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Abstract

Monetary measures of risk like Value at Risk or Worst Conditional Expectation assess the
risk of *nancial positions. The existing risk measures are of a static, one period nature. In
this paper, I de*ne dynamic monetary risk measures and I present an axiomatic approach that
extends the class of coherent risk measures to the dynamic framework. The axiom of translation
invariance has to be recast as predictable translation invariance to account for the release of new
information. In addition to the coherency axioms, I introduce the axiom of dynamic consistency.
Consistency requires that judgements based on the risk measure are not contradictory over time. I
show that consistent dynamic coherent risk measures can be represented as the worst conditional
expectation of discounted future losses where the expectations are being taken over a set of
probability measures that satis*es a consistency condition.
c© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

Consider an institution that has settled on a certain way to measure the risk of
its *nancial positions. As the trading day goes by, changes are made to the position
and new information is being released. On the next morning, the institution wishes to
reconsider the risk of its changed position taking into account the new information in a
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proper way. A proper way is understood here as a rational way: it is important not to
contradict oneself over time in one’s risk assessments. The institution asks therefore:
how should we process new information and how should we treat changes in the
position?
Here, I present one possible way to answer this question by extending the path break-

ing work by Artzner et al. (1999) (ADEH in the sequel) on coherent risk measures to
the multiperiod framework. To this end, I adapt the coherency axioms from ADEH to
the dynamic setting. In addition, I impose dynamic consistency in the following sense.
If two positions are assigned the same risk in all possible states of the world tomorrow,
and no payments are due tomorrow for both positions, the two positions should have
the same risk today. In particular, if in every future contingency, a position is accept-
able, then it should be acceptable today. I show that dynamic risk measures satisfy
these axioms if and only if they assign to a sequence (Dt) of payments the risk

�t(D) = max
P∈P

EP
[

−
T∑

s=t

Ds

(1 + r)s−t

∣∣∣∣∣Ft

]
(1)

for a convex, closed set of probability measures P on the state space that satis*es a
certain consistency condition.
The representation answers the question stated in the *rst paragraph. Changes in the

position are to be taken into account by recalculating the (stochastic) present value
of future payments. Information is processed via updating in a Bayesian way every
single probability measure in the set P. The new risk of the position is given by the
maximal expected present value of future losses where the expectation is taken under
the updated probability measures.
In addition, I show that consistency of risk measurement corresponds to a certain

closure property of the set P, which I call also consistency. Thus, as every set of
probability measures quali*es as a possible choice for a coherent risk measure in
the static framework, only consistent sets of probability measures yield dynamically
consistent coherent risk measures. A family of probability measures is consistent if it
can be constructed by a backward induction procedure. The procedure can be easily
illustrated with a two period example. Say that, in the *rst period, the random variable
X1 is revealed, and in the second period, you learn the value of the random variable
X2. Suppose that for every possible realization x1 of X1 in the *rst period, you have
speci*ed a conditional probability Px1 for the second period random variable X2 given
that X1 = x1. Moreover, assume that R is the (marginal) probability distribution of
X1. Then one can derive the joint distribution of X1 and X2 by the formula for total
probability (see formula (2)). A set of probability measures P is consistent if the set
is closed under arbitrary pasting of conditional probabilities and marginal distributions
from this set. 2

2 The consistency property for a set of probability measures appears before in the literature. It has been
called rectangularity by Epstein and Schneider (2003), reduced family by Sarin and Wakker (1998) in a de-
cision theoretic framework, and stability under pasting by Artzner et al. (2002). Delbaen (2002) characterizes
consistency (or multiplicative stability) in terms of martingale theory.
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To my knowledge, this is the *rst paper to derive Eq. (1) from a set of axioms. 3

A diHerent axiomatic approach can be found in Wang (2002). The main diHerence is
that Wang does not assume translation invariance; thus, the corresponding class of risk
measures need not be coherent (nor convex). A very interesting axiomatic approach
to distribution-invariant dynamic risk measures can be found in the recent working
paper by Weber (2004). Cvitanic and Karatzas (1999) assume that a complete *nancial
market is given and de*ne the risk of a position as the highest expected shortfall under
some set of probability measures when the position is completely hedged given a *xed
initial capital.
The next section de*nes dynamic risk measures and exposes my set of axioms. Sec-

tion 2 de*nes families of conditional probability measures and the consistency property
for these sets. Section 3 contains the main representation result. Stochastic interest rates
are being discussed in Section 4. Appendices B and C gather some proofs.

