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ABSTRACT: The main purpose of the present paper is the study of computational aspects,
Ž .and primarily the convergence rate, of genetic algorithms GAs . Despite the fact that such

algorithms are widely used in practice, little is known so far about their theoretical
properties, and in particular about their long-term behavior. This situation is perhaps not
too surprising, given the inherent hardness of analyzing nonlinear dynamical systems, and
the complexity of the problems to which GAs are usually applied. In the present paper we
concentrate on a number of very simple and natural systems of this sort, and show that at
least for these systems the analysis can be properly carried out. Various properties and tight
quantitative bounds on the long-term behavior of such systems are established. It is our
hope that the techniques developed for analyzing these simple systems prove to be
applicable to a wider range of genetic algorithms, and contribute to the development of the
mathematical foundations of this promising optimization method. Q 1999 John Wiley & Sons,
Inc. Random Struct. Alg., 14, 111]138, 1999

1. INTRODUCTION

Genetic algorithms provide a heuristic paradigm based on a biological analogy for
solving combinatorial optimization problems. They were formally introduced by

w xHolland in 5 in 1975, and ever since were continuously gaining popularity as an
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appealing and efficient tool for finding satisfactory solutions for hard practical
optimization problems.

Ž .Suppose one is searching for an optimal or, rather, a near optimal solution
Ž .among the set of all feasible solutions. The genetic algorithm GA approach is to

design a dynamical system, in which the feasible solutions, viewed as ‘‘creatures,’’
‘‘evolve’’ in a space-homogeneous world under artificial selection. To this end, each
feasible solution is prescribed a distinct genetic type. The quality or fitness of a
solution is defined in such a way that ‘‘high quality’’ corresponds to ‘‘nearly

Žoptimal.’’ The algorithm starts with an initial distribution or, using a more lively
.term, population p, consisting of simple-structures feasible solutions. The popula-

tion then evolves in discrete time-steps under the action of two operators, the
w Ž .x w Ž .xmating operator denoted M p , and the fitness operator denoted W p . Some-

times a third operator, called mutation, is added; in this paper, for the sake of
clarity and simplicity, we only consider the systems defined by the first two
operators.

The mating operator is designed to increase variety in the population. It acts by
Ž .forming random according to the current distribution pairs of solutions, and

Žreplacing them by their randomly obtained according to the definition of the
.mating operator children. Informally, all it does is create new legal genetic types

from combinations of the old ones. In all the cases we discuss, the mating operator
preserves the expected quality of the population. This important property is not a
part of the standard definition GA.

The fitness operator W embodies the selection principle; it is responsible for
making the average quality increase. It acts by reducing the proportion of the low
quality solutions. A fine point about W is that if it is too ‘‘tolerant,’’ the evolution
may take too long, while if it is too ‘‘picky,’’ a good portion of the population may
become extinct before being able to distribute their genes. The danger in the latter
case is that with a good portion of the genes lost, the really good solutions might
become unreachable. All fitness functions discussed in this paper are linear.

ŽIn the overall genetic algorithm, the population quality constantly increases due
.to W , while the possibility of appearance of near optimal solutions in the

Žpopulation is, hopefully, never lost due to the reproductive power of M, which
.should be in a good balance with the extinctive power of W .

Despite the apparent success of this approach in many experimental applica-
Žtions see, e.g., the annual proceedings of the International Conference on Genetic

w x .Algorithms, 11, 6 and many others , few rigorous theoretical results exist to
explain and motivate the experimental results or to guide the design of such
algorithms. This state of affairs is, perhaps, not too surprising for complex and
poorly understood systems for which GAs are usually applied. There is no reason,
however, why it should be so for the simpler systems. Motivated by a belief that a
good understanding of the simpler special cases should eventually lead to a better
understanding of the general case, we concentrate in the present paper on the
study of three different simple but naturally arising GAs.

To the best of our knowledge, the first quantitative results on the long-term
behavior of any concrete, nontrivial, and naturally arising genetic algorithm were

w x w xobtained in 10 and 8 . While the systems discussed were quite simple to define,
the mathematics involved in their analysis turned out to be both interesting and

w xsuggestive. They have inspired to some degree the latter, much more general, 9
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w xand 7 . The present paper is dedicated to the presentation of extended and
w x w ximproved results of 10 and 8 .

Among more recent papers on analysis of genetic algorithms, one should
w xmention 1 ; it provides perhaps the first example in a literature of a genetic

Ž .algorithm which solves a nontrivial theoretical problem, and whose running time
compares favorably with that of existing nongenetic algorithms. For interesting
qualitative results on the asymptotic behavior of genetic algorithms, see also the

w xrecent 3 .
w x w xAs in 10 and 8 , the focus of the present paper is not so much on applications

of GAs, or on the in-depth study of the particular systems discussed, but rather on
developing mathematical tools and methods needed for their analysis. The goal is
to acquire a better understanding of how genetic algorithms work in general. Three
different genetic algorithms are analyzed; the analysis proceeds along similar lines
in all three cases: first some properties of the mating operator M are established;
then upper and lower bounds on average fitness of time-t population are obtained;
finally the dynamical system defined by the mating operator M alone is discussed.
The operator M usually gets much more attention than W; the reason for this is
that in all cases considered, M is far more complex than W, and a good under-
standing of its properties is essential for the analysis of the entire system.

Ž .In the case of the most important GA discussed in this paper Section 3 , we
Ž .also briefly discuss in Section 3.5 the important issue of behavior of the more

practical systems of a finite population size, versus that of the abstract GAs, which
model infinite-size populations.

Ž .The most interesting system analyzed in this paper Section 3 is a GA optimiz-
ing a linear function on the set of all binary strings of length n. Although it is

Žcommon knowledge that GAs perform well on this problem e.g., computer
simulations, heuristic arguments about short and nonconflicting schemata, etc.; see
w x.5, 12 , no rigorous results supporting this empirical knowledge exist. The analysis

Ž . w x w xwas first performed for a special case of f s sÝ s in 10 , then again in 1 for ai i
different system, suited for a particular application. In the present paper we follow
w x10 , and generalize its results in several directions.

Linear fitness functions arise whenever the quality of a solution depends on a
number of factors, so that the contribution of each factor is independent from the
others. Such fitness functions, although at first glance not too powerful, were
successfully used in many complicated applications, e.g., in the famous classical

w xprogram by Samuel for the game of checkers 13 . The power of such systems lies
in a clever choice of factors determining the fitness functions, and in assigning
them proper relative weights. Often the linear function is hidden, i.e., implemented
by an adversary or by nature, and not known in advance to the designer of the
genetic algorithm. Optimizing linear functions is a good starting point for the
theoretical study of GAs for a number of reasons. They are naturally related to
harder optimization problems, which often maximize linear functions on a complex
domain. Being sufficiently simple and thus hopefully tractable, they are at the same
time sufficiently hard to analyze. Finally, they display some fundamental properties
shared by a much wider class of systems, and thus can be used for forming new
conjectures and checking new proof techniques for systems in this class. Some of

w x w xthe general results of 9 and 7 were in fact obtained following this venue.
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Ž .Two other systems investigated in this paper in Sections 4 and 5 are abstract
GAs defined on the domain of natural numbers. Despite their natural and simple
definitions, there is no easy way to predict their long-term behavior, and no
standard tools exist to this end. Despite the similarity in definitions of the two
systems, they display a radically different behavior. The rate of growth of the
average fitness is linear for one and exponential for another. The stationary
distributions corresponding to the different mating operators are also quite differ-
ent: Poissonian versus geometrical.

Although the paper is occasionally technical, it contains some general ideas and
techniques as well. It is our hope that some general aspects of GAs are clarified by
it, and that some of the methods used here prove useful in the future study of GAs.

