
An Evolutionary Game-Theoretic
Analysis of Poker Strategies

Marc Ponsen, Universiteit Maastricht, Netherlands
Karl Tuyls, Technische Universiteit Eindhoven, Netherlands

Michael Kaisers, Technische Universiteit Eindhoven, Netherlands
Jan Ramon, Katholieke Universiteit Leuven, Belgium

December 15, 2008

Abstract

In this paper we investigate the evolutionary dynamics of strategic
behaviour in the game of poker by means of data gathered from a large
number of real world poker games. We perform this study from an evolu-
tionary game theoretic perspective using two Replicator Dynamics mod-
els. First we consider the basic selection model on this data, secondly we
use a model which includes both selection and mutation. We investigate
the dynamic properties by studying how rational players switch between
different strategies under different circumstances, what the basins of at-
traction of the equilibria look like, and what the stability properties of
the attractors are. We illustrate the dynamics using a simplex analy-
sis. Our experimental results confirm existing domain knowledge of the
game, namely that certain strategies are clearly inferior while others can
be successful given certain game conditions.

1 Introduction

Although the rules of the game of poker are simple, it is a challenging game to
master. There exist many books written by domain experts on how to play the
game (see, e.g., [3, 5, 12]). A general consensus is that a winning poker strategy
should be adaptive: a player should change the style of play to prevent becoming
too predictable, but moreover, the player should adapt the game strategy based
on the opponents. In the latter case, players may want to vary their actions
during a specific game (see, e.g., [2, 10, 13]), but they can also consider changing
their strategy over a series of games (e.g., play a more aggressive or defensive
style of poker).

In this paper we perform an Evolutionary Game Theoretic analysis of poker
strategies based on data from real world poker games played between human
players. More precisely, we investigate the strengths of a number of poker strate-
gies facing some opponent strategies using Replicator Dynamics (RD) models
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[7, 8, 16, 18]. The RD are a system of differential equations describing how
strategies evolve through time. In this paper we investigate two of such models.
The first RD model only includes the biological selection mechanism. Studies
from game theory and reinforcement learning indicate that people do not be-
have purely greedy and rational in all circumstances but also explore different
available strategies (to discover optimal strategies) for which they are willing
to sacrifice reward in the short term [4, 15]. We believe it is critical to include
mutation, as an exploration factor, to the RD model to find accurate results.
Therefore we also apply a second RD model that includes both selection and
mutation.

A complicating factor is that the RD can only be applied straightforwardly
to simple normal form games (NFG) as for instance the Prisoner’s Dilemma
game [4]. The game of poker is too complex to be represented in such a way.
Therefore we define heuristic strategies, i.e., strategic behavior over large series
of games, and compute a heuristic payoff table that assigns payoffs to these
strategies. This approach has been used before in the analysis of behaviour of
buyers and sellers in automated auctions [9, 19, 20]. Conveniently, for the game
of poker several heuristic strategies are already defined in poker literature and
can be used in our analysis.

The innovative aspects of our work are twofold: firstly, although there are
good classical game-theoretic studies of poker, they are mainly interested in
the static properties of the game, i.e. what the Nash equilibria are and how
to explicitly compute or approximate them. Due to the complexity of this
computation, usually only some simplified versions of poker are considered (e.g.,
see [1]). Instead we take an evolutionary perspective towards this game using
two different RD models. This allows us to investigate the dynamic properties by
studying how rational players switch between different strategies under different
circumstances, what the basins of attraction of the equilibria look like, and what
the stability properties of the attractors are. These new insights help to unravel
the complex game of poker and may prove useful for strategy selection by human
players but can also aid in creating strong artificial poker players.

Secondly, for this analysis we use real world data that we obtained by ob-
serving poker games at an online website, wherein human players competed for
real money at various stakes. From this real world data the heuristic payoff ta-
ble is derived, as opposed to the artificial data used in the previously mentioned
auction studies. By analyzing real world data we can empirically validate the
claims put forward by domain experts on the issue of strategy selection in poker.

The remainder of this paper is structured as follows. We start by explaining
the poker variant we focus on in our research, namely No-Limit Texas Hold’em
poker, and describe some well-known strategies for this game. Next we elaborate
on the RD and continue with a description of our methodology. We end with
experiments and a conclusion.
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2 Background

In this section we will first briefly explain the rules of the game of poker. Then
we will discuss ways to categorize poker strategies as was proposed by domain
experts.

