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Introduction 

Jump-diffusion processes were incorporated by Merton [24] into the theory of option 
valuation in order to introduce a discontinuous sample path of the underlying stock's 
return dynamics, by contrast with the classical lognormal diffusion model of Black and 
Scholes [5]. These models allow us to account for large price changes due to sudden 
exogenous events on information. They are particularly adapted in the context of foreign 
exchange rates and may explain some systematic empirical biases with respect to the BS 
model (see [16] and [2]). 

Contrarily to the BS model, jump-diffusion models induce incompleteness of the 
market in the Harrison-Pliska [ 12] sense. Merton [24] has developed pricing formulas 
for European options assuming that jump risk is unpriced. Generalizations of Merton's 
result can be found, for example, in [1], [27], or [28]. The aim of this paper is to study 
the problem of pricing the American option in a jump-diffusion model. 

The earliest works on this problem are due to McKean [22], and further to Van Mo- 
erbeke [31 ] who transformed the American option pricing analysis into a free-boundary 
problem, within the framework of diffusion models. In addition to the free-boundary 
method, the formulation of the optimal-stopping problem by variational inequalities, as 
developed by Bensoussan and Lions [4], and applied to American options in diffusion 
models by Jaillet et al. [ 15], provide numerical computations for the pricing of American 
options. This approach was recently applied by Zhang [32] in the context of Merton's 
jump-diffusion model. However, variational inequalities lead to a somewhat less-explicit 
characterization of the American option value. 

This paper adopts the free-boundary approach with careful attention to the behavior 
of the optimal-stopping boundary, by using analytical methods as well as probabilistic 
results. 

In Section 1 we describe the financial market in the presence of jump uncertainty. 
Since the market is incomplete, there is an infinity of admissible prices for contingent 
claims (see [11]) associated to an infinity of equivalent martingale measures, that we 
characterize by identifying the market price of diffusion and jump risk. 

In Section 2 we relate the American option pricing valuation to an optimal-stopping 
problem and we state some basic properties of the American option value. 

In Section 3 we establish that the American put option price and its free boundary 
(also called the critical stock price in financial language) are a solution pair of a parabolic 
integrodifferential free-boundary problem arising from the optimal-stopping problem. 
In particular, we check the continuous differentiability of the option price with respect to 
the stock price, a result known as the smooth-fit condition. Generalizing results of Jacka 
[ 13] and Myneni [26], we obtain a decomposition of the American put option value as the 
sum of its corresponding European put price and the early exercise premium. It appears 
that, compared with the BS model, this premium has an extra complex term due to the fact 
that the stock price can jump from the exercise region to the continuation region without 
crossing the exercise boundary. A uniqueness result for the free-boundary problem is 
also provided. The main difficulty, with regard to the diffusion model, comes from 
the nonlocal integral term. We give a sufficient condition which ensures that the value 
function of the optimal-stopping problem is the unique solution of the free-boundary 
problem. 
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Section 4 is concerned with the behavior of the optimal-stopping boundary. Under 
a similar condition to that for the uniqueness result of Section 3, we prove continuity 
with respect to time of the free boundary. We also provide an estimate of the difference 
between the critical stock price in the BS model and the one in a jump-diffusion model. 
In particular, it gives an estimate of the behavior of the critical stock price near maturity 
within a jump-diffusion model, extending therefore a recent result derived by Barles et 
al. [3] (see also [19]) in the framework of the BS model. 

The presence of jump uncertainty in the stock price dynamics introduce two es- 
sential parameters in option valuation, compared with the BS model: the market price 
of jump risk and the intensity of jumps. As a final contribution, we prove in Section 5 
that the American option price (resp. the critical stock price) is nondecreasing (resp. 
nonincreasing) with respect to each of these two parameters. 

1. The Framework 

We consider a financial market where two assets (S °, X) are traded continuously up to 
some fixed time horizon T. The underlying uncertainty is generated by a probability 
space (fa, b e, P) with I~ = {~,, 0 < t < T}, a filtration satisfying the usual conditions. 
On this probability space are defined a standard Brownian motion W and a homogeneous 
Poisson random measure v(dt,  dy) on [0, T] x IR identified to a marked point process 
(Nt, (Yn)n~N). We assume that IF is equal to the information structure generated by W 
and v. The intensity measure q (dt, dy) of v is of the form 

q(dt, dy) = ~.m(dy) dt, 

where the constant )~ > 0 is the intensity of jumps of the Poisson process Nt = v([0, t] x 
~) and m (dy) is the probability measure on IR of the independent identically distributed 
random variables Yn, also independent of Aft. We say that ()v, m(dy))  are the (P, be-t) 
local characteristics of the marked point process v. The random measure 0, defined by 

fa(dt, dy) = v(dt ,  dy) - q(dt,  dy) 

is called the P-compensated jump martingale of v. We refer the reader to [14] for a 
formal definition of the random measure and its characteristic. 