2. SOME DEFINITIONS

In this section we introduce some notions which are used throughout the paper.
Let NN be a set of some structures, to be called types. A probability distribution

p on NN shall sometimes be referred to as a population; p will denote thel
proportion of the type lgNN in the population. A fitness function f on NN attaches to
each lgNN a nonnegative value, reflecting the quality or the fitness of l. The
a¨erage or expected fitness of a distribution p of NN is

Av p sE f s f l p .Ž . Ž . Ž .Ýp l
lgNN

The fitness operator W, acting on distributions on NN, is completely defined by the
fitness function,

f l pŽ . l
W p s .Ž . l Av pŽ .

Note that it increases the probability of each string proportionally to its fitness.
Thus, the proportion of the above-average strings in the population grows, and so
does the average fitness. More formally,

2 2Ý f l p E f Var fŽ . Ž .Ž .l l p p
Av W p s s sE f q GE f sAv p . 1Ž . Ž . Ž . Ž . Ž .Ž . p pÝ f l p E f E fŽ . Ž . Ž .l l p p

The mating operator M is somewhat more complicated. For each quadruple
Ž . 4i, j, k, l gNN , let b denote the probability that, in a mating between the twoi jk l
‘‘parent’’ types i and j, the two types k and l are produced as ‘‘offspring.’’ Since
any mating must have a definite outcome, it always holds Ý b s1 for allk , l g NN i jk l
i, jgNN. We adopt the view that the order of parents and offspring is not significant,
so that b is symmetric in i and j, and in k and l, i.e., b sb sb . If,i jk l ji k l i jlk

Žfurthermore, b sb meaning that the mating operation is locally time re-i jk l k l i j
.versible , b is called symmetric.
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Given two populations p and q, we define their product = as

p=q s p q b ; lgNN . 2Ž . Ž .Ýl i j i jk l
i , j , kgNN

Ž .The mating operator M is defined as M p sp=p. It should be clear that the
definition of M describes a mating process in which two parents are selected
independently at random from the population p and mated to form random

Žoffspring according to the distribution specified by b. The operator M or,
. Ž .equivalently, b defines a deterministic quadratic mapping from the set of all of

probability distributions over NN to itself. In all the cases discussed in this paper, M
always preserves the average fitness.

Ž .Given such NN, b , f and the initial population p 0 , a corresponding genetic
Ž . Ž .algorithm GA is completely defined. In each discrete moment of time ts1, 2, . . .

Ž .it produces a new population p t from the old one,

p t sWMp ty1 . 3Ž . Ž . Ž .

Sometimes M will be replaced by a ‘‘supermating’’ M k, obtained by applying M k
times.

In order to estimate how close two probability distributions are, we use the
standard notion of ¨ariation distance. For distributions p, q on NN,

1 1
5 5 < < < <D p , q s pyq s p yq s max p A yq A .Ž . Ž . Ž .Ý1 i i2 2 A: NNig NN

3. OPTIMIZING A LINEAR FUNCTION ON BINARY STRINGS

Systems studied in this section involve binary strings of a fixed length n, and linear
Ž .fitness functions f s , . . . , s sAqÝ a s . We assume that f is nonnegative on1 n i i i

� 4n0, 1 ; the condition of nonnegativity is essential for GA, and it can always be met
by adding an appropriate positive constant A.

For the most part of the section the bitwise independent mating operator is used.
� 4The simplest way to describe it is as follows: given a pair of strings s, r , the ith bit

of the first offspring is obtained by choosing randomly and independently the ith
bit of s or the ith bit of r. The ith bit of the second offspring is the one rejected by
the first offspring. The corresponding description in terms of explicitly defined

yd Ž i, j. Žb s is: b is 2 if kj ls ij j viewed as multisets corresponding toi jk l i jk l
. Ž .strings , and is 0 otherwise. The power d i, j stands for the Hamming distance

between i and j.
Ž .In the concluding remarks of this section, we shall also briefly discuss other

mating operators.

3.1. Basic Facts about the Bitwise Independent Mating Operator

In this subsection we concentrate on the mating operator, and establish some of its
basic properties for future use.
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Let s be a random binary string of length n chosen according to the underlying
w xdistribution p, and let s denote the ith bit of s. Let also e sE s be thei i p i

expected value of s . The following claim describes the effect of = on e s.i i

Claim 3.1. Let p and q be two distributions o¨er binary strings of length n. Then, for
e¨ery i between 1 and n,

1E s s E s qE s .Ž . Ž . Ž .Ž .p=q i p i q i2

Ž .In particular, M p and p ha¨e the same bit expectations, and thus the same a¨erage
Ž .fitness Av p .

Proof. Clearly, it suffices to verify that for any four strings s, t, x, y such that the
� 4 � 4pair s, t may produce x, y , it holds s q t sx qy . However, this follows imme-i i i i

diately from the definition of =. B

Next, we introduce the important notion of the basic distribution. A distribution is
Ž . � 4ncalled basic if the corresponding random variables bits s are entirelyi is1

Ž . Ž . Ž .independent. We shall use notation N e sN e , . . . , e to denote the unique1 n
basic distribution with bit expectations e .i

Basic distributions play in our system a role analogous to that of eigenvectors in
linear systems; they will be used to produce an analogue of the spectral decomposi-
tion. The following proposition establishes the key property of such distributions:

Proposition 3.2. We ha¨e

e qd e qd1 1 n n
N e , . . . , e =N d , . . . , d sN , . . . , .Ž . Ž .1 n 1 n ž /2 2

Ž . Ž . Ž .In particular, n e , . . . , e =N e , . . . , e sN e , . . . , e .1 n 1 n 1 n

Proof. Operator = acts independently on each bit, and thus preserves the bitwise
independence. By the previous claim, the bit expectations in p=q are the average
of those in p and q. B

To make the full use of Proposition 3.2, we introduce the notion of association
between distributions on binary strings of length n, and distributions on R n

w xnsupported on 0, 1 .
Let q be a distribution on binary strings, given in the form of a convex

combination of basic distributions,

qs w N ¨ . 4Ž . Ž .Ý ¨
nw x¨g 0, 1

The associated random variable Y on the n-dimensional unit cube is defined by

w xPr Ys¨ 'w .¨
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w xnOn the converse, given a discrete random variable Y on 0, 1 , the associated
distribution on strings is defined by

w xqs Pr Ys¨ ?N ¨ .Ž .Ý
nw x¨g 0, 1

Notice that a distribution q on strings can always be represented as a convex sum
Ž .of degenerate basic distributions,

qs q N r ,Ž .Ý r
n� 4rg 0, 1

where q is the probability of the string r under q. Thus, any q has an associatedr
Ž .Y. In general, however, such Y is not unique, as the representation 4 is not

unique. The other direction works better: any Y has a unique associated q.
The convenience of using the notion of association stems from the following

fundamental fact, implied by Proposition 3.2:

Proposition 3.3. Let p, q be distributions on binary n-strings, and let X, Y be
Ž .corresponding associated random ¨ariables. Then p=q is associated with XqY r2.

B

The last notion to be introduced in this subsection is that of the generalized
B-moment e . Let p be a distribution on binary strings of length n, and letB

� 4 Ž .B: 1, 2, . . . , n be a set of indices. Then e se p is defined asB B

e sPr s s1 sE s ,Ž .H ŁB p i p iž /ž /
igBigB

where s is the ith bit of a random string s. By convention, e is 1. An importanti B

observation is that if X is a random variable associated with p, then

e sE X , 5Ž .ŁB iž /
igB

where X is the value of the ith coordinate of X. We obtain the following formulai
Ž .for the value of e p=q :B

Proposition 3.4. It holds

e p=q s2y< B < e p e q .Ž . Ž . Ž .ÝB K ByK
K:B

w xnProof. Let X and Y be random variables on 0, 1 associated with p and q,
Ž .respectively. By Proposition 3.3 and Eq. 5 ,

X qYi i y < B <e p=q s s2 e p e q . BŽ . Ž . Ž .Ł ÝB K ByKž /ž /2igB K:B
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� Ž .4 � 4Observe that e p can be obtained from p by a linear transforma-B B : �1, . . . , n4 l l g NN

tion defined by n alone, and that, furthermore, this linear transformation is
� Ž .4reversible. Thus, e p provides an alternative basis for the space ofB B : �1, . . . , n4

distributions over the binary strings of length n. In view of Proposition 3.4, this
basis is particularly convenient for working with =. As we shall see later, the
action of W in this basis can also be described in convenient terms.