2.1 Poker

Poker is a card game played between at least two players. In a nutshell, the
objective in poker is to win games (and consequently win money) by either
having the best card combination at the end of the game, or by being the only
active player. The game includes several betting rounds wherein players are
allowed to invest money. Players can remain active by at least matching the
largest investment made by any of the players, or they can choose to fold (i.e.,
stop investing money and forfeit the game). The winner receives the money
invested by all the players.

In this paper we focus on the most popular poker variant, namely No-Limit
Texas Hold’em. This game includes 4 betting rounds (or phases), respectively
called the pre-flop, flop, turn and river phase. During the first betting round,
all players are dealt two private cards (what we will now refer to as a player’s
hand) that are only known to that specific player. To encourage betting, two
players are obliged to invest a small amount the first round (the so-called small-
and big-blind). One by one, the players can decide whether or not they want to
participate in this game. If they indeed want to participate, they have to invest
at least the current bet. This is known as calling. Players may also decide to
raise the bet. If they do not wish to participate, players fold, resulting in possible
loss of money they bet thus far. A betting round ends when no outstanding bets
remain, and all active players have acted. During the remaining three betting
phases, the same procedure is followed. In every phase, community cards appear
on the table (respectively 3 in the flop phase, and 1 in the other phases). These
cards apply to all the players and are used to determine the card combinations
(e.g., a pair or three-of-a-kind may be formed from the player’s private cards
and the community cards). After the last betting round the card combinations
for active players are compared during the so-called showdown.

2.2 Classifying poker strategies

There exists a lot of literature on winning poker strategies, mostly written by
domain experts (see, e.g., [3, 5, 12]). These poker strategies may describe how
to best react in detailed situations in a poker game, but also how to behave
over large numbers of games. Typically, experts describe poker strategies (i.e.,
behavior over a series of games) based on only a few aggregate features. For
example, an important feature in describing a player’s strategy is the percentage
of times this player voluntarily invests money during the pre-flop phase and then
sees the flop (henceforth abbreviated as VPIP), since this may give insight in
the player’s hand selection. If a particular player sees the flop more than, let’s
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say, 40% of the games, he or she may play with less quality hands (see [12]
for hand categorization) compared to players that only see the flop rarely. The
standard terminology used for respectively the first approach is a loose and for
the latter a tight strategy.

Another important feature is the so-called aggression-factor of a player
(henceforth abbreviated as AGR). The aggression-factor illustrates whether
a player plays offensively (i.e., bets and raises often), or defensively (i.e., calls
often). This aggression factor is calculated as:

%bet + %raise
%calls

A player with a low aggression-factor is called passive, while a player with a
high aggression-factor is simply called aggressive.

3 Methodology

In this section we explain the methodology we will follow to perform our analysis
of poker strategies. We start by explaining the RD and the heuristic payoff table
that is used to derive average payoffs for the various poker strategies. Finally,
we describe our algorithm for visualizing and analyzing the dynamics of the
different strategies in a simplex plot.

3.1 Replicator Dynamics

The RD [16, 23] are a system of differential equations describing how strategies
evolve through time. We assume an infinitely large population of ”individuals”
(i.e., players). Each player may apply one of the available ”replicators” (i.e.,
strategies ). The pure strategy i is played with probability xi, according to
the vector x = (x1, . . . , xk). The profit of each player depends on x. At each
time step, players may switch their strategies based on the profits received (i.e.,
they switch to more successful strategies). As a consequence, the probabilities
of strategies are changed. This adaptation can be modeled by the RD from
evolutionary game theory.

An abstraction of an evolutionary process usually combines two basic ele-
ments, i.e., selection and mutation. Selection favors some population strategies
over others, while mutation provides variety in the population. In this research,
we will consider two RD models for our analysis. The first one is based solely
on selection of the most fit strategies in a population. The second model, which
is based on Q-learning and is formally derived in [17, 18], includes mutation
besides selection. We now formally describe both models.

