
ABSTRACT

NONMONOTONIC CRYPTOGRAPHIC PROTOCOLS

by

Aviel David Rubin

Co-Chairs: Adjunct Associate Professor Peter Honeyman & Professor
Bernard Galler

A new Kerberos service, khat, is provided to add the functionality of long-

running jobs to an authenticated environment. The protocol used by khat is non-

monotonic. That is, the knowledge of principals in the protocol may increase or

decrease. A survey of existing protocol analysis techniques reveals that no method

exists for analyzing nonmonotonic cryptographic protocols.

A method for specifying and analyzing nonmonotonic cryptographic pro-

tocols is provided. An advantage of the speci�cation technique is that protocols are

speci�ed at a level close to the actual implementation. The analysis technique un-

covers several known aws in protocols that are used as benchmarks to test many

analysis systems. In addition, it discovered a aw in the original, published version

of the khat protocol, that led to a revised version.

The analysis technique o�ers several advantages over existing ones, even

for monotonic protocols. Protocols can be analyzed at any stage in their development.

Previous techniques generally apply to entire protocols. Also, a protocol can be tested

against known attacks. Another advantage is that the protocol designer is required to

state assumptions, such as trust in a server, in the speci�cation. These assumptions

are often implicit in current methods, often leading to faulty implementations.

In practice, replay attacks are avoided with nonces or timestamps. Nonces

are large, random numbers that are used to guarantee that a message was generated

during the current run of a protocol. Unfortunately, improper use of nonces can lead

to aws. The new technique prevents many of these problems by restricting the use

of nonces to linking one response to a challenge. Improper use of nonces is detected.

Another type of aw arises when an intruder can masquerade as another

principal by imposing a public key upon an unsuspecting participant. It is shown

that binding keys to principals helps avoid this problem. The new technique requires

that all keys be bound to principals, and improper bindings are detected.

The observation is made that restricting the freeness of variables in a pro-

tocol, such as nonces and keys, leads to increased security.

NONMONOTONIC CRYPTOGRAPHIC PROTOCOLS

by

Aviel David Rubin

A dissertation submitted in partial ful�llment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1994

Doctoral Committee:

Adjunct Associate Professor Peter Honeyman, Co-Chair
Professor Bernard A. Galler, Co-Chair
Assistant Professor Sean Co�ey
Associate Professor Larry Flanigan
Assistant Professor Atul Prakash

\Here's ado

To lock up honesty and honour from

The access of : : : visitors."

William Shakespeare

Dedicated

to my future wife, Ann

and to my parents,

Abba and Carol Rubin

ii

ACKNOWLEDGEMENTS

I would like to thank Peter Honeyman for his guidance and advice, and

most of all, for teaching me how to be a researcher. I am deeply indebted to Peter

for providing me with an ideal research environment, and for taking so much interest

in my work.

I thank Bernie Galler for recommending computer science to me, and for

showing me how interesting it can be. I would like to especially thank Bernie for

adding a special quality to my nine years at Michigan, and always showing me a new

perspective on life. Bernie was always there for me through some di�cult transitions

in my life, and his intelligence and father-like support helped me get through them.

I thank Atul Prakash for suggesting that I explore protocol analysis. This

suggestion is directly responsible for shaping the direction of my research. I also

thank the other members of my committee for agreeing to serve, reading my papers,

and providing me with useful ideas. In addition, I thank Kevin Compton for all the

help with theory throughout my graduate career.

I wish to thank my �ancee Ann for helping me enjoy the good moments of

life and helping me overcome the di�cult ones. I thank Mom, Dad, Grandma, Bube,

Rachel, Ron, Tova, Uri, and Yaacov, for knowing all along that I could do it. Also, I

thank my parents for their constant advice and motivation.

I would also like to thank Mary Jane Northrop and Edna Brenner for

help with editing as I �nished various parts of this thesis. I thank Dan Muntz,

Larry Huston, David Snearline, and Scott Dawson for helpful suggestions during the

implementation phase of khat. Finally, I thank Terri, Kati, Elaine, Becky, CJ, Stolar,

Bill, Ted, Wanda, Masud, Seshu, Chris, Janani, Lee, Norman and everyone else at

the Center for Information Technology Integration for their support and friendship.

This work was partially funded by IBM.

iii

TABLE OF CONTENTS

DEDICATION : ii

ACKNOWLEDGEMENTS : iii

LIST OF APPENDICES : vi

LIST OF FIGURES : vii

CHAPTER

1 INTRODUCTION : 1

2 LONG-RUNNING JOBS IN AN AUTHENTICATED ENVI-
RONMENT : 7
2.1 Overview : 7
2.2 Introduction : 7
2.3 KHAT: A New Kerberos Service : : : : : : : : : : : : : : : : : : 8
2.4 The Theory Behind KHAT : 12
2.5 KHAT runtime : 19
2.6 KHAT Utilities : 19
2.7 Summary of KHAT : 21
2.8 The Future of KHAT : 21

3 FORMALMETHODS FOR AUTHENTICATION PROTOCOL
ANALYSIS : 23
3.1 Overview : 23
3.2 Introduction : 23
3.3 Terminology : 25
3.4 Needham and Schroeder : 27
3.5 Approaches to Analysis : 30
3.6 Type I Approach : 31
3.7 Type II Approach : 38
3.8 Type III Approach : 42
3.9 Type IV Approach : 70
3.10 Conclusions : 78

4 NONMONOTONIC CRYPTOGRAPHIC PROTOCOLS : : 81
4.1 Overview : 81

iv

4.2 Introduction : 82
4.3 Protocol Speci�cation in a Distributed System : : : : : : : : : : 83
4.4 Nonmonotonicity of Knowledge vs. Nonmonotonicity of Belief : 84
4.5 The KHAT protocol : 86
4.6 Specifying a Protocol : 87
4.7 Examples : 102
4.8 Analyzing Known Threats : 115
4.9 Conclusions : 117

5 NONMONOTONIC CRYPTOGRAPHIC PROTOCOLS WITH
PUBLIC KEYS : 118
5.1 Overview : 118
5.2 Introduction : 118
5.3 Properties of Asymmetric Keys : : : : : : : : : : : : : : : : : : 119
5.4 The Problem of Unbound Keys : : : : : : : : : : : : : : : : : : 120
5.5 Actions : 122
5.6 The Update function : 123
5.7 Inference Rules : 125
5.8 Examples : 130
5.9 Conclusions : 138

6 CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : 139

BIBLIOGRAPHY : 142

APPENDICES : 148

v

LIST OF APPENDICES

Appendix

A ACTIONS : 149

B SETS : 153

C INFERENCE RULES : 155

D THE CORRECTED KHAT PROTOCOL : : : : : : : : : : : : : : : 158

vi

LIST OF FIGURES

Figure

2.1 The client sends the ticket granting ticket (TGT) server a request for a
khat ticket. The response includes a ticket that enables the khat server
to authenticate the client. : 9

2.2 The client has generated a spool �le (SF) for the khat job, which it
stores on the local disk. It sends a khat ticket to the server (KHATD),
and the client and server mutually authenticate. Note that the Ker-
beros server (KRB) is running on the same machine as khatd. : : : : 9

2.3 Initially, the spool �le resides on the client machine. The client and
server share a secret key, K. : 10

2.4 The client sends the spool �le to the server, sealed under the session
key, K. : 10

2.5 The spool �le is stored on the secure server machine, and is purged
from the client machine. : 10

2.6 When it is time for the job to run, the encrypted spool �le and a ticket
granting ticket (TGT) are sent to the client under the session key. : : 11

2.7 The �rst step is illustrated in the top diagram. The client generates
a random key, N . Then, as shown in the next diagram, N is used
to encrypt the session key, K, which remains on the client machine.
Then, N is sent to the server under the session key. Finally, as shown
in the bottom diagram, K and N are stored on the server. When it is
time for the job to run, N is sent to the client to unseal fKgN . : : : : 15

3.1 The Needham and Schroeder Protocol : : : : : : : : : : : : : : 28

3.2 System Architecture for Kemmerer's Sample System. : : : : 34

vii

3.3 Nondeterministic Finite State Machine for Principals A and
B Initiating the Needham and Schroeder Protocol. The arc
P�n means that principal P transmits message number n. P+n means
that P receives message n. This machine is constructed by taking
the cross product of the individual machines for A and B initiating the
protocol. If a state of A's machine is Si, and B's is labeled Sj, then the
corresponding state in the cross product machine is Sij. The number
of legal states in each of A's and B's machines is x, and the cross
product contains x2+1 legal states including the accepting �nal state.
All other states are illegal, and stand for illegal runs of the protocol. 37

3.4 Protocol Analysis with the BAN Logic: The input to BAN is a

protocol speci�cation and the initial assumptions. At each step, formulas

are attached to the protocol messages, and either a rule is applied, or the

logic must halt. If possible, the desired conclusion is reached. : : : : : : : 48

3.5 The De�nition of Moser's unless operator The x in the last row
indicates a special case. x is true i� 9r : Bi(p) unless Bi(r) 2 F , where
F is a conjunction of formulas containing the unless operator. : : : : 69

4.1 The Needham and Schroeder protocol speci�cation. Protocols

are speci�ed by a principal name, followed by an arrow and another principal

name, followed by a message. : 83

4.2 The Structure of A Behavior List The list contains a list of actions,
followed by a list of pairs, (message operation, action list). After each action,

any relevant inference rules are applied. : : : : : : : : : : : : : : : : : : 91

4.3 The Flow of Control in Protocol Analysis. This diagram shows
how the analysis proceeds sequentially through the behavior list of two
principals in a protocol. After each Update, the analysis moves to the
next receive of the principal speci�ed in the previous send operation. : 101

5.1 The Needham and Schroeder public key protocol speci�ca-
tion. Protocols are speci�ed by a principal name, followed by an arrow

and another principal name, followed by a message. : : : : : : : : : : : : 133

viii

CHAPTER 1

INTRODUCTION

The �eld of computer science consists of many interesting sub�elds. While

research topics such as parallel processing, distributed networking, and other popular

areas receive much attention, an important, yet often neglected subject is computer

security.

The advent of distributed networks revolutionized computer science, and

the communication between computers became as important as the processing. In

a modern network, some computers serve as client workstations, while others are

designated to provide services. Whenever possible, these services are transparent to

the user, who is unaware of the communication that takes place between his machine

and the remote server. For example, �les are usually maintained on a �le server, and

clients request them as needed. The user need not know if the �les are on the local

disk.

Before distributed networks, �les resided on the local machine, and a mali-

cious intruder had to compromise the computer to access them. However, in today's

systems, �les travel on a network composed of wires and phone lines that are easily

accessible to the outside world. An intruder can read them, modify them, and even

destroy them. The security of information is a di�cult problem that gains in im-

portance every day, as computer networks become ubiquitous. Computer security is

becoming especially important in light of the projected information superhighway.

The science of cryptography is the foundation of computer security. An

encryption algorithm applies a combination of substitutions and transpositions to the

bits of a data block and a key. There are two classes of algorithms. In symmetric

systems, the key is secret, and it is only known to the parties who encrypt or de-

crypt [58]. Also, there are two separate algorithms for encryption and decryption

1

2

respectively. In asymmetric, or public key systems, there is only one algorithm [58].

In addition, there are two keys that are inverses of each other. Encrypting with one

requires the other for decrypting, and vice versa. Usually, one key is called the private

key, and it is only known to one user. The other is called the public key, and it is

universally available.

The security of a system lies in the length of the keys, and it is widely

accepted that security by obscurity is obsolete [58]. Cryptography is used to hide

information (secrecy), to guarantee that information has not changed (integrity), and

to guarantee the origin of information (authentication).

The use of cryptography for secrecy, integrity, and authentication in a dis-

tributed system requires an environment in which each principal is in possession of a

secret key. This is called an authenticated environment. Depending on the type of

cryptography in use, each principal may also have a public key. The distribution of

these keys is a non-trivial problem (see Chapter 5). Principals in an authenticated en-

vironment use cryptographic protocols to communicate and share information. These

protocols are designed to preserve the three security properties mentioned above.

One example of cryptography in an authentication protocol is in a challenge

and response. When a principal, A wishes to verify that he is communicating with

another principal, B, with whom he shares a secret key, K, he sends a message to B.

This message servers as a challenge. B encrypts the message using K, and sends the

new message to A. If A believes that the only other principal knowing K is B, then

the correct encryption of the message indicates that it came from B.

Kerberos [64], developed at MIT, is an authentication system that is in

widespread use. In this system, each principal shares a secret encryption key with

the Kerberos server, a machine that must be kept physically secure. The secret key

for a user is created by applying a one-way hash function to his password. This

function has the property that it cannot be easily inverted. The existence of a secret

key in two separate locations can be viewed as a secure channel in which encrypted

messages can be sent.

Using Kerberos, secure channels can be established between any two prin-

cipals. When two principals wish to establish a secure connection, the Kerberos server

creates a session key, and distributes it to them using existing secure channels. A

session key is a key that is only used for one communication session and is then dis-

3

carded. This process requires cryptographic protocols that are known to all parties

involved.

In Kerberos, session keys are distributed in tickets. When principal A

wishes to establish a secure channel with principal B, he requests a ticket for B from

the Kerberos server. This ticket contains the session key,K, along with an instruction

that it be used with A. The Kerberos server sends a copy of K to A, along with a

ticket that is forwarded to B. The ticket represents an unforgeable proof of identity

for A. The ticket contains a lifetime to limit its exposure. Therefore, Kerberos relies

on loosely synchronized clocks.

Kerberos issues tickets for services. If a principal does not possess a valid

ticket, he has no access to any resources that require authentication. As most im-

portant service providers, such as the �le server, require authentication, a principal

without valid tickets cannot accomplish much.

Unfortunately, the limited lifetime of tickets creates a problem. Because

tickets expire, users must manually renew them. Also, there is no way to schedule a

batch job for some time in the future because without tickets, the job will have no

access to needed resources. We provide a solution to the problem of long-running jobs

in an authenticated environment. The khat system presented in Chapter 2 is based

on the Unix at command. A user schedules a job with khat. The job is then stored

on a secure machine until it is time for it to run. When the right time arrives, the

job and a ticket are sent to the client's machine and begins execution. The ticket is

for a special service called the ticket granting service that issues tickets for services

to authenticated clients.

A protocol is said to have a security aw if a malicious intruder can ma-

nipulate the messages to his advantage, can cause the principals involved to reach

incorrect conclusions, or can prevent the principals involved from reaching desired

conclusions. An example of this is the replay attack. If a message cannot be distin-

guished from a previous message, then it can be used to fool a principal into accepting

it again. Such an attack does not require any knowledge of the encryption being used.

Replay attacks can be avoided by use of timestamps or nonces. A nonce is

a large random number that is used only once. If a principal creates a nonce, N , at

time t, then any message that contains N must have been created after t. The most

common use of nonces is to recognize a message as a response to a challenge. The

4

challenge contains a nonce, which may be sent in the clear. An encrypted message

that contains the same large number ensures a fresh response. That is, the response

is not a replay of a previous message. Any information that contains a guarantee of

timeliness is considered fresh, and any information that is not fresh is subject to a

replay attack.

There are many other types of aws in protocols [1]. New ones are con-

stantly being discovered, and it is probably impossible to name all of the possible

types of aws in cryptographic protocols. Some aws result from the interaction be-

tween the messages and the underlying cryptosystem, whereas others result from the

messages themselves [45]. Once a type of aw is discovered, it is relatively easy to

use formal methods to check a protocol for this aw. However, in practice, many

protocols exist that contain known types of aws.

Experience has shown that it is not always necessary to break the encryp-

tion algorithms to compromise a system. It may be possible for an active intruder to

manipulate cryptographic protocols to his advantage. In fact, some protocols that are

in use today contain subtle aws that took years to discover. Therefore, formal meth-

ods are needed to analyze the security of protocols from malicious attacks. Chapter 3

discusses previous approaches to formal methods for cryptographic protocol analysis.

The most successful approach uses logics speci�cally developed for the analysis of

knowledge and belief.

The protocol used by khat cannot be analyzed using existing formal meth-

ods. Khat relies on the user's workstation erasing the batch job. The only copy

resides on the secure server. There is no way to specify this using existing methods.

We de�ne the class of protocols where the participants' knowledge is strictly increas-

ing as monotonic. If the knowledge of the principals in a protocol can increase or

decrease, we say that the protocol is nonmonotonic. It is clear that the khat protocol

is not monotonic.

There are other protocols that are not monotonic as well. For example,

Thurasingham [72] describes a database management system that handles data that

can be deleted. Protocols for interacting with this database are nonmonotonic because

there are principals whose knowledge increases and decreases. There are many such

protocols in use.

Protocols that are nonmonotonic may require that a principal delete some

5

information. Thus, the knowledge of principals is not monotonic. The need to for-

mally analyze protocols such as khat, and others like it, prompted the development

of a new technique for specifying and analyzing cryptographic protocols. This is pre-

sented in Chapters 4 and 5. The technique was used to discover a aw in the original

published version of the khat protocol [54]. This further demonstrates the need for

formal tools to evaluate cryptographic protocols.

In the speci�cation technique, a protocol designer chooses from a set of

actions to de�ne the steps in the protocol. Actions that are merely assumed in other

speci�cation methods, such as encryption and decryption, are stated explicitly. An

advantage to this method is that the speci�cation can be implemented directly. By

reducing the level of abstraction between the speci�cation and the implementation,

the risk of unexpected aws is lowered.

There are other advantages to the new method even for monotonic proto-

cols. The protocol designer can interact with the analysis to check for known aws.

Also, the knowledge of an intruder can be modeled to see what information can be

learned from passive or active interference. Another feature concerns the assump-

tions of the protocol, which must be stated explicitly in the speci�cation. This avoids

confusion when the protocol is implemented.

The actions that specify a protocol are used to represent the knowledge of

the principals. The analysis technique uses inference rules to reason about beliefs.

Another feature is designed to prohibit improper use of nonces. A special construct,

called a LINK, links challenges and responses that use nonces, to require that nonces

are only used once. If a nonce is used again, then the message containing it is ignored.

In addition, the analysis technique detects the use of a nonce for any purpose other

than linking a challenge to a response. This is discussed in Chapter 4.

The technique also helps detect aws of another type. Abadi and Needham

[1] show how one principal can masquerade as another by imposing a public key on

an unsuspecting participant. The aw is removed by attaching a principal's name to

every key. We call this binding the keys. Each principal is associated with a bindings

set, that enforces the requirements of binding keys to principals. Chapter 5 covers

this topic in detail.

The binding of keys to principals, and the linking of nonces to unique

responses leads to an observation about the variables, such as keys and nonces, in

6

a system. In both cases, restricting the variables reduces the possibilities of aws.

Thus, we conclude that eliminating the freeness of variables in cryptographic protocols

increases security.

CHAPTER 2

LONG-RUNNING JOBS IN AN

AUTHENTICATED ENVIRONMENT

2.1 Overview

In strong authentication systems, users may obtain access to secure system

resources only when in possession of valid credentials. These are issued with limited

lifetimes; their renewal requires a user to enter his password. We have developed

a system called khat with which a user may schedule a batch job to be run at a

later date in the current environment. The batch job is stored on a secure machine,

and sent and received in encrypted form. When it is time for the job to run, the

server generates credentials for the originating user and sends them encrypted to the

machine on which the job will run. The user is given an option to specify that tickets

should be continually generated for the job until its execution has completed.

2.2 Introduction

Adaptations of Needham and Schroeder's authentication system [48] are a

boon for establishing secure services in distributed systems. One such adaptation is

the Kerberos Authentication system [64] of MIT's Project Athena. An unfortunate

byproduct of building Kerberos-based systems is a loss of functionality, such as long-

running jobs. In this chapter, we address this weakness and o�er a solution.

Before Kerberos, UNIX authentication was coterminous with a login ses-

7

8

sion. In the Kerberos system, tickets1 expire, so that a compromised2 ticket does not

allow an impostor to masquerade as an authenticated user forever. Consequently,

users are forced to reauthenticate on a regular basis, usually about once a day, to

acquire fresh tickets.

For a Kerberos user to submit and execute a long-running batch job that

employs secure system resources, he must either physically reauthenticate whenever

tickets are about to expire, or enter a password into a script. Similarly, it is impossible

to schedule a batch job to run at a distant future date and be authenticated as the

user.

This problem has been recognized as a di�cult one. Lampson et al. state

that \it is a tricky exercise in balancing the demands of convenience, availability, and

security" [35]. They further state that \the basic idea is to have a single highly avail-

able agent for the user that replaces the login workstation and refreshes credentials

for long-running jobs." This approach is the one we take in solving the problem for

Kerberos-based systems.

This chapter presents the original version of khat. The analysis technique

presented in Chapter 4 uncovered a subtle security aw in the protocol. The corrected

protocol, which is the current one being distributed, is found in Appendix D.

2.3 KHAT: A New Kerberos Service

This section describes a new service: khat, based on the UNIX at command.3

In a later section, we critique the design of khat and o�er suggestions for improvement.

Like at, which is used to schedule batch jobs at a speci�c time and date,

khat o�ers a batch service. The principal di�erence between the two is that khat

provides continuous Kerberos authentication to the batch job while it runs.

1Kerberos credentials.

2E.g., stolen.

3The name is taken from Kerberos and at. The additional letter stems from a tradition that we
don't completely understand, but slavishly follow.

9

2.3.1 Overview of KHAT

When a user wishes to schedule a batch job, he issues the khat command

with a syntax very similar to the UNIX at command. A spool �le for the batch

job is created, containing, among other things, the user's name, his current working

directory, and his shell environment. So far, this is identical to at.

Next, khat requests a ticket for the khat service from the Kerberos ticket

granting server on behalf of the user. This step is shown in Figure 2.1. The khat ticket

ClientTGT Server

Ticket

Request

TGT KHAT

Figure 2.1: The client sends the ticket granting ticket (TGT) server a request for a
khat ticket. The response includes a ticket that enables the khat server to authenticate
the client.

is then sent to a khatd server. The server must run on a secure machine. The client

and server then mutually authenticate [64], as shown in Figure 2.2. After mutual

KHAT Server Client

Mutual

Ticket

SF

Authentication

KRB

KHATD

KHAT

Figure 2.2: The client has generated a spool �le (SF) for the khat job, which it stores
on the local disk. It sends a khat ticket to the server (KHATD), and the client and
server mutually authenticate. Note that the Kerberos server (KRB) is running on
the same machine as khatd.

authentication, the client and server share a DES [47] key, which we denote K, as

shown in Figure 2.3. The khat client uses K to seal the spool �le. This hides the

details of the batch request from prying eyes, as well as assuring its integrity. The

encrypted spool �le is then sent to the khatd server, as shown in Figure 2.4. Along

with the spool �le, the client sends information such as the time and date for the job

to run, the user's environment, etc. The khatd server receives the spool �le from the

client, unseals it, and stores the �le away until it is time for the job to run. At this

10

K K

KHAT Server Client

SF

KRB

KHATD

KHAT

Figure 2.3: Initially, the spool �le resides on the client machine. The client and server
share a secret key, K.

K K

{SF}
K

KHAT Server Client

KRB

KHATD

KHAT

Figure 2.4: The client sends the spool �le to the server, sealed under the session key,
K.

point, the client discards its copy of the spool �le and listens to a well known port for

activation. For reasons discussed later, the khatd server runs on a Kerberos master or

slave machine. This blocked con�guration is depicted in Figure 2.5. Periodically,4 the

K K

SF

KHAT Server Client

KRB

KHATD

KHAT

Figure 2.5: The spool �le is stored on the secure server machine, and is purged from
the client machine.

server checks to see if any job is scheduled to be run. When the time for the job to

run arrives, the server uses the Kerberos database to construct a ticket for the user.

It then seals this ticket along with the spool �le, and sends them back to the client

machine, as shown in Figure 2.6. The client can use the TGT to obtain tickets for

other services. If the job will run for longer than the life of the ticket, or if the user

suspects this may be the case, khat o�ers an option to renew tickets, in which case the

server sends new tickets to the client as long as the job is running. Of course, care is

4Once a minute, in our implementation.

11

KK

{TGT}K

{SF}
K

SF

KHAT Server Client

KRB

KHATD

KHAT

Figure 2.6: When it is time for the job to run, the encrypted spool �le and a ticket
granting ticket (TGT) are sent to the client under the session key.

taken to ensure that the job is still running. (This proves to be a di�cult problem.)

After the job terminates, the spool �le is removed from the client machine,

and the khat process exits. A message is then sent to the server machine so that the

khatd process can exit too. Details follow in Section 2.4.6.

2.3.2 Implementation of the KHATD server

The server program, khatd, runs as root. Moreover, the server machine

contains a master or slave copy of the Kerberos database; any program running on

such a machine must be trustworthy. The khat program runs on the client's host

machine. It also runs as root, but care is taken to make sure that the user's job is not

able to obtain a higher privilege than it should. The program uses the UNIX setuid

facility to ensure that the user's batch job runs as that user. However, the actual

khat program runs as root because it must perform operations that require special

privileges, such as setting group IDs, deleting �les, and copying �les to and from the

local disk.

When the khatd server needs to issue tickets for a user, it sends a request

to the Kerberos server. The Kerberos server returns a user ticket encrypted under

that user's secret key. Unfortunately, the client machine does not necessarily have

a user authenticated to it when this happens, so the user's secret key may not be

available. Thus, the user's ticket issued by the Kerberos server is not readable.

To decipher the user ticket, the khatd server uses the Kerberos database

to access the user's secret key. User keys are stored encrypted under a master key

in the Kerberos database, so khatd must �rst use the Kerberos master key. Once it

has decrypted the user's secret key, khatd decrypts the user ticket received from the

Kerberos server. Finally, khatd changes the client address in the ticket to that of the

12

target host that will run the job. The ticket is then ready to be sent to the target

host. The encryption of the ticket before it is sent over the network is the topic of

Section 2.4.5.

When a user issues the khat command, the TGT is used to request a

khat ticket. After mutual authentication, the client receives a ticket and can then

communicate with the server. Thus, khat behaves as any other Kerberos service, with

one exception: to construct the ticket, khatd has to access the Kerberos database

and the Kerberos master key. Thus, khatd must run on a Kerberos master or slave

machine.

2.4 The Theory Behind KHAT

It seems contradictory to provide authentication for an absent principal.

By de�nition, authentication means that a principal proves his identity, seemingly

an impossible task if he is no longer present. Thus, to schedule a long-running job,

or one to be run at a later date, a principal must leave something around so that

possession of the thing is equivalent to authentication for that principal. A similar

idea, called delegation, is discussed by Lampson et al. [35]. The authors de�ne the

\speaks for" relationship and provide rigorous de�nitions and proofs based on a set

of axioms they de�ne in the paper.

Ideally, we would like the user's batch job to delegate authority to the

workstation, saying that the workstation speaks for the user. In general, though, we

are dealing with the domain of untrusted workstations. Many workstations reside

in public sites where many di�erent users have access to them at all times. It is a

fundamental assumption that nothing on such a workstation can be trusted. However,

some compromises must be made to provide for authenticated long-running jobs; we

elaborate on this theme in the next section.

2.4.1 The authentication problem for a vacant workstation

We call a workstation vacant whenever a given user's task must be run there

while that user is not logged in. In the previous section, we assumed that nothing

on the workstation could be trusted. The reason for this is straightforward: we must

allow for the possibility that a user might obtain root privileges, e.g., by booting the

13

machine into single-user mode, whereupon the privileged user might replace any or

all utilities on the workstation, including the operating system image itself. The only

objects on a public workstation safe from such attack are those that are encrypted.

Yet, we take it as given that the encryption key may not reside on the workstation,

even if well hidden.

Experts dismiss systems that hide cryptographic algorithms or protocols

(a.k.a. \security through obscurity"). Kahn [30] cites Kerckho�s' classic treatise

on military security [34]. Saltzer and Schroeder [55] reect a more modern view in

describing \open design" as one of the basic principles of information protection:

The design should not be secret. The mechanisms should not depend
on the ignorance of potential attackers, but rather on the possession of
speci�c, more easily protected, keys or passwords. This decoupling of
protection mechanisms from protection keys permits the mechanisms to
be examined by many reviewers without concern that the review may
itself compromise the safeguards. In addition, any skeptical user may
be allowed to convince himself that the system he is about to use is
adequate for his purpose. Finally, it is simply not realistic to attempt
to maintain secrecy for any system which receives wide distribution.

Voydock and Kent amplify this perspective: \data encryption is the fundamental

technique on which all communications security measures are based" [78]. Cloaking

information does not protect it.

Therefore, in a secure, distributed authentication system, data must travel

across the network encrypted; for two peers to communicate this way, they must share

a secret. Thus, the user must place something on the workstation which the server

can later use for mutual authentication.

Lampson et al. describe a mechanism whereby a vacant workstation could

share a secret [35]. Their method requires that a machine possess a private key stored

in nonvolatile memory. In addition to the private key, certi�cates and other rules must

be stored on the boot ROM.

Aside from the fact that our workstations do not contain this information

in ROM, Lampson's method requires a public key system, which is not compatible

with Kerberos. At some future date, it may be possible to authenticate a workstation,

whereupon it will not be necessary for the client to leave anything on the machine.

14

2.4.2 How KHAT authenticates to a vacant workstation

For the server to send an encrypted spool �le and tickets back to the client's

host machine, some shared secret must be left on the workstation. The creation and

responsibility of this secret is illustrated in Figure 2.7. To leave this secret on the

workstation, a new random key is generated, which we denote N .5 K, the khat session

key, is encrypted with N and stored on the client machine. N is then sent encrypted

under K to the server. Note the symmetry here: the client holds fKgN but sends

the server fNgK.

After sending the spool �le and other information to the server, the client

erases all of this information from disk and from memory. All that the workstation

keeps is fKgN , the session key from the original khat ticket encrypted under N ,

accessible only to root on the client machine. When it is time for the job to run, the

server sends N to the workstation in the clear, followed by the spool �le and tickets,

sealed under K. The workstation then unseals the original session key and uses it to

decrypt the spool �le and tickets.

By itself, eavesdropping on the network does not expose the user: the only

function served by N is to unseal the key on the workstation. Once the session key is

unsealed, the spool �le and tickets sent across the network can be decrypted by the

khat agent sitting on the workstation.

