)(
Xm

t−1 − u′m
t−1 + v′m

t−1

)
,

t = (1...N); m = (1...M),

X ′0
t =
(

1 + r̃b
t−1

)(
X ′0

t−1 +
M∑

m=1

u′m
t−1 −

M∑
m=1

v′m
t−1

)
,

t = (1...N),
M∑

m=0

Xm
t ≥ ˇ

(
M∑

m=0

X ′m
t

)
, t = (1..N),

vm
t ≤ V t = (1...N); m = (1..M),

ˇ ∈ [0, 1]
The above problem can be reformulated with the ˛-level confi-

ence of fuzzy numbers as in the following form:

(P2)Max U =
M∑

m=0

Xm
N +

M∑
m=0

X ′m
N

s.t.

Xm
t =

(
1 +
[
r̃−,m
˛,t−1, r̃+,m

˛,t−1

])(
Xm

t−1 − um
t−1 + vm

t−1

)
,

t = (1...N); m = (1...M),

X0
t =
(

1 +
[

r̃−,l
˛,t−1, r̃+,l

˛,t−1

])(
X0

t−1 +
M∑

m=1

um
t−1 −

M∑
m=1

vm
t−1

)
,

t = (1...N)

able 2
-level confidence of fuzzy numbers in each period.

N r̃1
t r̃2

t r̃3
t

1 [˛ + .08, −˛ + .1] [˛ + .08, −˛ + .1] [˛ + .07, −˛ +
2 [˛ + .09, −˛ + .11] [˛ + .08, −˛ + .1] [˛ + .08, −˛ +
3 [˛ + .07, −˛ + .09] [˛ + .09, −˛ + .11] [v + .08, −˛ +
4 [˛ + .08, −˛ + .1] [˛ + .07, −˛ + .09] [˛ + .09, −˛ +
puting 11 (2011) 3821–3826

X ′m
t =

(
1 +
[
r̃−,m
˛,t−1, r̃+,m

˛,t−1

])(
X ′m

t−1 − um
t−1 + v′m

t−1

)
t = (1...N); m = (1...M),

X ′0
t =
(

1 −
[

r̃−,b
˛,t−1, r̃+,b

˛,t−1

])(
X ′0

t−1 +
M∑

m=1

u′m
t−1 −

M∑
m=1

v′m
t−1

)
,

t = (1...N)
M∑

m=0

Xm
t ≥ ˇ

(
M∑

m=0

X ′m
t

)
, t = (1...N),

vm
t ≤ V t = (1...N); m = (1...M),

ˇ ∈ [0, 1]

To obtain ˛-level confidence of investor utility in selected port-
folio the above problem can, therefore, be solved based on the lower
and the upper bounds separately at different ˛-levels.

4. Numerical results

To illustrate the results of the proposed model an example is
considered, with M = 5 (one risk free asset and four risky assets)
and N = 4.

The borrowing and the lending rates and the return rates of risky
assets are represented with fuzzy numbers as follow:

r̃b =
[
.08̃, .07̃, .08̃, .09̃

]
r̃l =

[
.06̃, .07̃, .05̃, .07̃

]

r̃ =

⎡
⎢⎣

.09̃ .1̃0 .08̃ .09̃

.09̃ .09̃ .1̃0 .08̃

.08̃ .09̃ .09̃ .1̃0

.1̃0 .08̃ .09̃ .08̃

⎤
⎥⎦

r̃i j = return rate for risky asset i at time period j
The proposed method of this paper have been solved using this

data with ˇ = 1 (this value for ˇ enforces rigorous situations for
investor to keep balance between cash and margin) for different
values of ˛. Moreover the initial values for investor’s holding in
the first period and the maximum permitted amount of buying
for each stock in each period are need to be considered. Previews
data can be rewritten for each ˛ ∈ [0,1] in the form of Eq. (10) i.e.
each fuzzy number which is introduced can be represented as the
confidence interval for different values of ˛ which is assumed to
n − m = m−l = 0.01 in Eq. (10) for all fuzzy numbers (Table 2).

Table 3 demonstrates the details of the implementation of the
proposed method with three confidence levels i.e., ˛ = 0, 0.7 and
1. As we can observe, when the ˛-level increases, the interval
length of return rates will decrease to reflect the higher confi-
dence. Another observation is that using fuzzy triangular numbers
instead of crisp data will lead us to have a confidence level for
the objective function. As an illustration Fig. 2 shows the optimal
utility (objective function) for investor in this example is 39,270.9

at ˛ = 1. In addition, the utility will not fall out side the range of
[38204.48,40357.00] at ˛ = 0.