3.1.1 Replicator Dynamics: the basic model

As it is more convenient for our purposes we will work in continuous time. There-
fore we use the continuous time version of the replicator equations. Equation 1
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represents this basic form of RD. We suppose there is a single population (con-
sidered infinite) of strategies and we consider for simplicity two-player games.
Let A = (aij)n

i,j=1 be the reward matrix (aij is the reward for the joint strategy
(i, j), and n is the total number of possible strategies).

dxi

dt
= [(Ax)i − x ·Ax]xi (1)

The state x of the population can be described as a probability vector x =
(x1, x2, ..., xn) which expresses the different densities of all the different types
of replicators (i.e., strategies) in the population, with xi representing the den-
sity of replicator i. As mentioned above, A is the payoff matrix that describes
the different payoff values that each individual replicator receives when inter-
acting with other replicators in the population. Hence (Ax)i is the payoff that
replicator i receives in a population with state x, whereas x · Ax describes the
average payoff in the population. The growth rate dxi

dt /xi of replicator i in the
population, equals the difference between the replicator’s current payoff and the
average payoff in the population. For a more detailed elaboration, we refer to
[4, 7, 22].

Usually, we are interested in models of multiple players that evolve and learn
concurrently, and therefore in that case we need to consider multiple popula-
tions. For ease of exposition, the discussion focuses on only two such learning
players. As a result, we need two systems of differential equations, one for each
player. This setup corresponds to an RD for asymmetric games, where A and B
are the payoff tables for respectively the first and second player, and the avail-
able replicators of the players belong to two different populations, respectively
p and q. This translates into the following coupled replicator equations for the
two populations:

dpi

dt
= [(Aq)i − p ·Aq]pi (2)

dqi
dt

= [(Bp)i − q ·Bp]qi (3)

Equations 2 and 3 indicate that the growth rate of the types in each pop-
ulation is additionally determined by the composition of the other population,
in contrast to the single population (learner) case described by Equation 1. If
A = BT equation 1 would emerge again.

3.1.2 Replicator Dynamics: Selection and Mutation

It is known from game theoretic studies that when we consider human players in
a game they usually do not purely select their actions 1 greedily [4]. Once in a
while they also randomly explore their possible actions. This closely resembles
the theory of Reinforcement Learning where players have to make a trade off
between exploration and exploitation [15].

1Note that throughout this Section we use the word ’action’, as is common in Reinforcement
Learning, but in the current study actions represent heuristic poker strategies
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In this section we describe the RD model of Q-learning. These equations are
derived by constructing a continuous time limit of the Q-learning model, where
Q-values are interpreted as Boltzmann probabilities for the action selection. Q-
learning is an adaptive value iteration method [15, 21], which bootstraps its
estimate for the state-action value Qt+1(s, a) at time t + 1 upon its estimate
for Qt(s

′
, a

′
) with s

′
the state where the learner arrives after taking action a in

state s:

Qt+1(s, a)← (1− α)Qt(s, a) + α(r + γ maxa′Qt(s
′
, a

′
)) (4)

With α the usual step size parameter, γ a discount factor and r the immediate
reinforcement.

Action selection in Q-learning is usually based on a stochastic process. Pop-
ular choices include ε-greedy exploration (select the best action with probability
1-ε , or a random action otherwise) and Boltzmann exploration (the selection
process further depends on a temperature parameter). Here we assume that
agents choose actions by using the Boltzmann selection: an action aj is chosen
with probability

xj =
e
Q(s,aj)

τ∑
i e

Q(s,ai)
τ

(5)

where τ is a temperature parameter used to balance exploration and exploitation
(the agent tends to select actions associated with higher utilities when τ is low).
2

We again consider games between 2 learning players. The state s can be
safely removed from the update rule as we only consider stateless games here.
Deriving the equations for Q-learning goes as follows: a difference equation is
derived for the Boltzmann probabilities xi(k) with k the current timestep; next
we suppose that the amount of time between two repetitions of the game is
given by δ with 0 < δ ≤ 1. The variable xi(kδ) describes the x-values at time
kδ = t. Calculating a continuous time limit of these equations, for δ → 0, leads
to the following equations for the first player,

dpi

dt
=
α

τ
[(Aq)i − p ·Aq]pi + piα

∑
j

pj ln(
pj

pi
) (6)

analogously for the second player, we have,

dqi
dt

=
α

τ
[(Bp)i − q ·Bp]qi + qiα

∑
j

qj ln(
qj
qi

) (7)

Equations 6 and 7 express the dynamics of both Q-learners in terms of
Boltzmann probabilities.