The first asset S O is a bond whose price evolves according to the differential equation 

dS°t -- r dt, 
s O 

where r is the constant positive interest rate. The price of the risky asset is described by 
the stochastic equation 

dXtxt_ = # d t  + cr dWt + f~  y(y)f~(dt, dy). (1.1) 

The coefficients p~, a are constants. (t' (Yn)~eN) are the square integrable random jump 
relative sizes of the stock price X. We assume that 1 + g > 0 in order for the price to be 
real valued. As is well known, the basic market (S °, X) is incomplete: mathematically 
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formalized by Harrison and Pliska [12], it essentially means that under the absence of 
arbitrage opportunities, there are many equivalent martingale measures, i.e., probability 
measures equivalent to P, under which the discounted risky asset price process X/S  ° is 
a martingale. We recall from [7] or [28] the characterization of the equivalent martingale 
measures by their Radon-Nykodym density with respect to P: 

dQ p 
dP -- [. (--  foTotdwt  + foT fR(Pt(y) -- l)f)(dt, dy) ) ,  

where 8(.) is the exponential semimartingale of Dol6ans-Dade, 0 and p are two pre- 
dictable processes such that 

Iz - r = O,a + ~. L y(y)(1 - pt(y))m(dy) (1.2) 

together with the conditions 

p > 0  and E ( - ~ - p P ) = I .  

0 is interpreted as the market price of diffusion risk and p as the market price of jump risk. 
In this paper we only consider equivalent martingale measures such that the market price 
of jump risk is independent of t E [0, T] and oJ ~ f2: Pt(Y) = P(Y), and p E LZ(m). 
Therefore, by Girsanov's theorem, v is still a homogeneous Poisson random measure 
under QP with local characteristics: 

~.p = L fR p(y)rn(dy) 
p(y)m(dy) 

and mP(dy) = f~ p(y)m(dy) (1.3) 

and Wfl = Wt + fo 0,~ ds is a QP-Brownian motion. 
In our incomplete market framework, the no arbitrage theory does not induce a 

unique price for a contingent claim written on the underlying asset X. Indeed, according 
to Harrison and Kreps [ 11 ], each equivalent martingale measure Qp defines an admissible 
price of the contingent claim. For a European option g(XT) expiring at T, an admissible 
time t price is given by 

f t  p = E Qp [e-r(T-t) g(Xr)[.T't], 

while for an American option with payoff (g(Xt))O<_t<_r until time expiry T, it is given 
by 

FtP = ess sup EO'~[e-r(~-Og(Xr)lf t], 
r E'Tt,T 

where Tt,r denotes the set of all stopping times between t and T. 
We denote by (X t (x))s>_t a right continuous with left limits (RCLL) version of the 

flow of the stochastic differential equation (1.1). Therefore (s, t, x) --+ X~(x) is RCLL 
for almost all ~o e f2, X~(x) = x and Xt(x) satisfies (1.1) on It, T]. When t = 0, we 
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simply denote X~ (x) = X ° (x). Therefore, by the Dolrans-Dade formula and from (1.2), 
we have, almost surely under QP, 

I fsf  ] X t,(x) = x • exp -~pkp(s  - t) + ln(1 + y (y ) )u (du ,  dy) 
t 

"exp]c~(W, p - W[) + (r - ½~2)(s - t)], (1.4) 

where kp = fe  t" (Y)me(dY) is the expectation under Qp of the jump relative size (note 
that y ~ Ll(m p) by the H61der inequality since F, P E Ll(m)) .  In particular, X is a 
time homogeneous Markov process under Qp. According to the relation between Snell's 
envelope and r6duite (see, e.g., [8]), the QP-admissible American option price process 
is a function only of the current price of the underlying stock and of the time to expiry 
of the option. It is given by EP = FP( T - t, Xt),  where 

FP(t, x) = sup EQP[e-rrg(Xr(x))]. (1.5) 
TE'T0, t 

In the following we study the function F p defined by this optimal-stopping problem (1.5). 
For simplicity, we assume that the stock pays no dividends. It is known that the American 
call option on a stock without dividends is equivalent to its European counterpart (see 
[23]). We consider therefore in the rest of the paper the American put option 

g(x) = (K - x) +, 

where K > 0 is the exercise price. 

2. The Optimal-Stopping Problem 

It is well known that the function F # defined in (1.5) is not smooth. Jaillet et al. [15] in 
the diffusion case, and Zhang [32] in the jump-diffusion case, have studied the American 
option value by the method of variational inequalities, based on the work of Bensoussan 
and Lions [4]. Viscosity solutions, introduced by Lions [20] for diffusion processes and 
generalized to jump-diffusion processes in [29], is also a powerful means for charac- 
terizing the value function of a stochastic control problem: the function F p, defined in 
(1.5), is the unique BUC([O, T] × ~+)  (set of bounded uniformly continuous functions) 
viscosity solution of 

m i n ( - £ P v ;  v - g) = 0, V(t, x) c (0, T] x ~+,  (2.1) 

v(0, x) = g(x),  Yx c ~+,  (2.2) 

where £P is the parabolic integrodifferential operator: 

~.Pl) OV O1) 1 2 2 02v 
- -  r v  + ~ a  x 3t + rX ~x 3x 2 

+x f~  [ v ( t , x ( l  + v ( Y ) ) ) - v ( t , x ) -  y ( y ) X ~ x ( t , x ) l  p (y )m(dy) .  (2.3) 
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Moreover, there exists C > 0 such that, for all tl, t2 ~ [0, T], xl,  x2 6 IR+, 

[FP(tl, x| )  - FP(t2, x2)[ < C[[tl - t211/2 + [xl - x21]. (2.4) 

Another more explicit analysis of  the American option pricing problem is to trans- 
form the optimal-stopping problem into a free-boundary problem, as developed by Mc- 
Kean [22] and Van Moerbeke [31] in the diffusion case. We extend here such an approach 
to the case of  jump-diffusion processes. From general results for optimal stopping of 
Markov processes (see, e.g., [21] or [30]), Fe(t ,  x)  > g(x) ,  and an optimal stopping 
time for problem (1.5) is 

r*(t ,  x)  = inf{0 < s < t, FP(t -- s, Xs(x))  = g(X~(x))}.  (2.5) 

Moreover, the process {e-rsFP(t - s, Xs(x)) ,  0 < s < r*(t ,  x)} is a QP-martingale. 
The solution of the American option pricing is then implicitly determined by (1.5) and 
(2.5). We want to characterize F p more precisely by analytical methods. First, as for the 
BS model, the following classical properties of the American put option price can be 
stated. 