We conclude this subsection with the following nice and useful corollary about
Ž q q.the effect of M on the covariances. The covariance Cov s , s isi j

Cov s , s se ye e .Ž .i j �i , j4 i j

� 4 Ž .It is easy to check that in the case of 0, 1 -variables that is, in our case , a pair of
variables is independent if and only if their covariance is 0. Thus, the following
corollary implies that every application of M makes s and s ‘‘half’’ as dependent:i j

Corollary 3.5. Let p be a distribution on n-strings, s , s are random ¨ariablesi j
corresponding to the ith and the jth bits, and let sq, sq be the corresponding bits ini j

q Ž .p sM p sp=p. Then

1q qCov s , s s Cov s , s .Ž .Ž .i j i j2

1q q q q qŽ . Ž .Proof. By Proposition 3.4, Cov s , s s e y e e s e q e e yi j � i , j4 i j � i , j4 i j2
1 Ž .e e s Cov s , s . Bi j i j2

Remark. Corollary 3.5 is in fact quite simple, and can be proved without any e sB
Ž .by a direct argument see, e.g., the proof of Lemma 3.14 . The e s, however, will beB

repeatedly used later, and in order to give the reader the opportunity to get more
used to them, we prefer the proof given above. B

3.2. The Rate of Convergence: Symmetric Case

Having gained some understanding of how the mating operator works, we return to
our original system involving both fitness and mating. We start our investigation

Ž .with a special case to be called ‘‘symmetric’’ , when the fitness function is just
Ž . Ž .f s , . . . , s sÝ s , and the initial distribution p 0 is symmetric, i.e., is invariant1 n i

under any permutation pgS of positions. The symmetry is obviously preservedn
Ž .under both the mating and the fitness operators, and thus all p t s are symmetric.
Ž .Clearly, under the action of M and W, the time-t distribution p t will eventually

converge to the one supported on the all-ones string.
Ž .Recall that by 1 , it holds that

Var f sŽ .Ž .
Av W p sE f s q .Ž . Ž .Ž . Ž .

E f sŽ .Ž .

Ž .For our fitness function f p sÝ s , this impliesi

1
Av W p sAv p q Var s q Cov s , s . 6Ž . Ž . Ž . Ž . Ž .Ž . Ý Ýi i jž /Av pŽ . i i/j
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Ž .In order to compute the average fitness of WM p , recall that by Corollary 3.5, M
w Ž .xacting on p preserves all e s and hence all Var s , while reducing all thei i

Ž . Ž .covariances Cov s , s by a factor of 2. Combining this with 6 we arrive ati j

1 1
Av WM p sAv p q Var s q Cov s , sŽ . Ž . Ž . Ž .Ž . Ý Ýi i jž /Av p 2Ž . i i/j

1 Ý Var s 1 Var Ý sŽ . Ž .i i i isAv p q qŽ .
2 Av p 2 Av pŽ . Ž .
1 Ý Var sŽ .i iGAv p q . 7Ž . Ž .
2 Av pŽ .

Ž . Ž . Ž .By symmetry, all E s se are equal, say to e; so, Av p sne and Ý Var s sp i i i i
Ž . Ž .ne 1ye . Substituting these values in 6 , we conclude that

1 Av pŽ .
Av WM p GAv p q 1y .Ž . Ž .Ž . ž /2 n

Ž . Ž Ž .. Ž .Without risk of confusion, let Av t be shorthand for Av p t . Assuming p 0 does
Ž .not have all its weight on the all-zeroes string, all Av t s are positive. The following

Ž .theorem provides an upper bound on the time t it takes Av t to get e-close to its
limit value n:

Ž . Ž . Ž Ž ..Theorem 3.6. Av t Gnye , pro¨ided that tG2n log 1re q2n ln nyAv 0 .

Ž .Proof. By 7 , one has

1 Av tŽ .
Av tq1 GAv t q 1y .Ž . Ž . ž /2 n

Equivalently,

1
nyAv tq1 F 1y nyAv t .Ž . Ž .Ž .ž /2n

Ž . Ž . tŽ Ž ..Whence, nyAv t F 1y1r2n nyAv 0 , and the statement follows. B

How sharp is the upper bound of Theorem 3.6? In order to answer this question,
let us first examine the generalized moments e of the previous subsection moreB

< <closely. Observe that due to the symmetry, only the size B sk matters now, and
all e s corresponding to Bs of size k are equal. Define E , to be called theB k
generalized kth moment of symmetric p, as

k

< <E se where B sk , or just E sPr s s1 .Ž .Hk B k p iž /
is1

Ž . Ž .The inequality 7 becomes loose when the covariances Cov s , s are positive.i j
Ž . 2Note that Cov s , s sE yE . How will this quantity behave in the course ofi j 2 1
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iterative applications of M and W ? It turns out that if the initial distribution has a
certain nice property, these covariances are never positive; this will yield a lower
bound on the rate of convergence of such distributions.

Ž . � 4Let EE p s E s1, E , E , . . . , E be the sequence of moments of distribution0 1 2 n
p. Notice that it is monotone nonincreasing.

Ž .Definition 1. A distribution p is called balanced if the sequence EE p is log-con-
ca¨e, i.e., E2 GE E , for all 1FkFny1. Equï alently,k ky1 kq1

kEkq1 sPr s s1 s s1 ,Ž .Hp n iž /Ek is1

is monotone nonincreasing in k.

The simplest example of a balanced distribution is a symmetric distribution on
singletons, where E s1rn, and all the subsequent moments are 0. The following1
lemma explains the importance of being balanced:

Lemma 3.7. The property of being balanced is preser̈ ed under both W and M.

Proof. Let p denote the total weight of strings with exactly i 1s in p. Then,i

nyk
n ž /iyk

E s P .Ýk inisk ž /i

Ž .Using this representation and keeping in mind that Av p snE , it is not hard to1
X Ž .verify that the kth moment E of p9sW p can be expressed in terms ofk

moments of p as follows,

nyk nyk
n n1 nyk E k Ež / ž /iyk iyk kq1 kX XE s P s iP s q .Ý Ýk i iAv W p n E n En nŽ .Ž . 1 1isk iskž / ž /i i

q q Ž .Also, by Proposition 3.4, the k th moment E of p sM p isk

k
kq ykE s2 E E .Ýk i kyiž /i

is0

Ž .The proof of the claim is relatively simple for W. Expressing the moments of W p
in terms of moments of p, one needs to show that

2
kE q nyk E� 4Ž .k kq1

G ky1 E q nykq1 E ? kq1 E q nyky1 E .� 4 � 4Ž . Ž . Ž . Ž .ky1 k kq1 kq2

Ž .Expanding the above expressions, and using the log-concavity of EE p , the claim
follows. For M the lemma turns out to be surprisingly difficult. Fortunately, it has
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Žbeen proven before for a completely different need and in a slightly more general
. w xsetting by Walkup in 14 . B

Ž . 2Now, for a balanced p all the covariances Cov s , s sE yE are nonpositive.i j 2 1
Ž .Therefore, by preservation of balancedness, if p 0 is balanced, the covariances

Ž Ž . Ž .. Ž .Cov s t , s t are nonpositive for all t)0. Thus, inequality 7 has the followingi j
counterpart for balanced distributions,

ÝVar s Av tŽ . Ž .i
Av tq1 FAv t q sAv t q 1y . 8Ž . Ž . Ž . Ž .ž /Av t nŽ .

Ž .As an immediate consequence of 8 we obtain a lower bound essentially matching
the upper bound of Theorem 3.8:

Ž . Ž . Ž . Ž .Theorem 3.8. If p 0 is balanced, then Av t Fnye for all tF ny1 log 1re q
Ž . Ž Ž ..ny1 log nyAv 0 .