2.4.3 Risks of running KHAT with a vacant workstation

In this section, we discuss the risks involved in running khat on a vacant

workstation. If the workstation is rebooted, then the process memory is lost. Al-

though a denial of service results, this can be reported back to the user and no real

harm is done beyond termination of the job. If an impostor manages to gain control

of the machine without erasing the memory, and examines memory to �nd the secret

key, this will give no advantage, as the secret key is encrypted with N . In fact, a

few other safeguards are in place. The impostor has no idea when a job is scheduled

to run, as all such information has been kept secret and no longer resides on the

workstation.

5For nonce.

15

K

SF

N

N

K

SF

K

SF

{N}k

N{K}

N{K}

KHAT Server Client

KRB

KHATD

KHAT

K

KHAT Server Client

KRB

KHATD

KHAT

KHAT Server Client

KRB

KHATD

KHAT

Figure 2.7: The �rst step is illustrated in the top diagram. The client generates a
random key, N . Then, as shown in the next diagram, N is used to encrypt the session
key, K, which remains on the client machine. Then, N is sent to the server under
the session key. Finally, as shown in the bottom diagram, K and N are stored on the
server. When it is time for the job to run, N is sent to the client to unseal fKgN .

To compromise a job, an impostor must acquire the session key. But K is

never exposed over the network, so the impostor must compromise the workstation

itself. Even here, this must be accomplished either while the khat service is being

requested, or while the user's job is being run. Even if fKgN is obtained from the

workstation's process memory and N obtained through network eavesdropping, the

impostor will be left with a ticket usable only on the target host. In summary, an

impostor must completely compromise the workstation to a�ect the batch job. We

know of no system that can run jobs securely on such a machine.

To deny service, an impostor can simply reboot a workstation, but khat can

notify the user of unsuccessful batch jobs. As long as users understand this risk, they

can choose whether to use the khat service. Khat does not compromise the security

of people who do not use it.

16

2.4.4 The single user approach

The vacant workstation problem was addressed by Treese at MIT, where

access to an Athena workstation is limited to one user at a time [74]. Treese reports

that \experience has shown that this is an acceptable limitation." Placed in our

context, workstations could prohibit any login while any khat job is scheduled. This

would make khat client machines much more secure. However, this would allow a

denial of service attack, wherein a malicious user schedules a khat job that monopolizes

a workstation. Conversely, a user could log in and prevent a scheduled khat job from

running. Both these forms of denial of service can be detected. In fact, khatd could

maintain a database of pending khat jobs, so that abuse of the system could be traced

to the o�ending user.

2.4.5 Generating tickets for a user

When it is time for a batch job to run, the khat server must obtain a ticket

for the user. It cannot simply issue a request for a ticket the way a user does because

this request looks up the address from which it comes, and puts the client IP address

into the ticket. Thus, the ticket must be constructed manually by the server. The

steps taken by the server are as follows:

� Get the master key for Kerberos

� Get the TGT secret key from the Kerberos database

� Decrypt the TGT key with the master key

� Create a TGT ticket for the user

� Purge the master key and other keys from memory

A brief discussion of each of these steps follows. This discussion makes it clear that

the khat server must have the Kerberos database available to it, and must either run

on the same machine as Kerberos, or on a Kerberos slave machine.

2.4.5.1 Get the master key for Kerberos

The following steps are taken to get the master Kerberos key. We call

gettimeofday to set the Kerberos time. Then we call routines to get and verify the

17

master key. After that, the version number is checked. If the wrong version number

appears, or if kdb verify master key returns an error, we log the error and exit. In

this case, no tickets can be generated, and mail is sent to the user.

2.4.5.2 Get the TGT secret key from the Kerberos database

To get the TGT secret key from the Kerberos database, we call check princ,

which checks for expiration times on the master key and the service. It also populates

the Principal data structure with information containing the key (encrypted under

the master key), realm, etc.

2.4.5.3 Decrypt the TGT key with the master key

This step is straightforward. We use the master key to decrypt the TGT

key.

2.4.5.3 Create a TGT ticket for the user

We have the TGT ticket that will be used to encrypt the ticket once it is

constructed. Inside the ticket, we place user information such as name, instance, and

realm, obtained from the call to check princ. Then, we add the client host address

that we obtained with a call to getpeername to see who the client was. In addition, we

generate a random session key and include that in the ticket. Other usual information

such as the time and ticket lifetime are also included. A lifetime of about 25.5 hours

was chosen here, but that was arbitrary and based on the choice observed in existing

Kerberos services. The ability to specify the lifetime could be added later as a user-

speci�ed option to khat.

2.4.5.4 Purge the master key and other keys from memory

Finally, we zero out all of the memory we used for highly sensitive infor-

mation such as the master key. Even though this is a trusted machine, it never hurts

to take added precautions.

18

2.4.5.5 Send the ticket to the client

Once the ticket has been constructed properly, it is encrypted under the

session key available to the client and sent across the network. The client decrypts

the ticket, and stores it with the batch job user as the owner, with no permissions for

anyone else.

2.4.6 Renewing the tickets

If a batch job is to run for more than the lifetime of a TGT ticket, then the

workstation must receive a new ticket for the user. The ability to renew tickets is a

command line option. If a user prefers for jobs which outlive the tickets to die rather

than have tickets generated until the job exits, he can chose to omit this option.

The khat program forks a master process to run the batch job. Before the

job is actually run, this process forks a sub-process. This sub-process is in charge

of maintaining the user's authentication on the workstation. When the master pro-

cessing the job completes, it terminates the sub-process, and sends a message to the

server that it is �nished. This message is not necessary, but it is sent so that the

khatd process on the server will exit normally. The details of this scheme follow.

The process that maintains the authentication works as follows. It sleeps

until the authentication ticket is about to expire. Then, it calls gettimeofday to get the

current time. The time is sent, encrypted, to the server, ensuring against replay, and

proving possession of the secret key. The server checks the time, and if it matches

to within a minute, is convinced that a new ticket must be sent. The server then

constructs a new ticket for the user and sends it across the network. The workstation

replaces its current ticket �le with the new one, and then goes back to sleep.

The server on the other end waits for a request for tickets or a message

from the client that the job has terminated. When a request comes in, the server

checks that the time is within a minute of the current time. If not, the request is

ignored, and no tickets are generated. If the time is correct, then the user creates a

new TGT ticket for the user, encrypts it, sends it to the client, and continues waiting

for requests.

19

2.5 KHAT runtime

A khat session consists of two phases. In phase one, the user invokes khat,

and connects to a well known port on the server machine. When the spool �le has

been sent, the client and the server store away some information for future use and

exit.

In phase two, it is time for a job to run, so the khat server connects to a

well known port on the client machine, and the spool �le and tickets are sent. This

well known port is established by running a service, khatrun, on the client machine.

Thus, the khat server becomes the khatrun client and the khat client becomes the

khatrun server. For clarity, we will continue to use the terms client and server with

respect to khat.

The server runs a program called khatcheck to determine when it is time

to initiate phase two. Khatcheck runs in the background and wakes up every minute

to see if there are any khat jobs to run. The name of the spool �le contains the date

and time for each job, so the current time is compared to the scheduled time for each

job. If it is time, khatcheck forks and execs the khatrun program to begin phase two.

Khatrun needs some information for each job such as client name, instance,

realm, and secret keys. Khatd stores this information in a �le before it exits. The

name of this �le contains the name of the spool �le for the job as a substring so it can

easily be associated with the correct job. This is possible because khatd is assumed

to be running on a secure machine.

2.6 KHAT Utilities

We have written a couple of Kerberos services to give khat users some

exibility. The commands khatq and khatrm were added to display a list of pending

jobs, to display the contents of a pending job, and to remove a pending job.

When these commands are invoked, the user's workstation receives a khat

ticket, and mutual authentication is performed. The khat server is then presented

with this ticket along with the name of the service being requested. At this point, the

user and the khat server have established a secure communication channel, as they are

both in possession of a secret session key. The client and server use this session key to

encrypt all message tra�c between them for the remainder of their communication.

20

2.6.1 The KHATQ command

When the khat server receives a request for the khatq service from the client,

it creates a list of all pending jobs for that user. A string is then created containing

the time and date for the job to run. In addition, a unique job number is assigned

to each job based on a hash function of the user's uid and the time and date for the

job. Currently, a four digit number is assigned, but to insure a higher probability of

uniqueness, larger numbers can be used.

The list of pending jobs is sent to the client. Since the length of this list

may vary, a terminator string is sent to the client at the end of the list. Since each

khatq request will cause a new session key to be established between the client and

server, and as the terminator string is only used once per session, this string is not

distinguishable from other data once it is encrypted.

If there are no jobs scheduled for the user, then only the terminating string

is sent. The client then prints a message that there are no jobs scheduled. If the user

speci�es a job number as an option to the khatq command, then the server will send

the contents of the batch job, as originally submitted, to the client, which will then

print them on the standard output. If the user speci�es a job number that does not

exist, or does not belong to that user, khatq prints an error message. To prevent users

from discovering job numbers of other users, this error message does not reveal any

substantive diagnostic information.

One weakness of the current implementation of khatq is that tra�c analysis

could reveal some information. By analyzing the messages between the client and the

server, an eavesdropper can discover how many jobs are pending or the approximate

length of a batch job. This can be solved by padding all the messages to a given

length, adding redundant messages, or some combination of the two.

2.6.2 The KHATRM command

When the khat server receives a request for the khatrm service, it veri�es

the ownership of the job, and then removes the spool �le from the server machine.

A message is sent to the client reporting success or failure. Again, a new session key

is established for every invocation of khatrm so this message cannot be distinguished

from other data. The client either prints that the job was removed, or that it could

21

not be removed. As in the khatq command, no further diagnostic information is

printed so that it is impossible to discover if a job number represents a job scheduled

by a di�erent user.

2.7 Summary of KHAT

Using khat it is possible to run a batch job with authentication without

manually renewing user tickets. The risks of having valid tickets on a vacant work-

station are inherent to khat. To minimize the risk, the secret key used to authenticate

to the server when the user is gone is maintained, encrypted in the process memory

of the khat process on the client machine.

The khat server runs on a secure machine with access to the Kerberos

database. It uses this database to generate tickets for users and the TGT service.

Everything sent across the network is encrypted �rst with the secret key available on

the workstation.

When scheduling jobs to run on a vacant workstation, there must be some

security compromise for authentication to take place. This problem will remain until

there is some way to reliably authenticate a workstation.

2.8 The Future of KHAT

We are considering some enhancements for future implementation. At

present, khat can run jobs only on the workstation from which they were scheduled.

It would be convenient if the �rst available workstation or a user-speci�ed workstation

could be used. One possibility for a user-speci�ed workstation to run khat jobs is to

require that the user log into the target workstation, authenticate to khat, and then

leave an encrypted session key around. However, this is no di�erent from the user

simply logging into the target workstation and scheduling the job from there.

Another possible extension is to add exibility to the khat service. For

example, a user may wish to specify that a workstation should maintain valid tickets

only between certain hours, when presumably, he believes it is safer. An option can

be added in which the user speci�es the lifetime of tickets, and perhaps provides some

conditions under which they should or should not be renewed.

22

Another feature which could be added to khat is the ability for a process

to save its state before a ticket expires, send it (encrypted) to the server, and then

wait until the user reauthenticates to continue running. This feature would be useful

in a case where the workstation (somehow) realizes it has been compromised, or is

about to be.

Availability

The version of khat that is available contains a revision to the protocol

presented in this chapter. This is due to a security aw in the original version that

was discovered using the techniques described in Chapter 4. A complete speci�cation

of the corrected protocol is found in Appendix D.

The code for khat can be obtained via anonymous FTP from

/public/khat/khat.tar.Z at citi.umich.edu. AFS users can �nd the �le khat.tar.Z in

the directory /afs/umich.edu/group/itd/citi/public/khat.

Complete instructions for building and installing khat can also be found

in the same directory in the �le khat.instructions. The system is meant for use with

AFS or with Version 4 of Kerberos, and assumes the availability of the at command

(in binary form).

CHAPTER 3

FORMAL METHODS FOR AUTHENTICATION

PROTOCOL ANALYSIS

3.1 Overview

In this chapter, we examine current approaches and the state of the art in

the application of formal methods to the analysis of cryptographic protocols. We use

Meadows' classi�cation of analysis techniques into four types.

The Type I approach models and veri�es a protocol using speci�cation

languages and veri�cation tools not speci�cally developed for the analysis of cryp-

tographic protocols. In the Type II approach, a protocol designer develops expert

systems to create and examine di�erent scenarios, from which he may draw con-

clusions about the security of the protocols being studied. The Type III approach

models the requirements of a protocol family using logics developed speci�cally for

the analysis of knowledge and belief. Finally, the Type IV approach develops a formal

model based on the algebraic term-rewriting properties of cryptographic systems.

The majority of research and the most interesting results are in the Type

III approach, including reasoning systems such as the BAN logic; we present these

systems and compare their relative merits. While each approach has its bene�ts, no

current method is able to provide a rigorous proof that a protocol is secure.

3.2 Introduction

Authentication is the process by which a principal in a distributed system

proves its identity. Typically, each principal shares a secret with some trusted ma-

chine, called an authentication server. By proving possession of this secret, a principal

23

24

can establish trust in its identity. The use of passwords in a multi-user environment

is an example of this.

The shared secret in an authentication system is typically used as an en-

cryption key. The encryption scheme has the property that a user cannot generate

or decrypt encrypted data without possession of the key. Thus, a principal proves it

is in possession of a key by encrypting with it.

Authentication in a large, distributed system is challenging because prin-

cipals communicate over a network that is vulnerable to many attacks. A passive

intruder can eavesdrop on a line and obtain sensitive information. Of graver conse-

quence, is an active intruder who can modify message tra�c by blocking the transmis-

sion of packets and inserting his own packets at will. Such an intruder can impersonate

any principal in the system and possibly intercept his rights and privileges.

Encryption can thwart the attacks of an active intruder. Encrypted data

has the property that any modi�cation to some part of the data causes the decryption

to fail. Thus, without knowledge of the key, an active, malicious intruder's ability is

limited to blocking data from reaching its destination.

In authentication systems, we assume that each principal shares a secret

key with an authentication server. This key is established by some secure, o�-line

method. Two principals can communicate securely by sending encrypted messages

to the authentication server, who can re-encrypt and forward them to the intended

recipient. However, issues of scale make this impractical.

Rather, when two principals wish to communicate, they establish a secret

key known only to them. This secret key serves as a secure communication channel

between the two principals because an active intruder who doesn't know the key

cannot successfully interfere with the communication1. However, establishing such a

key, called a session key, is a nontrivial problem.

The problem of establishing secure session keys between pairs of principals

in a distributed authentication system led to a great deal of research. This research

focuses on the development of protocols, and is accompanied by a greater and more

interesting problem, the analysis of authentication protocols.

1It is assumed that systems will always be vulnerable to message blocking because in the simple
case an intruder can cut the physical wire connecting two machines.

25

The Needham and Schroeder authentication protocol [48] revolutionized

security in distributed systems. Adaptations of this protocol, such as Kerberos [64]

and the Andrew File System [28], have become universal. However, it was not long

before a aw was found in this protocol [17]. Needham and Schroeder then published

a revised version of their protocol [49].

The existence of a subtle aw in a previously trusted protocol stressed

the need for formal methods for analyzing authentication protocols. In fact, many

authors praise the merits of their analysis techniques with their ability to discover

the aw in the Needham and Schroeder protocol [9, 12, 23, 44, 63, 76].

A few speci�cation techniques for authentication protocols have been pub-

lished [41, 70, 77, 80], and several formal analysis techniques have been proposed. In

particular, the use of predicate logic for the analysis of protocols was proposed by Bur-

rows et al.2 [9], and many extensions have since been published [11, 12, 21, 23, 62, 63].

Others have been critical of the BAN logic [50, 67], and have proposed

their own logics [36, 39, 41, 42, 44, 46, 65, 67, 76, 80]. This chapter explores these

logics and discusses the tradeo�s among them.

3.3 Terminology

This section describes some of the terminology used in the rest of this

thesis. Because many researchers de�ne their own terms and use di�erent notations,

we have standardized on the following de�nitions.

Threat model refers to the assumed characteristics of the security environment. It

includes the assumptions made about the principals involved and the possible

interference of malicious agents. Our threat model includes an active intruder

who can delete, modify, and create message tra�c at will. We also assume

strong encryption.

Encryption is the science or art of generating a cipher text from a clear text, making

the clear text unrecognizable. In security systems encryption involves the use

of a secret key and a known algorithm.

2This logic is referred to as BAN logic, after the authors Burrows, Abadi, and Needham.

26

Decryption is the science or art of generating a clear text from a cipher text. In

security systems decryption involves knowledge of a secret key and a known

algorithm.

Cryptanalysis is the science or art of breaking a cryptographic code without knowl-

edge of the key. The methods used take into consideration letter frequency,

and any information about the context available. This type of analysis is very

advanced and can defeat all but the best encryption techniques, but it may be

computationally intensive.

Strong encryption is an encryption method that is assumed to be computationally

unbreakable. Also, it is not vulnerable to any form of cryptanalysis.

Z is a common notation to represent the intruder. (It is also common to see X and

C.)

Key management protocol is used interchangeably with the terms authentication

protocols and cryptographic protocols. It is a set of rules de�ning the messages

passed in an encryption system to distribute secret keys.

Nonce is an identi�er, usually a large random number, that is used only once. The

main purpose of a nonce is to link two messages together so that a response

can be recognized as fresh. A nonce is usually represented as Na or Nb, etc.

Doxastic logic is based on belief. The reasoning system uses rules about how belief

is propagated to establish new beliefs.

Epistemic logic is based on knowledge. The reasoning is similar to reasoning in a

doxastic logic, but these logics are used to reason about knowledge instead of

belief.

fdata gk represents data encrypted under secret key, k.

Session key is a secret encryption key established between two principals for com-

munication purposes. As the name implies, this key is intended for one session

only. Sometimes this session is only one protocol run; often it lasts for the

lifetime of a ticket or token.

27

Symmetric keys are used for private key systems. In such systems, the same key

is used for encryption and decryption. For example, fdata gk can be decrypted

with k.

Asymmetric (public) keys are pairs of keys that are inverses of each other. One

key is kept private, and is known only to the principal who possesses it. The

other key is public, and is made widely available. Data encrypted with the

private key can be decrypted with the public key; similarly, data encrypted

with the public key can be decrypted with the private key.

Symmetric protocol exists if two principals play the same role in the protocol.

Thus a protocol in which a principal speaks with the authentication server is

not symmetric, whereas a protocol in which two users at the same trust level

share data usually is symmetric.

3.4 Needham and Schroeder

We now turn to one of the most famous and landmark protocols to begin

our discussion of protocol analysis.

The Needham and Schroeder protocol [48] distributes a secret session key

between two principals in a network. The threat model of the Needham and Schroeder

protocol assumes that each principal shares a secret key with an authentication server

and that an intruder can read and modify anything that passes on the network. In

addition, the model assumes that intruders can block any message from reaching its

destination and insert malicious messages of their own.

The participants in this protocol are the three principals, A, B, and S,

where S is the trusted authentication server, and A is a principal who wishes to

initiate a secure session with principal B. Thus, as pointed out by Sidhu [60], this

protocol is not symmetric. We represent a protocol step as

A! B :Message

to indicate that A sends Message to B. Thus, the Needham and Schroeder protocol

can be speci�ed as follows:

1. A! S : A;B;Na

28

S

BA

1. A,B,Na

5. {Nb-1}

4. {Nb}

Kbs

Kab

Kab

2. {Na, B, Kab,{Kab,A} }Kas

3. {Kab,A}Kbs

Figure 3.1: The Needham and Schroeder Protocol

2. S ! A : fNa; B;Kab; fKab; AgKbs
gKas

3. A! B : fKab; AgKbs

4. B ! A : fNbgKab

5. A! B : fNb � 1gKab

This protocol is represented graphically in Figure 3.1. Each node represents a prin-

cipal, and the transitions represent the messages being sent. The transitions are

numbered in the order of the messages. Kab represents the secret key shared by A

and B, etc.

In message 1, A sends a request to the server (S) indicating that it wishes

to communicate with B. The nonce Na is included to link future messages to this

request. This message is sent in the clear because it includes no security related

information.

In message 2, the server S responds with a session key, Kab. A copy of the

key is also encrypted under B's secret key. In addition, Na is included as a guarantee

that this message is not a replay of a previous response. Each principal is also told

which principal will be on the other end of the secure channel. This can be seen by

the inclusion of A in fKab; AgKbs
.

In message 3, A forwards fKab; AgKbs
to B, who can decrypt it and recover

Kab. B then issues message 4 as a challenge to A to make sure that A possesses Kab.

In message 5, A proves possession of the session key. At the end of the protocol, it

29

would seem that A and B would be in possession of Kab,
3 and that no intruder could

possibly know the secret session key. Thus, this protocol appears to allow A and B

to establish a secure channel.

3.4.1 A Weakness in the Protocol

Denning and Sacco [17] were the �rst to discover a major weakness in the

Needham and Schroeder protocol.

It is assumed that a session key is meant to be used only once and then

discarded. Now, if we assume an intruder, Z, has recorded a previous run of the

Needham and Schroeder protocol, then an attack is possible if the old session key is

compromised.

To illustrate, suppose that an old session key, CK, has been compromised.

If Z recorded the protocol run where CK was established, then Z can replay the

message:

Z ! B : fCK;AgKbs

Thinking A has initiated a new conversation, B requests a handshake from A:

B ! A : fNbgCK

Z intercepts the message, decrypts it with CK, and impersonates A's response:

Z ! B : fNb � 1gCK

Thereafter, Z can send bogus messages to B that appear to be from A. B will have

no way of knowing that it is not communicating with A.

3.4.2 Handling the Weakness

Denning and Sacco suggest that by adding timestamps to messages 2 and

3, the problem can be solved. Thus, these two steps become:

S ! A : fT;Na; B;Kab; fKab; A; TgKbs
gKas

3We ignore the fact that S also has Kab because it is assumed to be a trusted server that would
not abuse the key.

30

A! B : fKab; A; TgKbs

where T is a timestamp. Thus, a replay of message 3 would be recognized as old and

would be ignored.

In a follow-up paper Needham and Schroeder propose a solution that is

based on the use of nonces[49]. They observe that one of the communicating parties

will require proof of the timeliness of a future message. It is always this party that

should generate the nonce identi�er.

This is achieved as follows. Before the protocol takes place,

A! B : A

B ! A : fA; JgKbs
, where J is a nonce identi�er that will be kept by B.

Now, J can be included in the authenticator sent to A to be forwarded to B. Thus,

B will be assured that the session key is fresh and not a replay.

The vulnerability of the Needham and Schroeder protocols comes from

the fact that each session key is meant for exactly one session. If an intruder can

compromise an old session key, he can force its use in another session. Both Denning

and Sacco's solution and the revised Needham and Schroeder protocols solve this

problem by requiring that the forwarded message fromA to B establish a new session.

This section deals with symmetric secret keys. The arguments are similar

for public key systems, and we do not repeat them here.

3.4.3 Discussion

We have shown how a weakness discovered in a published protocol can be

�xed, but we have not proved that the resulting protocol is secure. Furthermore, we

have not shown that a mechanical technique could discover the original weakness. In

the remainder of this chapter we will discuss how formal methods have been applied

to the analysis of authentication protocols.

3.5 Approaches to Analysis

Meadows [42] de�nes four approaches that have been taken in the analysis

of cryptographic protocols:

31

Type I{ To model and verify the protocol using speci�cation languages and veri�ca-

tion tools not speci�cally developed for the analysis of cryptographic protocols.

Type II{ To develop expert systems that a protocol designer can use to develop and

investigate di�erent scenarios.

Type III{ To model the requirements of a protocol family using logics developed

for the analysis of knowledge and belief.

Type IV{ To develop a formal model based on the algebraic term-rewriting prop-

erties of cryptographic systems.

The Type I approach is the least popular, while the Type III approach is the most

common. These approaches share a few properties. In all cases, the methods are

independent of the underlying cryptographic mechanisms.4 In addition, we typically

assume a set of principals and a trusted authentication server. The principals are

not trusted, and may consist of a privileged intruder who can add, delete, or modify

messages on the network at will.

The next four sections describe each of the four types of authentication

protocol analysis. Table 3.1 shows the focus of current research. The entries in the

table refer to the bibliography reference numbers.

3.6 Type I Approach

The Type I approach to the analysis of cryptographic protocols is to model

and verify protocols using speci�cation languages and veri�cation tools not speci�cally

developed for the analysis of such protocols. The main idea is to treat a cryptographic

protocol as any other program and attempt to prove its correctness. A criticism of

this approach is that it proves correctness and not necessarily security [60].

The �rst step in this approach is to specify the cryptographic protocol in a

way that the techniques being used can be applied. Sidhu [60] suggests a speci�cation

technique that involves representing a protocol as a directed graph. Varadharajan

[76] also adopts this method. However, in a more recent publication [77], he uses

4For a good discussion of failures in a cryptosystem due to the underlying encryption mechanisms
see Moore [45].

32

LOTOS (Language of Temporal Ordering Speci�cation) for specifying authentication

protocols.

The work by Kemmerer [33] �ts into several of the types of approaches,

as shown in Table 3.1. The author describes an example system with a special cryp-

tographic facility. The Type I approach can be seen in his attempt to use machine-

aided veri�cation techniques. The properties that the protocol should preserve are

expressed as state invariants, and the theorems that must be proved to guarantee

that the cryptographic facility satis�es the invariants are automatically generated by

the veri�cation system.

It should be noted that although much e�ort was concentrated on the Type

I approach early on, most work in this area has been redirected as the logics of the

Type III approach have gained popularity.

3.6.1 Using a Formal Veri�cation System

Kemmerer [33] describes two goals in using formal methods for the analysis

of encryption protocols. The �rst is to verify formally that an encryption protocol

satis�es its stated security requirements, and the second is to discover weaknesses in

its speci�cation. His formal model uses a state machine approach where a system

is viewed as being in various states, which are di�erentiated from one another by

the values of state variables. The values of the variables can be changed only via

well-de�ned state transitions.

Kemmerer uses an extension of �rst-order predicate calculus, a formal spec-

i�cation language called Ina Jo [57]. This nonprocedural assertion language was not

developed speci�cally for use with security protocols, and thus this work �ts into the

Type I analysis approach.

Ina Jo uses the following symbols for logical operations:

& logical AND

! logical implication

In addition, there is a conditional form,

(if A then B else C)

33

where A is a predicate and B and C are well-formed terms. The notation for set

operations is:

2 is a member of

[set union

fa,b,...,cg set consisting of elements a,b,...,and c

fset descriptiong set described by set description

The language also contains the following quanti�er notation:

8 for all

9 there exists

There are also two special Ina Jo symbols:

N 00 to indicate the new value of a variable (e.g., N 00v1 is the new value of variable

v1)

T 00 which de�nes a subtype of a given type, T

Kemmerer [33] describes an example system, and then gives an Ina Jo

speci�cation of the system. In this system, n terminals are connected to a central

host. Each terminal contains a cryptographic facility that holds a permanent terminal

key. The host stores two tables of keys. The �rst table is a list of the session keys

being used in the system, and the second table contains the terminal keys. As such,

the host acts as an authentication server.

In this system, the host is connected to a tamper-proof cryptographic fa-

cility that holds master keys for decrypting the information in the two tables. This

system is used for pedagogical purposes and has not actually been implemented. The

system architecture is shown in Figure 3.25. Ina Jo constants and variables are de-

scribed, along with transforms. An example of a constant in this example system

is:

Terminal key(Terminal num):Key

5This �gure is based on the �gure by Kemmerer [33].

34

Host

Cryptographic

Facility

Session

Key Table Key Table

Terminal

Terminal 1

Terminal 2

Terminal n

Terminal 3...

Key 0

Key 1HOST

Terminal

Cryptographic

Terminal Key K(n)

Facility Containing

Figure 3.2: System Architecture for Kemmerer's Sample System.

because each terminal has a constant terminal key. However, as session keys vary

from session to session, an example variable in Ina Jo is:

Session Key(Terminal num):Key

An example of a transform in Ina Jo is Generate Session Key. These are used to

change state in the analysis.

An Ina Jo axiom is an expression of a property that is assumed. For

example, to express that encryption and decryption are commutative, we would use

the following Ina Jo axiom:

AXIOM 8t:TEXT, k1; k2:Key (Encrypt(k1, Decrypt(k2; t)) =

Decrypt(k2,Encrypt(k1; t))).

Other such axioms are given in the full speci�cation found in the appendix of Kem-

merer's paper [33].

Finally, Ina Jo criteria clauses are used to specify the critical requirements

that the system is to satisfy in all states. For example, the criterion that no key

available to the intruder can be used for encryption can be speci�ed as:

35

CRITERION 8k:Key (k 2 Intruder Info ! k =2 Keys Used).

Once the speci�cation is complete, Ina Jo generates theorems that can be

used to verify if the critical requirements (criterion) are satis�ed. Kemmerer points

out that \an advantage of expressing the system using formal notation and attempt-

ing to prove properties about the speci�cation is that, if the generated theorems

cannot be proved, the failed proofs often point to weaknesses in the system or to an

incompleteness in the speci�cation."

Kemmerer uncovers a weakness in his sample system using the formal spec-

i�cation. However, the value of this method is limited because proving the criterion of

an Ina Jo speci�cation does not necessarily guarantee that a protocol is secure. In ad-

dition, to specify requirements that secure a system from active attacks, the designer

�rst needs to know the potential attacks, obviating any need for formal methods to

discover them.

3.6.2 Using LOTOS for Protocol Speci�cation

Varadharajan [77] proposes the use of LOTOS to analyze authentication

protocols. He gives as examples the speci�cation of two protocols that have been

adopted as standards: the ISO/DP 9798 and CCITT X.509. However, no results are

given. The paper concludes by stating that LOTOS tools are not yet adequate and

are currently being developed.

The paper gives a very strong recommendation for the use of LOTOS. The

goals of such a Formal Description Technique (FDT) are outlined as follows:

expressive power: ability to express a wide range of properties required for the

description of services and protocols.

well-de�ned: syntax and semantics enabling mechanical manipulation, and valida-

tion.

well-structured: increasing understandability and maintainability of speci�cations.

abstraction: allowing representation of architectural aspects at a su�ciently high

level of abstraction, where implementation details are not speci�ed.

36

LOTOS has been developed for systems related to the Open Systems In-

terconnection (OSI), and is based on a process algebra that does not use a temporal

logic, despite what the name might imply.