1. Dynamic risk measures, coherency, and consistency

Consider a sequence of time periods t = 0; : : : ; T , a *nite set of states of the world
 and a sequence of random variables Xt : → R, t =0; : : : ; T . Xt is to be understood
as the information revealed at time t. Accordingly, the corresponding information *l-
tration is Ft = �(X1; : : : ; Xt), t = 1; : : : ; T and F0 = {∅; }. 4 A position D = (Dt) is
a (Ft)-adapted process, to be interpreted as a sequence of random payments Dt at
time t. The set of all positions is denoted D. For Sections 1 and 3, r ¿ −1 is a *xed,
exogenous interest rate. An extension to stochastic interest rates is given in Section 4.
Given this general dynamic model, I propose the following de*nition of dynamic

risk measures.

De�nition 1. A dynamic risk measure � = (�t)t=0; :::;T consists of mappings �t :D× 
→ R such that

(1) for all D; D′ ∈D and t: if D(s; !) = D′(s; !) for all s¿ t and all ! ∈ , then
�t(D; !) = �t(D′; !); (independence of the past),

(2) for all t and D ∈D, �t(D; ·) is Ft-measurable (adapted),
(3) �t is monotone: D¿D′ implies �t(D; !)6 �t(D′; !),

3 Artzner et al. (2002) adapt the static coherent risk measure axioms to an extended state space including
states of nature and points in time to obtain a representation of the form

inf
A∈A

EP
[

T∑
t=0

Xt(At − At−1)

]

for one probability measure P and a set of positive increasing adapted processes A. Moreover, they study the
consistency property in simple examples and compare it to dynamic programming issues (compare Lemma
2). This approach has subsequently been generalized to continuous-time models in Cheridito et al. (2003).
See also Roorda et al. (2003) and Scandolo (2003).

4 Note that every *nite dynamic model is included in this setup. In particular, every *nite tree can be
modeled that is done here.
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(4) �t is translation invariant with respect to predictable income streams: let Z be
Ft-measurable, set D(s; w), Z(!)1{�}(s) for some �¿ t. Then for all positions
D′ and all ! ∈ 

�t(D′ + D; !) = �t(D′; !) − Z(!)
(1 + r)�−t :

(Predictable translation invariance.)

Independence of the past is a structural property of dynamic risk measures. Past pay-
ments are sunk and should not inKuence the assessment how risky the remaining future
payments are. Also, the risk measure cannot depend on information to be revealed in
the future; in other words, the dynamic risk measure has to be adapted. Monotonicity
is certainly a reasonable requirement, whereas predictable translation invariance might
need some explanation. Here is why I think that this property is reasonable. If one
views the risk of a position as the amount of money one has to add to the position
to make it acceptable, then it is clear that after adding, say, 1000$ to a position, the
amount of money needed to make the position acceptable, is reduced by 1000$. This is
translation invariance. In the present dynamic setting, this translation invariance carries
over to payments that are known in advance (predictable). Adding 1000$ at time t + �
to a position D is equivalent to adding the present value of 1000 �–$ at time t. More
generally, adding a predictable position to a given position corresponds to adding the
present value of the predictable position in t; thus, the risk of a given position should
be reduced by the present value of the predictable position.
In this and the following section, I take a constant interest rate r ¿ −1 as given.

That is, the agent has a certain reference return r which he uses for calculating present
values of deterministic income streams. I do think that such an interest rate exists
in most relevant circumstances; in today’s well developed markets, every individual,
bank or regulatory agency has at least access to some kind of credit market with a
predictable interest rate. Here, I assume for simplicity that the interest rate is not only
predictable, but even constant. The main theorem is still valid, however, with stochastic
interest rates as long as for every point in time discount factors (or zero coupon bonds)
for all relevant maturities are available. This is being shown in Section 4.

Axiom 1. A dynamic risk measure (�t) is called coherent if every �t is homogeneous
and subadditive. Formally, for all D; D′ ∈D , � ¿ 0, t=0; : : : ; T , and ! ∈  �t(�D; !)=
��t(D; !) and �t(D + D′; !)6 �t(D; !) + �t(D′; !) hold true.