Proposition 2.1. The American put option function F p satisfies: 

(i) FP(t, .) is nonincreasing and convex on •+ for  every t E [0, T]. 
(ii) FP( ., x)  is nondecreasing on [0, T] for  every x E R+. 

(iii) FP(t ,  X) > O,for every (t, x) ~ (0, T] × I1~+. 

Proof. Given that the American put option reward g(x)  is convex and nonincreasing 
with respect to x, property (i) is easily derived from the pathwise solution given in (1.4). 
Property (ii) follows from the fact that if r 6 T0,r, then r ~ T0..~ for any s > t. For x < K, 
FP(t,  x) > g(x)  > 0. For x > K and t > 0, FP(t, x) > e - r t (K  /2 )QP{Xt (x )  < K/2} .  

Now, from (1.4), 

X, (x )  < = W q < -- In - (r -- ~.pkp -- l o ' 2 ) t  
o" 

Since W p and v are independent under QP, it yields 

QP X t ( x )  < -~ 

{ (l 
= E Qp * ~ In ~ -- (r - )~pkp -- l a2)t  

f0'Z - ln(l + y ( y ) ) v ( d s ,  dy) 

> 0 ,  

where q~ is the standard normal distribution function. Property (iii) is then proved. [] 
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Noting that FP(t ,  O) = K since r > 0, it is clear from the preceding proposition 
that, for each time to expiry t > 0, there exists a critical stock price bP(t),  below which 
the American put option should be exercised early: 

if 0 < x  <bP( t ) ,  then F P ( t , x ) = g ( x ) ,  

if x > bP(t) then F P ( t , x )  > g(x ) .  

The domain (0, T] x R+ of the American put option price F p is therefore divided by 
the optimal-stopping boundary {(t, bP(t)),  t c (0, T]} into: 

• The continuation region: 

C p := {(t,x) E (0, T] x ~ + ,  F P ( t , x )  > g(x)} 

= { ( t , x )  E (0, T ] x N + ,  x >be( t )} .  

• Its complement, the exercise (or stopping) region: 

SP : = { ( t , x )  6 (0, T] x N + ,  F P ( t , x ) = g ( x ) }  

= {(t,x) 6 (0, T ] x R + ,  x <bP( t ) } .  

By continuity of F p , the region C p (resp. S p) is open (resp. closed). From Proposition 2.1, 
we deduce the following property of the free boundary b p. 

Proposition 2.2. The boundary b p is nonincreasing in the time to expiry t and is 

bounded above by K.  

Proof. Since FP( ., x) is a nondecreasing function of the time to expiry t, therefore 
bP(.) must be a nonincreasing function of t. Moreover, since FP(t ,  x )  > 0 = g(x ) ,  for 
t > 0 and x >_ K, it implies that b p is bounded above by K: bP(t) < K.  [] 

3. Free-Boundary Formulation 

We now turn to the free-boundary formulation of the optimal-stopping problem described 
in the preceding section. We first extend, to the jump-diffusion case, the smoothness result 
of the American option value in the continuation region. 

Proposition 3.1. The American put  option price F p is smooth in the continuation 

region and satisfies, in C p, 

EPFP(t ,  x )  = O. (3.1) 

Proof. This follows from the martingale property of 

{e-rsFP(t  - s, Xs (x ) ) ,  0 < s < r*(t, x)} 

with r*(t, x) = inf{0 < s < t, (t - s, X s ( x ) )  f[ CP}, from It6's formula, and the 
smoothness results for the parabolic integrodifferential operator E p (see [29]). [] 
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This last proposition allows us to substantiate a convexity result of the American 
option value. 

Corollary 3.1. The American option price F p is strictly convex with respect to x in 
the continuation region C p. 

Proof. Recall that F p is convex in x in the whole domain [0, T] x R+. Introducing 
the change of variable z = lnx and defining /~(t, z) = FP(t,  eZ), we immediately 
see that F is convex in z. Moreover, since FPx = - ( 1 / x ) F  p + (1/x2)[Zzz and F p is 
nonincreasing in x, it suffices to prove the strict convexity of /~  with respect to z in 

:= { ( t ,O  ~ (0, T] x ~; z > lnbP(t)}. From Proposition 3.1, we deduce that ~" 
satisfies £ F ( t ,  z) = 0 in C where £ is the maximum principle operator: 

~ U -  31) l 2 3213 l 2 313 
3t rv + icr ~Z 2 + (r - -  ~.pkp - ~o" )~Z 

+L ]R[v(t, Z + In(1 + y(y)))  -- v(t, z ) ]p(y )m(dy) .  (3.2) 

Since C is an open set of [0, T] × R, for any point (to, z0) ~ C, there exists an open set 
O C C, containing (to, z0). Differentiating twice with respect to z, we obtain that ~'zz is a 
solution of the Dirichlet problem: £ v  = 0 in O, v = Fzz in O c. If ~:zz(to, zo) = 0, then, 
by the Feynman-Kac representation theorem and since [~zz > O, it follows that [:zz = 0 
in O c for any open subset O C C containing (to, z0). Hence, [:zz = 0 in (~, which is 
obviously false from the preceding properties of the American put price. [] 

The following boundary conditions are associated with the partial differential equa- 
tion (3.1). 