3.3. The Rate of Convergence: An Outline of the General Case

We now address the general case, when the fitness function is an arbitrary linear
function. The analysis can be performed for this case as well, at the expense of
making a small modification in the definition of the system. We give a detailed

w xoutline of the argument here, referring the interested reader to 8 for the omitted
Ž .simple technical details. The only two properties of M used in the proof are the
preservation of bit expectations and the reduction of covariances by a factor of 2.

Ž .Let the fitness function f be f s sAqÝ a s and assume that f is nonnega-i i i
� 4ntive on 0, 1 . The condition of nonnegativity is essential for GA; it can always be

< <satisfied by choosing an appropriate A. Also define LsAqÝ a . Without loss ofi
Žgenerality, one may assume that all a are nonnegative: otherwise, replace for thei

.needs of the analysis alone, and without altering the actual system s by 1ys , ai i i
by ya , and A by Aya .i i

Ž . rŽ Ž ..In what follows we consider a modified system, where p tq1 sWM p t , i.e.,
Ž . Ž .p tq1 is obtained by r successive applications of M rather than a single one ,

followed by a single W.
X Ž .Recall that for any fitness function, the expectation e of the ith bit in W p isi

E f s ?sŽ .Ž .iXe s .i E f sŽ .Ž .
Ž . Ž .Keeping in mind that Var s se 1ye , the last identity becomes in our case,i i i

a 1iXe se q 1ye e q Cov a s , s . 9Ž . Ž .Ýi i i i j j iž /Av p Av pŽ . Ž . j/i

Ž . rŽ Ž ..Consider the modified system with p tq1 sWM p t . Combining Corollary 3.5
Ž .with 9 gives for this system,

ai yre tq1 se t q 1ye t e t q2 R t , 10Ž . Ž . Ž . Ž . Ž . Ž .Ž .i i i i iAv tŽ .
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where

Ý a s tŽ .j/ i j j
R sCov , s t Gye t .Ž . Ž .i i iž /Av tŽ .

Theorem 3.9. Consider the system with rG4q log nre , and assume that in the2
Ž . Ž . Ž .initial distribution p 0 all e s are between d and 1yd . Then Av t GL 1ye for alli

Ž .tGc ? nre log 1rde , where c is some unï ersal constant bounded by 70.

Ž .Proof. Let i be a position such that a GeLr2n. By 10 ,i

e e 7e e
2e tq1 Ge t q 1ye t e t y e t Ge t 1q y e t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .i i i i i i iž /2n 16n 16n 2n

11Ž .

Ž .It is easily verified straightforward technical details are omitted that the number
1Ž . Ž .of steps it takes e t to get from d to is O nre log 1rd . Observe also that ei i2

1 1strictly increases until it passes , and once it passes , it can never again go below2 2

this value. Thus we may assume that after such a number of steps, all such e arei
1G . This concludes the first part of the analysis.2

The second part of the analysis, i.e., from the moment when i with such a si
1Ž . Ž . Ž .holds e t G , until the moment it holds Av t GL 1ye , resembles that of thei 2

symmetric case. In fact, the value of r does no longer matter, as long as rG1.
Ž . Ž .Arguing along the same lines as in 6 and 7 , one gets

Ý Var a s tŽ .Ž .i i iyrAv tq1 GAv t q 1y2Ž . Ž . Ž .
Av tŽ .

1 Ý a2 1ye t e tŽ . Ž .Ž .i i iGAv t q .Ž .
2 Av tŽ .

Observe that by our assumption, for all a as above it holds a e GeLr4n. Also,i i i
the sum Ý a where j runs over the remaining positions, is bounded by n eLr2nj j
seLr2. Therefore, the last inequality implies

1 e 1 e eL
Av tq1 GAv t q a 1ye t yŽ . Ž . Ž .Ž .Ý i i2 4n 2 4n 2

e e 2L
GAv t q LyAv t y .Ž . Ž .Ž .

8n 16n

Equivalently,

e e 2L
LyAv tq1 F LyAv t 1y q .Ž . Ž .Ž . ž /8n 16n

Ž .Once more, it is a simple matter to verify that the number of steps it takes Av t to
1Ž . w Ž . xget from L yer2 a lower bound on Av t after the conclusion of the first stage2

Ž . Ž .to L 1ye , is O nre log 1re . The straightforward technical details are omitted.
Combining the terms obtained in the two stages, we arrive at the desired conclu-
sion. B
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3.4. More on the Mating Operator

This subsection is devoted to the study of systems defined by the mating operator
alone. Our aim is to understand the structure of the stationary distributions and
establish the rate of convergence for these systems. While similar results were

w xrecently obtained in 7 for more general crossover systems, the analysis given here
uses entirely different ideas, and thus, given the rarity and difficulty of rapid mixing
results for nonlinear systems, is of an independent interest.

w xLet D ); ) denote the variation distance between two distributions. Given a
distribution p over binary n-strings, M k p is obtained by k successive applications
of M. As before, e is used for the expectation of the ith bit in p, and definei

Ž .es e , e , . . . , e . The main result of this subsection is:1 2 n

k Ž .Theorem 3.10. Gï en an initial distribution p, M p con¨erges to N e , where e is the
k Ž .¨ector of bit expectations in p. Moreo¨er, the distance between M p and N e is

bounded by
k yŽk r2.'D M p; N e Fn k 2 .Ž .

kw Ž .xEquï alently, D M p; N e Fe , pro¨ided that

n n
kG2 log q 1qo 1 log log .Ž .Ž .2 2 2e e

Proof. Let us but mention that since the bitwise independent mating increases the
independence of the bits without altering their expectations, the fact of conver-

Ž .gence to N e should not be surprising.

We start with the observation that the variation distance between two basic
distributions can be bounded as follows:

Ž . Ž . w xn w Ž . Ž .xClaim 3.11. For us u , . . . , u , ¨ s ¨ , . . . , ¨ g 0, 1 , it holds D N u ; N ¨ F1 n 1 n
5 5uy¨ .1

Proof. By induction on n, notice that

D N u , . . . , u , u ; N ¨ , . . . , ¨ , ¨Ž . Ž .1 ny1 n 1 ny1 n

FD N u , . . . , u , u ; N u , . . . , u , ¨Ž . Ž .1 ny1 n 1 ny1 n

qD N u , . . . , u , ¨ ; N ¨ , . . . , ¨ , ¨Ž . Ž .1 ny1 n 1 ny1 n

< <s u y¨ qD N u , . . . , u ; N ¨ , . . . , ¨ .Ž . Ž .n n 1 ny1 1 ny1

Repeatedly applying the same argument, the claim follows. B

Let q be a distribution on strings, and let e be the vector of bit expectations of q.
The next step is to relate the variation distance between q and the basic distribu-

Ž .tion N e to the expectation of the l distance between the associated random1
Ž .variables. Notice that N e is associated with the random variable having all its

weight on e.
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w xnClaim 3.12. Let Y be a random ¨ariable on 0, 1 associated with q, and let
nw xeg 0, 1 be a ¨ector. Then

5 5D q ; N e FE Yye .Ž . Ž .1

Proof. By Claim 3.11,

5 5 5 5w xE Yye s Pr Ys¨ ? ¨ yeŽ . Ý1 1
nw x¨g 0, 1

w xG Pr Ys¨ ?D N ¨ ; N e .Ž . Ž .Ý
nw x¨g 0, 1

Ž . Ž .nRecall that Ý Pr Ys¨ N ¨ is q by definition. Keeping in mind that¨ gw0, 1x
variation distance between two distributions is half the l -norm of their difference1
Ž .viewed as functions on the underlying space , the triangle inequality for the
l -norms implies1

5 5 w xE Yye GD Pr Ys¨ ?N ¨ ; N e sD q ; N e . BŽ . Ž . Ž .Ž . Ý1
nw x¨g 0, 1

We proceed presently with the proof of the theorem. Let X be the random
variable associated with the initial distribution p. Let S k denote the sum of 2 k