Coherency says that mergers do not increase risk, yet mergers of identical positions
do not reduce risk either. I follow ADEH in imposing coherency since this is de*nitely
the aim of the present paper. Coherency implies convexity, and the latter is certainly
economically meaningful, as it corresponds to the fact that diversi*cation reduces risk. 5

5 It might be tempting to assume only convexity as in FLollmer and Schied (2002a). An extension to
the dynamic framework under this weaker axiom is not attempted here. An axiomatic analysis of convex,
conditioned risk measures has been carried out subsequently to this paper in Detlefsen (2003) and Scandolo
(2003).
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Axiom 2. A dynamic risk measure � is dynamically consistent iH for all times t =
0; : : : ; T −1 and positions D; D′ ∈D with Dt =D′

t the following holds true: �t+1(D; !)=
�t+1(D′; !) for all ! ∈  implies �t(D; !) = �t(D′; !) for all ! ∈ .

Dynamic consistency as just de*ned states in particular that if a position leads to an
uncertain payment in, say, December of 2004 (and only then), and I know that I will
accept that position in November of 2004 whatever state of the world prevails, then
I should accept that position also in 2003. I hope that the reader agrees with me that
such consistency is desirable.
Finally, I introduce

Axiom 3. For t ∈ {0; : : : ; T} and ! ∈  denote by 1{(t;!)} the indicator function that
has the value 1 in (t; !) and the value 0 otherwise. A dynamic risk measure (�t) is
relevant if every loss which is not excluded by the given history carries positive risk:
for all t, all histories �t ∈Ht , all !; M! ∈ (�t), and all �¿ t, one has

�t(−1{(�; M!)})(!)¿ 0:

The preceding axiom extends the relevance axiom in ADEH to the dynamic frame-
work. It states that every path which is not excluded by the known history is relevant
in the sense that a possible loss on that path carries positive risk.

2. Consistent sets of probability measures

As sets of (conditional) probability measures will play an important role, I introduce
some relevant notation as well as the crucial consistency property for such sets before
formulating the representation theorem.
A history up to time t is given by a sequence �t = (x1; : : : ; xt) of realizations of Xs,

s = 1; : : : ; t. The set of all histories up to time t is denoted Ht = range((X1; : : : ; Xt)).
The empty history at time 0 is denoted ∅. The set of all possible continuations after
some history �t is given by

(�t), {! ∈  : (X1; : : : ; Xt)(!) = �t}:

�(�t) denotes the set of all probability measures on (�t). A probability measure
on (�t) is to be interpreted as the conditional distribution of the random vector
(Xt+1; : : : ; XT ) given that (X1; : : : ; Xt) = �t .

De�nition 2. Assume that for all t = 0; : : : ; T − 1, every history �t ∈Ht , Q�t ⊂ �(�t)
is a closed and convex set of (conditional) probability measures. The collection (Q�t )
is called a family of conditional probability measures.

(i) Fix �t ∈Ht . Choose for all xt+1 with (�t ; xt+1)∈Ht+1 a measure Q(�t ; xt+1)∈Q(�t ; xt+1).
Moreover, let R�t ∈Q�t . The composite probability measure Q(�t ;Xt+1)R�t ∈ �(�t) is
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de*ned for sets A ⊂ (�t) via

Q(�t ;Xt+1)R�t (A),
∑
xt+1

Q(�t ; xt+1)(A ∩ {Xt+1 = xt+1})R�t (Xt+1 = xt+1); (2)

where the sum runs over all xt+1 with (�t ; xt+1)∈Ht+1. Q(�t ;Xt+1)Q�t denotes the
set of all these probability measures.

(ii) The family of conditional probability measures (Q�t ) is called consistent iH

Q�t = Q(�t ;Xt+1)Q�t

for all �t ∈Ht and t = 0; : : : ; T − 1.
(iii) A set of probability measures P ⊂ � is called consistent iH, for all t, the induced

family of conditional probability measures (P�t ) with

P�t = {P[ · |(X1; : : : ; Xt) = �t] :P ∈P; P[(X1; : : : ; Xt) = �t]¿ 0}
is consistent.

Example 1. Two trivial yet important examples of consistent sets of probability mea-
sures are the set � of all probability measures on  and the singleton P = {P} for
one probability measure P. They correspond to the worst case risk measure and the
mean loss risk measure, resp. See also Example 4.