L e m m a  3.1. The American put  option function F p satisfies 

lim F P ( t , x )  = K - be(t), t E (0, T], 
x,~bP(t) 

F P ( O ,  x )  = (K - x) +, x E I~+. 

(3.3) 

(3.4) 

Proof. Relation (3.3) is true thanks to the continuity of the value function F p and since 
bP(t) < K, while (3.4) states that the American put is European at expiration. [] 

To close the free-boundary problem and in particular to determine the boundary 
b p, an additional condition known in the theory of optimal stopping as the principle of 
smooth fit is required, i.e., the continuous differentiability in x of the value function 
through the optimal-stopping boundary. 

Proposition 3.2. The American put option price F p is continuously differentiable with 
respect to x, in (0, T] × R+, in particular across the optimal-stopping boundary: 

OF p 
lim - - ( s , x )  : - 1 ,  Yt ~ (0, T]. (3.5) 

(s,x)---~(t,bP(t)) 3X 
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Moreove~we have 

0 F p O f  p 
- 1 < (t, x )  < (t, x) ,  ¥ ( t ,  x )  ~ (0, T] x ~ + ,  (3.6) 

- Ox Ox 

where fP  is the European put option value: f P  (t, x) = E Qp [e - r t  (K -- Xt (x)) +]. 

Proof. The smooth-fit condition (3.5) was derived by Zhang [32] within a jump- 
diffusion model in the context of variational inequalities. For completeness, we give a 
short proof. From relation (2.4), we deduce that F~ p is uniformly bounded in [0, T] x ~ +  
and FF is locally bounded in (0, T] × ~+ .  Moreover, f rom (2.1), F p satisfies in the 
viscosity sense (or distribution sense) ~.PF p < O, i.e., 

l_0 .2X202Fp O F  p O F  p 
< r F  p + - -  - r x - -  

2 Ox 2 - Ot Ox 

O F  p 
-~. fR ( F P ( t , x ( l  + y ( y ) ) ) -  F P ( t , x ) -  y(y)x---~x ( t , x ) )  

x p (y )m(dy) .  

Since F e is Lipschitz in x, uniformly in t, the integral term of  the right-hand side of  
this last inequality is bounded above by Clxl(1 + F~) f~ Iy (y ) lp (y )m(dy) .  Since y E 
LI(mp),  we deduce therefore from the local boundedness of  E p and Fx p in (0, T] x/t~+ 
that FxPx is locally bounded in (0, T] x ~ .  According to Lemma  3.1 in Chapter 2 of  
[18], it yields that Fx p is continuous in (0, T] x R~_ and in fact in (0, T] x It~+ from the 
convexity of  F p with respect to x in [0, T] x ~+ .  

The first inequality of  (3.6) is directly obtained by observing that F p (t, x) = -- 1 for 
x <_ bP(t) and because x w-~ FxP(t, .) is nondecreasing. To prove the second inequality, 
it is convenient to consider again tbechange  of variable z = In x and to define/~(t ,  z) = 
FP(t, eZ), f ( t ,  z) = fP( t ,  eZ), and h(t, z) = F(t ,  z) - f ( t ,  z). Recalling that V and f 
are both solutions of £ v  = 0 for z > In bP(t), we deduce that/~ satisfies 

^ ^  

/Zh ----- 0, z > lnbP(t), 

= K - e z - f ,  z < lnbP(t),  

/~(0, z) = 0, z s R, 

where £ is the maximum principle operator defined in (3.2). Denoting by fBS the 
European put option in the BS model and observing that f P  > fBS (see [28]) and 
fP( t ,O)  = fBS( t ,0 )  = Ke -rt, we have that fxP(t,O) > fBS( t ,0 )  = --1 and by 
convexity of  fP  (t, .) that f ~  (t, x) > - 1 or equivalently that fz (t, z) > - e  z. We deduce, 
by differentiating the above equations system once with respect to z and since F p is 
differentiable on the boundary b p, that hz satisfies 

~.hz = O, z > lnbP(t), 

hz < O, z < lnbP(t), 

/~z(O, z) = O, z s R. 
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It follows by the maximum principle that hz(t ,  z) <_ O, for all t E (0, T], z e R, which 
ends the proof. [] 

Extending the Riesz decomposition or the early exercise premium representation 
obtained for the BS model (see, e.g., [6], [13], or [17]), we now derive a decomposition 
of the American put option within a jump-diffusion model. 

T h e o r e m  3.1. The value func t ion  F p of the American put  option has the represen- 

tation 

F P ( t , x )  = f P ( t , x )  + e P ( t , x ) ,  

where e p is the early exercise premium: e p = e f  - e~, with 

fo 
t 

e f ( t , x )  = r K  e-rSQp[Xs(x) < bP(t - s ) l d s ,  

[io  e f  ( t , x )  = ~ E  Q" e .... x ( X , ( x )  < bP(t - s))  
~s.x 

x {FP(t  - s, X,(x) [ l  + Y(Y)I) 

- (K - Xs(x)[ l  + y ( y ) ] ) ] p ( y ) m ( d y ) [ ,  
A 

X is the characteristic funct ion  and AP~,x = {y E I~, X s ( x ) ( l  + l / ( y ) )  > bP(t - s)}. 