A system in LOTOS is modeled as a collection of processes in which the

order of events is speci�ed. As such, it can be used to model the messages sent in

an authentication protocol. However, to date no concrete results have been reported

using this method.

Methods of Type I will have to demonstrate some success before they be-

come popular. The next section describes another attempt to use tools not originally

intended to analyze authentication protocols.

3.6.3 Specifying a Protocol as a Finite State Machine

Sidhu [60] and Varadharajan [76] describe how to specify a protocol using

state diagrams. A directed graph is used for each principal. First, an initial state is

speci�ed. Then, an arc is drawn to another state for each message that can be sent

or received at that point. We will demonstrate this with an example.

The Needham and Schroeder [48] protocol is reproduced below for refer-

ence.

1. A! S : A;B;Na

2. S ! A : fNa; B;Kab; fKab; AgKbs
gKas

3. A! B : fKab; AgKbs

4. B ! A : fNbgKab

5. A! B : fNb � 1gKab

We use the following notation:

P�1 event { principal P transmits message 1

P+1 event { principal P receives message 1

Varadharajan [76] gives a state diagram for each entity, A, B, and S. The attempt

is to capture the behavior of each principal in the protocol. However, his example

37

...

...
A -1

A -1

A -1

-1B

-1B

-1B

1 <= i <= x

S 2i

1 <= j <= x

S j2

A+2 .. .
.. .

+5B

+5A

10

11

00S

S

S

S

S

S

S

1x

01

11

x1

+1

+1

accept

accept

-2 +2BSS

S -2S
1 <= i <= x

S

1 <= j <= x

S

3i

j3

Figure 3.3: Nondeterministic Finite State Machine for Principals A and B
Initiating the Needham and Schroeder Protocol. The arc P�n means that
principal P transmits message number n. P+n means that P receives message n.
This machine is constructed by taking the cross product of the individual machines
for A and B initiating the protocol. If a state of A's machine is Si, and B's is labeled
Sj, then the corresponding state in the cross product machine is Sij. The number
of legal states in each of A's and B's machines is x, and the cross product contains
x2+1 legal states including the accepting �nal state. All other states are illegal, and
stand for illegal runs of the protocol.

is highly complex and counterintuitive. We prefer to represent the protocol as a

cross product of the state diagrams for each individual principal (Figure 3.3). The

nondeterministic �nite state machine is constructed from the individual machines for

A and B. The individual machine for a principal is composed of a sequence of states

with arcs representing the transmission or reception of a message. A state is labeled

P�n to indicate that principal, P has transmitted message number n and P+n if P

receives message n.

If the �nal accepting state is reached, then we have a legal run of the

protocol initiated by either A or B. If an individual principal's machine consists of

x states, then the cross product machine with another principal in the protocol has

x2 + 1 states including the �nal accepting states. All other states represent illegal

runs of the protocol.

38

As we describe each state in our protocol speci�cation, notice that it is

assumed that A and B play the same role in the protocol. This assumption is con-

troversial. Varadharajan [76] states that \A and B have symmetric roles." However,

Sidhu [60] states that \The authentication protocols of Needham and Schroeder are

not symmetric between a sender and a receiver and assume a particular time ordering

of events."

The state representations presented by Sidhu di�er slightly from those of

Varadharajan. Remaining impartial, we present our own state diagram construction,

and refer the curious reader to Sidhu's and Varadharajan's papers [60, 76] for their

representations.

The next section discusses how these �nite state machines that are used to

specify protocols can also be used in their analysis.

3.6.4 The Use of Finite State Machines for Protocol Analysis

The state machines described above can be used to analyze authentication

protocols by employing a technique known as the reachability analysis technique [79].

To use this technique, for each transition, the global state of the system is

expressed using the states of the entities and the states of the communication channels

between them. Each global state is then analyzed and properties are determined, such

as deadlock and correctness. If an entity is not able to receive a message that it is

supposed to receive in a given state, then there is a problem with the protocol. For

an example of such an analysis, see Varadharajan [76].

Reachability analysis techniques are e�ective in determining whether or

not a protocol is correct with respect to its speci�cations, the purpose for which they

were invented. However, they do not guarantee security from an active intruder.

The weakness of Type I analysis techniques is that in applying methods that were

not intended speci�cally for security analysis, subtle pitfalls that are peculiar to the

security domain, such as the e�ect of message replay, are not considered.

3.7 Type II Approach

The Type II approach to the analysis of cryptographic protocols is to de-

velop expert systems that a protocol designer can use to develop and investigate

39

di�erent scenarios. These systems begin with an undesirable state and attempt to

discover if this state is reachable from an initial state.

Although this approach may better identify aws than Type I approaches,

it does not guarantee the security of an authentication protocol, nor does it provide

an automated technique for developing attacks on a protocol. In other words, the

Type II approaches can discover whether a given protocol contains a given aw, but

are unlikely to discover unknown types of aws in protocols.

Longley and Rigby [36] summarize the value of expert systems in the anal-

ysis of key management schemes. The expert systems provide:

� a new perspective on an authentication system;

� a technique of building models capable of continuous re�nement;

� a method of interaction with the model, which provides a greater insight into

the operation of the system;

� a model that responds to what if questions; and

� a method of testing the e�ects of proposed system modi�cations.

Thus, expert systems can be used in conjunction with other analysis tech-

niques such as those of Type III and IV for the purposes mentioned above, but they

will never replace those techniques.

The NRL protocol analyzer [70] might be viewed as a Type II approach.

However, because it is based on the Dolev and Yao model [19], in which an intruder

produces words in a term-rewriting system, we will consider it a Type IV approach.

3.7.1 The Interrogator

The Interrogator, by Millen et al. [44] is a noteworthy e�ort to apply expert

systems to the analysis of security protocols. The input to the system is a protocol

speci�cation and a target data item. The output is a message history showing how

the penetrator could have obtained this data item.

In the Interrogator, a protocol is viewed as a collection of communicat-

ing processes, one for each principal. Each process has a set of possible states, and

the transmission of a message can cause a state transition in a process. Each process

40

maintains its own state, and when applicable, sends messages to other processes caus-

ing them to change state. The system is based on the �nite state machine approach

[27].

The Interrogator generates a large number of paths through a protocol,

ending in a speci�ed insecure state. If any of these paths start with an initial state,

then a vulnerability has been discovered. Thus, an important issue in using the

Interrogator is the speci�cation of the �nal state.

In the Interrogator, the penetrator is expressed as a relation:

p knows(x;H; q)

where x is the data item learned by the penetrator, H is the message history that

lead to this discovery, and q is a state of the network reachable from the initial state.

The meaning of p knows is as follows:

p knows(x;H; q) i�

x is known initially

or (H = H 0sent(m) and sent(m) : q0 ! q and H 0 : q0 ! q0 and p gets(x;m;H 0; q0))

or (H = H 0e and e : q0 ! q and p knows(x;H 0; q0))

or (H : q0 ! q0 and p modifies(q0; q;H) and p knows(x;H; q0))

Similarly, p gets is de�ned as follows:

p gets(x;m;H; q) i�

x is a �eld of m

or (fm0gk is a �eld of m and p knows(k;H; q) and p gets(x;m0;H; q))

The de�nition of p knows describes the three ways a penetrator may learn

x with message history, H, in state q. The penetrator may learn it from the last

message read; may have already known it in the previous network state, q0; or may

learn it using p modifies described below.

The de�nition of p gets states that a penetrator can read any message,

but if some part of the message is encrypted, then it can only be extracted if the key

encrypting that �eld is known. The statement p modifies(q0; q;H), describes how a

penetrator who modi�es the network bu�er can learn x. Millen et al. state that

41

\p modifies(q0; q;H) is characterized by saying that if m is a new mes-
sage in the network bu�er of the new state q, the penetrator knows each
�eld of m in the prior state q0 reached by history H." [44]

This means that if the penetrator knows x in state q0, reachable with message history

H, and the penetrator changes the message bu�er such that state q is reached instead

with message history H, the penetrator still knows x.

Millen et al. claim that the Interrogator was able to rediscover the aw in

the Needham and Schroeder protocol. However, the Interrogator was �rst provided

with information to the e�ect that the penetrator knows an old connection key. This

information could be supplied because the programmers of the Interrogator were

familiar with the weakness in the Needham and Schroeder protocol.

Systems such as the Interrogator can be useful for providing message histo-

ries for known attacks, but it remains to be seen whether such methods will discover

new attacks on protocols previously believed to be secure. No such result has been

reported.

3.7.2 A Rule-Based System

Longley and Rigby [36] describe a rule-based system used to test the vul-

nerability of a key management scheme to speci�ed attacks. The results of applying

this system to the IBM key management scheme described by Davies and Price [16]

were consistent with the known characteristics of that scheme.

The expert system uses an exhaustive search to determine if a given attack

is successful. When the system halts, then the history of rule �rings can give an

attack strategy. Until then, nothing can be said about the given attack. In fact, in

some cases, the search space is in�nite and the system does not even halt.

Longley et al. use a rule-based system, OPS5 [7]. This system uses rules to

transform goals into sub-goals, and this process is continually re�ned until a concrete

attack strategy is reached.

At best, this system can be used as a model of threat analysis. It does

not perform the function of analysis in terms of demonstrating the security of an

authentication protocol. Rather, it can sometimes determine how a given attack

might be successful against a protocol.

42

3.7.3 Discussion

The Type II approaches to protocol analysis serve a limited function. They

are most useful for analyzing known weaknesses in protocols, and generating message

lists to exploit those weaknesses.

The systems developed under this approach are usually ine�cient, often

resorting to exhaustive search. In addition, the results are often inconclusive, and the

systems may not even halt.

Their limitations are due to the lack of expressiveness of the types of rules

found in expert systems. For this reason, the majority of research into the analysis

of authentication protocols falls into the Type III category, discussed next.

3.8 Type III Approach

The Type III approach to protocol analysis uses formal logic models devel-

oped for the analysis of knowledge and belief. Burrows et al.'s landmark BAN logic

[9] initiated intense research using this approach. Since then, BAN has been extended

[11, 12, 21, 23, 38, 62], and criticized [38, 50, 62, 67].

This section discusses other contributions to the Type III approach includ-

ing the logic of Bieber [4] and its extension by Snekkenes [63]; the axiomization of

trust and belief by Rangan [52]; the logic of Syverson [65]; the logic of Kailar et al.

[31]; and the logic of Moser [46].

In addition to these logics, some work has concentrated on the semantics

of logics for authentication protocols [2, 71]. We discuss the semantics introduced

here and why it is important to de�ne the semantics of a logic with great care.

In the following sections we present these logics, discuss, compare, and

evaluate their relative merits.

3.8.1 An Axiomization of Belief

Much of the work in the Type III approach is based on a formal axiomiza-

tion of belief and trust. Shoham and Moses [59] describe the relationship between

knowledge and belief, and note a close connection between belief and nonmonotonic

reasoning.

43

Syverson [71] shows that belief and knowledge are equally adequate for

protocol analysis on the logical level. Logics based on knowledge are termed epistemic,

while doxastic logics refer to those based on belief. The main di�erence in reasoning

with these two logics is that all epistemic logics have an axiom that states that if a

principal knows X, then X. No doxastic logics have such an axiom. However, Syverson

shows that this axiom (termed axiom T) can easily be captured in doxastic logics.

Rangan [52] provides an axiom schema for belief that is frequently refer-

enced in the literature. In his notation, the term Bip means that principal i believes

p. The schema is as follows.

for all i; i = 1; :::;m :

A1 All substitution instances of propositional tautologies.

A2 Bip ^Bi(p) q)) Biq.

A3 Bip) BiBip (introspection of positive belief).

A4 :Bip) Bi:Bip (introspection of negative belief).

A5 :Bi(false) (process i does not believe a contradiction).

The following are the inference rules.

for all i; i = 1; :::;m :

R1 From p and p) q infer q (modus ponens).

R2 From p infer Bip (generalization).

In his paper [52], Rangan de�nes the transitivity, Euclidian, and serial properties,

and shows that A3 corresponds to transitivity, given R2, A4 corresponds to the

euclidian property, and A5 corresponds to the serial property.

These de�nitions of knowledge and belief are the foundation for the Type

III approaches discussed below.

44

3.8.2 The BAN Logic

The BAN logic casts authentication protocols in formal terms to reason

about the state of belief among principals in a system. The authors' goals were to be

able to answer the following questions about a protocol:

� What does this protocol achieve?

� Does this protocol need more assumptions than another one?

� Does this protocol take any unnecessary steps, ones that could be left out

without weakening it?

� Does this protocol encrypt a message that could be sent in the clear without

weakening security?

The authors state that such issues as errors introduced by concrete imple-

mentations of a protocol, such as deadlocks, or inappropriate use of a cryptosystem

(as described by Voydock and Kent [78]) are not considered; this system deals with

authentication protocols on an abstract level only.

3.8.2.1 The basic constructs of the BAN logic

The only propositional connective is conjunction, which is denoted with a

comma. Associativity and commutativity properties are taken for granted.

P believes X The principal, P, acts as though X is true.

P sees X Someone has sent a message containing X to P, who can read and repeat

X (possibly after doing some decryption).

P said X At some time, the principal P sent a message that includes the statement

X. It is not known how long ago the message was sent, or even if it was sent

during the current run of the protocol. It is known that P believed X when he

said it.

P controls X The principal P is an authority on X and should be trusted on this

matter. This construct is used primarily when a principal has delegated au-

thority over some statement.

45

#(X) The formula X is fresh. That is, X has not been sent in a message at any time

before the current run of the protocol. This is de�ned to be true for nonces,

that is, expressions generated for the purpose of being fresh.

P
K
$Q P and Q may use the shared key K to communicate. The key K is good, in

that it will never be discovered by any principal except P or Q, or a principal

trusted by either P or Q.

K
7! P P has K as a public key. The matching secret key, K�1, will never be discovered

by any principal other than P or a principal trusted by P.

P
X
*)Q The formula X is a secret known only to P and Q, and those principals to

whom they reveal it. P and Q may use X to prove their identities to one

another.

fXgK from P This represents the formula X encrypted under the key K by princi-

pal P. The from P part is often omitted, and it is assumed that each principal

is able to recognize and ignore his own messages.

Logical postulates are formed from these basic constructs. A security proto-

col is idealized, according to rules de�ned by the authors, in terms of these postulates.

Every protocol must be idealized before using the BAN logic; many examples follow.

3.8.2.2 The rules of inference of the BAN logic

Burrows et al. [9] provide rules of inference for reasoning about the belief

in a protocol. These rules are applied to the initial assumptions to drive a proof or to

answer questions about a protocol. One important rule, the message meaning rule,

states how to derive belief from the origin of a message.

P believes Q
K
$ P, P sees fXgK

P believes Q said X

Remember that fXgK in this context stands for fXgK from R 6= P. Then this formula

can be intuitively explained as:

IF P believes that Q and P share a secret key, K, and P sees X, encrypted
under K, and P did not encrypt X under K, THEN P believes that Q
once said X.

46

A similar postulate exists for public keys and shared secrets. Another

important rule of inference for the BAN logic is the nonce-veri�cation rule.

P believes #(X); P believes Q said X

P believes Q believes X

For the sake of simplicity, the authors of BAN state that X must be clear text, that

is, it should not include any subformula of the form fY gK. An intuitive explanation

of this rule is:

IF P believes that X could have been uttered only recently and that Q
once said X, THEN P believes that Q believes X.

This rule is important because many protocols rely on the use of nonces to

avoid successful replay attacks. In fact, this is the only postulate that promotes from

said to believes, and thus reects in an abstract way, the practice of using challenges

and responses for authentication. A result of applying this rule demonstrates that

challenges often need not be encrypted, but responses must be.

The next rule, the jurisdiction rule, is often used for delegation.

P believes Q controls X, P believes Q believes X

P believes X

This rule states:

IF P believes that Q has jurisdiction over X, and P believes that Q
believes X, THEN P believes X.

Burrows et al. [9] provide many other inference rules that can be used to

combine beliefs.

3.8.2.3 The idealized protocol of the BAN logic

For a protocol to be analyzed using the BAN logic, it must �rst be con-

verted to an idealized form. Typically, a step in a protocol is written as:

P ! Q : message

This means that P sends the message and that the principal Q receives it. This frame-

work is often ambiguous, and does not lend itself to formal analysis. For example,

when something is encrypted under a session key, it may not always be clear what

47

parts of the message are fresh, or who exactly knows this key. Therefore, each step in

a protocol is transformed into an idealized form. A message in the idealized protocol

is a formula. Say we de�ne the protocol step:

A! B : fA;KabgKbs

In this step, A tells B, who knows the key, Kbs, that Kab is a key to communicate

with A. It is clear that A did not generate this message, because A does not know

Kbs. In fact, the message must have come from the server S. This step is idealized as:

A! B : fA
Kab$ BgKbs

When this message is sent to B, we can deduce that the formula

B sees fA
Kab$ BgKbs

holds, indicating that the receiving principal becomes aware of the message and can

act upon it.

In the idealized form, parts of the message that do not contribute to the

beliefs of the recipient are omitted. Thus, clear text parts of the message are not

included, because they can be intercepted and read or forged by anyone. Idealized

messages are of the form fX1gK1
,...,fXngKn, where each encrypted part is treated

separately.

The authors of BAN logic \view the idealized protocols as clearer and

more complete speci�cations than the traditional descriptions found in the literature,

which we view merely as implementation-dependent encodings of the protocols" [9].

However, no clear transformation method is presented. The paper gives numerous

examples of the transformation to an idealized protocol; after careful study, idealizing

protocols becomes intuitive. However, Woo and Lam [80] criticize the idealization of

protocols. \We �nd idealization undesirable because of the potentially large semantic

gap that exists between the original protocol and the idealized version."

Nessett's criticism [50] raises similar concerns, as we shall see.

3.8.2.4 Protocol analysis with the BAN logic

The steps in protocol analysis with BAN logic as presented by its authors

are:

48

Proceed
Cannot

Idealized Protocol

Formulas attached

to protocol steps

Apply Rule

Protocol Specification Initial Assumptions

Conclusion Reached

Figure 3.4: Protocol Analysis with the BAN Logic: The input to BAN is a

protocol speci�cation and the initial assumptions. At each step, formulas are attached to

the protocol messages, and either a rule is applied, or the logic must halt. If possible, the

desired conclusion is reached.

1. The idealized protocol is derived from the original one.

2. Assumptions about the initial state are written.

3. Logical formulas are attached to the statements of the protocol, as assertions

about the state of the system after each statement.

4. The logical postulates are applied to the assumptions and the assertions to

discover the beliefs held by the parties in the protocol.

More precisely, a protocol in the BAN logic is an ordered series of \send"

statements, S1,...,Sn, each of the form P ! Q : X with P 6= Q. An annotation for a

protocol consists of a sequence of assertions inserted before the �rst statement and

after each statement. The assertions are made by combining formulas of the forms

P believes X and P sees X. The �rst assertion contains the assumptions, while the

last assertion contains the conclusions. These are similar to simple formulas in Hoare

logic [26]. They are written in the form:

[assumptions]

S1 [assertion 1] S2 : : : [assertion n � 1] Sn

[conclusions]

Protocol analysis with the BAN logic is summarized in Figure 3.4. The protocols

49

use no notion of time. Instead, time is divided into past and present depending on

whether something was said in a previous or current run of the protocol.

The authors of BAN state that \More ambitious proofs may require �ner

temporal distinctions, reected by constructs to reason about additional epochs, or

even general-purpose temporal operators (see, for example, Halpern & Vardi 1986

[24])." In a recent paper, Syverson [68] introduces temporal axioms to the BAN logic

and exposes protocol aws using this extended logic.

3.8.2.5 The goals of authentication of the BAN logic

There is some debate as to what the goals of authentication are. Some

argue that authentication is complete between A and B if there is a K such that:

A believes A
K
$ B

B believes A
K
$ B

Others believe that an authentication protocol should achieve:

A believes B believes A
K
$ B

B believes A believes A
K
$ B

The �rst set of goals is referred to as �rst-level belief, whereas the second set is termed

second-level belief. According to Syverson [67], the level of belief needed varies for

di�erent applications and should be speci�ed along with the protocol; the goals of

BAN logic have often been misinterpreted.

Cheng and Gligor [14] claim the following conditions for the BAN logic

must be satis�ed at the end of a protocol run:

1. Both A and B believe Kab is a secret key shared exclusively between A and B.

2. Both A and B believe that the other has the �rst-level belief. This is the

second-level belief. If a party holds a second-level belief, then it believes that

a secure channel has been established.

3. The causal relation between the �rst-level and second-level belief holds. That

is the �rst level-belief must be established at some time before the second-level

belief.

50

4. Kab should be distributed exclusively to A and B; thus no parties other than

A and B should have beliefs about Kab ([14], p. 222).

Syverson [67] claims that these goals contradict the original goals set out by Burrows

et al. In particular, using BAN logic, any principal who A and B trust can also

be delegated the key, Kab. Also, as Syverson points out, a second-level belief is not

mandated by Burrows et al., as Cheng and Gligor claim.

3.8.2.6 Nessett's criticism of the BAN logic

The BAN logic has been successful in �nding aws in some well known pro-

tocols, such as the Needham-Schroeder protocol, the Andrew secure RPC handshake,

and the CCITT X.509 protocol. In addition, BAN has uncovered redundancy in the

Needham-Schroeder conventional key protocol, the Otway-Rees protocol, Kerberos,

the Yahalom protocol, the Andrew RPC handshake, and the CCITT X.509 protocol.

As such, BAN logic can be called a success.

However, there are some problems with BAN logic. One problem is pointed

out by Nessett [50], who demonstrates what he claims to be the hazards of devising

systems of logic. He states that \a simple example shows that the BAN logic is

capable of deducing characteristics about security protocols that by inspection are

obviously false."

In Nessett's example, two principals, A and B communicate using public

keys. The protocol is:

A! B : fNa;KabgKa
�1

B ! A : fNbgKab

The idealized form presented by Nessett is:

A! B : fNa; A
Kab$ BgKa

�1

B ! A : fA
Kab$ BgKab

A sends B a message, containing Kab, the secret key between A and B, encrypted

under A's private key. Thus, as the corresponding public key is well known, the key

Kab is no longer a secret. In the example, B then responds with a nonce identi�er

51

Nb, encrypted under the shared key, Kab. According to the BAN model, this nonce

is fresh and secret. However, as Nessett points out, it is obvious that Na is readable

and forgeable by anyone.

The problem with the BAN logic is that there is no way to represent what

a principal does not know. All of the constructs and postulates deal with what a

principal does believe, but there is no way to represent that a principal cannot know

something. As Nessett states [50] \The essence of this aw rests in the inability of

the logic to analyze security protocols to assure that private information remains

private."

Burrows et al. [10] defend their logic. They claim that the main di�culty

in BAN logic as pointed out by Nessett is the assumption that A believes Kab is

a good shared key for A and B. \This assumption is clearly inconsistent with the

message exchange, where A publishes Kab. The inconsistency is not manifested by

our formalism, but is not beyond the wit of man to notice."

Syverson [67] states that the confusion arises because \the BAN logic deals

only with trust and not with security." Thus, he claims that Nessett's criticism is not

valid because BAN does not claim to provide security, but rather, trust.

On the other hand, Snekkenes [62] attributes the Nessett aw to the BAN

logic being restricted to partial correctness. He de�nes a class of protocols called

terminating, and shows that the Nessett protocol is a non-terminating one. \A state-

ment or protocol step S terminates after �nite time only if FALSE is not a derivable

assertion succeeding S."

The criticism by Nessett has sparked a debate that has led to a clearer

understanding of the role of knowledge and belief in the analysis of key management

schemes. Much work has referred back to the research of Shoham and Moses [59] that

speci�cally de�nes the relationship between belief and knowledge.

3.8.3 Extensions to the BAN Logic

The BAN logic was purposely designed to be open ended. That is, new

constructs and postulates can be added to suit a particular application. It is not

unusual to customize the BAN logic for an application to analyze a protocol to which

the original BAN logic does not directly apply.

52

Some of these extensions have focused on eliminating some of the assump-

tions in the original BAN logic. Others have been necessary for expanding the rea-

soning power of BAN. In the following sections we discuss some extensions to the

logic.

3.8.3.1 The GNY logic

The Gong, Needham and Yahalom [23] extensions to the BAN logic are

often referred to as the GNY logic. Gong et al. describe new constructs that eliminate

some of the assumptions made by the original BAN logic. In particular, the GNY

logic does not assume that redundancy exists in encrypted messages. Instead, they

introduce the notion of recognizability to represent the fact that a principal expects

certain formats in the messages it receives. Also, Gong et al. explicitly represent

whether a principal generated a message itself.

The notion of recognizability is important. A principal participating in

a protocol has expectations about the messages he will receive, and the analysis

technique should take these into consideration. Thus, if a protocol step speci�es that

A will receive nonces, Na and Nb, then the next two values received will be treated

as nonces. Logical postulates are added to require that a principal's expectations

according to the protocol are met. These rules are de�ned below.

One of the important contributions of the GNY logic is the recognition that

belief and possession are di�erent. In this extended logic, each principal maintains a

belief set and a possession set. Along with the basic constructs of BAN, the following

are included in the GNY logic:

P / X P is told formula X. P receives X, possibly after performing some computation

such as decryption. A formula being told can be the message itself, as well as

any computable content of that message.

P 3 X P possesses, or is capable of possessing formula X. At a particular stage of

a run, this includes all the formulae that P has been told, started the session

with, or was able to compute for formulae he already possesses.

�(x) The formula X is recognizable. If P believes �(x), then P would recognize X if

P had certain expectations about the nature of X.

53

P / X P is eligible to send formula X. A principal is only eligible to send something

that he possesses or can construct. P is eligible to send formula X. A principal

is only eligible to send something that he possesses or can construct.

A formula in GNY may also be regarded as a not-originated-here formula, meaning

that it was not previously generated by a principal in the current run. This is rep-

resented by adding an asterisk (*) to the formula; and the paper [23] describes a

mechanical process by which this is achieved.

The following postulates are de�ned:

P / X

P 3 X

which states that principals possess what they are told, and

P 3 X;P 3 Y

P 3 (X;Y); P 3 F (X;Y)

which states that if a principal possesses X and Y, he also possesses the concatenation

of X and Y, and any computable function F of X and Y. Similarly for recognizability,

P believes �(X)

P believes �(X;Y); P believes �(F (X))

states that if a principal believes that X is recognizable, then that principal believes

that the concatenation of X with anything is recognizable, and that the application

of some computable function to X is recognizable.

An important postulate in GNY states that if

C1

C2

is a postulate, then for any principal, P, so is

P believes C1

P believes C2

This is called the rationality rule and allows principals to reason about the state of

other principals.

Gong et al. de�ne preconditions that can be attached to rules to achieve

di�erent levels of belief. \Since we do not require the universal assumption that all

principals are honest and competent, we should reason about beliefs held by others

based on trust of di�erent levels." Precondition statements are attached to formulas,

and GNY provides trust and jurisdiction postulates for reasoning with preconditions.

54

The GNY logic is used to uncover the weakness in the Needham and

Schroeder protocol. Then, the enhanced Needham and Schroeder protocol is ana-

lyzed and a second-level belief is attained. This logic is an improvement over the

BAN logic in that it separates the content from the meaning of a message. Thus,

the results of an analysis will be determined by the level of trust placed between

principals. The original BAN logic did not accommodate for di�erent levels of trust.

Thus, the GNY logic increases the classes of protocols that can be analyzed.

In a later paper, Gong describes enhancements to the GNY logic to handle

infeasible protocol speci�cations [22]. The problem is that a speci�cation that could

not possibly represent a real world situation can still be veri�ed to be correct in the

BAN and GNY logics. An example of such an infeasible speci�cation is a protocol

in which P sends R's password to Q. If R's password is represented by X, then this

protocol step is:

P ! Q : fXgKPQ

As P and Q are not supposed to know R's password, this protocol is not feasible,

and yet the GNY logic could not detect this.

Another type of infeasible speci�cation that GNY and BAN cannot detect

can lead to beliefs that do not preserve a causal relation. Say we have the protocol

step:

P ! Q : fP believes P
S
$ QgKPQ

This will cause Q believes P believes P
S
$ Q, however, if it is not the case that

the statement P believes P
S
$ Q already existed, then the causal relation between

beliefs is not preserved. Without guarantees of causality, part of a causal chain may

be broken, and then the path may not be trusted (e.g. [31]). The causal chain is

broken any time a principal, P sends a message that contains a belief, and P does

not hold that belief.

The BAN logic assumes that principals believe what they say, and so the

infeasible speci�cation due to causal relations is not an issue. Gong introduces the

notion of eligibility to the GNY logic. Thus, if P / X, then P is eligible to send

formula X. Thus, new postulates are added to the logic:

P ! Q : X;P / X

Q / X

55

This rule states that if P sends X to Q, and P is eligible to send X, then Q receives

X. Similarly,
P 3 X

P / X

This rule says that if P possesses X, then P is eligible to send X. Other rules are

included to describe when a principal is eligible to encrypt with a key, K, or to

perform a hash function.

Thus, using the extensions to the GNY logic, we can reason about protocols

whose speci�cation fall into two categories of infeasibility. Although Gong's work

is useful, it appears that a more formal technique is needed to discover infeasible

protocols in the general case.

3.8.3.2 The Mao and Boyd logic

Mao and Boyd [38] describe four weaknesses in the BAN logic and propose

a new logic, based on BAN, which o�ers several improvements. Mao et al. also present

a fault in a version of the Otway-Rees protocol [51] that the authors of the BAN logic

proved to be correct [9]. Finally, a revised version of Otway-Rees is presented by Mao

et al. and proved correct with the new logic.

Mao and Boyd discuss the following defect of the BAN logic:

1. Protocol Idealization

2. Belief

3. Protocol Assumptions

4. Con�dentiality

The authors discuss these defects and give examples.

Protocol idealization su�ers from too much exibility. New terms and

constructs can be freely chosen from an in�nite alphabet provided by the original

BAN logic. Also, as Mao et al. point out, \There seems to be no well-understood

semantic rule to govern this job of idealization." [38]

The aw in protocol idealization can be seen clearly if we view a protocol

speci�cation as a procedure declaration. Once formal parameters are substituted with

\real values," the behavior is unpredictable. The authors make this analogy and and

56

use it to demonstrate the aw in the Otway-Rees protocol. The GNY logic [23] is also

criticized for using the same idealization rules, and thus su�ering the same weakness.