Example 2. Suppose that a *nite number K +1 of *nancial assets with price processes
Sk , k = 0; 1; : : : ; K and a reference probability P are *xed. Let asset S0 be a riskless
bond with interest rate r, that is, S0(t) = exp(rt), t = 0; : : : ; T . Denote by MSk(t) =
Sk(t)=S0(t), (t = 0; : : : ; T , k = 1; : : : ; K) the K discounted risky assets. If the *nancial
market is arbitrage free, the Fundamental Theorem of Asset Pricing tells us that the
set of equivalent martingale measures

P= {Q ∈ � :Q ∼ P; MSk is a Q-martingale for all k = 1; : : : ; K}
is not empty. As one can easily check, the closure of P is consistent.

Remark 1. Note that the converse to Example 2 is not true. Not every consistent set
of probability measures is the set of equivalent martingale measures for some *nancial
market. Just take the one period model with two states of the world, one riskless asset
S1 ≡ 1, and another asset S2. Assume furthermore that no arbitrage opportunities exist.
Then either all probabilities in the interior of � are equivalent martingale measures (if
S2 is riskless), or only one. On the other hand, every set of probability measures is
trivially consistent in a one period world.

Example 3 (The consistent hull). As arbitrary intersections of consistent sets of prob-
ability measures are consistent, we can speak of the consistent hull Pcons of a set of
probability measures P, being the smallest consistent set containing P. The consistent
hull can be obtained by a backward induction procedure. The procedure can be easily
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illustrated with two periods. De*ne for every possible realization x1 of the *rst period,
the set Px1 = {P[ · |X1 = x1] :P ∈P, P(X1 = x1)¿ 0} of conditional distributions for
the second period random variable X2 given that X1 = x1. Then, for every choice
of conditionals Qx1 ∈Px1 and marginal distribution R ∈P, one can derive the joint
distribution of X1 and X2 by the formula of total probability (2). One obtains the
consistent hull Pcons by pasting together conditionals of X2 from (Px1 ) and marginal
distributions of X1 from P in every possible way.

Before returning to risk measures, let us collect an important property of consistent
sets of probability measures.

Lemma 1 (Backward induction and consistency). (1) A family of conditional prob-
ability measures (Q�t ) is consistent if and only if for all �t ∈Ht and all random
variables Z : → R the recursive relation

min
Q∈Q�t

∫
(�t)

Z dQ = min
Q∈Q�t

∫
(�t)

min
R∈Q(�t ; Xt+1(!))

∫
(�t ; Xt+1(!))

Z(!′)R(d!′)Q(d!) (3)

holds true.
(2) A set of probability measures P ⊂ � is consistent i8, for all t and for all

random variables Z : → R, one has

min
P∈P

EP[Z |Ft] = min
P∈P

EP
[
min
Q∈P

EQ[Z |Ft+1]
∣∣∣∣Ft

]
:

Proof. See Appendix B.

The preceding lemma shows that consistency of a family corresponds exactly to the
usual logic of backward induction. If one *rst minimizes the conditional expectation
of a random variable Z given a certain history x1 and minimizes then the expected
value of this function over all possible values x1, one obtains the same value as if one
minimizes the expected value of the random variable ex ante.
The following lemma shows that a consistent family of conditional probability mea-

sures with full support is generated by its initial set.

Lemma 2. Assume that (Q�t ) is a consistent family of conditional probability mea-
sures with full support. Then the family is determined by its initial set Q∅:

Q�t = {Q[ · |(X1; : : : ; Xt) = �t] :Q ∈Q∅; Q[(X1; : : : ; Xt) = �t]¿ 0}
for all histories �t ∈Ht ; t = 0; : : : ; T − 1.

Proof. See Appendix B.

The full support assumption is needed here to ensure that the sets of conditional
probability measures are not empty for all histories. Consistency implies that the agent
obtains the family of conditional probability measures by updating every measure of
the initial set of probability measures that puts positive probability on the given history.
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3. The representation theorem

After these preliminaries, the main representation theorem can be stated and proved.
Recall that a set of probability measures P on a measurable space (A;A) has full
support if the union of all supports in P is the whole set of states A.

Theorem 1. The following assertions are equivalent for a dynamic risk measure �:

(1) � is coherent, dynamically consistent, and relevant,
(2) there exists a closed, convex, and consistent set of probability measures P ⊂ �

with full support such that

�t(D) = max
P∈P

EP

[
−

T∑
s=t

Ds

(1 + r)s−t

∣∣∣∣∣Ft

]
: (4)

Proof. See Appendix C.