Comparing Equations 6 or 7 with the RD in Equation 1, we see that the
first term of (6) or (7) is exactly the same and thus takes care of the selection

2Note that in the literature τ occurs as well in the nominator as in the denominator.
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mechanism (see [22]). The mutation mechanism for Q-learning is therefore left
in the second term, and can be rewritten as:

xiα
∑

j

xj ln(xj)− ln(xi) (8)

In equation (8) we recognize 2 entropy terms, one over the entire probability
distribution x, and one over strategy xi.

Relating entropy and mutation is not new. It is well known [11, 14] that
mutation increases entropy. In [14], it is elucidated that the concepts are fa-
miliar with thermodynamics in the following sense: the selection mechanism is
analogous to energy and mutation to entropy. So generally speaking, mutations
tend to increase entropy. Therefore our second term is a measure of the mu-
tations in strategy space occuring in the game under consideration. Hence we
have a selection-mutation perspective on Q-learning. Exploration from RL then
naturally maps to the mutation concept, as both concepts take care of provid-
ing variety. Analogously selection maps to the greedy concept of exploitation
in RL.

3.2 The Heuristic Payoff Table

The RD equations take as input a payoff matrix (e.g., matrix A in Equation 1)
that assigns a reward to each joint action. For a complex game such as No-Limit
Poker it is unpractical to assemble all game actions into a normal form game
(NGF) matrix, simply because it then has too many dimensions. Therefore, we
look at heuristic strategies as outlined in Section 2.2. A heuristic payoff table
replaces the NFG matrix, and gives the payoffs for all possible strategies given
some known opponent strategies.

Let’s assume we have n players and k strategies. This would require kn

entries in our heuristic payoff table. We now make a few simplifications, i.e.,
we do not consider different types of players, we assume all players can choose
from the same strategy set and all players receive the same payoff for being
in the same situation. This setting corresponds to the setting of a symmetric
game. This means we consider a game where the payoffs for playing a particular
strategy depend only on the other strategies employed by the other players, but
not on who is playing them.

Now the distribution of n players on k pure strategies is a combination with
repetition, hence a heuristic payoff table requires

(
n+k−1

n

)
rows. Each row yields

a discrete profile S = (S1, . . . , Sk) telling exactly how many players play each
strategy.

Suppose we have 3 heuristic strategies and 6 players, this leads to a heuristic
payoff table of 28 entries, which is a serious reduction from 36 = 729 entries in
the general case. Table 1 illustrates what the heuristic payoff table looks like for
three strategies S1, S2 and S3. The left-hand side expresses the discrete profile,
while the right-hand side gives the payoffs for playing any of the strategies given
the discrete profile.
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P =


S1 S2 S3 P1 P2 P3

6 0 0 0 0 0
... ...

4 0 2 −0.5 0 1
... ...

0 0 6 0 0 0


Table 1: An example of a heuristic payoff table

Consider for instance the second row of this table: in this profile there are 4
players that play strategy S1, none of the players play strategy S2 and 2 players
play strategy S3. Furthermore, -0.5 is the expected payoff for playing strategy
S1 given these set of opponent strategies (i.e., given this discrete profile). Ob-
viously, when a strategy is not employed by any player, no payoffs are recorded
and the resulting expected payoff is then 0. For situations when all players in a
discrete profile play identical strategies, the expected payoff is also 0 because no
payoffs are made against other strategies. Because poker is zero-sum, the profits
and losses are actually divided between the same class of players playing this
particular strategy, and the average result (for this strategy) is 0. Therefore,
for game of poker, the heuristic payoff table expresses the utility of a strategy
in the presence of different opponent strategies.

To determine the payoffs in the table, we compute expected payoffs for each
discrete profile from real-world poker data. More precisely, we look in the data
for the appearance of each discrete profile and compute from these data points
the expected payoff for the used strategies. However, because payoff in the game
of poker is non-deterministic, we need a significant number of independent games
to be able to compute representative values for our table entries. In Section 4 we
provide more details on the data and on the process of computing the heuristic
payoff table.

3.3 Simplex Analysis

Using the heuristic payoff table as input to the RD equations, we can now
analyze the dynamics of strategies changing. The dynamics can be visualized
in a simplex analysis that allows us to graphically and analytically study the
dynamics of the system.