Proof. By Propositions 3.1 and 3.2, the function F p is C 1, piecewise C 2 in x, and 
piecewise C i in t. According to the generalized It6 lemma for convex functions (see 
Chapter 6.II of  [25]), we have 

e-r '  FP(O, X t ( x ) )  

/o' = FP( t ,  x)  + e - r ' 12PFr( t  - s, X , ( x ) )  ds  

/o' + e . . . .  f 2 ( t  - s,  X ~ ( x ) ) ~ X , ( x )  d W g  

i0'f  + e . . . .  [FP(t  - s, X~(x)(l  + g (y) ) )  - FP(t  - s, Xs(x))] 

x [v (ds ,  dy)  - )~pmP(dy) ds]. 

From the preceding propositions, [ F f ( t ,  x)I <_ 1 for all (t, x) 6 (0, T] x R+. Moreover, 
) ' ( In )  is integrable for the measure m e and EQP[X,(x)]  2 <_ const for all s ~ [0, T]. 
Therefore, the two stochastic integrals of the last relation are QP-martingales and, by 
taking expectation (under QP) and since FP(0, x) = g(x ) ,  we have 

{i0 t ] FP(t ,  x)  = f P ( t ,  x )  -- E Qp e .... £ P F P ( t  - s, Xs (x ) )  ds  . 
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Now, an easy computation yields: if x > b p ( t ) ,  then 

~.PFP( t ,  x )  -~ O, 

and i fx  < bP(t), then 

f 
ff.PFP(t, x )  -~ - r K  + )~ I {FP(t,  x[l  + Y(Y)]) 

Jx (l+y(y))>bP(t) 

- (K -- x[1 + y ( y ) ] ) } p ( y ) m ( d y ) ,  

which gives the asserted result. [] 

Remarks.  1. In a jump-diffusion model the early exercise premium is the difference of 
two terms. The first term, e p, analogous to the BS model's one, equals the present value 
of interest earned on the K units in bonds while the stock price is below the critical stock 
price. In the case of Merton's model [24], p = 1 (jump risk unpriced) and ln(1 + y(Yi) )  
normally distributed with variance 32, we can derive an explicit form of e~: 

+~ r t  + Z)s] (~v.)" 
e l ( t , x )  = r K  ~=oJo e x p [ - ( r  

ln((bl(t - s ) ) / x )  - ln(1 + k) - (r - ~.k - -~£)s  ds, 
x, 0-. v"-~ 

where k = E l y  (Yn)] is the expectation jump relative size, cr 2 = 0 -2 -F n~2/s, and • is 
the standard normal distribution function. The second nonnegative term, e~, due to the 
nonlocal integral part of/~P, is explained by the fact that the stock price can jump from 
below the critical stock price to the continuation region, without crossing the exercise 
boundary. Note that e~ is not so explicit as e~, and depends on F p . 

2. From the boundary condition (3.4), the optimal-stopping boundary b p can be 
viewed (at least implicitly) as the solution of the integral equation: 

fP ( t ,  bP(t))  + eP(t, bP(t)) = K - bP(t), ¥t  ~ (0, T]. 

Propositions 3.1 and 3.2 and Lemma 3.1 show that the American put option value 
F p is a solution of a parabolic integrodifferential free-boundary problem. Extending Van 
Moerbeke's approach to a jump-diffusion model, we now prove that this free-boundary 
problem has essentially a unique solution, F p. The main difficulty comes from the 
nonlocal integral term of the operator/~P. Indeed, v = (K - x) + in S p does not imply 
that ff..Pu = - r K  in S p, while it was true for the BS model, but as seen in the proof of 
Theorem 3.1: 

f 
•Pv(t, X) ~- - - rK  + ~ I {v(t, x(1 + Y(Y)))  

Jx (l+y(y))>bP(t) 

- [ K  - x ( 1  + y(y))]}p(y)m(dy) 
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if x <_ bP(t).  In particular, we do not know a priori  if  a solution of the free-boundary 
problem is QP r-excessive.  We give therefore the following condition: 

(Cp) rp :=  r -- )~ f y ( y ) p ( y ) m ( d y )  > O. 
av (y)>_0 

This assumption is obviously satisfied in a diffusion model. It means that the riskless 
interest rate corrected by the jump risk, rp = r - )~p E mp [y (YI)], is nonnegative. 