2
independent identical random variables X. According to Proposition 3.3, 2ykS k is2
associated with M k p. Call this random variable Y. By Claim 3.12,

n
k 5 5 < <D M p; N e FE Yye s E Y ye ,Ž . Ž . Ž .Ý1 i i

is1

n Ž < <.and it suffices to bound the sum Ý E Y yp . Notice that Y , the ith coordinateis1 i i i
k Ž .of Y, is the average of the sum of 2 independent X s as Y is of Xes , where eachi

w xX is supported on interval 0, 1 , and has mean e . Applying the Hoeffdingi i
Ž w x.inequality see, e.g., 4 , we conclude that for each i,

< < y2 ?2 k t 2
Pr Y ye G t F2 e .Ž .i i

Ž .Therefore, for any parameter tg 0, 1 ,

< < < < y2 kq 1 t 2
E Y ye F tqPr Y ye G t F tq2 e .Ž . Ž .i i i i

yk r2' Ž . Ž < <.Choosing ts2 k 1ye for a suitably chosen e , we obtain E Y ye Fi i
yk r2'2 k . Finally,

n
k yŽk r2.'5 5 < <D M p; N e FE Yye s E Y ye Fn k 2 . BŽ . Ž . Ž .Ý1 i i

is1

3.5. Two Concluding Remarks

The main object of investigation in Section 3 were the dynamic systems defined on
distributions of binary strings. Such systems are an idealization of the systems
occurring in practical implementations of genetic algorithms, where one is dealing
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with evolution of finite-size multisets of binary strings. To what extent are the
methods developed for idealized systems applicable to the practical situation? We
claim that at least in the case of linear fitness function and bitwise independent
mating operator, these methods can be extended to cover the new situation as well.

We start by reviewing the definitions. The basic object is now a multiset
containing N binary strings of length n. The population size N will be maintained

˜Ž .under the new operators. The new mating operator denoted as M is defined as
Žfollows: given a multiset of n strings, choose randomly and independently with

. Ž .replacement N items we assume N is even . Pair the first item with the second,
the third with the fourth, etc. Each pair produces two offsprings. Consider one such
pair: for each position 1F iFn, randomly and independently from others, the ith
bit of the first offspring is taken from one random parent, while the ith bit of the
second offspring is taken from the other.

˜The new W acts by forming a new multiset, obtained by choosing N strings
Žrandomly and independently, such that the probability of a string to be chosen at

.any time is proportional to its relative frequency times its fitness in the old
multiset.

It is convenient to associate with a multiset of N binary strings a distribution p̃
˜on binary strings, induced by the relative frequencies of strings in the multiset. W

˜and M can be viewed as probabilistic operators defined on p.̃
An important observation relating the old and the new definitions is:

Lemma 3.13. Let p be the distribution induced by some multiset of N strings. Let z˜
and z stand, respectï ely, for one of the following four quantities: the expectations of˜

˜Ž . Ž .the ith bit or the co¨ariances of the ith and jth bits, in either W p and W p , or in˜ ˜
˜Ž . Ž .M p and M p . Then, comparing the ¨alues of z and z, one always gets˜ ˜ ˜

< < yNe 2
Pr zyz Ge F2 e .Ž .˜

˜ ˜Ž . Ž .Proof. It suffices to notice that in fact M p and W p are obtained by taking an˜ ˜
Ž . Ž . ŽN-sample from M p and W p , respectively. Using the Hoeffding inequality see˜ ˜

w x. Ž .4 to bound the deviation of the sample from its mean which is 0 , we arrive at
the desired result. B

The meaning of the above lemma is that despite the fact that the system is
Ž .nonlinear, the errors in e and Cov s , s accumulate but linearly. As a conse-i i j

quence of this, the methods similar to those developed previously still apply, only
now they should be carried out in a presence of random noise. For N big enough,

Ž .this noise becomes arbitrarily small. For instance, the finite analogue of 11 is

e e
e tq1 Ge t q 1ye t e t y e t yO rd with prob.Ž . Ž . Ž . Ž . Ž . Ž .Ž .˜ ˜ ˜ ˜ ˜i i i i i2n 16n

r2yNdGV 1y2 e ,Ž .ž /
˜ ˜ rŽ . Ž Ž ..where d is an arbitrary positive value, p tq1 sWM p t , and rs4q log nre.˜ ˜ 2

Clearly, for any sufficiently large N a result analogous to Theorem 3.9 can be
obtained; we omit here the exact statement and its proof. For further details the

w x w xreader is referred to 8 and 7 . It is worth a comment here that the asymptotic



RABINOVICH AND WIGDERSON126

behavior of the finite-size system is radically different from the corresponding
dynamical system, eventually all the strings in the multiset will be the same. Thus,
if one wishes to design a genetic algorithm whose behavior will be similar for a
sufficiently long time to that of the idealized GA, N should be chosen sufficiently
large.

The second remark is about using different mating operators. Indeed, the most
popular mating operator in GA is the crosso¨er, defined as follows: given a pair of

� 4strings s, r , they are cut at the same random location 0F iFn, then the head of s
is glued together with the tail of r, and vice versa, producing two offspring.

w xAnother interesting and practical mating operator was used in 1 ; the bits become
totally independent in one step, while their expectations are preserved. Do our
methods apply for such operators?

The answer is positive. Notice that the only two properties of the mating
operator used in the analysis of the system were the preservation of e , and the facti

Ž .that the covariance Cov s , s was reduced each time by a factor c. However, thesei j
properties are quite universal, and shared in particular by both the above-men-
tioned operators. Indeed, both preserve e s for obvious reasons. As for thei
covariances, the latter operator brings them to 0 in one step, while for the former it
holds.

q Ž .Lemma 3.14. Let p be a distribution on strings, and let p sM p where M is the
crosso¨er operator. Then

Cov sq , sq s 1yc Cov s , s ,Ž .Ž .Ž .i j i j i j

< <where c s iy j rnG1rn.i j

Proof. Roughly, the argument can be described as follows. Consider a random
q Ž . � 4string s from p viewed as a random variable , and its two parents r, t from p.

Notice that c is exactly the probability that the crossover that produced s fromi j
r, t, occurred between positions i and j. Now, if it did occur there, the ith and jth
bits of s are uncorrelated, they came from different random strings. Therefore, this

Ž q q.case contributes 0 to Cov s , s . If the crossover did not occur there, thei j
covariance of the ith and jth bits of s is the same as in p. Since the second

Ž .possibility happens with probability 1yc , the lemma follows. For a morei j
w xdetailed proof, the reader is referred to 8 . B

The conclusion is that an analogue of Theorem 3.9 holds in this setting as well.

4. THE BINOMIAL SYSTEM ON INTEGERS

The system is defined on the domain of all nonnegative integers, i.e., the types N
� 4are 0 jN. The transition probabilities b of M arei jk l

¡ iq j yŽ iqj.2 , iq jskq l ,~ ž /b s ki jk l ¢
0, otherwise.



CONVERGENCE RATE OF GENETIC ALGORITHMS 127

Equivalently, when types i and j meet, the type of the first offspring is distributed
1w xbinomially on the interval 0, iq j , with parameter . Notice that the above2

Ž � 4transition probabilities b probability that the parents i, j will have offspringi jk l
� 4.k, l are 0 whenever iq j/kq l.

The fitness of type ‘‘i’’ will be simply i. Clearly, above M is fitness-preserving.
w xThe operator M is not time reversible, and thus the general theory of 9 does

not apply to it. Its analysis is thus of a special interest. On the other hand, it can be
viewed as a limit of time-reversible systems. Indeed, consider the bitwise indepen-
dent mating operator on the binary strings of length n of the previous section. For

Ža symmetric p i.e., the probability of a string depends solely on the number of 1s it
.has , let p be the total weight of all strings with i 1s. Then for a large n, thew i x

Ž . Ž .behavior of M p and W p in the present system is very close to that of properlyi i
Ž . Ž .normalized M p and W p in the binomial system. This analogy provides aw i x w i x

Ž .possibility to transfer the methods of the previous section the symmetric case to
the new setting, and is very fruitful. In many cases the reader will find a close
resemblance between the results of this and the previous sections. The possibility
of using the properties of the better understood time-reversible system for the
analysis of a nonreversible one is surprising.