In the original BAN logic, the nonce veri�cation rule is:

P believes #(X); P believes Q said X

P believes Q believes X

From this we draw the conclusion that Q believes X, which is a nonce. However, as

Mao et al. point out, it does not make sense to believe a nonce. One can believe that

X is a nonce, or that nonce X is fresh, but one cannot believe a nonce.

Mao and Boyd claim that the method for determining assumptions in a

protocol is awed in the BAN logic. A slight modi�cation to the assumptions could

turn a useless protocol into a valuable one or vice versa. Also, there is no way to

know if the assumptions are the weakest ones possible. This is obviously desirable.

The last defect of the BAN logic discussed by Mao et al. has to do with

con�dentiality. The authors use the Nessett example [50] to show that a BAN analysis

fails to recognize some protocols that give away secrets to attackers. Thus, those

pieces of information that must remain secrets must be explicitly designated as such.

The new logic presented by Mao and Boyd requires strict typing of formulas

and messages. Thus, a principal may no longer believe a nonce, because a nonce is

not of a type that may be believed. In addition, a new idealization process is de�ned.

This process is mostly mechanical, and requires little human intervention. However,

as some part of the process requires non-automated judgement, this method still

su�ers from the very criticism the authors have of the original BAN logic.

In the new idealization, challenges and responses are linked. The human

interaction is to determine the types of the various parts of messages, and which

responses to associate with the challenges. A new construct, sup(Q) is de�ned to

represent the fact that Q is a \super" principal. This means that Q is entirely

trusted. An example of this would be an authentication server in the Needham and

Schroeder protocol [48]. This is necessary because a principal should not be trusted

only on certain beliefs. If a principal is trusted, it must be entirely trusted.

New inference rules are added in the Mao and Boyd logic. They are very

similar to rules in the BAN logic, but include the sup construct, and are based on

the mechanical idealization process. However, the reasoning process is quite di�erent.

Mao and Boyd used the tableau method [20]. The reasoning starts with the desired

57

conclusion, such as A believes A
K
$ B, and �nds rules that lead to that conclusion.

Thus, reasoning proceeds backwards until the initial assumptions are found. This

method �nds the weakest pre-conditions if necessary conditions are always found

when searching for rules to apply.

The new logic is applied to the Nessett protocol to uncover the known

weakness. Then, a revised version of Otway-Rees is given, and the new logic is used

to prove that no conditions are violated when applying rules from the assumptions

to the conclusions. Because the logic is not complete, this is the strongest statement

that can be made from such a system.

The system described by Mao and Boyd reasons monotonically, as does the

BAN logic, so there is no provision for refutation of belief. Human intervention still

exists but is much more limited. While this logic is an improvement over previous

ones, it does not provide a mechanism for proving that a protocol is correct.

3.8.3.3 Extending BAN to deal with PKCS

To analyze a public key crypto system (PKCS), the CCITT X.509 Strong

Two-Way Authentication Protocol, Gaarder and Snekkenes [21] extend the BAN

logic. The following constructs are introduced to represent public key cryptography

and time6:

PK(K;U) The entity U has associated the good public key K.

�(U) The entity U has associated some good private key. The key value is only

known by U .

�(X;U) The formula X is signed with the private key belonging to U .

(�(t1; t2);X) X holds in the interval t1; t2. The creator that uttered the time-

stamped message X claims that X is good in the time interval between t1

and t2.

�(t1; t2) The local unique Real Time Clock (RTC) shows a time in the interval be-

tween t1 and t2.

6Recall that the original BAN logic has no provisions for reasoning about time.

58

According to the rules for public key cryptography, we have the rule

Ui sees �(X;Uj)

Ui sees X

which states that any principal seeing a formula signed with another principal's pri-

vate key, can see that formula.

The following rule deals with duration stamps. That is, a formula is good

for a certain interval. This is necessary because the CCITT X.509 protocol being

analyzed involves the use of time and a real clock.

P believes Q believes �(t1; t2);

P believes Q said (�(t1; t2);X)

P believes Q believes X

This is similar to one of the rules in the original BAN logic, but it restricts the time

during which this rule can be applied to a \good" interval. Calvelli and Varadharajan

[11] reason about time in a similar way by introducing a rule of the form (Bi^t)says r

that means that Bi says r at or before time t.

Gaarder et al. also introduce the construct

R(P;X)

to say that P is the intended recipient of message X. An example of this would be

P ! Q : R(Q;X);X

where R(P;X) is a tag telling Q that he is the intended recipient of the message.

The authors then proceed to formalize the goals of the protocol, and ide-

alize the protocol. The extended BAN logic is then used to prove that the protocol

meets its goals.

3.8.3.4 Adding probabilistic reasoning to BAN

BAN logic is \...concerned with evaluating the trust that can be put on

the goal by the legitimate communicants using beliefs of the principals," according

to Campbell et al. [12]. It \has no provisions for modeling insecure communica-

tion channels or untrustworthy principals and, in fact, fails to model any type of

insecurity."

59

Campbell et al. extend the BAN logic using probabilistic reasoning to

calculate a measure of trust rather than complete trust. That is, given assumptions

about the level of trust among principals, and a protocol, we can analyze the level of

trust that this protocol achieves.

The authors de�ne the analysis problem in terms of an equivalent linear

programming problem as follows:

Let p1; :::; pn be an assignment of probabilities to the assumptions a1; :::; an

of a proof of the conclusion c. Then, L � P (c) � U , and the lower limitL (respectively

upper limit U) can be obtained by solving the linear program:

minimize (resp. maximize)z = q � �

subject to the constraints W� = p

1 � � = 1; � � 0

The simplex algorithm can then be applied to �nd a minimal solution.

This method is then applied to the Needham and Schroeder protocol. This method

easily reveals the known weakness. It also shows that the assumption that Kab is a

good key is responsible for this weakness.

The weakness of the Needham and Schroeder protocol was discovered by

the extensions of Campbell et al., as the original BAN logic does. However, their

method requires preprocessing of the protocol with the BAN logic, and is thus not

capable of independently discovering the aw. In addition, this application of the

method of Campbell et al. does not constitute a proof that the protocol is secure,

due to its incompleteness. The contribution of Campbell et al. is in obtaining the

functional representation for the lower bound on the probability of conclusion in terms

of the probabilities attached to the assumptions and rule instances used in the proof.

One weakness of schemes such as that presented by Campbell et al. [12]

is di�culty of use. The original BAN logic has been praised for its simplicity, so it

seems, and intuition also dictates, that there is a tradeo� between the ease of use of

an analysis tool and its utility.

3.8.4 The CKT5 Logic

Bieber [4] extends the epistemic logic of Hintikka [25]. This new logic of

communication in a hostile environment, called CKT5, allows a user to describe the

60

states of knowledge and ignorance associated with the communication via encrypted

messages. Bieber also extends the logic of knowledge and time, KT5, of Sato [56]

with operators that relate directly to the sending and receiving of messages.7

To describe a protocol, P , in CKT5, we de�ne ' to be the way principals

behave when participating in P , and ! states who knows what when the protocol

terminates. Then, ' ! ! is a CKT5 formula that describes P . Next, it must be

proved that '! ! is a theorem. An example of a member of ' is \if principal A has

sent m encrypted under K, then he must have receivedm at some point in the past."

Similarly, ! contains statements such as \At time t, A knows that k is a crypto key."

CKT5 extends the basic epistemic logic by adding modal operators to

express the transmission and receipt of messages. The usual connectives are used,

^;_;:;);,, along with the quanti�ers, 8;9, and equality of terms (=). In addition,

Bieber de�nes modal operators KA;t; RA;t and SA;t. If A and B are principals, t is a

number representing time, and ' is a well formed formula in CKT5, and m;n;m1,

and k are terms, then the following are de�nitions in CKT5.

KA;t' At time t, A knows that ' holds.

RA;t' At time t, A received some message stating that ' holds.

SA;t' At time t, A sent some message stating that ' holds.

m:m1 The concatenation of m and m1.

d(k;m) The decryption of m with key k.

nonce(n; t;A) n is a nonce generated at time t by the system at the request of A.

private(t; fA;Bg; k) k is a symmetric key shared by A and B.

key(k) k is a symmetric key.

KA;tmsg(m) At time t, A knows that m is a computable term8.

7The following summary of Bieber's logic borrows examples from Snekkenes [63], who gives an
excellent summary of CKT5, and from the original paper by Bieber [4].

8Bieber de�nes a computable term as a clean message, or a concatenation of two not so clean
terms (containing some encrypted part), or the result of performing a cryptographic function on a
not so clean term [4].

61

belongs(m1;m2) m1 occurs as a subterm of m2.

clear(m) m is a clear text message.

clean(m) m is a clear text message, the concatenation of two clean messages or can

be decrypted to yield a clean message.

n s clean(m) m contains a subterm that is not necessarily well built9.

The logic assumes uncertain communication, so that if a message is intercepted by an

intruder, it may not arrive at its destination. Messages are not lost, but the intruder

can prevent them from reaching a target.

Bieber de�nes univoque messages to be ones that for agent X at time t,

are well built with exclusively clear text messages and keys known only by X at time

t. Formally:

univoque(X; t;m)$ KX;t clear(M)

_ (9k KX;tkey(k)^ univoque(X; t; d(k;m)))

_ (9m1 9m2 m = m1:m2^ univoque(X; t;m1)^

univoque(X; t;m2))

Thus, X knows that a message is usable if it is univoque.

Bieber makes the recommendation that knowledge rather than belief be

used to guarantee security because epistemic logics are better at describing the be-

havior of other agents, as is seen by a strong logic such as CKT5. Syverson makes a

similar recommendation [66].

Snekkenes gives an example application of CKT5 [63] with KP , a protocol

similar to the Needham and Schroeder protocol. CKT5 is modi�ed so that it can

distinguish between the role of a principal and its name. This is done simply by

introducing a predicate \role-R" that maps principals to their roles in a protocol.

The proof that KP is secure points out the weakness of CKT5. As it is

known that KP has a aw (discussed in section 3.4.1), the fact that it can be proved

correct in CKT5 demonstrates that strictly epistemic logics, as we know them, are

not su�cient for analyzing the security of authentication protocols.

9Bieber de�nes a well built term as a clear text term, or the concatenation of two clear text
terms, or the encryption or decryption of a clear text term [4].

62

3.8.5 Analysis of Belief Evolution

An authentication protocol analysis can be viewed as the evolution of the

beliefs of the principals involved. Kailar and Gligor [31] present a logic similar to the

BAN logic for reasoning about the evolution of belief within a protocol run. The types

of protocols that can be analyzed with this logic include interdomain authentication,

and protocols where trust in an encryption key must be established despite the lack

of jurisdiction.

In this logic, beliefs in a protocol run evolve as in a state machine, where

a current belief and an action determine the next state of belief.

Belief + Action) New Belief

The concept of a knowledge set for each message content is introduced. A knowledge

set is a set of principals who know the contents of a message, a, and a given round in

the protocol, Mi. Here, Mi stands for message M at instant i in the protocol run.

A message is represented as:

fMessage round; Sender;Receiver; Contentsg

The sender and receiver �eld correspond to signing with a given key, or in the case

of symmetric keys, to the encryption with a session key. Thus,

Y . fMk; Y;X;Cg

denotes that Y sends messageM with content C in round k of this session to principal

X. Similarly,

X / fMk; Y;X;Cg

denotes that X sees message M in round k and knows that it is sent by Y . It also

reads the message contents C.

Kailar and Gligor's logic represents trust explicitly, thus avoiding some of

the problems that arise in the BAN logic based on trust assumptions. The statement

TRUSTR(P;Q) means that P trusts principal Q in the context R. Trust means

that if Q says X, and P trusts Q, then P believes X. In the analysis, a forwarded

message is viewed as being sent from the originator directly to the destination. As

the intermediary cannot read the contents, this short circuit makes sense.

63

One noteworthy assumption made in this logic is that principals can dis-

tinguish between messages from a current session, and messages from other sessions.

Without this, an inconsistent state of beliefs can be attained due to unrelated message

histories.

The logic contains inference rules similar to those of the BAN logic. Most

of the rules are concerned with maintaining the knowledge sets, and these sets are

what allow principals to reason about the evolution of other principals' beliefs in a

protocol. The �rst inference rule presented is the belief in uniqueness of message

receipt. This rule states that if X sends a message,Mi, to Y , and X believes that Z

reads the message, then X believes that Z = Y .

X . fMi;X; Y;Cg;

X believes fZ / fMi;X; Y;Cgg

X believes fZ = Y g

The following rule de�nes how knowledge sets are maintained. Here, KS(a;Mi)

stands for the knowledge set of contents a of message Mi, and this set contains the

principals who know a after having received message Mi. Kailar and Gligor use C

to denote the contents of a message, except in the case of knowledge sets where a is

used. We follow their conventions.

X believes KS(a;Mi) = fS1g;

X believes KS(a;Mj) = fS2gjj � i > 0

X believes 8Y 2 fS2g � fS1g;
9P; kjP 2 S; i < k � j;Y / fMk; P; Y; ag

This states that if the knowledge set for some contents a in a later round number

contains principals that are not in the knowledge set of an earlier round number,

then those principals must have received a message with that contents during the

time interval between the rounds.

Other rules in the logic describe when a formula can be included in a

knowledge set, the freshness of nonces, and the freshness of message content. They

are similar in style to the ones above and can be found in the original paper [31].

Kailar and Gligor compare the use of their logic to the BAN logic for

the analysis of some well known protocols such as an inter-domain authentication

protocol, a PROXY ticket forwarding protocol, and a multiparty session protocol.

64

They show that their analysis preserves the accumulation of beliefs of all the principals

in the system, whereas the BAN analysis falls a bit short.

Calvelli and Varadharajan [11] use this logic to analyze some delegation

protocols for Kerberos, which is evidence of the usefulness of the logic. Others have

also used it to analyze new systems. The ease of use of Kailar and Gligor's logic is

seen by its applicability to many problems. This advantage is signi�cant as is seen

from the complexity and resulting lack of use of methods in the Type IV approach

discussed later.

3.8.6 Semantics of Logics of Authentication

The utility of formal protocol analysis is limited by the quality of the tools

we are using. Just as we have formal methods for evaluating protocols, it is useful to

be able to reason about the tools themselves.

According to Syverson [67], \One of the main roles of a semantics is to give

us a means to evaluate our logics. When evaluating a logic we are primarily interested

in two questions: Can we derive everything we want? (Completeness) And, can we

avoid deriving things we don't want (Soundness)." In general, we seem to be more

concerned with soundness, whereas, for computer security, \completeness is of the

utmost importance" [67].

The reason we need to ensure that we can derive anything possible is that

many logics rely on the generation of all possible security aws. If a logic is incomplete,

(as is the original BAN logic [9]), then there may be aws that are overlooked. \A

formal semantics provides a precise structure with respect to which soundness and

completeness of a logic may be proven" [67]. However, as Syverson explains, the

semantics must not be derived directly from the logic. An independently derived

semantics for a logic serves as a valuable tool in evaluating the logic.

3.8.6.1 A semantics for the BAN logic

Abadi and Tuttle [2] de�ne a semantics for the BAN logic. They de�ne

belief as a form of resource-bounded defeasible knowledge, using a possible-worlds

semantics. First, they remove some unnecessary assumptions in the original assump-

tions by introducing new constructs. Then, the semantics are formally de�ned.

65

The original BAN logic assumes that principals are honest, in that they

believe in the truth of the messages they send. To remove this assumption, a new

construct is introduced, `X', which is read \forwarded X," that is used for messages

that were not constructed by the principal sending them. Another construct intro-

duced before the semantics are de�ned is \P says X" to represent the fact that P

has sent X in the present. Using this, a new postulate is introduced that states that

if P said X and X is fresh, then P says X. This promotes from knowledge to belief.

Another construct deals with shared secrets. If P and Q share a secret, s,

then hXQis represents the combination (usually concatenation) of X and s. This is

usually used to demonstrate knowledge of a secret.

The BAN logic is reformulated to de�ne the semantics precisely. For the

complete description, the reader is referred to the paper [2]. We give a summary of

the more important aspects of the semantics. The following actions are de�ned for a

principal P :

send(m;Q) denotes P 's sending of the message m to Q. The message m is added

to Q's message bu�er.

receive() denotes P 's receipt of a message. Some message m is nondeterministically

chosen and deleted from P 's message bu�er.

newkey(K) denotes P 's coming into possession of a new key. The key K is added

to P 's key set.

seen-submsgsK(M) is de�ned as the union of the set fMg and

1. seen-submsgsK(X1) [� � � [seen-submsgsK(Xk)if M = (X1; � � � ;Xk)

2. seen-submsgsK(X) if M = fXQgK and K 2 K10

3. seen-submsgsK(X) if M = hXQis

4. seen-submsgsK(X) if M = `X'

said-submsgsK;M(M) This is de�ned almost the same way as seen-submsgsK(X)

except that the fourth condition also stipulates that X 62 seen-submsgsK(X).

10P 's key set.

66

Next, Abadi and Tuttle describe the syntactic restrictions on a protocol run, r, a time

k, a key set K, a principal P , and M , the set of messages P has received before time

k.

1. A principal's key set never decreases: If K0 is P 's key set at time k0 � k, then

K0 � K.

2. A message must be sent before it is received: If receive(M) appears in p's local

history at time k, then send(M;P) appears in some principal Q's local history

at time k.

3. A principal must possess keys it uses for encryption. Suppose that action

send(M;Q) appears in P 's local history at time k and that fXRgK 2 said-

submsgsK;M(M). Then, either fXRgK 2 seen-submsgsK(M) or K 2 K.

4. A system principal sets \from" �elds correctly: if send(M;Q) appears in P 's

local history at time k and fXRgK 2 said-submsgsK;M(M), then P = R

or fXRgK 2 seen-submsgsK(M). Similarly, if send(M;Q) appears in P 's

local history at time k and hXRiY 2 said-submsgsK;M(M), then P = R or

hXRiY 2 seen-submsgsK(M).

5. A system principal must see messages it forwards: if send(M;Q) appears in

P 's local history at time k and `X' 2 said-submsgsK;M(M), then X 2 seen-

submsgsK(M).

Once the syntax has been de�ned, the semantics can be described. The

de�nition of (r; k) j= ' is inductive on the structure of '. An interpretation � maps

each p 2 � to the set of points �(p) at which p is true. So,

(r; k) j= p i� (r; k) 2 �(p) for primitive p 2 �

(r; k) j= ' \ '0 i� (r; k) j= ' and (r; k) j= '0

(r; k) j= :' i� (r; k) 6j= '

Next, the semantics are described for the various constructs in the logic. For example

P sees X at (r; k) is de�ned as

(r; k) j= P sees X

i�, for some message M , at time k in r

67

� receive(M) appears in P 's local history

� X 2 seen-submsgsK(M), where K is P 's key set.

Also, P has jurisdiction over ' at (r; k) is de�ned as

(r; k) j= P controls '

i� (r; k0) j= P says ' implies (r; k0) j= ' for all k0 � 0.

The other constructs in the BAN logic are de�ned similarly in the se-

mantics. The notion of belief is captured using a possible-worlds semantics where a

principal believes a fact if that fact is believed in all the possible worlds known to that

principal at that time. Abadi and Tuttle [2] prove that this axiomization is sound,

but state that they doubt it is complete. They give an example of a formula that is

valid, but cannot be generated using the logic:

(P controls (P has K) ^

P says (P has K; fXP gK)) � P says X

In the semantics described by Abadi and Tuttle, choosing good protocol

runs is important. They do not allow an initial assumption with a negative belief, such

as Pi does not believeK is a good key. This seems to be a reasonable assumption. As

the authors state, \In every application of this logic that we are aware of, the initial

assumptions satisfy this restriction."

3.8.6.2 A semantic model for authentication protocols

Woo and Lam [80] present a semantic model for authentication protocols.

They identify correspondence and secrecy as two correctness properties. Correspon-

dence speci�es that di�erent principals in a protocol must execute steps in a locked-

step fashion. This represents the idea that a protocol step can be in response to a

previous protocol step, and not just an independent event.

The authors de�ne an action schema to specify the steps in a protocol.

In protocol speci�cation, each of these actions is preceded by a label. The actions

allowed are:

BeginInit (r) NewNonce (n)

68

EndInit (r) NewSecret (S; n)

BeginRespond (i) Send (p;M)

EndRespond (i) Receive (p;M)

Accept (N) GetSecret (n)

The meanings of these actions are for the most part intuitive. A notable exception

is the GetSecret action. This is used to model the compromise of an old key by the

intruder. The action would not be included in a protocol speci�cation, but rather,

on the consequence side of a rule, and serves to eliminate timeliness requirements.

A protocol speci�cation begins with a set of initial conditions, followed by

the protocol for each participant. For example, the authors specify the Otway-Rees

protocol [51] using their model. The speci�cation takes the form.

1. Initial Conditions

2. Initiator Protocol

3. Responder Protocol

4. Server Protocol

Notice that although the Otway-Rees protocol does not di�erentiate between the

communicating principals, Woo and Lam explicitly designate the roles as initiator

and responder.

The main di�erence between this work, and that of Syverson [66] is that

Woo and Lam specify protocols as programs and are concerned with a general for-

malism of correctness, whereas Syverson is more concerned with logic. The approach

by Woo et al. is revolutionary in that it recognizes and formalizes the notion of

correspondence in authentication protocols.

3.8.7 A Nonmonotonic Logic of Belief

All of the logics we have discussed so far have dealt with monotonic knowl-

edge and belief. However, in a real world model, our beliefs can change. For example,

if a session key is compromised, we need to change our belief that this is a good key.

Moser [46] describes a nonmonotonic logic of belief based on a monotonic

logic of belief and knowledge. She describes the standard S5 [13] knowledge axioms.

Here Ki(p) means that principal i knows p.

69

Bi(p) Bi(q) Bi(p) unless Bi(q)

t t f

f t t

t f t

f f x

Figure 3.5: The De�nition of Moser's unless operator The x in the last row
indicates a special case. x is true i� 9r : Bi(p) unless Bi(r) 2 F , where F is a
conjunction of formulas containing the unless operator.

1. Ki(p)) p

2. Ki(p) ^Ki(p) q)) Ki(q)

3. :Ki(p)) Ki(:Ki(p)) (Negative introspection)

4. ` p infer Ki(p)

Axiom 4 corresponds to the axiom T described by Syverson [71] (see section 3.8.1).

Also, Moser points out that positive introspection is easily derivable from the above

axioms. The axioms for belief are the standard KD45 axioms [13], and are the same

as those described by Rangan [52] (see section 3.8.1).

In Moser's logic, a belief is considered true unless it is stated otherwise.

She introduces a new predicate, unless whose value can be seen from the following

truth table (where F is a conjunction of formulas containing the unless operator).

The de�nition of unless is given by the truth table in Figure 3.5. The x in

the last row is the most interesting part of the de�nition and indicates a special case.

x is de�ned as follows:

x =

8>>>><
>>>>:

t if 9r : Bi(p) unless Bi(r) 2 F

and Bi(r) is true

f otherwise

Thus, the value of the unless operator depends on the context in which it appears.

This de�nition allows for any belief to be held unless it is refuted somewhere else in

the formula.

70

Moser proceeds to give an application of this logic for a key distribution

protocol. Although her logic provides for a new type of reasoning, there are a few

shortcomings. Moser does not discuss the tractability of her logic other than pointing

out that if quanti�cation were added to the logic, it would be undecidable. Also,

Moser makes no mention of soundness and completeness. Perhaps a formal semantics

for this logic would help answer such questions.

Another shortcoming of Moser's logic is that it deals with the nonmono-

tonicity of belief, and mentions nothing of the nonmonotonicity of knowledge. In fact,

there is no way to reason about a principal forgetting some information. An example

of such a protocol is the khat system of Chapter 2. The security of khat is based

on the notion that a vacant workstation erases some information from its memory

so that an intruder gains nothing from compromising the machine. To reason about

such systems, we need a nonmonotonic logic of knowledge as well as belief. Moser's

logic does not provide this.

3.9 Type IV Approach

The Type IV approach to protocol analysis develops a formal model based

on the algebraic term-rewriting properties of cryptographic systems. This approach

was introduced by Dolev and Yao [19], and has since been pursued by Merritt [43],

Syverson [65, 70], Meadows [39, 40, 41, 42], and Woo & Lam [80]. The more recent

applications of this approach have provided automated support for the analysis, and

have enabled a user to query the system for known attacks.

The Type IV approach generally involves an analysis of the attainability of

certain system states. In this regard, it is similar to some of the Type II approaches

discussed earlier. However, the Type IV approaches try to show that an insecure state

cannot be reached, whereas the Type II approaches began with an insecure state and

attempted to show that no path to that state could have originated at an initial state.

3.9.1 Dolev and Yao

Dolev and Yao [19] proposed the �rst algebraic model for the security of

protocols. Their protocols dealt more with the distribution of secrets than authenti-

cation, although the two are closely linked. The main di�erence is that we generally

71

think of authentication as involving a third party authentication server, whereas the

Dolev and Yao protocols dealt with only two parties.

Dolev and Yao de�ne some classes of protocols. They reason about these

classes of protocols rather than individual protocols themselves, and prove some in-

teresting properties of these classes. For example, cascade protocols and name-stamp

protocols are examined. A cascade protocol is one in which a user can apply the

public key encryption-decryption operations in several layers, to form messages. The

authors prove that such protocols are secure if and only if the following conditions

hold:

1. The messages transmitted between X and Y always contains some layers of

encryption functions Ex or Ey

2. In generating a reply message, each participant A (A = X;Y) never applies

DA without also applying EA.

Similarly, Dolev and Yao provide a polynomial-time algorithm for deciding if a given

name-stamp protocol is secure.

Dolev and Yao not only show how to model protocols algebraically, they

consider whole classes of protocols and demonstrate how to reason about any protocol

that shares certain properties.

3.9.2 Merritt's Model

Merritt [43] generalizes on the technique of Dolev and Yao to model diverse

cryptographic systems and to formally state and prove security properties other than

secrecy. His approach is to use the the messages an attacker knows as well as the

relationship between these messages to model its knowledge.

Merritt de�nes a partial algebra, A = hD;R1; � � � ; Rki, where D is a

set, and R1; � � � ; Rk are relations on D. A subalgebra of A is any algebra A0 with

D0 � D, and whose relations are the restrictions to D0 of the relation in A. Algebras

such as B = hD;R1i containing a subset of the relations in A are called reducts or

A.

Let I = hM;C;EA; EB; eA; eB; eA
�1; eB

�1i be a partial algebra where M is

a set of messages, C � M is the set of cleartext messages, EX is a predicate of the

72

principal X that is true only on messages which are properly encrypted, eX is the

encryption function of principal X, and eA
�1 is the decryption function of principal

X. The reducts IA = hM;C;EA; eA; eA
�1; eBi and IB = hM;C;EB; eB; eB

�1; eAi

represent the cryptographic capabilities of A and B.

Merrit shows how this algebraic model can be used to analyze crypto-

graphic protocols by performing algebraic operations using algebras such as I above.

In the next section we see how an algorithm can be used to further analyze the

behavior of the intruder.

3.9.3 Using the NARROWER Algorithm for Protocol Anal-

ysis

According to Meadows [39], \A cryptographic protocol may be thought of

in part as a set of rules for generating words in some formal language." We can de�ne

algebraic operations on these words, such as encryption and decryption. The security

of a protocol can then be based on the ability of an intruder to generate certain words

in the language.

The operations in a term-rewriting system are the reductions of terms using

the cancellation properties of the words in the system. Examples of such rules are:

1. d(X; e(X;Y))! Y

2. e(X; d(X;Y))! Y

which de�ne the symmetric properties of encryption and decryption. An intruder can

attempt to see if any words available to him can reduce to some secret word, say a

session key.

Meadows [39] uses the NARROWER [53] algorithm, which she has imple-

mented in Prolog [15] to analyze the IBM key management scheme [16] mentioned

in Section 3.7.2. The algorithm begins with a trivial set (possibly the empty set)

of words available to the intruder, and an initial state. A set of secrets, which the

intruder should not learn, is also de�ned. The algorithm attempts to show that there

is no path through the protocol, beginning at the initial state, that leads to a state

where the intruder can learn words in the secret set.

73

The algorithm works by induction on the length of the path, beginning

with the trivial set, and continues until no more paths can be generated. For any m,

we can state that no \dangerous" path of length less than or equal to m exists. The

user can interact with the program to improve on the tractability of the problem by

modifying the initial set, and the rules available.

In a later paper [41], Meadows analyzes the Burns-Mitchell resource sharing

protocol [8] using an analysis tool based on the same term-rewriting properties utilized

by the NARROWER. This system models the knowledge and belief of the intruder,

and de�nes a set of rules whereby an intruder can learn new information based on

protocol steps. Using this technique, Meadows demonstrates the existence of a aw

in the Burns-Mitchell protocol. Meadows suggests a �x to this protocol, and then

uses the analysis technique to show that the attack no longer succeeds.

In the analysis of the IBM key management scheme, it is shown that certain

secrets are unobtainable by a penetrator unless a session key has been compromised.

However, such a proof is not a proof that the protocol is secure; this would require

proving that the term-rewriting system is complete, i.e., that every valid word can

be generated. Unfortunately, the system is not complete. Another requirement for

proving that a protocol is secure is that the method for formalizing the protocol, must

itself be formal, and it is not.

Thus, methods such as using the NARROWER can be used to �nd inse-

curities in a protocol, but do not constitute a proof that a protocol is secure.

3.9.4 The KPL Logic

In the logics presented so far, we have seen ways of representing the fact

that P knows that KPQ is the secret key between P and Q. However, there has been

no way to represent simply the fact that intruder Z knows P 's key. Syverson calls

this a key simpliciter, and his KPL logic [65, 66] can represent such a fact.

KPL is a quanti�ed modal logic with a corresponding possible-worlds in-

terpretation. In KPL, Z knows P 's key if P 's key is present in all of the worlds

accessible to Z from his current set of possible worlds via some transition. Syverson

de�nes a semantics for the logic that he uses to prove the soundness and completeness

of KPL.

74

As Syverson states, the soundness and completeness of KPL do not guar-

antee that there can be no error in the reasoning about a secure protocol, but they

do prove that there can be no formal error: \Once we have formally speci�ed a pro-

tocol, a logical derivation of any result concerning the speci�cation will be correct |

i.e. true of that speci�cation | and anything that can be formally shown to be a

semantic consequence of that speci�cation will be provable in the logic."