Before explaining this analysis, we first introduce a definition of a simplex.
Given n elements which are randomly chosen with probabilities (x1, x2, . . . , xn),
there holds x1, x2, . . . , xn ≥ 0 and

∑n
i=1 xi = 1. We denote the set of all such

probability distributions over n elements as Σn. Σn is a n − 1-dimensional
structure and is called a simplex. One degree of freedom is lost due to the
normality constraint. For example in Figure 1, Σ2 and Σ3 are shown. In the
figures throughout the experiments we mainly use Σ3, projected as an equilateral
triangle as in Figure 1(b), but we drop the axes and labels.
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x1
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1

(a) Σ2

x1 x2

x3

0

1 1

1

(b) Σ3

Figure 1: The unit simplices Σ2 (a; left) and Σ3 (b; right).

The simplex plots show arrows (as for example shown in Figure 2) or trajec-
tories (as for example shown in Figure 4) that indicate the direction of change
of the strategies. To calculate the direction at any point s = (x, y, z) in our
simplex, we consider a large number of N runs with mixed-strategy s; x is the
percentage of the population playing strategy S1, y is the percentage playing
strategy S2 and z is is the percentage playing strategy S3. For each run, each
player selects their pure strategy based on this mixed-strategy (i.e., pure strate-
gies are sampled based on the probability distribution of s). Given the number
of players using the different pure strategies (S1, S2, S3), we have a particular
discrete profile for each run. This discrete profile can be looked up in our heuris-
tic payoff table, yielding a specific payoff for each strategy. The average of the
payoffs of each of these N discrete profiles gives the payoffs at s = (x, y, z).
Provided with these payoffs we can easily compute the RD by filling in the val-
ues of the different variables. This yields us a gradient or direction at the point
s = (x, y, z).

Starting from a particular point within the simplex, we can now generate
a smooth trajectory (consisting of a piecewise linear curve) by moving a small
distance in the calculated direction, until the trajectory reaches an equilibrium.
A trajectory does not necessarily settle at a fixed point. An equilibrium to
which trajectories converge and settle is known as an attractor, while a saddle
point is an unstable equilibrium at which trajectories do not settle. Attractors
and saddle points are very useful measures of how likely it is that a population
converges to a specific equilibrium. Each attractor consumes a certain amount
of the strategy space that eventually converges to it. This space is also called
the basin of attraction [6].

4 Experiments and results

We collected a total of 318535 No-Limit Texas Hold’em games played by a total
of 20441 human players at an online poker site. In our data we have a variable
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[a] [b]

Pass

Neutral

Aggr Pass

Neutral

Aggr

Figure 2: RD plots analyzing post-flop strategies using the replicator dynamics
based on selection (a) and selection combined with mutation (b)

number of players participating in a single game, ranging from 2 player games
to full-table games with 9 players. As a first step we needed to determine the
strategy for a player for any given game. If a player played less than 100 games
in total, we argue that we do not have sufficient data to establish a strategy,
and therefore we ignore this player (and game). If the player played at least
100 games, we use intervals of 100 games to collect statistics for this specific
player, and then determine the VPIP and AGR values (see Section 2.2). Based
on these computed values, we are then able to label the player with a strategy.
The resulting strategy was then associated with the specific player for all games
in the interval. Having estimated all players’ strategies, it is now possible to
determine the discrete profile (i.e., the number of players playing any of the
available strategies) for all games. Finally, we can compute the average payoffs
for all strategies given a particular discrete profile.

We will apply the RD based on selection (see Section 3.1.1), which will favor
the most fit strategy in the population. To further sharpen our analysis with
a more elaborate human like model, we also apply the RD model derived from
the popular Q-learning algorithm (see Section 3.1.2) that contains the sum of
the basic RD equations (selection) and additionally an entropy term mapping
to mutation. Using the RD with this selection-mutation model we facilitate
explorative behavior instead of pure greedy behavior. For all described selection-
mutation experiments, we have chosen a fixed temperature τ of 0.1. We will
now highlight several experiments with varying strategy classifications.

4.1 Analyzing pre-flop and post-flop Play

For our first two experiments we analyze pre-flop and post-flop play in isolation.
To be more specific, we label players with strategies based solely on either the
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[a] [b]

Tight
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Loose Tight

Semi−Loose

Loose

Figure 3: RD plots analyzing pre-flop strategies using the replicator dynamics
based on selection (a) and selection combined with mutation (b)

VPIP or AGR values that were computed. Table 2 gives the rules for the
strategy classification. These rules were derived from domain knowledge and
are common for classifying strategies in a No-Limit Texas Hold’em game (see
e.g., [3, 5, 12]).