4.1. Some Preliminaries

The infinity of our systems raises a problem we did not have before: it may happen
that the expected fitness of a distribution is `, in which case all the questions we

Ž .ask are meaningless. In what follows, we assume that the initial distribution p 0
Ž .has a finite support e.g., only a finite number of types have positive probability .

Ž .Since this property is preserved under=and W, all p k will have a finite support.
In what follows, we shall often use generating functions, obtained by associating

Ž . ithe distribution p with the polynomial P x sÝ p x . Operators on polynomi-iG 0 i
Ž . Ž .als corresponding to Av p and W p are defined as follows:

Ž .Claim 4.1. Let p be a distribution, and P x the associated polynomial. Define

P9 1 xP9 xŽ . Ž .
Av P x s ; W P x s .Ž . Ž .Ž . Ž .

P 1 P9 1Ž . Ž .

Ž Ž .. Ž . Ž . Ž Ž ..Then Av P x sAv p , and the polynomial associated with W p is W P x . B

Ž . Ž . Ž .Observe that for two polynomials P and Q, Av PQ sAv P qAv Q , and for a
Ž . Ž .constant c, Av cP sAv P .

The following simple inequality will repeatedly prove useful:

Ž .Claim 4.2. Let a , a , b , c be nonnegatï e reals is1, 2, . . . and suppose that fori i i
each i,

a bi iGa .
b ci i
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Then
Ýn a Ýn bis1 i is1 iGa .n nÝ b Ý cis1 i is1 i

Proof. Define x s a ra , y s c ra . By the Cauchy]Schwartz inequality,' 'i i i i
Ž .2 Ž 2 .Ž 2 .Ý x y F Ý x Ý y . Substituting the expressions for x , y , we deduce thei i i i i i
claim. B

4.2. The e-Sequence of a Distribution

The following claim shows that the employment of generating functions in the case
of binomial systems is indeed appropriate:

Ž . Ž .Claim 4.3. Let p, q be distributions, and let P x , Q x be the associated polynomi-
Ž .ŽŽ . .als. Then the polynomial associated with p=q is P?Q xq1 r2 .

Proof. Since the=operator is bilinear, it suffices to check the statement for
distributions concentrated on a single point. Let p be concentrated on some type i,

iq j yŽ iqj.Ž .and q on some type j. By definition of =, in this case p=q s 2 .ž /k k
k ŽŽ . . jŽŽ . . iHowever, this is exactly the coefficient of x in xq1 r2 xq1 r2 . B

Ž .Definition 2. Gï en a distribution p, define its e-sequence e , e , e , . . . by the0 1 2
generating relation,

` ` ek kiP x s p x s xy1 .Ž . Ž .Ý Ýi k!is0 ks0

Ž .In particular, e s1, e sAv p . Observe that e s are nonnegative, and e s00 1 i i
implies that so are all e with kG i. This can be deduced from the nonnegativity ofk

Ž .p s, and the fact that e is the value of the kth derivative of P x at 1.i k

� 4̀Claim 4.4. Let p, q be two distributions with corresponding e-sequences c andi is0
� 4̀d respectfully. Theni is0

v The kth moment of p=q is

k
k ž /i

c d .Ý i kyik2is0

v Ž .The kth moment of W p is
e ekq1 kqk .

e e1 1

X Ž .In particular, e , the first moment of W p , equals e re q1.1 2 1

Proof. Immediate from Claims 4.3 and 4.1 and the definition of the e-sequence.
B
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( ( ))4.3. A Lower Bound on Av p k

Ž . Ž .Proposition 4.5. The generalized moments of p denoted as e , and those of W pi
Ž X .denoted as e are related as follows,i

eX ek kG for all k with e )0.X ke eky1 ky1

X Ž .Proof. Expanding the e s in terms of e s by Claim 4.4 , we obtain an equivalentk k
statement,

e qke ekq1 k kG ,
e q ky1 e eŽ .k ky1 ky1

or
e ekq1 kq1G . 12Ž .

e ek ky1

w Žk .Ž .xExpressing the e s in the terms of the p s recall that by Definition 2, e sP 1 ,k i k
Ž .we obtain for the left side of 12 ,

Ý` i iy1 ??? iykq1 iyk pŽ . Ž . Ž .is0 i q1
`Ý i iy1 ??? iykq1 pŽ . Ž .is0 i

Ý` i iy1 ??? iykq1 iykq1 pŽ . Ž . Ž .is0 is .
`Ý i iy1 ??? iykq1 pŽ . Ž .is0 i

Ž .The right side of 12 is

Ý` i iy1 ??? iykq2 iykq1 pŽ . Ž . Ž .is0 i
.

`Ý i iy1 ??? iykq2 pŽ . Ž .is0 i

Ž .Now the left and the right sides can be represented respectively in the form,

Ý` a Ý` bisky1 i isky1 i
and ,

` `Ý b Ý cisky1 i isky1 i

where a rb sb rc s iykq1 for all iGky1. The assumptions of Claim 4.2 hold,i i i i
and therefore the left side is greater than or equal to the right side, as claimed. B

The parameter e re is important, as the average fitness of the next stage2 1
w X Ž . xdistribution depends solely on it recall that e s e re q1 . The following lemma1 2 1

Ž Ž ..plays the key role in obtaining a lower bound on Av p n :

� 4 � X4 � U4Lemma 4.6. Let p be a distribution with p -1. Let e , e , and e denote the0 i i i
Ž . Ž .e-sequences of p, W p , and MW p , respectï ely. Then

eU e 12 2G q .Ue e 21 1
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Proof. It follows that

eU eX qeX 2 1 1 eX 1 1 e 1 e 1 e e 1Ž . Ž . Ž .1 2 32 2 1 2 2 2 2 2X Xs s e q G e q s q1 q s q .X X1 1U ž /e 2 e 2 2 e 2 2 e 2 e 2 e e 21 1 1 1 1 1 1

( ) Ž . Ž .1 the first two moments of MW p expressed in terms of those of W p ;
( )2 by Proposition 4.5;
( ) X Ž .3 e of W p expressed in terms of e , e of p. B1 1 2

Lemma 4.7. Let p be some distribution with p s0. Then0

1Av WM p GAv p q .Ž . Ž .Ž . 2

Ž .Proof. Since Av p equals e , it is sufficient to prove the corresponding inequality1
for e s. For every distribution p with p s0, there exists a distribution q such that1 0
Ž . � 4 � X4� U4 � q4 Ž .W q sp. Let e , e e , and e denote the e-sequences of q, W q sp,i i i i
Ž . Ž . Ž .MW q , WMW q sWM p , respectively. Then

eU e 1 1Ž . Ž . Ž .1 2 32 2 Xqe s q1 G q q1 s e q .1 1Ue e 2 21 1

Where

( ) q Ž . U U Ž .1 e of WMW q expressed in terms of e , e of MW q ;1 1 2
( )2 by the previous lemma;
( ) X Ž .3 e of W q expressed in terms of e , e of q. B1 1 2

We can now establish a lower bound:

Theorem 4.8. We ha¨e

n
Av p nq1 GAv p 1 q .Ž . Ž .Ž . Ž .

2

Ž .Proof. The proof follows by induction from Lemma 4.7. Indeed, since all p k ,
w Ž . Ž Ž ..xk)0, assign zero probability to the type ‘‘0’’ as p k sWM p ky1 ,

1 n
Av p nq1 GAv p n q G ??? GAv p 1 q . BŽ . Ž . Ž .Ž . Ž . Ž .

2 2

4.4. An Upper Bound

Now we would like to show that the obtained lower bound is tight, at least for
certain kinds of distributions.