Syverson does not provide examples of how to specify an authentication

protocol in KPL; such a speci�cation would be complicated. In general, the Type IV

approaches su�er from a great deal of complexity, and thus their value as an analysis

tool is diminished.

3.9.5 The NRL Protocol Analyzer

Syverson and Meadows [70] use the techniques described above, namely,

using the term-rewriting properties of protocol speci�cations, to develop the NRL

protocol analyzer. This system is used to analyze classes of protocols, and is not tied

to any assumptions about the protocols.

The NRL protocol analyzer allows a single set of requirements to specify a

class of protocols. The following symbols are used:

! represents the standard conditional

^ represents conjunction

�- represents a temporal operator meaning at some point in the past.

Each principal keeps track of a local round number for a protocol, and the following

actions are de�ned:

accept(B;A;Mes;N) means that B accepts the messageMes as from A during B's

local round N . N is an optional parameter.

learn(Z;Mes) means that the intruder, Z, learns the word Mes.

send(A;B; (Query;Mes)) means that A sends Mes to B in response to Query.

The use of a Query is optional.

75

request(B;A;Query;N) means that B sends Query to A during B's local round

N . Query is optional.

From these constructs and actions, requirements can be speci�ed. The requirements

are represented by a conjunction of statements. For example:

Requirement #1

� :(�- accept(B;A;Mes;N)^ �- learn(Z;Mes))

� accept (B;A;Mes;N)!

�- (send(A;B; (Query;Mes))^

�- request(B;A;Query;N))

Requirement #1 contains two conditions, both of which must hold. The

�rst condition is that if B accepted message Mess from A at some point in the past,

then the intruder did not learn Mess at some point in the past. The second condition

is that if B accepted message Mess from A in B's local round, N , then A sent Mess

to B as a response to a query at B's local round N .

It is clear from the last sentence why formal methods are needed to repre-

sent such statements. There is a need for a precise description. If it is not necessary

for A to send the message in response to B's query only after the query, then we can

have the relaxed requirement:

Requirement #2

� :(�- accept(B;A;Mes)^ �- learn(Z;Mes))

� accept (B;A;Mes;N)!

�- (send(A;B;Mes)) ^ �- request(B;A;N))

The omission of the Query from the send and request actions are due to

the relaxation of the requirement. Also, it may be required that the messages from

A and B be recent. These can be speci�ed with the following requirement:

Requirement #3

� :(�- accept(B;A;Mes)^ �- learn(Z;Mes))

� accept (B;A;Mes;N)!

�- (send(A;B;Mes)) ^ �- request(B;A;N))

76

� accept (B;A;Mes;N)!

�- (send(A;B;Mes)) ^

:(�- time out(B;N)) ^

:(�- time out(A;N))

The new action, time out, is used to control currency of messages.

To avoid assumptions such as those made in the BAN logic [9] that all par-

ticipants in a protocol are honest, an honest user A is designated as user(A;honest),

and a dishonest user as user(A; dishonest), and in the case where it is not known, a

variable Y can be included, user(A;Y). To specify the requirement that an honest B

accept a message as coming from an honest A only if it was never previously accepted

by an honest user, Syverson and Meadows [70] provide the following complicated

requirement:

Requirement #4

� :�- accept(user(B; honest); user(A; honest),

Mes) _:�- learn(Z;Mes)

� accept(user(B; honest); user(A; honest);Mes;N)

! �- (send (user(A; honest); user(B; honest);Mes)

^�- request (user(B; honest); user(A; honest); N))

� accept(user(B; honest); user(A; honest);Mes) !

:�- accept(user(C; honest); user(D;Y);Mes)

The variable Y states that the message could not have been accepted by

anyone, regardless of honesty.

The NRL protocol consists of a state space, where a protocol trace is an

in�nite sequence of states. A model is an ordered 4-tuple, hS; I; �; ti such that S is a

state space, I is an interpretation, � is a trace, and t is time. Satisfaction is de�ned

as hS; I; �; ti j= � means that � is true at hS; I; �; ti. Syverson and Meadows [70] give

a detailed de�nition of the j= relation in their paper.

A speci�cation in the NRL protocol analyzer is modeled on the communi-

cation of honest participants. Dishonest participants are assumed to be modeled by

the intruder, and so are not modeled separately. Each honest participant possesses a

set of learned facts, called lfacts. Also, a function called intruderknows() represents

the lfacts known by the intruder.

77

To use the protocol analyzer, a protocol is speci�ed using the above con-

structs. Then, a set, K, of lfacts is de�ned. K may contain a possible attack by an

intruder. The analyzer then can determine if the set K can meet the requirements of

the protocol. If so, a successful attack by the intruder can be discovered.

The NRL protocol analyzer consists of four phases. In the �rst phase, tran-

sition rules are de�ned for the actions of honest principals. In phase 2, the operations

available to all principals, such as encryption and decryption, are described. Phase 3

consists of describing the atoms used as the basic building blocks of the words in the

protocol, and the �nal phase describes the rewrite (reduction) rules obeyed by the

operators. An example of such a rule is:

IF:

count(user(B,honest)) = [M],

lfact(user(B,honest),N ,recwho,11M) =

[user(A; Y)],

not(user(A; Y) = user(B,honest)),

THEN

count(user(B,honest)) = [s(M)],

intruderlearns([user(B,honest),

rand(user(B,honest),M)]),

lfact(user(B,honest),N ,recsendsnonce,

s(M)) = [rand(user(B,honest),M)],

EVENT

event(user(B,honest),N ,requestedmessage,

s(M)) = [user(A,Y),rand(user(B,honest),M)].

This rule describes the sending of a nonce from an honest principal, B, to

some principal A, whose honesty is unknown.

Operations are described by listing the restrictions on them (for example,

key length), and then de�ning their properties. Similarly, rewrite rules describe the

cancellation of operations. For public key encryption, for example, a rewrite rule

would be:

pke(privkey(X),pke(pubkey(X); Y))) Y

11The word recwho is used by the authors to mean \the principal who receives this."

78

Syverson et al. [70] then give a full speci�cation and show that the protocol meets

the speci�cation.

The purpose of the NRL protocol analyzer is to show that a given protocol

speci�cation meets its requirements. However, this does not constitute a proof that

the protocol is secure. The NRL protocol analyzer can be viewed as a tool that,

combined with other tools, could eventually lead to a protocol that can be proven

secure.

3.10 Conclusions

This chapter surveys the current state of research into the formal analysis

of authentication protocols. The �eld has made substantial progress in the detection

of aws in published protocols as well as in the development of formal speci�cation

techniques. We have seen how various techniques from other �elds can be used to

reason about security in key management schemes. We have also seen the weaknesses

of such methods in that they fail to capture the subtle properties of these protocols,

such as their susceptibility to replay attacks.

Some authors have developed expert systems to experiment with various

scenarios in an authentication protocol. Such systems are useful as tools in the

development of protocols, but have not been able to o�er much in the way of formal

analysis of existing protocols. In particular, such systems are good at recognizing

known attacks on protocols when they are speci�ed, but have not been able to produce

new, previously unknown attacks.

The predominant technique for analyzing cryptographic protocols is to use

logical reasoning about belief and knowledge in the system. These schemes have

been successful in proving that a protocol meets its formal requirements. However, a

criticism of these systems is that the process of formalizing the requirements is itself

not formal. To cope with this, semantics have been presented for reasoning about the

logics themselves. There is a debate as to whether epistemic logics (knowledge) are

preferable to doxastic logics (belief), but either one can be used to reason about the

other.

Another criticism of logics based on belief and knowledge is that they are

used to model trust and not security. Although the two are related, it is clear that

79

they are not interchangeable.

In addition to the above methods, some have used the algebraic term-

rewriting properties of protocols to reason about security. This technique has been

successful in uncovering aws in known protocols. Unlike the modeling with belief

and knowledge, the term-rewriting algebras are highly complex. It is doubtful that

many protocol developers will be able to use these systems. In contrast, it is common

to �nd analyses of protocols using BAN. However, the ease of use of techniques such as

BAN creates a danger of misuse by people who do not fully understand their purpose

and limitations, as has been frequently demonstrated.

Although we have presented numerous ways to reason about the security

of protocols, and in some cases, to prove that they meet their requirements, there is

no technique known for proving that a protocol is secure. The reason for this may

be that security itself is not su�ciently well de�ned. We can prove that a protocol

is correct, or that it meets its speci�cation. We can even prove that under various

assumptions, certain attacks against a protocol will not work. However, we have

no general-purpose method of proving that an arbitrary authentication protocol is

secure.

Future research is likely to focus on formal methods for formalizing authen-

tication protocols. The weakest link in current proofs of security is the formalization

process. We believe that once all of the aspects of a protocol can be converted to a

formal speci�cation using a sound and complete formal method, that we will then be

able to assure a proven level of security.

80

Protocol Protocol Analysis
First Author Speci�cation Type I Type II Type III Type IV
Abadi [2]
Bieber [4]
Blumer [5] [5]
Britton [6]
Burrows [9] [10]
Calvelli [11]
Campbell [12]
Dolev [19]
Gaarder [21]
Gong [22] [23]
Gray [29]
Kailar [31]
Kasami [32]
Kemmerer [33] [33] [33]
Longley [36]
Lu [37]
Mao [38]
Meadows [41] [41] [39] [40] [41]

[42]
Merritt [43]
Millen [44]
Moser [46]
Nessett [50]
Rangan [52]
Sidhu [60]
Snekkenes [61] [62] [63]
Syverson [70] [70] [66] [67] [68] [65] [70]

[69] [71]
Varadharajan [75] [76] [77] [75] [76] [77]
Woo [80] [80]

Table 3.1: The Focus of Research in the Speci�cation and Analysis of Authentication
Protocols by Category. Entries in the table correspond to bibliography reference numbers.
The four types under protocol analysis are as described by Meadows [42].

CHAPTER 4

NONMONOTONIC CRYPTOGRAPHIC

PROTOCOLS

4.1 Overview

This chapter presents a new method for specifying and analyzing crypto-

graphic protocols. Our method o�ers several advantages over previous approaches.

Our technique is the �rst to allow reasoning about nonmonotonic protocols.

These protocols are needed for systems that rely on the deletion of information. There

is no idealization step in specifying protocols; we specify at a level that is close to the

actual implementation. This avoids errors that might otherwise render a speci�cation

that passes the analysis, useless in practice.

In our method, knowledge and belief sets for each principal are modi�ed via

actions and inference rules. Every message is considered to be broadcast, and we in-

troduce the update function to maintain global knowledge. We show how our method

uncovers the known aw in the Needham and Schroeder protocol [48], and that the

revision by the same authors [49] does not contain this aw. We also show that our

method correctly handles protocols that are trivially insecure, such as Nessett's noted

example. [50]

We then apply our method to our khat protocol (see Chapter 2). The

analysis reveals a serious, previously undiscovered aw in our nonmonotonic protocol

for long-running jobs; one that seems obvious in hindsight, but escaped the attention

of the authors and over 300 USENIX conference attendees. In addition, our analysis

reveals a previously unknown vulnerability in phase II of khat. These are stunning

con�rmations of the importance of tools for analyzing cryptographic protocols.

81

82

4.2 Introduction

In computer networks, communicating parties must share a set of rules

describing the messages they will send and receive. These rules, or protocols, are

the foundation on which modern networks are built. As protocols are necessary to

establish any useful communication, standard sets of rules are published and made

widely available. This allows users all over the world to communicate with each other

and share information on networks such as the Internet.

Unfortunately, the availability and widespread knowledge of communica-

tion protocols has also facilitated the malicious interference of active intruders on the

network. To combat this, cryptographic protocols that rely on the encryption of data

were developed. It is widely accepted that the security of data in networks should

rely on the underlying cryptographic technology, and that the protocols should be

open and available. [78] However, many protocols have been found to be vulnera-

ble to attacks that do not require breaking the encryption, but instead manipulate

the messages in the protocol to gain some advantage. The advantages potentially

gained by an attacker range from the compromise of con�dentiality to the ability to

impersonate another user.

Analysis techniques have been developed to help discover aws in protocols

before they are trusted. Flaws were discovered in such well known protocols as the

Needham and Schroeders key distribution protocol [17] and the CCITT X.509 protocol

[9]. The BAN logic of Burrows, Abadi, and Needham [9] and its descendants [11, 12,

21, 23, 38, 62], have been pivotal in the ability to use knowledge and belief in the

analysis of cryptographic protocols to discover aws.

All of the logics developed to date reason monotonically. That is, once

something is known, it is always known. This has been a fundamental obstacle in

providing a complete logic because negation is missing. This means that there are

valid formulas that cannot be derived. There have been two attempts to remedy

this. Abadi and Tuttle [2] provide a semantics for the BAN logic that includes a new

construct for negation. Moser [46] provides a nonmonotonic logic of belief. However,

neither of these deal with nonmonotonicity of knowledge. The di�erence between

nonmonotonicity of knowledge and nonmonotonicity of belief is discussed in Section

4.4.

83

1. A! S : A;B;Na

2. S ! A : fNa; B;Kab; fKab; AgKbs
gKas

3. A! B : fKab; AgKbs

4. B ! A : fNbgKab

5. A! B : fNb � 1gKab

Figure 4.1: The Needham and Schroeder protocol speci�cation. Protocols are
speci�ed by a principal name, followed by an arrow and another principal name, followed

by a message.

We present a new method for analyzing protocols. This is the �rst method

proposed for reasoning nonmonotonically about knowledge in cryptographic proto-

cols. Our approach is a variation on the protocol speci�cation techniques of Woo

and Lam [80] where each principal's actions are de�ned separately. In addition, we

do not require protocol idealization, and thus avoid many of its associated pitfalls as

described by Mao and Boyd. [38] The notation we use is based on the original BAN

logic [9], and we use a similar reasoning mechanism.

We show how our new method can be used to specify and analyze the

Needham and Schroeder protocol. We then use it to analyze the khat protocol de-

scribed in chapter 2, which uses nonmonotonicity of knowledge, and we show that no

other analysis techniques can be used to analyze this protocol. Finally, our method is

used to uncover the aw in a famous protocol presented by Nessett [50] that he used

to demonstrate a weakness in BAN logic.

4.3 Protocol Speci�cation in a Distributed System

A typical protocol speci�cation consists of a list of messages between prin-

cipals. For example, the Needham and Schroeder protocol speci�cation [48] can be

seen in Figure 4.1. A! B :M means that principal A sends messageM to principal

B. A protocol designer thus speci�es a protocol by listing the messages principals

send to each other.

Although such a speci�cation is intuitive, it does not represent the way

84

a protocol is implemented in a distributed system. In a distributed network, each

principal need be aware only of his potential role in a protocol. For example, in

the Needham and Schroeder protocol presented above, principal S is not concerned

with messages 3, 4 and 5. In addition, there are calculations and actions (such as

decryption and encryption) performed by principals during the run of a protocol that

are not captured by the speci�cation.

The need to idealize protocols before analyzing them is a weakness in this

form of protocol speci�cation. In this chapter, we propose a new method for specifying

protocols that conform to the distributed system model, one that does not require

idealization.

The model of Woo and Lam [80] assigns roles to the principals in a protocol

and treats them as independent processes. The actions of the principals are described

with no regard to the actions of others in the system. Our method for protocol

speci�cation and analysis is based on this notion.

Specifying protocols as in Figure 4.1 has another disadvantage. Proto-

col analysis is seen as a process separate from the speci�cation. Current analysis

techniques take a completed speci�cation as input and attempt to reason about the

completed protocol.1 For example, Figure 3.4 is a depiction of the BAN logic. [9]

We suggest that protocol analysis should be integrated with the speci�ca-

tion process. Thus, as a protocol is developed, beliefs and states of knowledge that

represent the current state of the system are updated. At any point, an inconsistency

can be detected. This has the advantage of identifying potential causes of problems as

well as the actual aws. When a protocol has been completely speci�ed, the analysis

is complete as well.

4.4 Nonmonotonicity of Knowledge vs. Nonmonotonicity of

Belief

With few exceptions, previous work in the application of the logic of knowl-

edge and belief to the analysis of cryptographic protocols has considered only mono-

1A notable exception is the NRL Protocol Analyzer by Syverson and Meadows [70]. However,
this system is not modeled after the BAN type of reasoning about belief and knowledge, but uses
the term-rewriting algebraic properties of a protocol.

85

tonic reasoning systems. In these systems, once something is believed, it is always

believed. The same applies for knowledge.

The di�erence between knowledge and belief is subtle. A principal knows

that his key is K. A principal believes that a nonce is fresh. In general, a principal

knows things like secrets and data; a principal believes meta-data, or information

about the data, such as freshness.

Monotonic systems have trouble reasoning with incomplete information.

A belief that is assumed in the absence of other information, can be nulli�ed by the

introduction of new information. However, a monotonic system has no mechanism

to do this. In fact, most previous systems have no refutation. The ability to refute

beliefs is important for reasoning about protocols. For example, if a session key is

compromised, we need to change our belief that this is a good key.

Moser [46] gives a nonmonotonic logic of belief. This logic is biased towards

belief in the absence of information. Thus, a �nal interpretation of a formula is

believed unless there is some information that makes it inconsistent. The logic uses

a construct called unless to achieve this. This is discussed in detail in Chapter 3. We

give a brief review for the purposes of this chapter.

The value of a formula using unless can be seen from the truth table in

Figure 3.5 (where F is a conjunction of formulas containing the unless operator and

Bi(p) means that principal i believes p). The x in the last row is a special case and

is de�ned as follows:

x =

8>>>><
>>>>:

t if 9r : Bi(p) unless Bi(r) 2 F

and Bi(r) is true

f otherwise

The logic of Moser su�ers from intractability. In addition, the logic deals only with

nonmononicity of belief. There is no known reasoning system that deals with the

nonmonotonicity of knowledge. A situation where such reasoning applies is a protocol

that requires a principal to no longer possess information it previously knew. This is

di�erent from a principal not believing a statement it previously believed.

The khat protocol, described in Chapter 2, is an example of a protocol

that requires reasoning with nonmonotonicity of knowledge. The protocol relies on

a public workstation \forgetting" some information. The BAN logic, along with its

extensions, does not provide a way for representing this behavior.

86

In this chapter, we introduce a method for analyzing protocols such as

khat, where information is erased and no longer known by a principal. Our method

uses observers sets for each secret that contain the principals who know it. These are

similar to the knowledge sets of Kailar et al. [31]. However, Kailar et al. use these

sets to reason about belief, whereas we apply the concept in a slightly di�erent way

to reason about the nonmonotonicity of knowledge.

4.5 The KHAT protocol

The khat system presented in Chapter 2 was built to solve the problem

of long-running jobs in an authenticated environment where a trusted server issues

tickets with limited lifetimes for services. Khat stands for Kerberized at, and is based

on the UNIX at command. When using this service, a user schedules a job for a

future time and date, with the option of renewing tickets until the job completes.

We now review the features of khat that are relevant to this chapter. When

a user submits a khat job, the program creates a spool �le containing everything

necessary to run the job at a later date, such as environment variables, and sends

it to the khat server. The server stores the spool �le for the job, and the user's

workstation erases it from memory. The khat client generates a new key, N , which is

used to encrypt the secret key, K, that will serve as the session key when it is time

for the job to run, and the server and client need to communicate. N is also stored

by the server and erased by the client. The process of securing the session key, K on

the client is depicted in Figure 2.7.

The khat protocol is initiated by the usual ticket granting method in Ker-

beros. A ticket for the khat service is granted to the client after the initial authenti-

cation. This process is well known and is believed to be secure. Toussaint provides a

proof that the Kerberos ticket granting protocol is secure. [73] We take the results of

the ticket granting process as the initial assumptions in our analysis. Thus, the khat

protocol begins after ticket granting completes.

The khat system can be divided into two phases. Phase I works as follows.

1. A Kerberos ticket for khat is granted to the client and a session key is estab-

lished.

2. The client generates a spool �le for the job.

87

3. The spool �le is sent to the server under the session key.

4. The server stores the spool �le.

5. The client generates a new key, N , sends fNgK to the server, and erases the

spool �le and N from its memory.

6. The server stores N .

Phase II occurs when it is time for the job to run. The server wakes up once a minute

to see if any khat jobs are ready. If so, phase II is initiated as follows:

1. The server sends N to the client.

2. The server sends the spool �le to the client under the session key, K.

3. The client runs the job.

For a more complete discussion of khat the reader is referred to chapter 2.

It is clear that this protocol cannot be speci�ed as a simple list of messages

such as in Figure 4.1. The speci�cation method we present in this chapter is more

appropriate because we can include steps such as step 5 in Phase I.

The analysis depends on the assumptions in our threat model. We are

concerned with an active intruder who has access to all network resources and can

intercept, replace or delete any message. In addition, we are concerned with vacant

workstations and information on them that can be useful to an intruder. This threat

is also discussed in Chapter 2. In that chapter, an informal discussion of the security

risks of khat is given. The method we present here grew out of an attempt to analyze

khat more formally, and to provide a method for analysis of any system that must

reason about nonmonotonicity of knowledge.

4.6 Specifying a Protocol

In this section we provide de�nitions and notation for specifying a protocol.

There are two types of de�nitions. Those in the �rst type are global to the protocol,

and de�nitions of the second type are local to each principal.

To accommodate di�erent levels of trust among principals, we place the

beliefs of the principals in the local sets. If the assumption were to be made that

88

each principal in the system is either trusted by everyone or trusted by no one, as is

the case in many simple authentication systems, then we could have put these beliefs

in the global set. To maintain generality, the level of trust and belief will be local.

Thus, jurisdiction, the ability to assign session keys, is a belief that must be held by

the parties sharing the keys, but not by everyone else.

The protocol designer may wish to specify and analyze a protocol for a

system with untrustworthy principals. We include a trust matrix in the speci�cation

where the trust between each pair of principals is established. This is explained in

Section 4.6.3.

As pointed out by Mao and Boyd, some statements in the BAN logic are

not intuitive, such as the notion of believing a key or a nonce [38]. To remedy this, we

de�ne two local sets. One set is composed of the items that a principal possesses, such

as encryption keys and nonces. The other set contains the principal's beliefs, such as

the freshness of a key, or the possessions of another principal. Items in the possession

sets are labeled by their origin. Each possession is accompanied by information that

either states that it was generated by the principal himself, or states from whom it

was received.

We de�ne actions for dealing with the knowledge in a protocol, and in-

ference rules for reasoning about belief. The actions are speci�ed by the protocol

designer and can be chosen from a speci�c set of actions de�ned below. Inference

rules can be added by the designer although they will usually be the same across

protocols.

4.6.1 Global Sets

The �rst step of the speci�cation of any protocol using our method is

to instantiate several sets that are needed for information that concerns the entire

protocol. The are called the global sets. It should be noted the contents of these sets

change as a protocol run is simulated in the analysis. The speci�cation of a protocol is

simply the starting point of the analysis. In this section we give the de�nitions of the

global sets used for protocol speci�cation. We introduce W, for world, to represent

all the principals. Also, for each set, the subscript n represents its cardinality, but

this value changes from set to set.

89

Principal Set: This set contains the principals who participate in a protocol. P =

fP1; P2; � � � ; Png. Any Pi may be marked as an initiator of the protocol. We

will assume there is only one initiator.

Rule Set: This set contains inference rules for deriving new statements from existing

assertions. These are the same as the inference rules in the BAN logic. R =

fR1; R2; � � � ; Rng where Ri is of the form
C1;C2;���;Cn

D
, Ci is a condition and D is

a statement.

Secret Set: This set contains all of the secrets that exist at any given time in the

system. The cardinality of this set changes during the analysis as new secrets,

such as session keys, are added. S = fS1; S2; � � � ; Sng.

Observers Sets: For each Si, Observers(Si) contains all the principals who could

possibly know the secret Si by listening to network tra�c or generating it

themselves. The members of the Observers sets can be stated explicitly or

maintained as formulas representing their membership.

The set, P , contains names of the participants in a protocol. A typical example

might be, P = fA;B;ASg, where A and B are regular principals and AS is the

authentication server.

An example of the set S is fKab;Kas;Kbsg. This set contains secret keys

held among A and the authentication server, among B and the authentication server,

and a session key among A and B. The session key would not be a member of S

in a speci�cation where Kab is distributed in the protocol, but would be added to

the set during the analysis at the point in which it was generated by the authen-

tication server. This process is discussed in the analysis section. In this example,

Observers(Kab) = fA;Bg, Observers(Kas) = fA;Sg, and Observers(Kbs) = fB;Sg.

Also, W 2 Observers(K) means that all principals know K.

4.6.2 Local Sets

Local sets are private to each principal in a protocol speci�cation. In

this section we de�ne these sets. Later, we will show how they are used in the actual

speci�cation and analysis of a protocol. For each principal, Pi, we de�ne the following

sets:

90

Possession Set(Pi) This set contains all the data relevant to security that this

principal knows or possesses. This includes secret encryption keys, public keys,

data that must remain secret, and any other information that is not publicly

available. POSS(Pi) = fposs1; poss2; � � � ; possng. possi contains two �elds:

the actual data and the origin of the data.2

Belief Set(Pi) This set contains all the beliefs held by a principal. This includes the

belief that the keys it holds between itself and other principals are good, beliefs

about jurisdiction, beliefs about freshness, and beliefs about the possessions of

other principals. BEL(Pi) = fbel1; bel2; � � � ; belng.

Opaque(Pi) This set contains candidates to be added to the seen set. It is used by

the Update function. The set contains plaintext message parts and a list of the

associated keys needed to see them.

Seen(Pi) This set contains plaintext message parts that Pi sees from messages sent

across the network. The seen sets collectively contain the same information as

the observers sets.

Haskeys(Pi) This set contains keys that Pi sees either because they are in the initial

possession set, or because they appear in a message sent across the network

and are added to Pi's seen set.

Behavior List(Pi) This item is a list rather than a set because the elements are

ordered. BL = fAL; bvr1; bvr2; � � � ; bvrng. AL is an action list as will be

de�ned below.

Figure 4.2 shows the structure of BL. The �rst element of BL, is an action list. The

remaining elements, bvri, are pairs, (Mess;AL) consisting of a message operation,

Mess, and an action list, AL.

There are two types of message operations; a message operation is one

member of the set fSend(Pj;msg), Receive(Pj;msg)g. Send(Pj ;msg) means that

Pi sends the message, msg to Pj. Similarly, Receive(Pj;msg) means that Pi receives

2Note that the second �eld represents whether or not Pi generated the data, or who sent it to
Pi. It does not represent who originated the data.

91

BEHAVIOR LIST

action1; action2; action3; � � �

Message operation

action1; action2; action3; � � �

Message operation

action1; action2; action3; � � �

Message operation

action1; action2; action3; � � �

� � �

END OF LIST

Figure 4.2: The Structure of A Behavior List The list contains a list of actions,

followed by a list of pairs, (message operation, action list). After each action, any relevant

inference rules are applied.

message msg from Pj . In this case, msg will be marked as coming from Pj and added

to POSS(Pi).

In a send operation, msg contains the information transmitted. In a

receive operation msg contains the �elds of the expected message. This represents

Pi's expectation about the structure of the message. This is similar to the notion of

recognizability of the GNY logic [23].

An action list is an ordered list of zero or more actions that are performed

by Pi. Actions consist of operations such as encryption and decryption, deletion of

information, application of functions, and the decision whether to abort the protocol.

They are covered in more detail in section 4.6.5. Every action is followed by a check

of the inference rules. If the conditions of a rule are satis�ed as a result of the action,

then it is applied. These rules are used to update the belief sets of the principals.

Action lists play an important role in protocol speci�cation. Previous ap-

proaches to cryptographic protocol analysis take the actions of the principals for

granted. Operations such as encryption and decryption are implicit. Our method

makes every action explicit, including veri�cation that the operations completed suc-

cessfully, and an abort in case they did not. This method is a better model of protocol

92

execution in a real system than previous approaches because all of the actions are

included as part of the speci�cation instead of implicitly assumed.

4.6.3 The Trust Matrix

Our method does not require that any assumptions be made about trust

between principals. Instead, the protocol designer explicitly speci�es the trust rela-

tionship between every pair of principals. We de�ne the matrix, TRUST:

TRUST [i; j] =

8<
:

1 if Pi trusts Pj

0 if Pi does not trust Pj

The rows and columns enumerate the principals in P . Obviously, when i = j,

TRUST[i,j] = 1. Pi trusts Pj means that Pi behaves as though Pj will follow the

protocol. We give an example of this using a nonmonotonic protocol.

Say that A believes that B possesses X. Now say that the protocol requires

that B forget X. As both A and B know the protocol, B should now remove the

belief that B possesses X from its belief set. However, if A does not trust B, then

he cannot be sure that B actually no longer possesses X. In the actions described

below, we stipulate the condition that A trusts B before removing a belief about the

possessions of B.

4.6.4 A Word About Nonces

Message freshness can be guaranteed only with time-stamps and nonces.

Conceptually, a nonce is a large random number whose purpose is to link a challenge

and a response. If A sends a nonce, Na, to S, then any message including f(Na), for

some function f , and encrypted under Kas, is assumed to be fresh if and only if the

following conditions are satis�ed:

1. No previous message containing f(Na) has been received.

2. Kas is fresh. That is, we assume Kas is known only to A and S.

Our method uses inference rules to propagate belief about freshness. In

section 4.6.5, we introduce a new construct, LINK(Na) to link a response to a chal-

lenge. When a principal generates a nonce, Na, the formula LINK(Na) is added to

93

his belief set. When a message is received containing, Na, the LINK item is removed

from the belief set, and all parts of that message are labeled as being fresh. A reply

to the challenge can be accepted only once. If that message were to be received again,

the absence of the LINK item in the belief set would hinder the conclusion that this

message is fresh. In fact, this is how our analysis technique exposes the weaknesses in

protocols vulnerable to replay attacks. Our analysis of the Needham and Schroeder

protocol (Section 4.7.1) gives an example of this.

In our model, the only purpose for a nonce is to link a single challenge to

a unique response. Therefore, we require that a nonce be used only once. Existing

protocols that link a nonce to messages from several principals can easily be modi�ed

to meet this requirement.

4.6.5 Actions

Actions describe how a principal constructs messages, encrypts and de-

crypts data, computes functions, aborts a protocol, and performs any other operation.

The action lists that precede and follow message operations in a principal's behavior

list determine sequence of events performed by the principal during a protocol run.

As demonstrated below, some of the actions replace inference rules in the BAN logic,

and others explicitly represent operations that were taken for granted in previous

approaches.