T h e o r e m  3.2. Assume condition (Cp) holds. Then ( F p, b p) is the unique solution pair  

(v, b) with v: [0, T] x ~ +  --~ ~ ,  v(t ,  .) nonincreasing and convex, and b: (0, T] --+ •, 

0 < b( t)  < K ,  o f t he f r ee -boundaryprob lem:  

f~Pv = O, x > b( t ) ,  (3.7) 

lim v ( t ,  x )  = K - b ( t ) ,  t 6 (0, T], (3.8) 
x~,b(t) 

lim vx (t, x)  = - 1, t 6 (0, T], (3.9) 
x~.b(t) 

v(0, x) = (K - x)  +, x e R+, (3.10) 

v > ( K  - x )  + i f  x > b( t ) ,  and v = ( K  - x )  + i f  x < b(t) .  (3.11) 

P r o o f  The fact that (F p, b p) is the solution of  this free-boundary problem follows 
from the preceding propositions. Conversely, we consider a pair (v, b) as in the text of 
the theorem. Therefore, v is C I in x, piecewise C 2 in x, and piecewise C l in t. By It6's 
formula, we have 

e-H v(t  -- s, X s ( x ) )  

fo = v(t ,  x)  + e - r " £ P v ( t  - u, X u ( X ) ) d u  

+ e - r "vx ( t  - u, X . ( x ) ) ~ X . ( x ) d W .  p 

+ e-rU[v(t  - u, X,(x) (1  + V(Y)))  - v( t  - u, X,(x ) ) ]  

x [v (du ,  dy )  - )~pmP(dy) du]. (3.12) 

Since v(t ,  .) is nonincreasing and convex, and v >_ (K - x) +, it implies that vx is 
bounded (by 1) on ~ + ,  so that the two stochastic integrals are QP-martingales.  Moreover, 
i f x  > b(t)  then £ P v  = 0, and i f x  < b(t) ,  then 

~.Pv(t, x)  = - r K  + 3. f {v(t ,  x(1 + Y(Y) ) )  
Jx (l+V(y))>b(t) 

- [K - x ( l  + V ( y ) ) ] } p ( y ) m ( d y )  

- r K  + ~" l {v(t ,  b( t ) )  - [K - x( l  + < V (y) ) ]} p ( y ) m ( d y )  
Jx (l+v(y))>b(t) 
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f < - r K  + Xx I y ( y ) p ( y ) m ( d y )  
Jx (l+g(y))>b(t) 

< - - rK  + Xx ] y ( y ) p ( y ) m ( d y )  
J× (y)>_o 

< - K [ F - X ~  y ( y ) p ( y ) m ( d y ) ] ,  
(y)>O 

where the first inequality is true because v(t, .) is nonincreasing, the second since 
v(t, b(t))  = K - b(t) < K - x, the third because {x(1 + y (y ) )  > b(t)} C {y(y)  > 0}, 
when x < b(t), and the fourth since x < b(t) < K.  Therefore, from condition (Cp), 
it yields ~Pv < 0 and finally we deduce that {e-r'~v(t - s, Xs(x ) ) ,  0 < s < t} is a 
QP-surmartingale. This means also that v is QP r-excessive in terms of  potential theory. 

We show then that v = F p. From the QP r-excessivity property of  v, we have, for 
all r 6 'T0,t, 

v(t, x )  > EaP[e-rrv( t  -- r, X~(x))] 
Qp 

> E [g(Xr(x))] ,  

where the second ineqality is derived from v _> g. This implies therefore that v > F p, 
by definition (1.5) of  F p. I f x  _< b(t),  then v(t,  x )  = g (x )  < FP(t ,  x) .  I f x  > b(t),  then 
v(t, x )  > g(x).  We then define the stopping time: 

r ----- inf{0 < s < t, v(t - s, Xs(x)) = g(Xs(x) )} .  

The preceding set is not empty since v(0, x) = g(x)  from (3.10) and so r E 'T0,t. It 
follows from (3.7) that £,Pv(t - u, X~(x))  = 0 for 0 < u < ~ and then from (3.12) that 
the process {e-rSv(t - s, X~(x)), 0 < s < r} is a QP martingale: 

v(t, x)  = EQP[e-r~v(t - r, Xr(x))]  

= EQP[e-rrg(Xr(x))] .  

This implies that v <_ F p, which ends the proof. [] 

4. Behavior of the Free Boundary 

The shape and smoothness of the free boundary for parabolic variational inequalities 
have been studied by various authors (see, e.g., [9], [31], and [13]). To our knowledge, 
results on the free boundary for parabolic integrodifferential operators have not appeared 
so far in the literature (see, however, [10] for a study of  the free boundary for elliptic 
variational inequalities with nonlocal operators). 

Adapting arguments of  Jacka [ 13], we prove a continuity property of the free bound- 
ary bP(t) within a jump-diffusion model. As for the uniqueness result (Theorem 3.2), 
we need the following condition, slightly stronger than (Cp): 

f 
(Crp) rp := r - L ] V ( y ) p ( y ) m ( d y )  > O. 

Jy (y)>O 
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Theorem 4.1. Under condition (Cp), the free boundary b p is continuous in (0, T]. 

Before proving Theorem 4.1, we have the following lemma: 

L e m m a  4.1. Assume (Cp) holds. Let to ~ (0, T]. Then there exists e > 0 such that, 
for  all t E [to, T ] , x  E (bP(t), K], 

1 2 2 0 2 F P  . .  
5a x ~ u , x )  > e. 

Proof. According to Proposition 3.1 and since t ~-~ FP(  ., x )  is nondecreasing, we 
have, for all x > bP(t), 

1 2 2 0 2 F p  O F P  
- -  > r F  p - r x  - ~  

~a x Ox z _ Ox 

x OFp t x f~  [ F P ( t , x ( I  + y(Y)) )  - F P ( t , x )  - y (Y)  -~-x ( , x )  ] 

x p (y )m(dy ) .  