Definition 3. A distribution p will be called balanced if its e-sequence is log-concä e,
e. g., e2 Ge e for all natural k.k ky1 kq1

We have already encountered balanced distributions in Section 3. Here they are
used in a very similar fashion. The simplest example of a balanced distribution is

Ž .that with p s1. The corresponding e-sequence is 1, 1, 0, 0, . . . .1
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Ž .Balanced distributions have as before the following important property:

Ž .Lemma 4.9. If distributions p, q are balanced, so are W p and p=q

Ž .The proof and the statement are essentially the same as in Lemma 3.7; the
w xsecond part is proved by Walkup in 14 .

Lemmas 4.6 and 4.7 and Theorem 4.8 all have reversed counterparts for
balanced distributions:

Lemma 4.10. Let p be a balanced distribution. Using the notation of Lemma 4.6, we
claim that

eU e2 2F q1.Ue e1 1

Proof. It follows that

eU eX qeX 2 1 1 eX 1 1 eŽ . Ž . Ž .1 2 32 2 1 2 2X X X Xs s e q F e q e se s q1.X X1 1 1 1Ue 2 e 2 2 e 2 2 e1 1 1 1

( ) Ž . Ž .1 the first two moments of MW p expressed in terms of those of W p ;
( )2 by preservation of balancedness under W;
( ) X Ž .3 e of W p expressed in terms of e , e of p. B1 1 2

Ž . Ž .Lemma 4.11. Let p 0 be some nonzero balanced distribution. Then all p i and
Ž Ž ..W p i are balanced, and for all natural k it holds

Av p kq1 FAv p k q1.Ž . Ž .Ž . Ž .
Ž Ž .. � 4 � X4� U4 � q4Proof. Let qsM p ky1 . Let e , e e , and e denote the e-sequences ofi i i i

Ž . Ž . Ž . Ž . Ž .q, W q sp k , MW q , and WMW q sp kq1 , respectively. Then
eU eŽ . Ž . Ž .1 2 32 2 Xqe s q1 F q1q1 s e q1.1 1Ue e1 1

Where

( ) q Ž . U U Ž .1 e of WMW q expressed in terms of e , e of MW q ;1 1 2
( )2 by the preservation of balancedness and the previous lemma.
( ) X Ž .3 e of W q expressed in terms of e , e of q. B1 1 2

Thus, the bound of Theorem 4.8 is tight:

Ž . Ž Ž .. Ž Ž ..Theorem 4.12. For a balanced initial distribution p 0 , Av p nq1 FAv p 1 qn.

4.5. Stationary Distributions

As we have mentioned, the present system is not time reversible. Therefore the
structure of its stationary distributions, and even the fact of their existence, cannot

w xbe inferred from the general theory 9 . However, keeping in mind the analogy with
the symmetric systems of the previous section, a natural guess would be that the
stationary distributions are Poissonian. This is indeed the case.
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Ž . Ž . Ž i . yaDefinition 4. Let N a denote the distribution with Pr i s a ri! e for is
0, 1, 2, . . . .

Ž . a Ž xy1. Ž 2 .The generating function of N a is e , and its e-sequence is 1, a , a , . . . .
Ž Ž ..Observe that Av N a se sa .1

Theorem 4.13. For any aG0 there exists a unique stationary distribution with
Ž .expected fitness a , and that is N a . Moreo¨er, if we start with an arbitrary p with

n Ž .e sa , and apply M repeatedly, the distribution M p con¨erges to N a in the1
¨ariation norm.

Ž . Ž . Ž . ŽŽProof Sketch . Using generating functions, we see that N a =N b sN aq
. .b r2 . Thus, our special distributions are stationary, and behave in a nice way. It

Ž .would be tempting to represent p as a convex sum of N a s with aG0, which is
so convenient for working with M. Unfortunately, such representation is not always

Ž .possible. Since introducing N a s with a-0 leads to new technical complications,
Ž .we prefer to give a more direct and less precise argument.

Ž .Using the e-sequences, it is not hard to infer from Claim 4.4 that N a s are the
only stationary distributions. Therefore, since e sa is preserved under =, the1

� n 4̀ Ž .only possible limit point of the set M p is N a .ns0
Ž .The fact of convergence and an estimation of its rate it may depend on a can

be obtained using the following observation: If the polynomial associated with p is
Ž . nŽ .P x , then, by Claim 4.3, the polynomial corresponding to M p is

2 nxy1
P 1q .nž /2

A tedious but straightforward elementary calculus argument, combined with induc-
Ž .tion on i, shows that the ith derivative of the above polynomial at xs0 that is, pi

i ya Ž . Ž .tends to a e , where asP9 1 sAv p . To get an estimate on the rate of
Ž . Žconvergence to N a , one needs to consider only a sufficiently long depending on

.a ‘‘head’’ of the distribution. Since all the coefficients are nonnegative and sum
up to 1, the contribution of the corresponding ‘‘tail’’ to the variation distance can
be effectively bounded provided the head is sufficiently close to convergence. B

5. THE UNIFORM SYSTEM

The last system we are going to investigate differs from the previous one only in
definition of the mating operator. The transition probabilities b are this time,i jk l

1¡
, iq jskq l ,~b s iq jq1i jk l ¢

0, otherwise.

That is, when types i and j meet, the type of the first offspring is uniformly
w xdistributed on the interval 0, iq j . Notice that the average fitness is preserved

under =.
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The uniform system is time-reversible, and this fact is reflected in the structure
of its stationary distributions.

Despite the superficial resemblance in the definitions of the present and the
previous systems, they display a significantly different behavior; the rates of growth

Ž Ž ..of Av p t are exponential versus linear, respectively.

5.1. Some Facts Related to the Mating Operator

We continue to use generating functions in the analysis of the present system as
well; their usage, however, poses more difficulties than before.

Ž . Ž .Claim 5.1. Let P x , Q x be polynomials associated with p, q. Then the polynomial
associated with p=q is

H x P t Q t dtŽ . Ž .1
.

xy1
Proof. Immediate from the definition of =. B

Ž Ž .. Ž .Recall that, as before, the polynomial W P x associated with W p is
Ž . Ž .xP9 x rP9 1 .
The following two simple facts will prove useful:

Ž .Claim 5.2. Let F x be some function analytic in the neighborhood of 1, and
Ž . Ž x Ž . . Ž . Žn.Ž . Žn.Ž . Ž .f x s H F t dt r xy1 . Then f 1 sF 1 r nq1 for e¨ery natural n.1

Ž . ` Ž . i Ž .Proof. It suffices to notice that for F x sÝ a xy1 , f x has expansionis0 i
Ž . ` Ž Ž ..Ž . if x sÝ a r iq1 xy1 . Bis0 i

Ž . n i Ž . Ž Ž . Ž .. Ž . Ž .Claim 5.3. Let Q x sÝ a x , P x s Q x yQ 1 r xy1 . Then P x sis0 i
Ýny1 A x i, with A sÝn a .is0 i k iskq1 i

Proof. We show that
ny1 n n n

i i ixy1 A x s A yA x yA s a x y aŽ . Ž .Ý Ý Ý Ýi iy1 i 0 i i
is0 is1 is1 is1

n n
is a x y a sQ x yQ 1 . BŽ . Ž .Ý Ýi i

is0 is0

Consequences:

( ) Ž . Ž .1 If the coefficients of Q x are nonnegative, the coefficients of P x are also
� 4ny1nonnegative; the sequence A is monotone nonincreasing.i is0

( ) Ž . Ž .2 If a s0 in Q x , then A sA in P x .i iy1 i

( ( ))5.2. Bounds on Av p n

Ž .A crude upper bound is easy to get. Suppose that p 0 is concentrated on the first
Ž . nd integers. Then obviously, p n is concentrated on the first 2 d integers, implying

Ž Ž .. n Ž n.Av p n F2 dsO 2 .
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In order to establish an exponential lower bound, we need two lemmas, both
Ž . Ž .rather technical. Let P x denote the polynomial associated with p n .n

Lemma 5.4. We ha¨e

2 2 XAv P x s1q Av P x q Av P x .Ž . Ž . Ž .Ž . Ž . Ž .n ny1 ny13 3

Proof. It follows that

Av P xŽ .Ž .n

Ž .1
sAv WM P x sAv x M P x 9 s 1qAv M P x 9Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž . Ž .ny1 ny1 ny1

Y X X1M P x 0 N 2 P 1 P 1 q2 P 1 P 1Ž .Ž . Ž . Ž . Ž . Ž .Ž . 2ny1 1 ny1 ny1 ny1 ny13s1q s 1q X1M P x 9N 2 P 1 P 1Ž . Ž . Ž .Ž .ny1 1 ny1 ny12

2 2
Xs1q Av P x q Av P x ,Ž . Ž .Ž . Ž .ny1 ny13 3

where

( ) Ž . Ž . Ž .1 since Av P?Q sAv P qAv Q
( ) Ž Ž .. Ž .2 expressing the derivatives M P x in terms of those of P x , accord-ny1 ny1

ing to Claim 5.2. B

Ž .In what follows we assume that the initial distribution p 0 is not concentrated
on 0.