In this section we de�ne the actions used in our method, and the following

section presents and discusses the inference rules. Our method requires some new

notation and dispenses with some previous constructs. As will be shown, the said,

sees, controls, and Q
K
$ P , constructs of the BAN logic are not needed. The new

de�nitions follow:

X contains Y means that Y appears as a submessage of the message X, more for-

mally, for some (possibly null) x1; x2, X = x1 � Y � x2.3 It is always the case

that X contains X.

S := f(S) represents assignment. The value of S is replaced by the value of the

function f applied to S.

3We adopt the usual convention of � for concatenation.

94

X from P means that X is labeled as having been received from P. This will also

be true if P generated X.

LINK(Na) is used to link challenges and responses. This formula is added to the

belief set of a principal who generates the nonce Na, and allows only one

subsequently received message to contain the nonce Na. After such a message

is received, the formula is removed from the belief set.

With these new de�nitions, we now de�ne the actions for a given principal, Pi. Al-

though not speci�ed in the de�nitions, we assume that from labels are inherited in

operations. For example, if fXgk is from Q, and is in POSS(Pi), and this is de-

crypted, then X is also labeled \from Q" when it is added to POSS(Pi).

1. Encrypt(X; k)

condition: X; k 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [ffXgkg

description: This action is used when a principal encrypts data. If Pi pos-

sesses X and knows k then he can possess fXgk.

2. Decrypt(fXgk; k)

condition: fXgk; k 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [fXg

description: This action is used when a principal decrypts data. If Pi pos-

sesses X, encrypted under k, and Pi knows k, then Pi can possess X.

3. Generate-nonce(N)

result: POSS(Pi) := POSS(Pi) [fNg,

BEL(Pi) := BEL(Pi) [LINK(N)

description: This action is used when a principal generates a nonce to link a

challenge and a response. LINK(N) is removed from BEL(Pi) when the

response is received. This is used to determine freshness.

4. Generate-secret(s)

95

result: S := S [fsg, Observers(s) = fPig, POSS(Pi) := POSS(Pi) [fs 1

Pig,

BEL(Pi) := BEL(Pi) [#(s)

description: This action is used when a principal generates a secret data

item, such as a key. A new secret, s, is added to S, and the Observers

and possession sets are updated.

5. Concat(X1;X2; � � � ;Xn)

condition: X1;X2; � � � ;Xn 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [

fX1 �X2 � � �Xng

description: This action is used when a principal constructs a message, X,

out of submessages X1;X2; � � � ;Xn.

6. Split(X)

condition: X contains x1 � x2 � � �xn,

X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [fx1; x2; � � � ; xng

description: This action is used to break a message into its components. Split

is the opposite of concatenation.

7. Forget(X)

condition: X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi)�fXg, 8Pj 2 P if TRUST [j; i] = 1 then

BEL(Pj) := BEL(Pj)� fX 2 POSS(Pi)g

description: This action is used when Pi no longer is in possession of X. All

principals who trust Pi believe that Pi no longer possesses X.

8. Forget-secret(s)

condition: s 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) � fsg,

8 Pj 2 P if TRUST [j; i] = 1 then

BEL(Pj) := BEL(Pj)� fs 2 POSS(Pi)g

96

description: This action is used when Pi no longer knows the secret s. All

principals who trust Pi believe that Pi no longer possesses s.

9. Apply(f;X)

condition: f;X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [ff(X)g

description: This action is used when Pi applies the function f to X. After

the application, Pi possesses f(X).

10. Check-freshness(X)

condition: X 2 POSS(Pi), X has not expired

result: BEL(Pi) := BEL(Pi) [f#(X)g

description: This action is used to verify that time-stamp X is fresh.

11. Abort

condition: Protocol run is illegal

result: Analysis reports failure

description: This could happen under various circumstances where there is

an inconsistency or other aw in the protocol speci�cation.

The di�erence between actions such as generate and actions such as generate-secret

is that items generated as secrets are expected to be sent encrypted, and others are

expected to be transmitted in the clear at some point. Many protocols send challenges

in the clear; therefore, there is no need to maintain these items as secrets.

The actions described above are used to control the knowledge and posses-

sions of the principals in a protocol. Except for Check-freshness and abort, all of the

actions modify the possession or Observers sets. Inference rules are used to modify

the belief sets.

The di�erence between actions and inference rules is that actions are ex-

plicitly speci�ed as a part of the protocol. Rules, however, are used to reason about

the beliefs of principals as the protocol executes. The protocol builder does not ex-

plicitly state how belief evolves in a protocol, but rather, states the inference rules

that will mechanically control the propagation of belief.

97

4.6.6 The Update Function

Before discussing inference rules, we de�ne an important function for pro-

cessing send message operations. When a principal, Pi sends a message to Pj on the

network, any principal can read it. In our threat model, we view any message as

being broadcast and available to all. As pointed out by Nessett, the BAN logic does

not deal with protocols in which, for example, a principal publishes a secret key [50].

This is discussed in Section 4.7.3. The purpose of the Update function is to update

the Observers sets of all secrets that are sent on the network.

We give an algorithm for updating the Seen sets for each principal. Up-

dating the Observers sets, given these, is simple.

Notation

The cleartext messages in a message are numbered mi. For example, in

the message

fx1; fx2; k3gk1; x4; x2gk2

m1 = x1, m2 = x2, m3 = k3, m4 = x4, and m5 = x2. keys[mi] is a set containing the

keys appearing in mi. In our example, keys[m3] = fk3g, and keys[m1] = �. Finally,

needs[mi] is the set of keys needed to see mi. In our example, needs[m2] = fk1; k2g,

and needs[m4] = fk2g. These sets can be obtained by reading the keys used to

encrypt a plaintext submessage from the inside out.

The Algorithm

When a message appears, each principal, P , inspects it, decrypts it insofar

as possible, and accumulates any secrets found within.4

8 interior mi (4.1)

opaque(P) += mi (4.2)

While changes occur to haskeys(P) (4.3)

8mi 2 opaque(P) (4.4)

4The notation we use in this algorithm is similar to that of the C programming language. X += Y

is the same as X := X + Y .

98

if needs[mi] � haskeys(P) (4.5)

opaque(P) �= mi (4.6)

seen(P) += mi (4.7)

haskeys(P) += keys[mi] (4.8)

At each iteration, either keys are added to haskeys(P) or the algorithm

halts. Because the number of keys is �nite, it will eventually halt.

Lemma:

For a principal, P , mi is added to seen(P) if and only if P eventually sees

all of the keys needed to decrypt mi. In other words, at some point in the execution

of the algorithm, seen(P) += mi () needs[mi] � haskeys(P).

Proof: by induction on the structure of messages. A message,M; is constructed via

a combination of only three functions, Encrypt(X,k), Concat(X,Y), and Apply(f,X),

where X and Y are submessages, k is a key, and f is a function. Apply does not a�ect

the algorithm.

Basis: If M consists of only a plaintext message, mi, then needs[i] = � and thus

needs[i] � haskeys(P). Therefore, seen(P) +=mi. The lemma holds.

Inductive Hypothesis: Assume that if M is a message containing at most n ap-

plications of Encrypt and Concat, then for each mi 2 M , seen(P) + = mi ()

needs[mi] � haskeys(P).

Need to prove that if M 0 is a message containing at most n + 1 applications of

Encrypt and Concat, then for all m0

i 2 M 0, seen(P) + = m0

i () needs[m0

i] �

haskeys(P).

Observe thatM 0 must be of the form Encrypt(X,k) or Concat(X,Y) Where

X and Y contains at most n applications of Encrypt and Concat.

case 1

M 0 is of the form Encrypt(X,k). In this case, if k 2 haskeys(P), then for

each m0

i 2M 0, and for each mi 2 X, needs[m0

i] = needs[mi][fkg, and seen(P) + =

m0

i i� seen(P) + = mi. If k 62 haskeys(P), then for all mi 2 X;needs[mi] 6�

haskeys(P) because k 2 needs[mi], and mi is not added to seen(P). Thus, the

lemma holds for this case.

99

case 2

M 0 is of the form Concat(X,Y). In this case, the lemma holds for X and Y

by the inductive hypothesis, and Concat does not e�ect the needs and haskeys sets.

Therefore, the lemma holds.

4.6.7 Inference Rules

When using our method, the protocol developer must choose from the

eleven actions de�ned above. In addition, we de�ne inference rules, such as the nonce

veri�cation rule of the BAN logic, that are triggered whenever they apply. In our

method, rules are speci�ed a bit di�erently.

The nonce veri�cation rule as de�ned by Burrows et al. [9] is not entirely

intuitive. Their rule is:

P believes #(X); P believes Q said X

P believes Q believes X

It is not clear what it means for Q to believe X, if X is a nonce. In our method, if

P received X from Q, then X 2 POSS(Pi), and X will be labeled as being from Q.

We de�ne the nonce veri�cation rule as follows:

(X 2 POSS(Q)) 2 BEL(P),
#(X) 2 BEL(P); X from Q 2 POSS(P)

BEL(P) := BEL(P) [fQ believes #(X)g

The �rst condition, (X 2 POSS(Q)) 2 BEL(P) is necessary to authenticate X as

coming from Q. This condition can only be true after the message meaning rule

(de�ned below) is applied. Thus, P can establish that Q believes that X is fresh, and

this fact is added to P 's belief set, BEL(P). Notice that rules are used to propagate

belief during a protocol run, whereas actions deal with knowledge.

The message meaning rule is de�ned in BAN as:

P believes Q
K
$ P, P sees fXgK

P believes Q said X

This rule states that if P believes that Q and P share a secret key, K, and P sees

X, encrypted under K, and P did not encrypt X under K, then P believes that Q

once said X. This implies that knowing a principal shares a secret key with another

principal is enough to guarantee that any message encrypted under that key was

100

sent by that principal. In our rule, this requirement is made explicit. We de�ne the

message meaning rule as follows:

fXgk from Q 2 POSS(P); k 2 POSS(P)

BEL(P) := BEL(P) [fX 2 POSS(Q)g

This rule states that if fXgk was received by P , from Q, and both P and Q know

the key k, then P believes that Q possesses X. This is possible because messages are

labeled with their origin when they are added to the possession set. When principal

P applies action 2 (decrypt), X will be in his possession set.

Another rule is needed to reason about the freshness of submessages:5

#(x1) 2 BEL(P),
fX contains x1;X contains x2g � POSS(P)

BEL(P) := BEL(P) [#(x2)

This rule states that if P believes that x1 is fresh, and P possesses a formula containing

both x1 and x2, then P believes that x2 is fresh. This rule reects the fact that any

part of a message which contains something fresh, is fresh.

The following rule is the most important inference rule for reasoning about

freshness in a protocol. The only way for a message to be fresh is for it to contain a

valid time-stamp or a nonce that has never previously been used in a response. The

rule for determining freshness using a nonce is the linkage rule:

#(k) 2 BEL(P); k 2 POSS(P);

LINK(Na) 2 BEL(P);X contains f(Na);
X contains x1; fXgk from Q 2 POSS(P)

BEL(P) := (BEL(P)� LINK(Na)) [f#(x1)g

This rule is simpler than its unfortunate length makes it appear. It is the only rule

that can be used to add information about the freshness of an item which is not

known to contain fresh submessages, to a principal's belief set.

The linkage rule states that the submessages of a messageX are believed to

be fresh under certain conditions. If LINK(Na) is in P 's belief set, then the nonce Na

has not been used before. This is the �rst condition. If the rule is applied successfully,

the LINK item is removed. So the rule could not �re again for the same nonce. Other

5In this rule, it is assumed that x1 and x2 share an outer encryption to prevent a malicious
intruder from substituting one of them.

101

conditions state that the nonce Na must be sealed under a key that is fresh, and must

be available to P .

The rule states that message X must contain f(Na) to represent the fact

that sometimes a function of a nonce, rather than the actual nonce is used to respond

to a challenge. The net result of applying this rule is that any submessage of a valid

response to a challenge is believed to be fresh by the recipient of the response. Also,

there is a guarantee that any replay of a valid response will not result in a principal

believing that the submessages are fresh.

4.6.8 How It All Works

The analysis of a protocol proceeds from the speci�cation. It may be a

partial speci�cation or a whole one. Figure 4.3 shows the ow of control in the

analysis of a protocol with two principals. One action is marked as the �rst, and this

...

...

Send(B,...)

Update(...)

...

...

Send(B,...)

Update(...)

Receive(A,...)

...

...

Send(A,...)

Update(...)

...

...

...

...

Receive(B,...)

...

... Receive(A,...)
...
...
...

Principal A Principal B

Figure 4.3: The Flow of Control in Protocol Analysis. This diagram shows
how the analysis proceeds sequentially through the behavior list of two principals in
a protocol. After each Update, the analysis moves to the next receive of the principal
speci�ed in the previous send operation.

is where the analysis begins. The conditions of the action are tested, and if they are

true, the results are applied. Otherwise, the analysis aborts because the speci�cation

102

is unsound.

After the results are applied, any relevant inference rules are applied. There

are no race conditions, where the results of one inference rule negate the preconditions

of another, because the inference rules are monotonic. Only actions can result in the

deletion of information. Therefore, the order of the rules does not matter. The rules

only �re once for any given set of preconditions, and as the number of data elements

is �nite, this process will eventually halt. At this point, the current action is marked

as seen.

The analysis then moves to the next action in the same action list. If the

action is a send message operation, then the following action must be an Update

function call. After the Observers sets are updated, the analysis moves to the �rst

unseen receive action in the action list of the principal speci�ed in the send.

When Update is called, the Observers sets are updated according to the

algorithm described in Section 4.6.6. If there is a send that is not followed by a call

to Update, then the speci�cation is not sound.

After the analysis completes, the protocol designer checks if all of the

actions are seen. If they are not, then there is a problem with the protocol. Flaws

can be detected at any point in the analysis. There are many di�erent ways to use this

technique to discover them. For example, the Observers set of a secret may contain

the wrong principals. If the analysis does not conclude that a data item is fresh, then

a replay attack is possible. In addition, an intruder's moves can be modeled as a

participant in the protocol, which can be checked for known attacks.

4.7 Examples

The best way to explain how a protocol is analyzed using our method is by

example. In section 4.7.1, the Needham and Schroeder protocol is speci�ed, and we

step through the analysis. In section 4.7.2, we apply our method to the khat protocol.

4.7.1 Needham and Schroeder

First we specify the protocol, and then we show how our method can be

used to analyze it. We demonstrate that the known aw in the protocol exists;

principal B cannot achieve the belief that the session key with A is fresh. Then, we

103

show how the addition of two messages, as proposed by Needham and Schroeder (in

a later paper [49]) to solve the problem, allows B to achieve the desired belief.

4.7.1.1 The Speci�cation

The Needham and Schroeder protocol assumes that both A and B trust

S. So, the trust matrix contains 1s in the appropriate spots to represent this. The

trust between A and B is irrelevant, and so the matrix values do not matter.

First we de�ne the global sets. P = fS;B;Ag. A is marked as the initia-

tor of the protocol. R contains the rules de�ned in Section 4.6.7. S = fKas;Kbsg.

Each of these secret keys has an Observers set. Observers(Kas) = fA;Sg and

Observers(Kbs) = fB;Sg. Some of these sets will change once the analysis begins.

Next, we de�ne the initial values of the local sets. Notice that initially,

principals believe in the freshness of the key they share with the server, S. Similarly,

the server believes in the freshness of its shared secret with each principal. Also,

P 1 Kpq represents the key, Kpq and the fact that it is to be used for communicating

with principal P . In this protocol, the function f subtracts one from its argument.

Principal A

POSS(A) = fKasg

BEL(A) = f#(Kas)g

BL(A) =

� Generate-nonce(Na)

Concat(A;B;Na)

Send(S; fA �B �Nag)

Update(fA �B �Nag)

Receive(S; fNa �B 1 Kab � fA 1 KabgKbs
gKas)

Decrypt(fNa �B 1 Kab � fA 1 KabgKbs
gKas;Kas)

Split(fNa �B 1 Kab � fA 1 KabgKbs
g)

Send(B; fA 1 KabgKbs
)

Update(fA 1 KabgKbs
)

Receive(B; fNbgKab
)

Decrypt(fNbgKab
;Kab)

104

Send(B;Encrypt(Apply(f;Nb);Kab))

Update(ff(Nb)gKab
)

Principal B

POSS(B) = fKbsg

BEL(B) = f#(Kbs)g

BL(B) =

Receive(A; fA 1 KabgKbs
)

Decrypt(fA 1 KabgKbs
;Kbs)

Generate-nonce(Nb)

Send(A,Encrypt(Nb;Kab))

Update(fNbgKab
)

Receive(A; ff(Nb)gKab
)

Decrypt(ff(Nb)gKab
;Kab)

Principal S

POSS(S) = fKas;Kbsg

BEL(S) = f#(Kas);#(Kbs)g

BL(S) =

Receive(A; fA �B �Nag)

Split(fA �B �Nag)

Generate-secret(Kab)

Send(A,Encrypt(Concat(Na; B 1 Kab;

Encrypt(A 1 Kab;Kbs));Kas))

Update(fNa �B 1 Kab � fA 1 KabgKbs
gKas)

Once the protocol has been speci�ed, the analysis begins. However, the analysis

technique described here can be used to test the protocol as it is being developed.

The �rst action in BL(A) is marked with a � because A is the initiator of

the protocol. For each action, its condition is tested. If it does not hold, the protocol

analysis is aborted, and the speci�cation is infeasible. If the condition holds, then

the result is applied and the required sets are updated. Next, the inference rules are

105

examined to see if any apply. Finally, the action is marked with a � to show that it

has been successful, and the mark, �, is moved to the next action.

Every Send action is followed by an Update action. The Send action spec-

i�es to whom the message is sent. After an Update action, the mark moves to the

�rst Receive action with no � of the principal identi�ed in the corresponding Send

action.

4.7.1.2 The Analysis

The �rst four actions in BL(A) are executed resulting in new members of

the sets POSS(A) and BEL(A). Also, the Update action causes Observers(Na) =

W. So far, no inference rules can be applied.

POSS(A) = fKas; Na; fA �B �Nagg

BEL(A) = f#(Kas);LINK(Na)g

BL(A) =

� Generate-nonce(Na)

� Concat(A;B;Na)

� Send(S; fA �B �Nag)

� Update(fA �B �Nag)

Receive(S; fNa �B 1 Kab � fA 1 KabgKbs
gKas)

� � �

After the Update action, the next action to be executed is in S's behavior list because

the Send action speci�es S.

� Receive(A; fA �B �Nag)

The �ve actions of BL(S) are executed. There are still no relevant inference rules.

The set S now contains fKas;Kbs;Kabg. After applying the Update function (the

last action of principal S), Observers(Kab) = fS;Ag because A 2 Observers(Kas).

The term fA 1 KabgKbs
does not cause B to be added to the Observers set of Kab

because B is not a member of Observers(Kas), and so B is not in Observers(Kas) \

Observers(Kbs). The possession set contains subparts of messages that were built

as the messages were constructed, but we omit these here for space consideration as

they do not contribute in any way to the analysis. The new values of S's local sets

are:

106

POSS(S) = fKas;Kbs; fA �B �Nag from A,

Kab; fNa �B 1 Kab � fA 1 KabgKbs
gKasg

BEL(S) = f#(Kas);#(Kbs);#(Kab)g

BL(S) =

� Receive(A; fA �B �Nag)

� Split(fA �B �Nag)

� Generate-secret(Kab)

� Send(A,Encrypt(Concat(Na; B 1 Kab;

Encrypt(A 1 Kab;Kbs));Kas))

� Update(fNa �B 1 Kab � fA 1 KabgKbs
gKas

)

The next action is in A's BL.

� Receive(S; fNa �B 1 Kab � fA 1 KabgKbs
gKas)

The term fNa � B 1 Kab � fA 1 KabgKbs
gKas is added to POSS(A). The next action

to be executed is:

� Decrypt(fNa �B 1 Kab � fA 1 KabgKbs
gKas;Kas)

This will add the term fNa �B 1 Kab � fA 1 KabgKbs
g to POSS(A). The next action,

Split will add the individual components too.

At this point, the conditions for the linkage rule are satis�ed. We take X

to be the term fNa �B 1 Kab � fA 1 KabgKbs
g that was just added to POSS(A). The

reader can verify that the following are all true:

1. #(Kas) 2 BEL(A)

2. A 2 Observers(Kas)

3. LINK(Na) 2 BEL(A)

4. X contains g(Na), where g is the identity function

5. fXgKas from S 2 POSS(A)

Once the linkage rule is applied, the freshness of each subpart of X is added to belief

set of A. Also, the LINK formula is removed from the belief set so that the nonce Na

cannot be used again.

107

At this point, the global sets have not changed. The sets for principalA are

as follows (We omit items in the possession and belief sets, such as large concatenated

messages, that serve no further purpose.):

Principal A

POSS(A) = fKas; Na; B 1 Kab; fA 1 KabgKbs
g

BEL(A) = f#(Kas);#(Kab);#(fA 1 KabgKbs
)g

BL(A) =

� Generate-nonce(Na)

� Concat(A;B;Na)

� Send(S; fA �B �Nag)

� Update(fA �B �Nag)

� Receive(S; fNa �B 1 Kab � fA 1 KabgKbs
gKas)

� Decrypt(fNa �B 1 Kab � fA 1 KabgKbs
gKas;Kas)

� Split(fNa �B 1 Kab � fA 1 KabgKbs
g)

� Send(B; fA 1 KabgKbs
)

Update(fA 1 KabgKbs
)

Receive(B; fNbgKab
)

Decrypt(fNbgKab
;Kab)

Send(B;Encrypt(Apply(f;Nb);Kab))

Update(ff(Nb)gKab
)

The Send and Update actions in A's behavior list are executed next. The

Update function adds B to Observers(Kab). The next action to be executed is in B's

behavior list, as speci�ed by the last Send action.

� Receive(A; fA 1 KabgKbs
)

The next action on B's behavior list is:

� Decrypt(fA 1 KabgKbs
;Kbs)

After this action is executed, fA 1 Kabg is added to POSS(B). However, the linkage

rule does not apply because there is no LINK statement in BEL(B). Thus, B cannot

conclude that Kab is fresh!

108

In fact, when B receives ff(Nb)gKab
from A, it cannot apply the linkage

rule because one of the conditions is that Kab is fresh. For the remainder of the

protocol, B can never conclude that anything received under Kab is fresh.

This is the same aw discovered in the Needham and Schroeder protocol

by Denning and Sacco [17]. We apply Needham and Schroeder's �x [49] by adding

several actions to the beginning of the behavior lists of A and B. To BL(A), we add

the actions:

Send(B; fAg)

Update(fAg)

Receive(B; fA;JgKbs
)

Decrypt(fA � JgKbs
;Kbs)

Split(fA � Jg)

And to BL(B), we add the actions:

Receive(A; fAg)

Generate-nonce(J)

Send(A; Encrypt(Concat(A; J);Kbs))

Update(fA � JgKbs
)

Then, A will include J in the original message to S, and S will include it in fA 1

KabgKbs
that gets forwarded to B.

It is clear that when B generates J , a LINK statement is added to BEL(B).

When B receives the message containing Kab from A, it will be able to conclude

#(Kab). Also, because Observers(Kbs) = fB;Sg throughout the protocol, no in-

truder could generate or modify the forwarded message from A to B that is sealed

under Kbs.

Thus, our analysis reveals no aws in the revised Needham and Schroeder

protocol.

4.7.2 KHAT

Our method for analyzing cryptographic protocols does not include tem-

poral reasoning. Thus, we specify and analyze the two phases of the khat protocol

separately.

109

One advantage of our method is that the khat protocol can be speci�ed in

the same manner as the Needham and Schroeder protocol; we specify all the global

and local sets. The behavior lists will contain actions that precisely describe the

protocol. Section 4.5 shows that the previous method of listing the messages between

principals is inadequate as a speci�cation technique.

Our analysis reveals a signi�cant aw in the khat protocol. We provide a

�x to the protocol, and use the analysis to demonstrate that the aw no longer exists.

4.7.2.1 The Speci�cation

The khat protocol involves two principals: the client (C) and the server (S).

In this protocol, the trust matrix must reect the fact that they trust each other. The

client trusts the server to issue valid tickets, and the server trusts the client to forget

the information speci�ed in the protocol. If the TRUST[i; j], where i is the server

and j is the client, is not 1, then the server will not believe that the client no longer

possesses information which should be forgotten. Thus, a fundamental assumption of

the protocol is identi�ed.

When phase I begins, we assume that a secure channel has been established

using the Kerberos ticket for the khat service. Thus, K is the session key between C

and S, and Observers(K) = fC;Sg. P = fS;Cg, C is marked as the initiator, and

S = fKg. In this speci�cation, SF represents the spool �le for the user's job. The

local sets are now de�ned:

Client

POSS(C) = fKg

BEL(C) = f#(K)g

BL(C) =

� Generate-secret(SF)

Generate-secret(N)

Encrypt(K,N)

Send(S,Encrypt(Concat(SF;N);K))

Update(fSF �NgK)

Forget-secret(N)

110

Forget-secret(SF)6

Phase II

Receive(S; fN � fSF � TGTCgKg)

Split(fN � fSFgKg)

Decrypt(fKgN ; N)

Decrypt(fSF � TGTCgK;K)

Split(fSF � TGTCg)

Check-Freshness(TGTC)

Server

POSS(S) = fKg

BEL(S) = f#(K)g

BL(S) =

Receive(C; fSF �NgK)

Decrypt(fSF �NgK;K)

Split(fSF �Ng)

Phase II

Generate-secret(TGTC)

Send(Concat(N ,Encrypt(Concat(SF; TGTC);K)))

Update(fN � fSF � TGTCgKg)

4.7.2.2 The Analysis

We begin our analysis with Phase I of the protocol. After the analysis

reaches the �rst Forget-secret statement, the local sets are as follows (once again

we omit some encrypted items in the possession and belief sets that don't contribute

to the analysis, for the sake of clarity):

6For completeness sake, we should also specify to forget fSF �NgK and other formulas that are
added to POSS(C) by Concat and Encrypt, but we will omit these from the BL for clarity. They
would be included in an actual speci�cation (and their existence helped the authors discover a bug
in the actual khat implementation).

111

Client

POSS(C) = fK;SF;N; fKgN ; g

BEL(C) = f#(K);#(N);#(SF)g

BL(C) =

� Generate-secret(SF)

� Generate-secret(N)

� Encrypt(K,N)

� Send(S,Encrypt(Concat(SF;N);K))

� Update(fSF �NgK)

� Forget-secret(N)

Forget-secret(SF)

Server

POSS(S) = fK;N;SFg

BEL(S) = f#(K)g

BL(S) =

� Receive(C; fSF �NgK)

� Decrypt(fSF �NgK;K)

� Split(fSF �Ng)

Notice that the server cannot conclude #(SF) or #(N). This is a serious aw because

an intruder can use a replay attack for the remainder of the session7 to reschedule

the user's job.

To solve this problem, we modify the protocol so that along with the khat

ticket, the server sends a list of fresh nonces to the client. Each time the user schedules

a job, he includes an unused nonce in the message. In the analysis, the server will

have a collection of LINK statements in its belief set, and the freshness of N and SF

can be guaranteed.

7That is, the remaining lifetime of the khat ticket from the ticket granting service.

112

4.7.2.3 The Corrected Protocol

The corrected protocol is as follows:

Client

POSS(C) = fKg

BEL(C) = f#(K)g

BL(C) =

Part of ticket granting

Receive(S,fN1; N2; � � �Nng)

Split(fN1; N2; � � �Nng)

Phase I

Generate-secret(SF)

Generate-secret(N)

Encrypt(K,N)

Send(S,Encrypt(Concat(SF;N;Ni
8);K))

Update(fSF �N �NigK)

Forget-secret(N)

Forget-secret(SF)

Phase II

Receive(S; fN � fSF � TGTCgKg)

Split(fN � fSFgKg)

Decrypt(fKgN ; N)

Decrypt(fSF � TGTCgK;K)

Split(fSF � TGTCg)

Check-freshness(TGTC)

Server

POSS(S) = fKg

BEL(S) = f#(K)g

BL(S) =

8Ni is the �rst unused nonce in the list received from the server.

113

Part of ticket granting

� Generate-nonce(N1)

Generate-nonce(N2)

� � �

Generate-nonce(Nn)

Send(C,Concat(N1; N2; � � � ; Nn))

Update(fN1; N2; � � �Nng)

Phase I

Receive(C; fSF �N �NigK)

Decrypt(fSF �N �NigK;K)

Split(fSF �N �Nig)

Phase II

Generate-secret(TGTC)

Send(Concat(N ,Encrypt(Concat(SF; TGTC);K)))

Update(fN � fSF � TGTCgKg)

Now, after the analysis reaches the �rst Forget-secret statement, BEL(S) contains

(among other things) #(K), LINK(N2); � � � ; LINK(Nn), #(SF), and #(N). The

aw described earlier no longer exists. If an intruder attempts to replay the message

containing the spool �le, the server will recognize that the nonce, Ni has already been

used. In the analysis, this is reected by the absence of LINK(N1) from BEL(S).

The linkage rule cannot be applied in this case. Thus, the server will not conclude

that the spool �le in the replayed message is fresh, and the protocol will be aborted.

We continue our analysis with the client's actions:

� Forget-secret(N)

Forget-secret(SF)

After these actions, N and SF are removed from POSS(C). Also, the beliefs that C

possesses N and SF are removed from BEL(S) because S trusts C according to the

trust matrix. At this point phase I is over. It is clear from the values of the Observers

sets, which are updated with every Send action, that nobody can learn the value of

SF from the messages sent. Also, the possession set of C represents what an intruder

can learn by compromising the workstation while a job is pending. The only useful

114

possession is fKgN . Of course, without N , this is useless. Because Observers(N) =

fSg, no intruder can gain anything by compromising the workstation before phase II

begins.

To preserve space, we include only the most interesting part of the analysis

that remains. When phase II begins, the next three actions are the server's.

� Generate-secret(TGTC)

Send(Concat(N ,Encrypt(Concat(SF; TGTC);K)))

Update(fN � fSF � TGTCgKg)

After the Update action, Observers(N) =W. Thus, if an intruder has compromised

the workstation and obtained fKgN , then the secrecy of K has also been lost. Thus,

analysis reveals that once it is time for the job to run, a previous compromise of the

workstation results in an insecure session key. This further results in the compromise

of the TGT .