The above theorem shows that every dynamic coherent risk measure corresponds to
a choice of a convex, closed, and consistent set P of probability measures with full
support. I list a number of examples that extend the examples of consistent sets of
probability measures in Section 2 to dynamic risk measures.

Example 4. Let P ∈ � have full support. Then the conditional mean loss

�t(D) = EP

[
−

T∑
s=t

Ds

(1 + r)s−t

∣∣∣∣∣Ft

]

forms a consistent and relevant dynamic coherent risk measure. The choice P=� leads
to the worst case risk measure

�t(D) = max
!∈(X1 ;:::;Xt)

−
T∑

s=t

Ds

(1 + r)s−t :

Since � is consistent, so is the worst case risk measure.

Example 5 (Superhedging risk measure): Suppose that P is the closure of the set of
equivalent martingale measures for some *nancial market as in Example 2. The super-
hedging risk measure

�t(D) = max
P∈P

EP

[
−

T∑
s=t

Ds

(1 + r)s−t

∣∣∣∣∣Ft

]

is consistent (and coherent).

Example 6 (Consistent envelope of a risk measure): Let � be a coherent risk measure.
By the ADEH theorem, � corresponds to some set of probability measures P. Usually,
the straightforward extension of � to a dynamic setting via (4) will not lead to a
consistent dynamic risk measure. However, by passing to the consistent hull Pcons of
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P (see Example 3), one gets a consistent dynamic risk measure, the consistent envelope
�cons of � that dominates �.

I conclude this section with a remark on dynamic consistency and backward induction
or dynamic programming. As the reader recognizes easily from the proof, or directly
from Lemma 1, a dynamic coherent risk measure satis*es the recursive relation

�t(D) = max
P∈P

EP[ − Dt + (1 + r)−1�t+1(D)|Ft]:

This equation greatly simpli*es the analysis of dynamic optimization problems related
to dynamic risk measures and is also of importance for numerical implementations since
it allows to calculate dynamic risks via backward induction. Moreover, one derives
easily from this equation that the process (1 + r)−t�t(D) − ∑t−1

s=0 (1 + r)−sDs is a
supermartingale for all P ∈P. I record this reasoning in the following corollary.

Corollary 1. Let (�t) be a dynamically consistent, coherent, and relevant dynamic
risk measure with associated set of probability measures P. For D ∈D the process

St ,
�t(D)
(1 + r)t −

t−1∑
s=0

Ds

(1 + r)s

is a supermartingale under every P ∈P. Moreover, for some P∗ ∈P, S is a P∗-
martingale.

Proof. Fix D ∈D and set Z ,
∑T

s=0 Ds=(1 + r)s. Note that

St = −min
P∈P

EP[Z |Ft]:

Let P0 ∈P. From Lemma 1,

St =−min
P∈P

EP
[
min
Q∈P

EQ[Z |Ft+1]
∣∣∣∣Ft

]

=max
P∈P

EP[St+1|Ft]¿ EP0
[St+1|Ft]: (5)

Hence, S is a P0-supermartingale.
From (5), one sees that for every t = 0; : : : ; T and history �t ∈Ht , there exists a

probability P�t ∈P such that St = EP�t [St+1|(X1; : : : ; Xt) = �t]. De*ne the probability
measure P∗ by setting for ! ∈  with Xt(!) = xt ; t = 1; : : : ; T ,

P∗({!}) = P∅(X1 = x1)Px1 (X2 = x2) · · · P(x1 ; :::; xT−1)(XT = xT ):

It is straightforward to check that with this de*nition,

EP∗
[St+1|X1; : : : ; Xt) = �t] = EP�t

[St+1|X1; : : : ; Xt) = �t]:

Hence, S is a P∗-martingale. Since P is consistent, P∗∈P. This concludes the proof.
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4. Stochastic interest rates

In this section, let us assume that interest rates are stochastic. For every maturity
�=1; : : : ; T , there exists a zero coupon bond B� that pays oH 1$ at time �. The (possibly
random) price of the bond with maturity � at time t is denoted by B�

t . Since the short
rate is no longer known in advance, one has to change the de*nition of predictable
translation invariance (De*nition 1(4)). A predictable payment Z at time � has the
present value ZB�

t at time t. Therefore, the natural de*nition for predictable translation
invariance is

De�nition 1(4′). Let Z be Ft-measurable; set D(s; w), Z(!)1{�}(s) for some �¿ t.
Then for all positions D′ and all ! ∈ 

�t(D′ + D; !) = �t(D′; !) − Z(!)B�
t (!):

In this case, the following theorem holds true.