X 2Ž Ž .. Ž Ž ..Lemma 5.5. Av P x G Av P x for all nG3.n n3

Ž . Ž . Ž . Ž . Ž .Proof. Let us represent P x as P x sS x qT x , where T x is the tail ofn n
Ž . Ž . Ž .P x , and consists of terms of degreeG5, and S x is the head of P x , consistingn n

X 2Ž Ž .. Ž Ž ..of terms of degreeF4. By Claim 4.2, in order to show Av P x G Av P x , itn n3
X 2 X 2Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..suffices to establish Av S x G Av S x and Av T x G Av T x .3 3

Ž . iStart with T. Let T x sÝ b x . Theni) 4 i

4 4 Ý ib Ý i iy1 bŽ .i) 4 i i) 4 i
Av T x s F sAv T 9 x .Ž . Ž .Ž . Ž .

5 5 Ý b Ý ibi) 4 i 1) 4 i

The inequality follows from Claim 4.2, since for all i)4 the corresponding terms
satisfy

i iy1 b 4 4 ibŽ . i is iy1G is .
ib 5 5 bi i
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The proof for S requires more work. It turns out that, up to a multiplicative factor,
Ž .S x can be explicitly computed. Consider the chain,

xW 2 2M P x ª P x ªP x ª P t dtŽ . Ž . Ž . Ž .Ž . Hny2 ny1 ny1 ny1
1

H x P 2 t dtŽ . W1 ny1ª sM p x ª P x .Ž . Ž .Ž .ny1 nxy1

What happens to the first five terms of the generating function along this chain?
Ž Ž ..Observe that the coefficients of M P x do not increase with degree, and thatny2

the coefficients of x 0, x1, x 2 are equal. This is a consequence of Claim 5.3, since

2xH P t dtŽ .1 ny2
M P x s ,Ž .Ž .ny2 xy1

Ž . Ž .and P x , obtained by application of W nG3! , has a s0. Thus, the head ofny2 0
Ž Ž .. 3 2M P x is proportional to ax qx qxq1, with 1GaG0. Using, in that order,ny2

Ž Ž .. Ž .the expressions for W P x Claim 4.1 , for squaring, for integrating, for dividing
Ž . Ž Ž ..by xy1 Claim 5.3 , and, finally, again for W P x , we obtain

ax3 qx 2 qxq1

ª3ax3 q2 x 2 qxª 6aq4 x 4 q4 x 3 qx 2Ž .
6aq4 1

5 4 3 5 4 3ª x qx q x , which is proportional to 18aq12 x q15x q5x ,Ž .
5 3

ªAx5 q Aq18aq12 x 4 q Aq18aq27 x 3Ž . Ž .
q Aq18aq32 x 2 qxq1 ,Ž . Ž .

for some AG0. Substituting B for Aq18a, we proceed with

Bq12 x 4 q Bq27 x 3 q Bq32 x 2 qxq1Ž . Ž . Ž . Ž .
ª 4Bq48 x 4 q 3Bq81 x 3 q 2 Bq64 x 2 q Bq32 x .Ž . Ž . Ž . Ž .

Ž . Ž . Ž .Thus, up to a multiplicative factor, S 1 s10Bq225; S9 1 s30Bq595; S0 1 s
70Bq1090 for some BG0. Applying once more Claim 4.2, we conclude that

S0 1 2 S9 1 2Ž . Ž .
Av S9 x s G s Av S x . BŽ . Ž .Ž . Ž .

S9 1 3 S 1 3Ž . Ž .

Now we are in the position to prove the main result of this section:

10Ž Ž .. Ž Ž ..Theorem 5.6. For all nG4, Av p n ) Av p ny1 .9

Ž Ž ..Proof. Using the generating functions, our aim is to show that Av P xn
10 2 2 XŽ Ž .. Ž Ž .. Ž Ž .. Ž Ž ..) Av P x . By Lemma 5.4, Av P x ) Av P x q Av P x . Byny1 n ny1 ny19 3 3

X 2Ž Ž .. Ž Ž ..Lemma 5.5, Av P x G Av P x . Combining the two results, we obtainny1 ny13

2 4 10Av P x ) Av P x q Av P x s Av P x . BŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .n ny1 ny1 ny13 9 9
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Consequently,

10 10ny4 ny4Ž Ž .. Ž . Ž Ž .. Ž . Ž Ž ..Theorem 5.7. Av p n ) Av p 4 G Av p 0 .9 9

5.3. Stationary Distributions

Theorem 5.8. For any aG0 there exists a unique stationary distribution with
Ž .expected fitness a , and that is the geometrical distribution with parameter ar 1qa .

Proof. Since the present system is time reversible, it falls into the general
w xframework of 9 , and thus a stationary distribution p must satisfy

p p sp p for iq jskq l.i j k l

Consequently it must be geometric, with the parameter determined by the average
Ž . Ž .fitness of p 0 which remains invariant . This can also be verified directly, the

generating function of a stationary distribution p must satisfy the integral equa-
tion,

H x f 2 t dtŽ .1 s f x ,Ž .
xy1

and thus also

f 2 x s xy1 f 9 x q f x ,Ž . Ž . Ž . Ž .

Ž . Ž .with boundary conditions f 1 s1, f 9 1 sa . The solution of this equation is

` i1 1 a
if x s s x ,Ž . Ý ž /1qa ya x 1qa 1qaŽ . is0

as expected. B

A stronger version of the above theorem can also be shown; if one starts with an
Ž . narbitrary p with Av p sa , and applies M repeatedly, the distribution M p

converges to the appropriate geometrical distribution. The fact of convergence can
be inferred from the entropy rising property of the system, and that for each a

Ž . Žthere is a unique stationary distribution p a with average fitness a the reader is
w x .referred to 9 for the general theory of such systems . However, the rate of

convergence remains an open problem. A new approach for this kind of problem
Ž .successfully applied to two classical systems and yielding new proofs was recently

w xdeveloped in 2 . We believe it can be used for the present system as well, but leave
this for a future study.

6. CONCLUSION

This completes the analysis of the three systems discussed. The point made was
that GAs can in principle be rigorously analyzed.
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Perhaps the most important lesson learned from the obtained results is that the
interaction between the mating and the fitness operators is much easier to
understand if M has some nice properties, and in particular, does not decrease the
average fitness of the distribution. Although the latter property appears to be a
reasonable one to require, it is rarely met in applications of GAs. The reason is
that such ‘‘nice’’ mating operators do not always exist, and even if they do, finding
them would require a good deal of understanding of the structure of the space of
solutions.

If one is so lucky as to find a nice M for his problem, it seems to be advisable to
apply M sufficiently many times in a row before each application of W. The reason
is clear: while the effect of a single mating operator is often rather hard to
quantify, a sufficiently long sequence of mating operations applied in a row brings
the distribution close to a stationary state, which should have more structure, and
is easier to understand.

The second lesson is that one should always seek for a basis in which the mating
operator M takes a simple form: finding such a basis is likely to lead to a better
understanding of M, and thus of the entire system.
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