From the continuity of F p and F p ,  and by the dominated convergence theorem, we have 
(recall that FP(t,  bP(t)) = K - bP(t) and Fff (t, bP(t)) = - 1 )  

, ~ ~ 0 2 F  p 
lira inf 2a~x ~ ---= 
x,~bv(t) ~X  z 

>_ r (K  - bP(t)) + rbP(t) - )~ 

[2[FP(t, bP(t)(1 + y(y)))  - (K - bP(t)(l  q- )< y (y )  ) ) ]p(y )m(dy)  

= r K  - )~  f [FP(t, bP(t)(1 -I- y(y)))  - (K - b P ( t ) ( l  + y(y)))]  
ay (y)>O 

× p (y )m(dy )  

>_ r K  - )~ ] [FP(t, bP(t)) - (K - bP(t)(l + y ( y ) ) ) ]p ( y )m(dy )  
a× (y)>O 

= r K  - )~bP(t) f y ( y ) p ( y ) m ( d y )  
a× (y)>_O 

> - K ( r - L f r ( y ) > o Y ( Y ) P ( Y ) m ( d y )  ) 

since F p (t, .) is nonincreasing and b p (t) < K. Therefore under condition (Cp), there ex- 

ists a neighborhood V of the optimal-stopping boundary, V C C p, such that 10"2X2 FxPx 

Krp /2  > 0 in V. We conclude by noting, thanks to Proposition 3.1 and Corollary 3. l, that 
the positive continuous function (t, x)  ~-~ lcr2x2FxPx(t, x )  attains a positive minimum 
in the compact set cl([t0, T] x [0, K] tq CP\V).  [] 

ProofofTheorem4.1 .  SinceSPisclosed,  i f t n S t , t h e n ( t ,  bP(t - )  = l imbP(t , ) )  E S p, 
hence b p ( t - )  <_ b p (t). The left-continuity of b p is thus obtained from the nonincreasing 
nature of b p. 
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Let t 6 (0, T) and 0 < to _< t. For r/ > 0: bP(t) +/7  < K,  and (tn) a sequence 
in (t, T]: t, ",a t, as n --+ +oo ,  we have, since F p and g agree on b p up to the first 
derivative (see (3.3) and (3.5)), 

FP(tn, bP(tn) + 17) - g(tn, bP(tn) + 17) 

=fbP(t")+OfbY (02F p 02g)(tn, u) dudy  
JbP(tn) P(tn) ~k oX2 ~X2 

r] 2 

_ o . 2 K  e 

where the inequality follows from Lemma  4.1 and since 02g/Ox 2 vanishes in [0, T] × 
[0, K]. Sending n ~ +o~,  it comes from the continuity of F p and g that F p (t, b p (t +) + 
11) > g(t ,  bP(t +) + O) and hence that (t, bP(t +) + r/) c C p, for all /7 > O. It implies 
that bP(t+) >_ bP(t) and then bP(t +) = bP(t) by the nonincreasing property of  b p. The 
right-continuity and finally the continuity of  b p in t is then proved. [] 

Our interest is now in the behavior of  the critical stock price near maturity, i.e., as 
t ~ 0. We denote by f~s ,  Fas ,  and b as, the European, American option put price, and 
its critical stock price in the framework of  the BS model. We have therefore the following 
estimate. 

t Proposi t ion  4.1. Under condition (Cp), there exists a positive constant C > 0, such 
that, for  all t e (0, T], 

0 < bBS(t) - - bP ( t )  < C~/-[. 

Before proving Proposition 4.1, we state the following lemma: 

Lemma 4.2. 

lira OFP (t, baS(t)) = --1. 
t,~0 + 0x  

Proof. According to relation (3.6), it suffices to prove that limt~0+ f f  (t, b Bs (t)) = - 1. 
From the explicit expression of the delta hedge ratio f f  (see [28]), we easily obtain, by 
recalling that f P  <_ 0 and f f  (t, .) is nondecreasing, 

- 1  < fxP(t, x)  < e -;~p(kp+l)t FBStt  x~ 
- -  - -  J X  \ '  I "  

Now from the closed-form expression of the delta BS (see [5]), 

[ r )] 
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we deduce that limit0+ f a s ( t ,  x) = --1, for x < K. Moreover, thanks to the estimate 1 
of the BS critical stock price near expiration (as t -+ 0 +) derived in [3] and [19], 

bBS(t)__ b B S ( t ) - K  tr / S l n t ,  ' V t l  I In 
K K 

we conclude also that limt+0+ fBs (t, b as (t)) = - 1 ,  which states Lemma 4.2. [] 

Proof  of  Proposition 4.1. Thefirstinequality, 0 _< bSS ( t ) - bP ( t ), is always true (with - 
out condition (Cp)) and follows from FP(t ,  x)  >__ Fas( t ,  x), which is a particular asser- 

tion of Proposition 5.1. Before proving the other inequality, recall that FP(t,  .) is C 2 for 
x > bP(t), and C 1 in ]R+. When bBS(t) > bP(t) (if bBS(t) = bP(t), there is nothing to 
prove), we then obtain, by Taylor's formula, 

OF p 
F p ( t ,  b a s  ( t ) )  = F p ( t ,  b P ( t ) )  -1- ( b  Bs ( t )  - b p ( t ) ) - - ~ ' -  x ( t ,  b P ( t ) )  

2 0 2 F  p 
+½(bBS(t) - bP(t)) ~ ( t ,  ( ( t ) )  

w i t h  b p ( t )  < ~" ( t )  < b a s  ( t ) .  Hence, using F p ( t , b p ( t ) ) = K - b p ( t ) and F p ( t , b p ( t ) ) = 

- 1, we have 

p .  2 0 2 F p  
FP(t,  baS(t)) = K - baS(t) + ½(baS(t) - b (t)) ~ ( t ,  ( ( t ) )  

FaS(t,  bBS(t)) + ½(bBS(t) 20EFp = - bP(t)) --~-x2(t, ( ( t ) ) .  (4.1) 

From the decomposition of  the American put option price (see Theorem 3. l) we have 

FP(t,  x)  - FaS~t, x)  <_ f P ( t ,  x)  - f a s ( t ,  x)  + r K t .  