Theorem 2. The following assertions are equivalent for a dynamic risk measure �:

(1) � is coherent, dynamically consistent, and relevant,
(2) there exists a closed, convex, and consistent set of probability measures P ⊂ �

with full support such that

�t(D) = max
P∈P

EP

[
−

T∑
s=t

DsBs
t

∣∣∣∣∣Ft

]

The proof is a straightforward adaptation of the proof of Theorem 1.

5. Conclusion

Consistency is a necessary requirement for rational dynamic decision making. The
present paper has characterized consistent dynamic coherent risk measures. Beyond this
contribution for the *eld of *nancial risk measurement, the paper can be applied to a
variety of other contexts in which robust extensions of the usual expectation operator
have recently been studied. Chateauneuf et al. (1996) introduce risk measures as price
functionals in markets with transaction costs. Wang et al. (1997) use an axiomatic
approach to insurance pricing that is in many respects very similar to Artzner et al.
(1999). The present paper provides also a framework for dynamic extensions of these
papers. In macroeconomics, robust decision making has been studied by Anderson
et al. (2000). Last but not the least, the dynamic version of minimax expected utility
in Epstein and Schneider (2003) is a form of ‘expected’ utility where the expectation
is replaced with a consistent dynamic coherent risk measure.
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Appendix A. The ADEH theorem

In the proof of the representation theorem, I use the following version of the ADEH
theorem.

Theorem A.1. Let (A;A) be a <nite measurable space and � a coherent risk measure
on (A;A) with interest rate R ¿ 0. Then � can be represented as

�(D) = max
P∈P

EP
(

− D
R

)
for a closed and convex set of probability measures P on (A;A).

This may seem stronger than the ADEH theorem as I replace the supremum by the
maximum and the (arbitrary) set of probability measures by its convex closure here.
But as the reader easily checks, there is no loss of generality in doing so. A proof is
given by FLollmer and Schied (2002b, Corollary 14).

Appendix B. Proof of the lemmas

In the proof of the lemmas, I will use the following fact which is an immediate
consequence of the separation theorem for convex sets:

Lemma B.1. Two closed and convex sets Q;Q′ ⊂ � are equal if and only if for all
random variables Z : → R one has

min
Q∈Q

∫


Z dQ = min
Q∈Q′

∫


Z dQ:

Moreover, I shall need the following lemma.

Lemma B.2. Suppose that for every history �t , the set Q�t ⊂ �(�t) is closed and
convex. Then the sets Q(�t−1 ;Xt)Q�t−1 are also closed and convex.

Proof. From the formula of total probability (2), closedness follows immediately. For
convexity, take, for simplicity, t = 1, and choose Q0; Q1 ∈QX1Q and 0¡ � ¡ 1. One
has to show that Q2 , �Q0 + (1 − �)Q1 ∈QX1Q. For that matter, choose Rx1

0 ; Rx1
1 ∈Qx1

for all x1 ∈ range(X1) and Q′
0; Q

′
1 ∈Q such that

Qi = RX1
i Q′

i ; i = 0; 1: (B.1)
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Set Q′
2 , �Q′

0 + (1 − �)Q′
1 ∈Q. For x1 with Q2(X1 = x1)¿ 0, set

!(x1),
�Q′

0(X1 = x1)
Q′

2(X1 = x1)
:

Since 0¡ !(x1)¡ 1 and Qx1 is convex,

Rx1
2 , !(x1)R

x1
0 + (1 − !(x1))R

x1
1 ∈Qx1 :

The following calculation shows that Q2 = RX1
2 Q′

2, and hence Q2 ∈QX1Q. For A ⊂ ,
set Ax1 , A ∩ {X1 = x1}; then

RX1
2 Q′

2(A) =
∑

x1

Rx1
2 (Ax1 )Q

′
2(X1 = x1)

=
∑

x1

[!(x1)R
x1
0 (Ax1 ) + (1 − !(x1))R

x1
1 (Ax1 )]Q

′
2(X1 = x1)

=
∑

x1

�Rx1
0 (Ax1 )Q

′
0(X1 = x1) +

∑
x1

(1 − �)Rx1
1 (Ax1 )Q

′
1(X1 = x1)

= �Q0(A) + (1 − �)Q1(A) = Q2(A);

where the last line uses (B.1).