The VPIP determines the pre-flop strategy, and gives insight in the player’s
card selection. A loose player plays a wider range of cards whereas a tight
player will wait for more quality cards (i.e., those that have a higher probability
of winning the game at showdown when cards are compared). The AGR value
determines the post-flop strategy, and denotes the ratio between aggressive (i.e.,
betting and raising) and passive (i.e., calling) actions.

It is often claimed by domain experts that aggressive strategies dominate
their passive counterparts. The rules of the poker game, and in particular the
fact that games can be won by aggressive actions even when holding inferior
cards, seem to backup this claim. In Figure 2a (selection) we can see one
strong attractor that lies at the pure strategy aggressive. Figure 2b (selection-
mutation) shows a mixed equilibrium strategy mainly between aggressive and
neutral. Again, the aggressive strategy is played 3 out of 4 games. These
results nicely confirm the claim that aggressive strategies dominate passive ones.

For the pre-flop strategy, the tight strategy is often assumed to be best,

pre-flop-strategy Rule post-flop-strategy Rule
Tight VPIP < 0.25 Passive AGR < 1

Semi-Loose 0.25 <= VPIP < 0.35 Neutral 1 <= AGR < 2
Loose VPIP >= 0.35 Aggressive AGR >= 2

Table 2: Strategy classification for pre-flop and post-flop play
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in particular for less skillful players. Although it is also claimed that the pre-
flop strategy should depend on the strategies played by the opponents. If the
majority of players play a tight strategy, then a looser strategy pays of and vice
versa.

In Figure 3a (selection) we see an attractor lying in the pure strategy tight.
When we apply the selection-mutation model in 3b, we find a mixed strategy
between tight and semi-loose. Still, the tight strategy is dominant and is
played 8 out of 10 games. These findings seem to contradict the claim that one
should mix their pre-flop play according to the opponent strategies. However, we
need to take into account that we are currently ignoring the post-flop strategy.
We already showed in our previous experiment that aggression is important for
the utility of the overall strategy. So one could say that on average the tight
strategy is optimal, given a random post-flop strategy. Mixing up pre-flop play
may only be reasonable when always playing aggressive after the flop.

4.2 Analyzing Complete Poker Strategies

For our next series of experiments, we combine both VPIP and AGR features
for strategy classification. The rules used are shown in Table 3. Again note
that these strategy classifications are derived from poker literature, although
we reduced the number of attributes per feature to two so we have exactly four
strategies, namely tight-passive (a.k.a. Rock), tight-aggressive (a.k.a. Shark),
loose-passive (a.k.a. Fish) and loose-aggressive (a.k.a. Gambler).

Experts argue that the Shark strategy is the most profitable strategy, since
it combines patience (waiting for quality cards) with aggression after the flop,
while the Fish strategy is considered as the worst possible strategy.

Recall from Section 3.3 that our simplexes show the dynamic behavior of the
participating players having a choice from three strategies. For this experiment
we actually have a total of four strategies. We exclude in this case one strategy
per plot, by only considering discrete profiles in our heuristic payoff table where
we have no players playing the excluded strategy. This leaves us with four
different combinations of three strategies. We plotted the results with the RD
for both the selection and selection-mutation model.

What we can see from plots in Figure 4a, Figure 5a and Figure 7a, is that
both passive strategies, i.e., the Fish and Rock strategies, are dominated by
the two aggressive strategies Shark and Gambler.

We also see that the attractors in Figure 4a and Figure 5a lie close to the

Strategy Rule
Rock VPIP < 0.25, Passive AGR < 2
Shark VPIP < 0.25, Passive AGR >= 2
Fish VPIP >= 0.25, Passive AGR < 2

Gambler VPIP >= 0.25, Passive AGR >= 2

Table 3: Simple strategy classification
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[a] [b]

Rock

Shark

Fish Rock

Shark

Fish

Figure 4: Trajectory plots analyzing the Rock, Shark and Fish strategies using
the RD based on selection (a) and selection-mutation (b)

[a] [b]

Rock

Shark

Gamb Rock

Shark

Gamb

Figure 5: Trajectory plots analyzing the Rock, Shark and Gambler strategies
using the RD based on selection (a) and selection-mutation (b)

Shark strategy, namely this strategy is played respectively around 80% and
65% of the times. In Figure 7a the Gambler strategy is slightly preferred over
the Shark strategy, that is played 40% of the times. Based on our analysis we
can say that Shark is a strong strategy, as was suggested by domain experts.
Only in Figure 7 is Shark slightly dominated by Gambler. It is also obvious
from the plots that the Fish strategy is a repeller, with the exception of Figure
6, where the equilibrium is actually a mix with the Rock strategy.