With this strategy investor’s holdings also have upper bound
and lower bound at each period. This means that the investor will
approach to interval of holding for any asset at each time period

r̃4
t r̃l

t r̃b
t

.09] [˛ + .09, −˛ + .11] [˛ + .05, −˛ + .07] [˛ + .07, −˛ + .09]

.1] [˛ + .07, −˛ + .09] [˛ + .06, −˛ + .08] [˛ + .06, −˛ + .08]

.1] [˛ + .08, −˛ + .1] [˛ + .04, −˛ + .06] [˛ + .07, −˛ + .09]

.11] [˛ + .07, −˛ + .09] [˛ + .06, −˛ + .08] [˛ + .08, −˛ + .1]
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Table 3
�-level confidence of model objective and variables for different values of ˛.

Variable ˛ = 0 ˛ = 0.7 ˛ = 1
U [38204.48,40357.00] [38948.92,39594.66] [39270.9,39270.9]

t = 1

X0
1 [1000,1000] [1000,1000] [1000,1000]

X1
1 [2000,2000] [2000,2000] [2000,2000]

X2
1 [3000,3000] [3000,3000] [3000,3000]

X3
1 [4000,4000] [4000,4000] [4000,4000]

X4
1 [5000,5000] [5000,5000] [5000,5000]

X ′0
1 [1000,1000] [1000,1000] [1000,1000]

X ′1
1 [2000,2000] [2000,2000] [2000,2000]

X ′2
1 [3000,3000] [3000,3000] [3000,3000]

X ′3
1 [4000,4000] [4000,4000] [4000,4000]

X ′4
1 [5000,5000] [5000,5000] [5000,5000]

t = 2

X0
2 [0,0] [0,0] [0,0]

X1
2 [834.862,801.8] [1734.7,813.24] [818.18,818.18]

X2
2 [13383.5,13716.2] [11597.6,13599.9] [13550,13550]

X3
2 [0,0] [0,0] [0,0]

X4
2 [2000,2000] [3000,2000] [2000,2000]

X ′0
2 [0,0] [0,0] [0,0]

X ′1
2 [834.832,0] [0,0] [0,0]

X ′2
2 [13383.5,14518] [14323.2,14413.13] [14368.18,14368.18]

X ′3
2 [0,0] [0,0] [0,0]

X ′4
2 [2000,2000] [2000,2000] [2000,2000]

X0
3 [0,0] [0,0] [0,0]

X1
3 [2000,2000] [3000,2000] [2000,2000]

X2
3 [15534.17,16187.84] [13693.6,15957.69] [15859.5,15859.5]

X3
3 [0,0] [1087,0] [0,0]

X4
3 [0,0] [0,0] [0,0]

X ′0
3 [0,0] [0,0] [0,0]

X ′1
3 [2000,1110] [1097,1103] [1100,1100]

X ′2
3 [15534.17,17069.82] [16656.3,16846.55] [16751.3,16751.3]

X ′3
3 [0,0] [0,0] [0,0]

X ′4
3 [0,0] [0,0] [0,0]

t = 4

X0
4 [0,0] [0,0] [0,0]

X1
4 [0,0] [0,0] [0,0]

X2
4 [18022.24,19078.5] [16118.9,18704.33] [18545.4,18545.4]

X3
4 [1080,1100] [2268.5,0] [0,0]

X4
4 [0,0] [1087,1093] [1090,1090]

X ′0
4 [0,0] [0,0] [0,0]

′1

w
l
l
h
d
o

c
d

5

b
l
t
f
c
m
a
i
m
l

c

X 4 [0,0]
X ′2

4 [18022.24,20057.5]
X ′3

4 [0,0]
X ′4

4 [1080,121]

hich adopts any value in the holding’s interval by investor. This
eads us to have a utility in the objective function interval with ˛-
evel confidence. Obviously, if a market stability conditions causes a
igher confidence level (higher value for ˛), one can make his/her
ecisions in accurate manner among shorter interval near to the
ptimal.

As mentioned before, the borrowing and the lending rates are
onsidered to be different, i.e. borrowing and short selling with
ifferent interest rates are permitted.

. Conclusions

In this paper a fuzzy multi period portfolio selection model has
een presented where the rates of borrowing are greater than the

ending. We have discussed that one easy way to treat the uncer-
ainty in the lending and the borrowing rates is to use triangular
uzzy numbers. This way, one may adjust the rates based on the
hanges on the prime rates imposed by regulators. The proposed
odel is considered under different interest rates for borrowing

nd lending in a practical example. The model is capable of impos-

ng a balance between the lending and the cash purchases which

akes it easy to adjust the portfolio when lender changes its regu-
ation.

As can be seen, with numerical results, using fuzzy returns gives
onfidence interval of investors’ utility to help them to imagine the

[

[

[0,0] [0,0]
[19369, 19684.75] [19526.4,19526.4]

[105.4,0] [0,0]
[0, 112.58] [109,109]

optimistic and pessimistic situations in a portfolio hereby to make
proper policies to hedge risk resources.

For future researches, this paper proposes some areas, such as
adding other features of real market in constraints of model, i.e.
transaction costs or considering normally distributed returns and
using stochastic programming to be looked into.
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