We can now tackle Lemma 1.

Proof of Lemma 1. For simplicity, let us consider the case t = 0. Let

K , min
Q∈Q

∫


min
R∈QX1(!)

∫
(X1(!))

Z(!′)R(d!′)Q(d!);

and

L , min
Q∈QX1Q

∫


Z dQ:

I show below that K = L. Given this, (3) reduces to

min
Q∈Q

∫


Z dQ = min
Q∈QX1Q

∫


Z dQ;

and Lemmas B.1 and B.2 conclude the proof.
It remains to show that K = L. For every x1 ∈H1, choose

Qx1 ∈ argmin
R∈Qx1

∫
(x1)

Z(!′)R(d!′);

and choose Q ∈ argminQ∈Q
∫

 minR∈QX1(!)

∫
(X1(!)) Z(!′)R(d!′)Q(d!). Then

K =
∫



∫
(X1(!))

Z(!′)QX1(!)(d!′)Q(d!) =
∫


Z d(QX1Q):
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Since QX1Q ∈QX1Q, K ¿L follows. On the other hand, if P = QX1Q is such that
L =

∫
Z dP, then

L =
∫



∫
(X1(!))

Z(!′)QX1(!)(d!′)Q(d!)

¿
∫


min

R∈QX1(!)

∫
(X1(!))

Z(!′)R(d!′)Q(d!)

¿K:

Therefore, K = L, and the proof is complete.

Proof of Lemma 2. I show the claim for the initial step from Q to Qx1 . Induction does
the rest. By consistency, every Q ∈Q can be written as

Q = RX1R

for suitable Rx1 ∈Qx1 and R ∈Q. Assume Q(X1 = x1)¿ 0. From (2), it follows that

Q(·|X1 = x1) = Rx1 (·)∈Qx! ;

and thus

{Q(·|X1 = x1) :Q ∈Q; Q(X1 = x1; : : : ; Xt = xt)¿ 0} ⊂ Qx1 :

On the other hand, let Qx1 ∈Qx1 be given. For every other possible realization y1 �= x1
choose Qy1 ∈Qy1 . By the full support assumption, there is R ∈Q with R(X1 = x1)¿ 0.
Set MQ(A) =Qx1 (A ∩ {X1 = x1})R(X1 = x1) +

∑
y1 �=x1 Qy1 (A ∩ {X1 = y1})R(X1 = y1). By

consistency, MQ ∈Q and, by construction, Qx1 = MQ(·|X1 = x1). This shows that

Qx1 ∈ {Q(·|X1 = x1; : : : ; Xt = xt) :Q ∈Q; Q(X1 = x1; : : : ; Xt = xt)¿ 0}:

Appendix C. Proof of the representation theorem

Proof of Theorem 1. Let us start with the easier implication from (2) to (1). All prop-
erties are either obvious or well known from Artzner et al. (1999) except dynamic
consistency. So let D; D′ ∈D be given and *x some t. By predictable translation in-
variance, one can assume without loss of generality that Dt = D′

t = 0. Suppose further
that �t+1(D; !) = �t+1(D′; !) for all ! ∈ , that is

min
Q∈P

EQ

[
T∑

s=t+1

Ds

(1 + r)s−t−1

∣∣∣∣∣Ft+1

]
= min

Q∈P
EQ

[
T∑

s=t+1

D′
s

(1 + r)s−t−1

∣∣∣∣∣Ft+1

]

for all !. From this and Dt = D′
t = 0, one gets

min
P∈P

EP

[
min
Q∈P

EQ

[
T∑

s=t

Ds

(1 + r)s−t

∣∣∣∣∣Ft+1

]∣∣∣∣∣Ft

]
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=min
P∈P

EP

[
min
Q∈P

EQ

[
T∑

s=t

D′
s

(1 + r)s−t

∣∣∣∣∣Ft+1

]∣∣∣∣∣Ft

]
:

Since P is consistent, Lemma 1 yields �t(D; !) = �t(D′; !).
Let us now consider the more diRcult implication (1) to (2). Fix a time period t

and a history �t ∈Ht . De*ne the expanded state space S(�t), {t; : : : ; T} × (�t) and
endow this space with the �-*eld O(�t) generated by all D ∈D restricted to S(�t).
Denote by D(�t) the set of these restricted positions. By De*nition 1(1) and 1(2), the
mapping

� :D(�t) → R;

D �→ �t(D)(!);

is well-de*ned and independent of !. � inherits monotonicity, subadditivity, and ho-
mogeneity from �t . � is translation invariant in the following sense. The mapping
D$ ≡ $ ∈R corresponds to a sure payment of $ in every period. Therefore, by iterated
application of predictable translation invariance (De*nition 1:4′)

�(D′ + D$) = �(D′) −
T∑

s=t

$
(1 + r)s−t :

Let R(t) ,
(∑T

s=t 1=(1 + r)s−t
)−1

. We have just shown that � is a coherent risk

measure on the space (S(�t);O(�t)) with interest rate R(t). The ADEH theorem (in
the version stated in Appendix A) yields a convex and closed set M of probability
measures on (S(�t);O(�t)) with

�(D) = max
m∈M

∫
S(�t)

− D(s; !)
R(t)

m(ds; d!): (C.1)

The next step is to show that the marginal distribution m({�}× (�t)) is the same for
all m ∈M. To this end, *x � ∈ {t; : : : ; T} and consider the position that yields a certain
payment of 1 at time �:

Ds =

{
1 s = �;

0 else

for all ! ∈ (�t). By predictable translation invariance, �(D) = − 1=(1 + r)�−t . On
the other hand, from (C.1), it follows that �(D) = maxm∈M −R(t)−1m({�} × (�t)).
Similarly, with Ds = −1{�}(s); s = t; : : : ; T , one concludes that

max
m∈M

R(t)−1m({�} × (�t)) =
1

(1 + r)�−t ;

and m({�} × (�t)) = R(t)=(1 + r)�−t for all m ∈M follows. Therefore, we obtain
m =

∑T
s=t m(d!|s)R(t)=(1 + r)s−t &s and

�(D) = max
m∈M

∫
(�t)

−
T∑

s=t

D(s; !)
(1 + r)s−t m(d!|s):

The set of conditional distributions P|� , {m(·|�) :m ∈M} does not depend on �.
This follows from predictable translation invariance and dynamic consistency, as I
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now show. Let Z : → R be a random variable that is known at time � ¿ t, that is, Z
is F�-measurable. Set D(s; !)=Z(!)(1+r)�1{�}(s)−Z(!)(1+r)T1{T}(s). Predictable
translation invariance says that

��(D; !) = 0

for all ! ∈ . By dynamic consistency, one obtains �t(D; !) = 0 for all !, and thus
�(D) = 0, or

0 = sup
m∈M

∫
(�t)

Z(!)[m(d!|�) − m(d!|T )]:

Since this holds true for all F�-measurable random variables Z , it follows (perhaps
invoking a separation argument, see also Appendix B) that m(·|�) = m(·|T ) on F� ∩
(�t). Therefore, the conditional distributions can all be obtained from the conditional
distribution at time T . Setting P(�t), {m(·|T ) :m ∈M}, one gets therefore

�t(D) = max
P∈P(�t)

T∑
s=t

∫
(�t)

− Ds

(1 + r)s−t dP:

Note that P(�t) inherits closedness and convexity from M. Moreover, from the Rele-
vance Axiom, one gets immediately that P(�t) has full support.
Finally, I show that (P(�t)) is consistent. Let Z be a random variable, and set

D(s; !)=Z(!) (1+r)T−t 1{T}(s). De*ne D′(s; !)=−�t+1(D; !)1{t+1}(s). By predictable
translation invariance, �t+1(D′; !) = �t+1(D; !) for all !. Dynamic consistency yields
then

�t(D′; !) = �t(D; !);

or

sup
P∈P(�t)

∫
(�t)

− Z dP

= sup
P∈P(�t)

∫
(�t)

�t+1(D)
1 + r

dP

= sup
P∈P(�t)

∫
(�t)

sup
Q∈P(�t ; Xt+1(!))

∫
(�t ; Xt+1(!))

− Z(!′)Q(d!′)P(d!):

By Lemma 1, consistency follows. This concludes the proof.
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