For the selection-mutation plots we see similar results with mixed strategies
close to the Shark. In general, the equilibria found through selection-mutation
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[a] [b]

Rock

Fish

Gamb Rock

Fish

Gamb

Figure 6: Trajectory plots analyzing the Rock, Fish and Gambler strategies
using the RD based on selection (a) and selection-mutation (b)

[a] [b]

Shark

Fish

Gamb Shark

Fish

Gamb

Figure 7: Trajectory plots analyzing the Shark, Fish and Gambler strategies
using the RD based on selection (a) and selection-mutation (b)

lie closer to the center of the simplex and therefore mixes more between the
available strategies. This comes as no surprise, when we apply the selection-
mutation model a player will explore his available actions more, which pulls the
dynamics more to the center of the simplex but also allows to find more optimal
solutions. An interesting observation in Figure 4 is that for the mixed strategy
using the selection model the Fish strategy is played more compared to the
the Rock strategy (respectively 17% to 3%), while for the selection-mutation
model we see the opposite. Now the Rock strategy is played more with 17% to
10%. Since domain experts believe the Fish strategy is inferior over all other
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Shark

Fish

Gambler

Rock

Figure 8: Trajectory plots in 3-dimensional space analyzing dynamics for all 4
strategies

strategies, the results from the selection-mutation model seem to approximate
reality better.

A shortcoming of the leave-one-out approach, is that we always dismiss large
portions of the data because we put constraints on the strategy that must be
excluded. We also analyzed the dynamics among all four strategies at once. The
result (2-dimensional snapshot in 3-dimensional space) is represented in Figure
8 (for the selection model). The dynamics are similar to our previous plots, but
there are differences. As for example, we can now see that only two attractors
remain both near the Shark strategy, and that the attractor found in Figure 7a
is actually lost. The attractors near the Shark strategy clearly have a stronger
basin of attraction, i.e. trajectories are more likely to end up in one of these
equilibria.

For the results including mutation we only report the results here. We
see one attractor, namely near the mixed strategy 56%, 25%, 17% and 2%, for
respectively the Shark, Rock, Gambler and Fish strategy. The Fish strategy
nearly went extinct.

5 Conclusion

In this paper we investigated the evolutionary dynamics of strategic behaviour
of players in the game of No-Limit Texas Hold’em poker. We performed this
study from an evolutionary game theoretic perspective using two Replicator
Dynamic models, one that is purely driven by selection, and another that also
contains mutation. Using these models we analyzed the dynamic properties by
studying how rational players switch between different strategies under different
circumstances. For our analysis we observed poker games played at an online
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poker site and used this as our data. Based on domain knowledge, we identi-
fied several strategies (with varying levels of detail) in the game of poker. We
then computed the heuristic payoff table to which we applied the Replicator
Dynamic models. The results are visualized in simplex plots, these show where
the equilibria lie, what the basins of attraction of the equilibria look like, and
what the stability properties of the attractors are. Our results confirm that
what is claimed by domain experts, namely that usually aggressive strategies
dominate their passive counterparts. We also noticed that when we apply an
RD model that includes mutation to the data, we do see results that better
reflect what domain experts claim, compared to results obtained with the basic
model of selection.

For future work, we will examine the interactions between the strategies
among several other dimensions. For example, we could look at more detailed
strategy classifications (i.e., based on more features) or represent strategies in
a continuous way. Although our evolutionary game theoretic approach to the
game drops the hyper-rationality assumption of players, and produces a more
human-like model of the dynamics involved, currently players are still assumed
to be rational in the sense that they aim to optimize their payoffs and are also
capable of doing so (i.e., they have full information on expected payoffs for
playing any of the available strategies). In many human domains, and certainly
in poker, this rationality assumption does not necessarily hold. Therefore, we
are interested in applying other behavioral models that might describe more
accurately the behavior of players in the game of poker.
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