Our analysis reveals a new vulnerability in phase II of khat. Although

the analysis did not mechanically produce this result, use of our technique generated

conclusions from which the vulnerability became apparent. In Section 4.8 we discuss

how to test a protocol for known weaknesses.

4.7.3 Nessett criticism

In a well known note [50], Nessett criticizes the BAN logic. He presents

the following protocol that uses asymmetric keys:

A! B : fNa;KabgKa
�1

B ! A : fNbgKab

The problem is thatKab is encrypted underA's private key. Thus, anyone intercepting

the �rst message can decrypt it with the corresponding public key and obtain the

session key.

Once the protocol is speci�ed, our analysis immediately reveals the aw.

After the �rst message is sent, the update function sets Observers(Kab) toW because

the Observers set of the public key Ka is W. In addition, B does not believe that

Kab is fresh.

115

Interestingly, our analysis also reveals that in addition to its obvious and

intended aw, the Nessett protocol uses nonces improperly.

4.8 Analyzing Known Threats

Our speci�cation and analysis technique can also be used to test a protocol

against a known attack. This is done by including the intruder, Z, in the set of

principals. BL(Z) contains the actions that the intruder performs. The analysis

determines what Z is able to learn during the course of the protocol. The trust

matrix can even be used to analyze what happens when Z is actually trusted.

By specifying BL(Z) di�erently, one can determine whether an intruder

could trick a participant into revealing some sensitive information using a given attack.

In this sense, a user can interact with the analysis to check a new protocol for given

aws and vulnerabilities. Following is an example of a very simple speci�cation of

part of a protocol to illustrate this. The protocol piece is a challenge/response pair,

and the example shows how to specify the intruder's role. In this attack, the intruder,

Z, uses B to �gure out what response to send to A. In this manner, Z fools A into

believing that he can encrypt Na.

Speci�cation without intruder:

Principal A

POSS(A) = fNa;Kabg

BEL(A) = f#(Kab);#(Na)g

BL(A) =

Send(B; fNag)

Update(fNag)

Receive(B; fNagKab
)

Principal B

POSS(B) = fKabg

BEL(B) = f#(Kab)g

BL(B) =

116

Receive(A; fNag)

Send(A; Encrypt(fNag;Kab)

Update(fNagKab
)

Speci�cation with intruder:

Principal A

POSS(A) = fNa;Kabg

BEL(A) = f#(Kab);#(Na)g

BL(A) =

Send(Z; fNag)

Update(fNag)

Receive(Z; fNagKab
)

Principal B

POSS(B) = fKabg

BEL(B) = f#(Kab)g

BL(B) =

Receive(Z; fNag)

Send(Z; Encrypt(fNag;Kab)

Update(fNagKab
)

Principal Z

POSS(Z) = fg

BEL(Z) = fg

BL(Z) =

Receive(A; fNag)

Send(B; fNag)

Update(fNag)

Receive(B; fNagKab
)

Send(A; fNagKab
)

Update(fNagKab
)

117

4.9 Conclusions

In this chapter, we introduce a new method for specifying authentication

protocols that o�ers several advantages over existing methods. The method also

includes a logical analysis based on the propagation of belief and knowledge. A

fundamental assumption in our threat model is that any message in the system is

essentially a broadcast.

We specify protocols as a collection of independent processes. This model

closely resembles the structure of the actual distributed system in which the protocols

are implemented. Our speci�cations are designed to resemble the actual implementa-

tion as much as possible. This eliminates aws introduced in the process of converting

a speci�cation (which may contain no aws itself) to an actual program.

One weakness of many analysis techniques that require protocol idealiza-

tion is that aws in the protocol may not appear in the idealized version. Thus, the

analysis is incapable of revealing them. Our method does not require idealization and

thus avoids this problem.

We demonstrate that our method can be used to reason about a new class

of protocols for which previous approaches are inadequate. We use actions such as

Forget and Forget-secret along with knowledge and belief sets to reason about

nonmonotonicity of knowledge in protocols.

The Needham and Schroeder protocol has become a benchmark used by

designers of analysis techniques to test their methods. We demonstrate how the

known aw in that protocol is revealed. In addition, we use our method to uncover

a new aw in our khat protocol and to discover a vulnerability in phase II of the

protocol. Finally, we show that our method easily uncovers aws in protocols, such

as Nessett's, that methods such as BAN cannot detect.

CHAPTER 5

NONMONOTONIC CRYPTOGRAPHIC

PROTOCOLS WITH PUBLIC KEYS

5.1 Overview

This chapter presents extensions to the technique presented in the previ-

ous chapter for protocols that use asymmetric keys. We introduce new actions and

inference rules, as well as slight modi�cations to the Update function. An important

observation is that reasoning about the origin of messages is quite di�erent when

dealing with asymmetric key protocols.

We also introduce the notion that keys in certi�cates should be bound to the

principals receiving them. We extend the technique to meet the binding requirements

and show how the aw in the Denning and Sacco public key protocol, that was

discovered by Abadi and Needham, is revealed.

We demonstrate the extended technique using one protocol of our own and

the Needham and Schroeder public key protocol. Finally, we introduce and analyze

a �x to a known weakness in Needham and Schroeder's protocol using our extended

technique.

5.2 Introduction

In the previous chapter, we introduce a technique for specifying and ana-

lyzing nonmonotonic cryptographic protocols. The technique is used to demonstrate

a known aw in the Needham and Schroeder protocol [48], and to discover a aw in

the khat protocol.

118

119

In addition to discovering aws, the speci�cation and analysis technique

o�ers several advantages over previous methods. The method properly handles pro-

tocols that are trivially insecure, such as that of Nessett [50], and allows speci�cation

and analysis of protocols that rely on nonmonotonicity of knowledge. In addition,

idealization and its associated pitfalls [38] are avoided. Finally, the speci�cation leads

directly to an implementation.

In this chapter, we extend this technique for protocols that use asymmetric

keys. One of the greatest di�culties presented by such protocols is determining the

origin of messages. Section 5.7.2 addresses this problem.

We use an example from Abadi and Needham [1] to show how key cer-

ti�cates with unbound keys can result in aws. We present a sample protocol to

demonstrate the extended technique. Then, we uncover a known weakness in the

Needham and Schroeder public key protocol [48] to further demonstrate the exten-

sions. We introduce a modi�ed version of Needham and Schroeder that corrects the

weakness, and use the extended technique to analyze the new protocol.

The appendices contain information describing the technique. Appendix

A gives a complete list of actions. Appendix B contains a description of the sets used

for speci�cation and analysis, and Appendix C contains a summary of the inference

rules.

5.3 Properties of Asymmetric Keys

The use of asymmetric keys in a cryptosystem is often termed public key

cryptography [18]. In these systems, users are in possession of a pair of keys. Typically,

one is called the private key and is available to only one user. The other is the public

key, and it is made available to everyone. The public and private keys are inverses

of each other, and there is only one encryption function. If a message is encrypted

with the private key, then it can be recovered by reencrypting with the public key,

and vice versa.

In our method, we discuss asymmetric keys only in the context of their

inverse property. Their use as public or private keys is a convention that can be

speci�ed in a protocol.

We do not assume that public keys are available to all principals. The goal

120

of a protocol may be to distribute public keys safely, and such an assumption makes

it impossible to specify the protocol. Instead, a protocol designer can include such

assumptions in the speci�cation.

A protocol designer can specify asymmetric keys as public/private keys by

including the initial assumption that one of the keys in the pair is held only by the

principal who generated it. As long as that key is not included in any message, it

remains the private key. Additional actions can be de�ned for verifying signatures.

We do not include the details here.

Finally, we present some notation. k+ and k� are asymmetric keys that

are inverses of each other. When dealing with protocols that assign the names public

and private to these, we adopt the convention that k+ is the public key and k� is the

private key.

5.4 The Problem of Unbound Keys

This section addresses a problem with cryptographic protocols that use

asymmetric keys. The problem is �rst addressed by Abadi and Needham [1]. They

discover a aw in the Denning and Sacco protocol [17] that uses timestamps. The

aw is based on the fact that a session key is sent without the name of the receiving

principal. Abadi and Needham give an attack wherein a malicious principal, C, can

forward a signed certi�cate from principal A, to B, and subsequently masquerade as

A.

The Denning and Sacco protocol, as presented in simpli�ed form by Abadi

and Needham is:

1. A! S : A;B

2. S ! A : CA;CB

3. A! B : CA;CB; ffk; Tagka�gkb+

In this example, Ta is a timestamp, k is a session key, and CA and CB are signed

certi�cates from the trusted server, S, that contains the public keys of A and B

respectively; their format is not important for this example. The goal of the protocol

is to safely distribute the session key, k, to A and B.

The attack by malicious principal, C, given by the authors is as follows:

121

1. A! S : A;C

2. S ! A : CA;CC

3. A! C : CA;CC; ffk; Tagka�gkc+

4. C ! S : C;B

5. S ! C : CC;CB

6. C ! B : CA;CB; ffk; Tagka�gkb+

In this attack, A initiates the protocol with C. Then, C is in possession of fk; Tagka�,

whichC can decrypt to recover k. Then, C constructs ffk; Tagka�gkb+ to send message

6. Now B is convinced that k is a fresh key to be used only with principal A.

This attack is successful because k is not bound to any principal. We

introduce the notion of binding an encryption key to a principal. We represent the

key, k, along with its binding to principal B as k 1 B. If message three in the

Denning and Sacco protocol is replaced with

3. A! B : CA;CB; ffk 1 B;Tagka�gkb+

the attack fails.

We now de�ne the notion of a bound key. In general, a symmetric key is

bound to each principal that receives it in a message. In the above example, A binds

k to B before sending message 3. Important goals in any symmetric key protocol are

(k 1 A) 2 POSS(A), (k 1 B) 2 POSS(B), etc. If A receives (k 1 B) in a message,

then the protocol should abort.1

We also de�ne the notion of a bound key for asymmetric key systems. An

asymmetric key is bound to the principals holding the inverse key. While it does not

make sense to bind the private key, an important goal in any public key system is

that a public key is bound to the principal holding the private key. We explain this in

Section 5.7.3, where we also give inference rules to meet the key binding requirements.

1An exception is when the key is meant to be forwarded, but in that case, it is usually opaque
to A.

122

5.5 Actions

This section de�nes actions for protocols that use asymmetric keys. The

actions are similar to those described in Chapter 4. They are performed by a principal,

Pi during the run of a protocol. (The original eleven action appear in the complete

list in Appendix A.)

12. Generate-key-pair(k+; k�)

result: POSS(Pi) := POSS(Pi) [

fk+ 1 Pi; k
�
1 Pig

description: This action is used to generate keys that are the inverses of each

other.

13. Apply-asymkey(X; k)

condition: X; k 2 POSS(Pi), k is an asymmetric key.

result: ifX = fY gk0 and k is the inverse of k0, then POSS(Pi) := POSS(Pi)[

Y else POSS(Pi) := POSS(Pi) [ffXgkg

description: States that if an asymmetric key operation is performed on X,

then there are two cases. Either X is of the form fY gk0 and k and k0 are

inverses, in which case the two keys cancel each other, or X is encrypted

under k.

The Asmkey-function action is the analog of the encrypt and decrypt actions for

symmetric keys. The binding of the keys, k+ 1 Pi and k� 1 Pi, is explained in

Section 5.7.3.

A new local set that contains the bindings generated by a principal, Pi, is

de�ned.

Bindings Set(Pi) This set contains the legal bindings of keys held by a principal.

These are bindings that are created by Pi, and bindings that are received in

certi�cates from trusted servers. Bindings(Pi) = fk1 1 P1; k2 1 P2; � � � ; kn 1

Png.

This set is needed because a principal must be able to identify bindings that it gener-

ated versus illegal bindings that it receives in messages. This is shown in Section 5.7.3.

123

A new action, which binds a principal to a key, is explained in Section 5.7.3

as well. The action is the same for symmetric and asymmetric keys.

14. Bind(k; Pj)

condition: k 2 POSS(Pi), k is a key intended for Pj.

result: POSS(Pi) := POSS(Pi)[f(k 1 Pj)g,Bindings(Pi) := Bindings(Pi)[

f(k 1 Pj)g

description: States that if Pi possesses k, then after binding it to Pj , Pi

possesses k 1 Pj. It is used to bind a key to a principal before sending

it. k 1 Pj is added to the Bindings set of Pi.

The binding of keys requires a change to the Generate-secret action. When a principal

generates a secret, it binds that secret to itself. It is not necessary to update the

Bindings set because this set is needed to maintain bindings to other principals.

4. Generate-secret(s)

result: S := S [fsg, Observers(s) = fPig, POSS(Pi) := POSS(Pi) [fs 1

Pig,

BEL(Pi) := BEL(Pi) [#(s),

description: This action is used when a principal generates a secret data

item, such as a key. A new secret, s, is added to S, and the Observers

and possession sets are updated.

5.6 The Update function

The Update function is used to maintain the Observers sets after a message

is sent. We repeat the algorithm here.

5.6.1 Notation

The cleartext messages in a message are numbered mi. For example, in

the message

fx1; fx2; k3gk1; x4; x2gk2

124

m1 = x1, m2 = x2, m3 = k3, m4 = x4, and m5 = x2. keys[mi] is a set containing the

keys appearing in mi. In our example, keys[m3] = fk3g, and keys[m1] = �. Finally,

needs[mi] is the set of keys needed to see mi. In our example, needs[m2] = fk1; k2g,

and needs[m4] = fk2g. These sets can be obtained by reading the keys used to

encrypt a plaintext submessage from the inside out.

5.6.2 The Algorithm

When a message appears, each principal, P , inspects it, decrypts it insofar

as possible, and accumulates any secrets found within.2

8 interior mi (5.1)

opaque(P) += mi (5.2)

While changes occur to haskeys(P) (5.3)

8mi 2 opaque(P) (5.4)

if needs[mi] � haskeys(P) (5.5)

opaque(P) �= mi (5.6)

seen(P) += mi (5.7)

haskeys(P) += keys[mi] (5.8)

5.6.3 The Extension

We extend this algorithm to work with asymmetric keys. If fxigk+ is a

message, then needs[mi], the keys needed to read xi, is equal to fk�g. In general,

when reading keys from the inside out to add to the needs sets, an occurrence of k+

causes the corresponding k� to included in the needs set, and an occurrence of k�

causes the corresponding k+ to be included in the needs set. To illustrate, take:

fx1; fx2; k3gk1+; x4; x2gk2

In this example, needs[m2] = fk1
�; k2g.

2The notation we use in this algorithm is similar to that of the C programming language. X += Y

is the same as X := X + Y .

125

5.7 Inference Rules

Our technique for protocol speci�cation and analysis uses inference rules to

reason about beliefs during the run of a protocol. These rules are applied whenever

they are relevant. Here we extend the inference rules for asymmetric keys. (See

Appendix C for a complete list of inference rules.)

5.7.1 The Linkage Rule

The rule dealing with freshness of nonces requires that the key needed to

decrypt a message is fresh. Recall the linkage rule:

#(k) 2 BEL(P); k� 2 POSS(P);

LINK(Na) 2 BEL(P);X contains f(Na);
X contains x1; fXgk from Q 2 POSS(P)

BEL(P) := (BEL(P)� LINK(Na)) [f#(x1)g

This rule states that the submessages of a message X are believed to be fresh under

certain conditions. If LINK(Na) is in P 's belief set, then the nonce Na has not been

used before. This is the �rst condition. If the rule is applied successfully, the LINK

item is removed. So the rule could not �re again for the same nonce. Other conditions

state that the nonce Na must be sealed under a key that is fresh, and must be available

to P .

This rule is slightly modi�ed for asymmetric keys. In this case, the princi-

pal, P , must possess a fresh inverse key of the key that encrypts the message. There

are two asymmetric key linkage rules. One rule is as follows:

#(k�) 2 BEL(P); k� 2 POSS(P);

LINK(Na) 2 BEL(P);X contains f(Na);

X contains x1; fXgk+ from Q 2 POSS(P)

BEL(P) := (BEL(P)� LINK(Na)) [f#(x1)g

The other asymmetric key linkage rule is the same, except that the plus and minus

signs on the key, k, are reversed.

The asymmetric key linkage rule above states that the submessages of a

message X are believed to be fresh under certain conditions. If LINK(Na) is in P 's

belief set, then the nonce Na has not been used before. This is the �rst condition. If

the rule is applied successfully, the LINK item is removed, and the rule does not �re

126

again for the same nonce. Other conditions state that the nonce Na is sealed under

k+, and that the corresponding inverse key, k� is believed to be fresh and available

to P .

5.7.2 The Origin of Messages

In symmetric key systems, the origin of a message is usually inferred from

the secret key that is used to encrypt it. A key is shared between two principals;

as long as no other principals know it, this fact uniquely identi�es the origin of a

message.

In asymmetric key systems, this is not the case. Anyone in possession of

a key can encrypt something that is readable only to principals in possession of the

inverse key. In useful applications, at least one of the keys in the pair is available to

more than two principals. When asymmetric keys are used as public/private keys,

we assume that everyone is in possession of the public keys. Thus, to determine the

origin of messages that are encrypted under public keys, we must look at the content

of those messages. We introduce some new inference rules to deal with this.

We adopt the convention that an item is tagged as coming from any prin-

cipal that can observe it. The reason is that logically, any principal that can observe

X, can send a message containing X. The Possible origins rule handles this:

X 2 POSS(P);X contains x1; R 2 Obs(x1); R 6= P

x1 from R 2 POSS(P)

This rule states that submessages of X are marked as coming from all principals that

observe them. For example, if Observers(x1) contains three elements (other than P),

then three items are added to POSS(P) by this rule.

The next rule deals with submessages of messages encrypted under asym-

metric keys. It has a companion rule that is identical except that the minus and plus

signs on the keys are reversed. The Submessage origin rule follows:

fXgk+ 2 POSS(P);X contains x1 from Q;

R 2 Observers(k�);X contains x2; R 6= P

x2 from Q 2 POSS(P); x2 from R 2 POSS(P)

This rule states that if P possesses a message X encrypted under an asymmetric

key, and if some submessage of X is marked as being from principal Q, then all

127

submessages of X are also marked as being from Q. In addition, the submessages are

marked as being from any principal, other than P , who can observe the inverse key.

This general rule can be simpli�ed when public/private key systems are used, where

we assume that each principal is in sole possession of its private key.

The simpli�cation gives us two rules. The �rst one is used when a principal

receives a messages encrypted under its public key. Note that a message encrypted

under someone else's public key is opaque. The second one is used when a principal

receives a message that is encrypted under someone else's private key. Also, it does

not make sense for a principal to receive something encrypted under its own private

key unless it was generated by the principal. The �rst rule is:

fXgkp+ 2 POSS(P);
X contains x1 from Q;X contains x2

x2 from Q 2 POSS(P)

This simpli�ed version of the Submessage origin rule states that if P possesses a

message, X, that is encrypted under its public key, then if X contains a submessage

that is marked as being from a principal,Q, then all submessages ofX are also marked

as being from Q. This is true because the message could not have been tampered

with by anyone other than the holder of the private key, in this case, P .

The second rule applies when a principal receives a message, X, encrypted

under another principal, Q's, private key is:

fXgkq� 2 POSS(P);X contains x2

x2 from Q 2 POSS(P)

In this rule, the only conclusion we can reach, is that any submessage of X is from

Q, because Q constructed the message.

The following example demonstrates the use of the Submessage origin rule.

For simplicity, assume we are using a public/private key system with all the implied

assumptions.3 Say that Observers(Nb) = fA;Bg, and that Nb 2 POSS(B). Then,

by the Possible origins rule, Nb from A 2 POSS(B). Now, say that we have the

following protocol step:

A! B : fK;NbgKb
+

The Submessage origin rule can be instantiated with X = fK;Nbg.

3Each principal is in sole possession of its private key and public keys are available to all.

128

fXgk+ 2 POSS(B);X contains Nb from A;

R 2 Observers(k�);X contains K;R 6= B

K from A 2 POSS(B);K from R 2 POSS(B)

The �rst condition states that fXgk+ 2 POSS(B). This is true after the message

is received. The second condition is X contains Nb from A. This condition holds as

shown above. The next condition states that R 2 Observers(k�). The purpose of

this condition is to bind R. Because R 6= P , and Observers(k�) = fPg, we conclude

that R = �. The �nal condition states that X contains K. The result of the rule is

K from A 2 POSS(B) and K from R 2 POSS(B). The second part can be ignored

because R is null.

This demonstrates how B can obtain the knowledge that the key,K, comes

from A. If there is no other from tag associated with K in B's possession, then B

can con�dently assume that K is indeed from A, and not a replay. Note that the

conclusion is entirely based on the earlier statement that Observers(Nb) = fA;Bg.

This example shows how a nonce can be used to obtain con�dence in the

origin of a message. We have said nothing about freshness here, but it follows that if

Nb is a fresh nonce, then K is a fresh key. In Section 5.8.1 we use this example in a

sample protocol to demonstrate protocol analysis.

5.7.3 Binding Keys to Principals

In section 5.4 we introduced the notion of binding a key to a principal.

We extend our technique for analyzing protocols, and require that each symmetric

session key be bound to the principal receiving the binding.

For asymmetric keys, we require that a key be bound to all principals in

the observers set of the inverse key. In public/private key systems, the public key is

bound to the holder of the private key, and we do not require the private key to be

bound.

The Bindings sets play an important role in the analysis of protocols. Every

principal maintains a set of the bindings that it generated. If a principal receives a

symmetric key that is bound to some principal other than itself, then the protocol

must abort. Similarly, an asymmetric key that is received in a message, and is not

bound to an inverse key in the possession of the principal, results in an abort. The

129

Bindings sets enable a principal to distinguish key bindings it possesses that were

received in messages, and ones that it generated itself.

The Bindings set contains all bindings that a principal possesses that

should not cause the protocol to abort. Bindings that are received in certi�cates

from trusted servers are included in this set. The Certi�cate binding rule takes prece-

dence over the other rules introduced in this section. This rule adds a binding from

a trusted server to the Bindings set of a principal.

(k 1 Q) from S 2 POSS(P); T rusted(S) 2 BEL(P)

Bindings(P) := Bindings(P) [f(k 1 Q)g

The statement Trusted(S) means that S is a trusted server, and it is speci�ed in the

initial assumptions of a protocol.

We now give inference rules to enforce the requirements mentioned above.

The Unbound key rule makes a key that is not bound, observable by anyone. Recall

that W is a special symbol representing all principals. This rule holds for symmetric

keys and public keys. Private keys are not included.

k 2 POSS(P); 6 9Q : (k 1 Q) 2 POSS(P)

Observers(k) :=W

This rule states that if P possesses k, and there is no principal that k is bound to,

then all principals can observe k. That is, k is no longer considered a secret key. Note

that for this rule to apply, it is su�cient for one principal to possess an unbound copy

of a key.

We introduce the Bound key origin rule for symmetric keys.

(k 1 Q) 2 POSS(P); Q 6= P ,
(k 1 Q) 62 Bindings(P)

Abort

This rule states that if P possesses the key, k, that is bound to principal Q, and

Q 6= P , then if this binding is not in the set of legal bindings for P , the protocol

should abort. The set of legal bindings includes bindings created by P , and bindings

received in certi�cates from trusted servers.

The Bound key origin rules for asymmetric keys are:

(k+ 1 Q) 2 POSS(P); (k+ 1 Q) 62 Bindings(P);
fXgk� from R 2 POSS(P); R 6= Q

Abort

130

and

(k� 1 Q) 2 POSS(P); (k� 1 Q) 62 Bindings(P);
fXgk+ from R 2 POSS(P); R 6= Q

Abort

These rules state that if P possesses an asymmetric key bound to Q, and P possesses

a message that is encrypted under the inverse key, then the message must come from

Q. Otherwise, the protocol aborts. Of course, only the �rst of these rules applies in

the case of public/private key systems.

It is easy to see that when our analysis is applied to the Denning and Sacco

protocol [17] described in Section 5.4, after the third step, Observers(k) =W. Thus,

although the details are not provided here, it is clear that our analysis uncovers the

aw.

5.8 Examples

We use two examples to demonstrate the speci�cation and analysis tech-

nique for asymmetric keys. Our �rst example is a simple public key protocol where

one principal generates a symmetric key to be used with another principal. The sec-

ond example is the Needham and Schroeder public key protocol [48]. We present the

protocol, analyze it to uncover the known aw, and then present a �x. Finally, we

analyze the �x using our method.

5.8.1 A Sample Protocol

In this section, we present a protocol that demonstrates the extended tech-

nique for specifying and analyzing cryptographic protocols that use asymmetric keys.

We have two principals, A and B, and we assume that each has a fresh copy of the

other's public key. We also assume that each principal is the only holder of its own

private key. A generates a symmetric key, and sends it to B. The goal is that A

and B are the exclusive holders and observers of the key. Roughly, the protocol is as

follows:

1. A! B : Na

2. B ! A : fNbgka+

131

3. A! B : fkab; A;NbgKb
+

4. B ! A : fNagkab

In an earlier version, we omitted the encryption of message 2, and were not able to

obtain the desired goal. Analysis revealed the obvious aw, that anyone could have

generated message 3. The encryption of message 2 with A's public key �xes this, and

we are able to reach the desired goals. Our analysis does not reveal any further aws,

and we believe the protocol to be correct.

5.8.1.1 The Speci�cation

The speci�cation of the protocol is as follows:

Principal A

POSS(A) = fka
�; ka

+
1 A; kb

+
1 Bg

BEL(A) = f#(ka
�);#(ka

+);#(kb
+)g

BL(A) =

� Generate-nonce(Na)

Send(B; fNag)

Update(fNag)

Receive(B; fNbgka+)

Apply-asymkey(fNbgka+; ka
�)

Generate-secret(kab)

Bind(kab; A)

Send(B,Apply-asymkey(Concat(kab 1 A;

Nb));Kb
+)

Update(fkab 1 A �NbgKb
+)

Receive(B; fNagkab)

Decrypt(fNagkab; kab)

Principal B

POSS(B) = fkb
�; ka

+
1 A; kb

+
1 Bg

BEL(B) = f#(kb
�);#(ka

+);#(kb
+)g

132

BL(A) =

Receive(A; fNag)

Generate-nonce(Nb)

Send(A,Apply-asymkey(fNbg; ka
+))

Update(fNbgka+)

Receive(A; fkab 1 A �NbgKb
+)

Apply-asymkey(fkab 1 A �NbgKb
+ ; kb

�)

Split(fkab 1 A �Nbg)

Send(A,Encrypt(fNag; kab))

Update(fNagkab)

5.8.1.2 The Analysis

In this section we discuss the analysis of the protocol. We will focus on the

highlights of the protocol and omit the tedious details.

After the �rst Update action by principal B,

� Update(fNbgka+)

Observers(Nb) = fA,Bg. The �rst Apply-asymkey in principal A's behavior list is

the �rst interesting point in the analysis.

� Apply-asymkey(fNbgka+; ka
�)

After this action, Nb is added to POSS(A). Now, the Possible origins rule applies.

Because Observers(Nb) = fA,Bg, and thus, no other principals can observe Nb, B is

the only principal that satis�es the conditions for R in the rule. Therefore, Nb from B

is added to POSS(A). In section 5.7.2 we showed that given Nb from B 2 POSS(A),

the analysis leads to the conclusion that the only possible occurrence of the symmetric

key with a from label in POSS(B) is kab from A. This is consistent with the binding

of kab to A, so the Bound key origin rule does not apply, and the protocol is not

aborted.

Applying the inference rules for message linking and freshness, we also

conclude that kab is a fresh key because it is linked with the nonce Nb. After the �nal

Receive action by principal A,

133

1. A! S : A;B

2. S ! A : fKb
+; BgKs

�

3. A! B : fNa; AgKb
+

4. B ! S : B;A

5. S ! B : fKa
+; AgKs

�

6. B ! A : fNa; NbgKa
+

7. A! B : fNbgKb
+

Figure 5.1: The Needham and Schroeder public key protocol speci�cation.
Protocols are speci�ed by a principal name, followed by an arrow and another principal

name, followed by a message.

� Receive(B; fNagkab)

the linkage rule is applied, and we conclude that A and B now share a secret key that

is fresh.

5.8.2 Needham and Schroeder

The Needham and Schroeder public key protocol [48], as it is originally

speci�ed, is given in Figure 5.1. Burrows et al. [9] point out a weakness in this

protocol. We show how this weakness is found using our analysis technique. Then,

we provide a �x, and show that the weakness no longer exists.

5.8.2.1 The Speci�cation

We now give the speci�cation of the protocol. Again, we assume a pub-

lic/private key system; however, we do not assume that the public keys are available

to everyone. They must be received in a certi�cate from a trusted server.

Principal A

POSS(A) = fka
�; ka

+
1 A; ks

+
1 Sg

134

BEL(A) = f#(ka
�);#(ka

+);#(ks
+); T rusted(S)g

BL(A) =

� Send(S; fConcat(A;B)g)

Update(fA,Bg)

Receive(S; fkb
+
1 BgKs

�)

Apply-asymkey(fkb
+
1 BgKs

�;Ks
+)

Generate-nonce(Na)

Send(B,Apply-asymkey(Concat(Na; A),kb
+)

Update(fNa; Agkb+)

Receive(B; fNa �Nbgka+)

Apply-asymkey(fNa �Nbgka+; ka
�)

Send(B,Apply-asymkey(fNbg; kb
+))

Update(fNbgkb+)

Principal B

POSS(B) = fkb
�; kb

+
1 B; ks

+
1 Sg

BEL(B) = f#(kb
�);#(kb

+);#(ks
+); T rusted(S)g

BL(B) =

Receive(A; fNa; Agkb+)

Apply-asymkey(fNa; Agkb+; kb
�)

Send(S,Concat(B;A))

Update(fB �Ag)

Receive(S; fka
+
1 AgKs

�)

Apply-asymkey(fka
+
1 AgKs

�;Ks
+)

Generate-nonce(Nb)

Send(A, Apply-asymkey(Concat(Na; Nb),ka
+))

Update(fNa �Nbgka+)

Receive(A; fNbgkb+)

Apply-asymkey(fNbgkb+; kb
�)

135

Principal S

POSS(S) = fks
�; ks

+
1 S; ka

+
1 A; kb

+
1 Bg

BEL(S) = f#(ks
�;#(ks

+);#(ka
+);#(kb

+)g

BL(S) =

Receive(A; fA �Bg)

Send(A,Apply-asymkey(fkb
+
1 Bg;Ks

�)

Update(fkb
+
1 BgKs

�)

Receive(B; fB �Ag)

Send(B,Apply-asymkey(fka
+
1 Ag;Ks

�))

Update(fka
+
1 AgKs

�)

Note that the certi�cates from the trusted server, S, are of the form fkb
+
1 Bg.

Thus, kb
+ is bound to B. The Certi�cate binding rule applies and this binding is

added to Bindings(A), and the Bound key origin rules does not apply.

5.8.2.2 The Analysis

In this section, we discuss the analysis of the protocol. Again we focus on

the interesting aspects of the analysis and omit the details that are not necessary for

this demonstration.

The third action in A's behavior list is:

Receive(S; fkb
+
1 BgKs

�)

This is decrypted in the next action,

Apply-asymkey(fkb
+
1 BgKs

�;Ks
+)

The result is that kb
+
1 B from S is added to POSS(A). Because the message from

S is not linked with a nonce or a time stamp, there is no way to conclude that kb
+ is

fresh. Our technique requires that a key be fresh for anything encrypted under that

key to be fresh. Thus, after A sends fNa; Agkb+, B cannot conclude that Na is fresh.

Similarly, B cannot conclude that ka
+ is fresh. Thus, when B sends fNa �

Nbgka+ , A cannot conclude that Nb is fresh. Thus, B does not conclude that Nb is

fresh. In fact, nothing encrypted under ka
+ or kb

+ is fresh, and the protocol fails

136

to establish a secure channel for fresh communication because the public keys being

used are not fresh.

5.8.2.3 The Fix

The problem with the Needham and Schroeder Public-key protocol is that

the certi�cates for the public keys of A and B are not linked to the requests. A simple

modi�cation takes care of this. Each principal includes a nonce with the request for

a certi�cate, and this nonce is included with the certi�cate. This will result in the

conclusion that the public keys are fresh, and thus, anything encrypted under them

is fresh. The �xed protocol follows:

Principal A

POSS(A) = fka
�; ka

+; ks
+g

BEL(A) = f#(ka
�);#(ka

+);#(ks
+)g

BL(A) =

� Generate-nonce(Na
0)

Send(S; fConcat(A;B;Na
0)g)

Update(fA �B �Na
0g)

Receive(S; fkb
+
1 B �Na

0gKs
�)

Apply-asymkey(fkb
+
1 B �Na

0gKs
� ;Ks

+)

Generate-nonce(Na)

Send(B,Apply-asymkey(Concat(Na; A),kb
+)

Update(fNa; Agkb+)

Receive(B; fNa �Nbgka+)

Apply-asymkey(fNa �Nbgka+; ka
�)

Send(B,Apply-asymkey(fNbg; kb
+))

Update(fNbgkb+)

Principal B

POSS(B) = fkb
�; kb

+; ks
+g

BEL(B) = f#(kb
�);#(kb

+);#(ks
+)g

BL(B) =

137

Receive(A; fNa; Agkb+)

Apply-asymkey(fNa; Agkb+; kb
�)

Generate-nonce(Nb
0)

Send(S,Concat(B;A;Nb
0))

Update(fB �A �Nb
0g)

Receive(S; fka
+
1 A �Nb

0gKs
�)

Apply-asymkey(fka
+
1 A �Nb

0gKs
� ;Ks

+)

Generate-nonce(Nb)

Send(A, Apply-asymkey(Concat(Na; Nb),ka
+))

Update(fNa �Nbgka+)

Receive(A; fNbgkb+)

Apply-asymkey(fNbgkb+; kb
�)

Principal S

POSS(S) = fks
�; ks

+; ka
+; kb

+g

BEL(S) = f#(ks
�;#(ks

+);#(ka
+);#(kb

+)g

BL(S) =

Receive(A; fA �B �Na
0g)

Send(A,Apply-asymkey(Concat(kb
+
1 B;Na

0);Ks
�)

Update(fkb
+
1 B �Na

0gKs
�)

Receive(B; fB �A �Nb
0g)

Send(B,Apply-asymkey(Concat(ka
+
1 A;Nb

0);Ks
�))

Update(fka
+
1 A �Nb

0gKs
�)

5.8.2.4 Analysis of revised protocol

The messages from S that contain public keys, fkb
+
1 BgKs

� and fka
+
1

AgKs
� are certi�cates. They represent the assertion by S that kb

+ is bound to B and

ka
+ is bound to A.

The di�erence between the original protocol and the revised version is that

the certi�cates for the public keys are linked to the individual requests. Principal A

138

sends the nonce Na
0 to S in the clear. When the nonce is generated, LINK(Na

0) is

added to BEL(A), to guarantee that the nonce is only used once. As the returned

nonce is sealed under the public key of S, nobody can tamper with it. This is

guaranteed in the protocol by the Possible origins rule. Because Observers(ks
�) = S,

A concludes that the message is from S. Then, the Submessage origin rule and the

Linkage rule are used to conclude that the public key for B is fresh.

Given that #(kb
+) 2 BEL(A) and #(ka

+) 2 BEL(B), it follows that

the remaining messages linked with nonces contain fresh messages. The analysis

concludes that the �nal message from A to B, fNbgkb+ is fresh.

5.9 Conclusions

We extend the speci�cation and analysis technique of Chapter 4 for proto-

cols that use asymmetric keys, provide a sample protocol to illustrate the extended

technique.

We introduce the notion of binding a key to a principal, and show why

this is important for detecting aws in protocols. We use the example by Abadi and

Needham [1] to demonstrate.

Our analysis reveals the weakness in the Needham and Schroeder public

key protocol [48], that was discovered by Burrows et al. [9] We provide a �x to this

protocol that eliminates the weakness. Finally, we analyze the revised protocol and

show that the weakness no longer exists.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis makes several contributions:

1. A solution, khat, is provided to the problem of long-running jobs in an authen-

ticated environment. This service has been implemented in Kerberos and is

compatible with AFS [28].

2. A new speci�cation and analysis technique is introduced. The protocol designer

speci�es the actions of each principal. These actions are also used to model

the knowledge of the principals. The beliefs of principals are propagated via

inference rules similar to those used in the BAN logic [9]. In addition, each

message sent on the network is considered a broadcast, and Observers sets

are maintained for each secret to represent what each principal can learn by

examining network tra�c. The new technique contains several advantages over

existing methods.

(a) Protocols that are not monotonic, because they rely on the deletion of

information, can be speci�ed. Khat is an example of such a protocol.

(b) The speci�cation is designed to closely model the underlying distributed

system, and thus, can be easily converted to an implementation.

(c) A protocol can be tested to see if it is susceptible to known attacks by

modeling the actions of the intruder.

(d) The assumption made by the protocol designer are speci�ed explicitly.

This is valuable because aws are often introduced into protocols as a

result of confusion from unclear assumptions.

139

140

(e) The use of nonces is restricted to one challenge/response pair. This

avoids aws in protocols that stem from improper use of nonces. This

restriction helps the protocols designer avoid replay attacks that result

from naive impelmentation of nonces.

(f) Flaws that result from unbound keys can be detected. The technique

presented in this thesis requires that all keys be bound to some principal,

and illegal bindings are detected. This helps the protocol designer detect

certain aws that permit an intruder to masquerade as another principal.

3. The observation is made that by eliminating the freeness of variables, such as

nonces and keys, protocols can be developed with higher assurance.

In light of this work, there are new problems to explore. It is an open

problem whether or not a logic can be developed for nonmonotonic protocols that is

sound and complete. A logic is sound if it is impossible to derive a contradiction. It

is complete if anything that is true can be derived. These two properties are required

in order to prove that no aws exist in a protocol [66]. The only known semantics for

a logic of authentication, the Abadi Tuttle semantics [2], was unsuccessful in proving

soundness and completeness.

Other projects for future work include:

� Veri�able plaintext:

Exhaustive search on a key space is possible when the plaintext in a message is

recognizable. The decryption algorithm is applied using all possible keys, and

when the recognized plaintext is revealed, the key is found. In many cases, it

is possible to eliminate this risk. In the future, we hope to add the ability to

reason about veri�able plaintext to our technique.

� Automated tool:

Many of the steps in the speci�cation and analysis technique can be automated.

In the future, we hope to develop an interactive tool for specifying and analyz-

ing protocols. This will improve the usefulness of our technique, by making it

available to more people.

� Analyzing real-world protocols:

In the future, we hope to use the technique presented here to analyze more

141

protocols that are used in practice. For example, standards are being developed

for privacy enhanced mail (PEM) [3], and it would be valuable to explore the

security of the proposed schemes.

BIBLIOGRAPHY

[1] M. Abadi and R. Needham. Good engineering practice for authentication pro-
tocol design. Manuscript, 1993.

[2] Martin Abadi and Mark R. Tuttle. A semantics for a logic of authentication.
Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed
Computing, pages 201{216, August 1991.

[3] D. Balenson. Privacy enhancement for Internet electronic mail: part iii|
algorithms, modes, and identi�ers. RFC 1423, February 1993.

[4] P. Bieber. A logic of communication in a hostile environment. Proceedings of
the Computer Security Foundation Workshop III, pages 14{22, June 1990.

[5] Thomas Blumer and Deepinder P. Sidhu. Mechanical veri�cation and automatic
implementation of communication protocols. IEEE Transactions on Software
Engineering, SE-12(8):827{843, August 1986.

[6] D.E. Britton. Formal veri�cation of a secure network with end-to-end encryp-
tion. Proceedings of the 1984 IEEE Computer Society Symposium on Research
in Security and Privacy, pages 154{166, May 1984.

[7] L. Brownston and E. Kant. Programming Expert Systems in OPS5. Addison
Wesley, 1985.

[8] J. Burns and C. J. Mitchell. A security scheme for resource sharing over a
network. Computers and Security, 9:67{76, February 1990.

[9] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8, February 1990.

[10] M. Burrows, M. Abadi, and R. Needham. Rejoinder to Nessett. Operating System
Review, 24(2):39{40, April 1990.

[11] Claudio Calvelli and Vijay Varadharajan. An analysis of some delegation proto-
cols for distributed systems. Proceedings of the Computer Security Foundation
Workshop V, pages 92{110, 1992.

[12] E. A. Campbell, R. Safavi-Naini, and P. A. Pleasants. Partial belief and prob-
abilistic reasoning in the analysis of secure protocols. In Proceedings of the
Computer Security Foundation Workshop V, pages 84{91, Washington, 1992.

142

143

[13] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.

[14] P. C. Cheng and V.D. Gligor. On the formal speci�cation and veri�cation of
a multiparty session protocol. Proceedings of the 1990 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 216{233, May 1990.

[15] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
1984.

[16] D. W. Davies and W.L. Price. Security for Computer Networks. Wiley, 1984.

[17] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key distribution
protocols. Communications of the ACM, 24(8):533{536, August 1981.

[18] W. Di�e and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6), 1976.

[19] D. Dolev and A. Yao. On the security of public-key protocols. Communications
of the ACM, 29:198{208, August 1983.

[20] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Pub-
lishing Company, 1983.

[21] Klaus Gaarder and Einar Snekkenes. Applying a formal analysis technique to the
CCITT X.509 strong two-way authentication protocol. Journal of Cryptology,
3:81{98, 1991.

[22] Li Gong. Handling infeasible speci�cations of cryptographic protocols. Proceed-
ings of the Computer Security Foundation Workshop IV, pages 99{102, 1991.

[23] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning about belief in
cryptographic protocols. Proceedings of the 1990 IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages 234{248, May 1990.

[24] J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge
and time. Proceedings of the Eighteenth ACM Symposium on the Theory of
Computing, pages 304{415, 1986.

[25] J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

[26] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576{580, 1969.

[27] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Publishing Company, 1979.

[28] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan, R.N.
Sidebotham, and M.J. West. Scale and performance in a distributed �le system.
ACM Transactions on Computer Systems, 6(1):51{81, February 1988.

144

[29] James W. Gray III and Paul F. Syverson. A logical approach to multilevel
security of probabilistic systems. Proceedings of the 1992 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 164{176, May 1992.

[30] D. Kahn. The Codebreakers. Macmillan Publishing Co., 1967.

[31] R. Kailar and V. D. Gilgor. On belief evolution in authentication protocols.
Proceedings of the Computer Security Foundation Workshop IV, pages 103{116,
June 1991.

[32] T. Kasami, S. Yamamura, and K. Mori. A key management scheme for end-
to-end encryption and a formal veri�cation of its security. Systems, Computers,
Control, 13:59{69, May-June 1982.

[33] Richard A. Kemmerer. Analyzing encryption protocols using formal veri�cation
techniques. IEEE Journal on Selected areas in Communications, 7(4):448{457,
May 1989.

[34] A. Kerckho�s. La Cryptographie Militaire. Libraire Militaire de L. Baudoin &
Cie, Paris, 1883.

[35] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Sys-
tems, 10(4), November 1992.

[36] D. Longley and S. Rigby. Use of expert systems in the analysis of key manage-
ment systems. Security and Protection in Information Systems, pages 213{224,
1989.

[37] W. P. Lu and M. K. Sundareshan. Secure communication in Internet environ-
ments: A hierarchical key management scheme for end-to-end encryption. IEEE
Transactions on Communications, 37(10):1014{1023, October 1989.

[38] Wenbo Mao and Colin Boyd. Towards formal analysis of security protocols.
Proceedings of the Computer Security Foundation Workshop VI, pages 147{158,
June 1993.

[39] Catherine Meadows. Using narrowing in the analysis of key management proto-
cols. Proceedings of the 1989 IEEE Computer Society Symposium on Research
in Security and Privacy, pages 138{147, May 1989.

[40] Catherine Meadows. Representing parital knowledge in an algebraic security
model. Proceedings of the Computer Security Foundation Workshop III, pages
23{31, June 1990.

[41] Catherine Meadows. A system for the speci�cation and analysis of key manage-
ment protocols. Proceedings of the 1991 IEEE Computer Society Symposium on
Research in Security and Privacy, pages 182{195, May 1991.

145

[42] Catherine Meadows. Applying formal methods to the analysis of a key manage-
ment protocol. Journal of Computer Security, 1(1):5{35, 1992.

[43] Michael J. Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of
Technology, 1983.

[44] Jonathan K. Millen, Sidney C. Clark, and Sheryl B. Freedman. The interrogator:
Protocol security analysis. IEEE Transactions on Software Engineering, SE-
13(2):274{288, February 1987.

[45] Judy H. Moore. Protocol failures in cryptosystems. Proceedings of the IEEE,
76(5):594{602, May 1988.

[46] Louise E. Moser. A logic of knowledge and belief for reasoning about computer
security. Proceedings of the Computer Security Foundation Workshop II, pages
57{63, 1989.

[47] National Bureau of Standards. Data encryption standard. Federal Information
Processing Standards Publication, 1(46), 1977.

[48] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993{999, December
1978.

[49] R.M. Needham and M.D. Schroeder. Authentication revisited. Operating Sys-
tems Review, 21:7, January 1987.

[50] D. M. Nessett. A critique of the Burrows, Abadi and Needham logic. Operating
System Review, 24(2):35{38, April 1990.

[51] D. Otway and O. Rees. E�cient and timely mutual authentication. ACM Op-
erating System Review, 21(1):8{10, January 1987.

[52] P. V. Rangan. An axiomatic basis of trust in distributed systems. Proceedings
of the 1988 IEEE Computer Society Symposium on Research in Security and
Privacy, pages 204{211, May 1988.

[53] P. Rety, C. Kirchner, H. Kirchner, and P. Lescanne. Narrower: a new algorithm
for uni�cation and its application to logic programming. Rewriting Techniques
and Applications, Lecture Notes in Computer Science, 202, 1985.

[54] A. D. Rubin and P. Honeyman. Long running jobs in an authenticated environ-
ment. USENIX Security Conference IV, pages 19{28, October 1993.

[55] J.H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proc. of the IEEE, 63(9), September 1975.

[56] M. Sato. Study of Kripke-stylemodels of some modal logics by Gentzen's sequen-
tial method. Publications of the Research Institute for Mathematical Sciences,
13(2), 1977.

146

[57] J. Scheid and S. Holtsberg. Ina Jo Speci�cation Language Reference Manual.
Systems Development Group, Unisys Corporation, September 1988.

[58] Bruce Schneier. Applied Cryptography - Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, Inc., 1994.

[59] Yoav Shoham and Yoram Moses. Belief as defeasible knowledge. Proceedings of
the 11th International Joint Conference on Arti�cial Intelligence, pages 1168{
1173, August 1989.

[60] Deepinder P. Sidhu. Authentication protocols for computer networks: I. Com-
puter Networks and ISDN Systems, 11:297{310, 1986.

[61] Einar Snekkenes. Authentication in open systems. Proceedings of the IFIP
WG 6.1 Tenth International Symposium on Protocol Speci�cation, Testing, and
Veri�cation, pages 311{324, June 1990.

[62] Einar Snekkenes. Exploring the BAN approach to protocol analysis. Proceedings
of the 1991 IEEE Computer Society Symposium on Research in Security and
Privacy, pages 171{181, May 1991.

[63] Einar Snekkenes. Roles in cryptographic protocols. Proceedings of the 1992
IEEE Computer Society Symposium on Research in Security and Privacy, pages
105{119, May 1992.

[64] J.G. Steiner, B.C. Neuman, and J.I. Schiller. Kerberos: An authentication ser-
vice for open network systems. In Usenix Conference Proceedings, pages 191{202,
Dallas, Texas, February 1988.

[65] Paul Syverson. A logic for the analysis of cryptographic protocols. Technical
Report 9305, Naval Research Laboratory, December 19.

[66] Paul Syverson. Formal semantics for logics of cryptographic protocols. Pro-
ceedings of the Computer Security Foundation Workshop III, pages 32{41, June
1990.

[67] Paul Syverson. The use of logic in the analysis of cryptographic protocols. Pro-
ceedings of the 1991 IEEE Computer Society Symposium on Research in Security
and Privacy, pages 156{170, May 1991.

[68] Paul Syverson. Adding time to a logic of authentication. 1st ACM Conference
on Computer and Communications Security, pages 97{101, November 1993.

[69] Paul Syverson. On a key distribution protocol of Newman and Stubblebine.
Submitted to Operating System Review, 1993.

[70] Paul Syverson and Catherine Meadows. A logical language for specifying crypto-
graphic protocol requirements. Proceedings of the 1993 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 165{177, May 1993.

147

[71] Paul F. Syverson. Knowledge, belief, and semantics in the analysis of crypto-
graphic protocols. Journal of Computer Security, 1:317{334, 1992.

[72] Bhavani Thurasingham. A nonmonotonic multilevel logic for multilevel secure
data/knowledge base management systems - II. Proceedings of the Computer
Security Foundation Workshop V, pages 135{146, June 1992.

[73] M. J. Toussaint. A new method for analyzing the security of cryptographic
protocols. Journal of Selected Areas in Communication, 11(5):702{714, June
1993.

[74] G.W. Treese. Berkeley UNIX on 1000 workstations: Athena changes to 4.3 BSD.
USENIX Winter COnference, Dallas, Texas, pages 175{182, February 1988.

[75] V. Varadharajan and S. Black. Formal speci�cation of a secure distributed
system. Proceedings of the 12th National Computer Security Conference, pages
146{171, October 1989.

[76] Vijay Varadharajan. Veri�cation of network security protocols. Computers and
Security, 8(8):693{708, 1989.

[77] Vijay Varadharajan. Use of a formal description technique in the speci�cation of
authentication protocols. Computer Standards and Interfaces, 9:203{215, 1990.

[78] V. L. Voydock and S. T. Kent. Security mechanisms in high{level network
protocols. Computing Surveys, 15(2):135{171, June 1983.

[79] C. H. West. General technique for communications protocol validation. IBM
Journal of Research and Development, 22:393{404, 1978.

[80] Thomas Y.C. Woo and Siman S. Lam. A semantic model for authentication pro-
tocols. Proceedings of the 1993 IEEE Computer Society Symposium on Research
in Security and Privacy, pages 178{194, May 1993.

APPENDICES

148

149

APPENDIX A

ACTIONS

1. Encrypt(X; k)

condition: X; k 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [ffXgkg

description: This action is used when a principal encrypts data. If Pi pos-

sesses X and knows k then he can possess fXgk.

2. Decrypt(fXgk; k)

condition: fXgk; k 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [fXg

description: This action is used when a principal decrypts data. If Pi pos-

sesses X, encrypted under k, and Pi knows k, then Pi can possess X.

3. Generate-nonce(N)

result: POSS(Pi) := POSS(Pi) [fNg,

BEL(Pi) := BEL(Pi) [LINK(N)

description: This action is used when a principal generates a nonce to link a

challenge and a response. LINK(N) is removed from BEL(Pi) when the

response is received. This is used to determine freshness.

4. Generate-secret(s)

result: S := S [fsg, Observers(s) = fPig, POSS(Pi) := POSS(Pi) [fs 1

Pig,

BEL(Pi) := BEL(Pi) [#(s)

description: This action is used when a principal generates a secret data

item, such as a key. A new secret, s, is added to S, and the Observers

and possession sets are updated.

150

5. Concat(X1;X2; � � � ;Xn)

condition: X1;X2; � � � ;Xn 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [

fX1 �X2 � � �Xng

description: This action is used when a principal constructs a message, X,

out of submessages X1;X2; � � � ;Xn.

6. Split(X)

condition: X contains x1 � x2 � � �xn,

X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [fx1; x2; � � � ; xng

description: This action is used to break a message into its components. Split

is the opposite of concatenation.

7. Forget(X)

condition: X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi)�fXg, 8Pj 2 P if TRUST [j; i] = 1 then

BEL(Pj) := BEL(Pj)� fX 2 POSS(Pi)g

description: This action is used when Pi no longer is in possession of X. All

principals who trust Pi believe that Pi no longer possesses X.

8. Forget-secret(s)

condition: s 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) � fsg,

8 Pj 2 P if TRUST [j; i] = 1 then

BEL(Pj) := BEL(Pj)� fs 2 POSS(Pi)g

description: This action is used when Pi no longer knows the secret s. All

principals who trust Pi believe that Pi no longer possesses s.

9. Apply(f;X)

condition: f;X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [ff(X)g

151

description: This action is used when Pi applies the function f to X. After

the application, Pi possesses f(X).

10. Check-freshness(X)

condition: X 2 POSS(Pi), X has not expired

result: BEL(Pi) := BEL(Pi) [f#(X)g

description: This action is used to verify that time-stamp X is fresh.

11. Abort

condition: Protocol run is illegal

result: Analysis reports failure

description: This could happen under various circumstances where there is

an inconsistency or other aw in the protocol speci�cation.

12. Generate-key-pair(k+; k�)

result: POSS(Pi) := POSS(Pi) [

fk+ 1 Pi; k
�
1 Pig

description: This action is used to generate to keys that are the inverses of

each other.

13. Apply-asymkey(X; k)

condition: X; k 2 POSS(Pi), k is an asymmetric key.

result: ifX = fY gk0 and k is the inverse of k
0, then POSS(Pi) := POSS(Pi)[

Y else POSS(Pi) := POSS(Pi) [ffXgkg

description: States that if an asymmetric key operation is performed on X,

then there are two cases. Either X is of the form fY gk0 and k and k0 are

inverses, in which case the two keys cancel each other, or X is encrypted

under k.

14. Bind(k; Pj)

condition: k 2 POSS(Pi), k is a key intended for Pj.

result: POSS(Pi) := POSS(Pi)[f(k 1 Pj)g,Bindings(Pi) := Bindings(Pi)[

f(k 1 Pj)g

152

description: States that if Pi possesses k, then after binding it to Pj , Pi

possesses k 1 Pj. It is used to bind a key to a principal before sending

it. k 1 Pj is added to the Bindings set of Pi.

153

APPENDIX B

SETS

B.1 Global Sets

Principal Set: This set contains the principals who participate in a protocol. P =

fP1; P2; � � � ; Png. Any Pi may be marked as an initiator of the protocol. We

will assume there is only one initiator.

Rule Set: This set contains inference rules for deriving new statements from existing

assertions. These are the same as the inference rules in the BAN logic. R =

fR1; R2; � � � ; Rng where Ri is of the form
C1;C2;���;Cn

D
, Ci is a condition and D is

a statement.

Secret Set: This set contains all of the secrets that exist at any given time in the

system. The cardinality of this set changes during the analysis as new secrets,

such as session keys, are added. S = fS1; S2; � � � ; Sng.

Observers Sets: For each Si, Observers(Si) contains all the principals who could

possibly know the secret Si by listening to network tra�c or generating it

themselves. The members of the Observers sets can be stated explicitly or

maintained as formulas representing their membership.

B.2 Local Sets

Possession Set(Pi) This set contains all the data relevant to security that this

principal knows or possesses. This includes secret encryption keys, public keys,

data that must remain secret, and any other information that is not publicly

available. POSS(Pi) = fposs1; poss2; � � � ; possng. possi contains two �elds:

the actual data and the origin of the data.

Belief Set(Pi) This set contains all the beliefs held by a principal. This includes the

belief that the keys it holds between itself and other principals are good, beliefs

154

about jurisdiction, beliefs about freshness, and beliefs about the possessions of

other principals. BEL(Pi) = fbel1; bel2; � � � ; belng.

Opaque(Pi) This set contains candidates to be added to the seen set. It is used by

the Update function. The set contains plaintext message parts and a list of the

associated keys needed to see them.

Seen(Pi) This set contains plaintext message parts that Pi sees from messages sent

across the network. The seen sets collectively contain the same information as

the observers sets.

Haskeys(Pi) This set contains keys that Pi sees either because they are in the initial

possession set, or because they appear in a message sent across the network

and are added to Pi's seen set.

Behavior List(Pi) This item is a list rather than a set because the elements are

ordered. BL = fAL; bvr1; bvr2; � � � ; bvrng. AL is an action list.

Bindings Set(Pi) This set contains the legal bindings of keys held by a principal.

These are bindings that are created by Pi, and bindings that are received in

certi�cates from trusted servers. Bindings(Pi) = fk1 1 P1; k2 1 P2; � � � ; kn 1

Png.

155

APPENDIX C

INFERENCE RULES

C.1 Nonce Veri�cation Rule:

#(X) 2 BEL(P); X from Q 2 POSS(P)

BEL(P) := BEL(P) [fQ believes #(X)g

C.2 Message Meaning Rule:

fXgk from Q 2 POSS(P); k 2 POSS(P)

BEL(P) := BEL(P) [fX 2 POSS(Q)g

C.3 Submessage Freshness Rule:

#(x1) 2 BEL(P),

fX contains x1;X contains x2g � POSS(P)

BEL(P) := BEL(P) [#(x2)

C.4 Linkage Rule (symmetric keys):

#(k) 2 BEL(P); k 2 POSS(P);

LINK(Na) 2 BEL(P);X contains f(Na);

X contains x1; fXgk from Q 2 POSS(P)

BEL(P) := (BEL(P)� LINK(Na)) [f#(x1)g

C.5 Linkage Rules (asymmetric keys):

#(k�) 2 BEL(P); k� 2 POSS(P);

LINK(Na) 2 BEL(P);X contains f(Na);

X contains x1; fXgk+ from Q 2 POSS(P)

BEL(P) := (BEL(P)� LINK(Na)) [f#(x1)g

156

#(k+) 2 BEL(P); k+ 2 POSS(P);

LINK(Na) 2 BEL(P);X contains f(Na);

X contains x1; fXgk� from Q 2 POSS(P)

BEL(P) := (BEL(P)� LINK(Na)) [f#(x1)g

C.6 Possible Origins Rule:

X 2 POSS(P);X contains x1; R 2 Obs(x1); R 6= P

x1 from R 2 POSS(P)

C.7 Submessage Origin Rule:

fXgk+ 2 POSS(P);X contains x1 from Q;

R 2 Observers(k�);X contains x2; R 6= P

x2 from Q 2 POSS(P); x2 from R 2 POSS(P)

C.8 Submessage Origin Rule for Public Keys:

fXgkp+ 2 POSS(P);

X contains x1 from Q;X contains x2
x2 from Q 2 POSS(P)

C.9 Submessage Origin Rule for Private Keys:

fXgkq� 2 POSS(P);X contains x2

x2 from Q 2 POSS(P)

C.10 Certi�cate binding rule

(k 1 Q) from S 2 POSS(P); T rusted(S) 2 BEL(P)

Bindings(P) := Bindings(P) [f(k 1 Q)g

C.11 Unbound key rule

k 2 POSS(P); 6 9Q : (k 1 Q) 2 POSS(P)

Observers(k) :=W

157

C.12 Bound key origin rule for symmetric keys

(k 1 Q) 2 POSS(P); Q 6= P ,

(k 1 Q) 62 Bindings(P)

Abort

C.13 Bound key origin rules for asymmetric keys

(k+ 1 Q) 2 POSS(P); (k+ 1 Q) 62 Bindings(P);

fXgk�fromR 2 POSS(P); R 6= Q

Abort

(k� 1 Q) 2 POSS(P); (k� 1 Q) 62 Bindings(P);

fXgk+fromR 2 POSS(P); R 6= Q

Abort

158

APPENDIX D

THE CORRECTED KHAT PROTOCOL

Client

POSS(C) = fKg

BEL(C) = f#(K)g

BL(C) =

Part of ticket granting

Receive(S,fN1; N2; � � �Nng)

Split(fN1; N2; � � �Nng)

Phase I

Generate-secret(SF)

Generate-secret(N)

Encrypt(K,N)

Send(S,Encrypt(Concat(SF;N;Ni);K))

Update(fSF �N �NigK)

Forget-secret(N)

Forget-secret(SF)

Phase II

Receive(S; fN � fSF � TGTCgKg)

Split(fN � fSFgKg)

Decrypt(fKgN ; N)

Decrypt(fSF � TGTCgK;K)

Split(fSF � TGTCg)

Check-freshness(TGTC)

Server

POSS(S) = fKg

BEL(S) = f#(K)g

159

BL(S) =

Part of ticket granting

� Generate-nonce(N1)

Generate-nonce(N2)

� � �

Generate-nonce(Nn)

Send(C,Concat(N1; N2; � � � ; Nn))

Update(fN1; N2; � � �Nng)

Phase I

Receive(C; fSF �N �NigK)

Decrypt(fSF �N �NigK;K)

Split(fSF �N �Nig)

Phase II

Generate-secret(TGTC)

Send(Concat(N ,Encrypt(Concat(SF; TGTC);K)))

Update(fN � fSF � TGTCgKg)