Now, from the explicit expression of f P  (see [28]), we have 

f P ( t , x )  = Ee-XPt (3"Pt )nEQ"  f a s ( t ,  xe  -x"kp' l - I ( l  + Y(Yi))  
n! n=0 i=1 

<_ e-~pt f a s ( t ,  xe  -x.kpt) + K( l  - e -zpt) 

Of as 
< f n s ( t , x )  + x ( e  -~pket -- l ) - - ~ x  (t, ~) + K ( l  - e -xpt) 

_< f a s ( t ,  x) + Lp(kpx + K) t ,  

where the first inequality follows from f a s ( t ,  x) < K, the second from Taylor's formula 
and the third from JfxasJ < 1 and since l - e -ct <_ ct fo rc  >_ 0. Therefore, we have, for 
all x _< K, 

0 < Fe( t ,  x)  - FaS(t,  x)  <_ K ( r  + ~.p(kp -t- l))t .  

I Given two functions f and g defined in (O,T],  we write that f ( t )  ~ g(t) as t --* 0 + if 

limt_~o+ ( f ( t ) /g ( t ) )  = 1. 
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Going back to (4.1), we then obtain 

2 0 2 F  p 
l(bBS(t) -- bP(t)) ~ ( t ,  ( ( t ) )  < K(r  + Zp(kp + 1))t. 

According to Proposition 3.1, we have, since ( ( t )  > be(t),  F e > 0 and Ft p > 0, 

(4.2) 

I _ 2 ~ t . x 2  0 2 F p  t .  
~o gtt) ---ff~x2 ~,, ( ( t ) )  

OF e 
> - r ( ( t ) - ~ x ( t ,  ( ( t ) )  - ~. 

f[  3FP ( ( t ) ) ]  
x j ~ L F P ( t , f ( t ) ( I +  y ( y ) ) ) -  F P ( t , ( ( t ) )  - y (y ) ( ( t ) - -~-x( t ,  

x p (y)m(dy) .  (4.3) 

Since ( ( t )  < bSS(t) and x w-~ FxP(t, .) is nondecreasing, we have - 1  _< FxP(t, ( ( t ) )  < 
FxP(t, bBS(t)) and therefore, from Lemma  4.2, limt~o+ FP(t, ( ( t ) )  = - 1. By the domi- 
nated convergence theorem and by sending t --> 0 in the last inequality (4.3), we obtain 

~2Fp  
lim inf ~trz¢(t)2~---:  -_ (t, ( ( t ) )  

t~O + ~ OX z 

r ( ( 0  +) -- X . f [ ( K  - ((0+)(1 + y(y)))+ - (K - ((0+)(1 + y (y) ) ) ]  > 

x p(y)rn(dy) 

= r ( ( 0  +) - X f [((0+)(1 + y (y ) )  - K]p(y)rn(dy)  
J¢ (0+)(I+V(y))>K 

> ( (O+)[r -Xfv (y l>_oY(Y)P(Y)m(dy)  ] , 

since ( (0  +) < K and ((0+)(1 + y (y ) )  - K > 0 in the set {((0+)(1 + y (y ) )  > K} 
C {y(y) > 0}. Note that ( (0  +) > 0 since otherwise bP(O +) = 0 and bP(t) = 0 for all 
t ~ (0, T] by the nonincreasing nature of  b p, which is obviously false. Therefore, under 
condition (C'p), there exists a positive constant C > 0 such that F~( t ,  ( ( t ) )  > C for t 
close to 0, which combined with (4.2) suffices to prove Proposition 4.1. [] 

Thanks to the estimate of  Proposition 4.1, we can provide within a jump-diffusion 
model the same estimate of  the critical stock price near maturity, obtained recently by 
Barles et al. [3] (see also [19]) for the BS model. 

T h e o r e m  4.2. Under condition (Cp), we have lime+0+ bP(t) = K and 

K - b P ( t )  ... rr /,,hlntl 
K 

as t approaches O. 
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5. Impact of Jump Intensity and Jump Risk on the American Option Price 
and Its Critical Stock Price 

Compared with a diffusion model, the presence of jump uncertainty in stock price be- 
havior introduces new parameters for the option valuation, essentially the intensity of 
jumps )~ and the market price of  jump risk p(.).  In this section we study the influence of 
these two factors on the critical stock price and on the American put option price. We 
denote by F p (resp. b p) the American put option value (resp. the critical stock price) 
corresponding to a market price of jump risk p and to an intensity of  jumps )~. The proofs 
of  the following proposition are essentially based on comparison principles for parabolic 
integrodifferential operators. 

Proposition 5.1. The American put option value and its free-boundary satisfy: 

- -  For a fixed market price of jump risk p, F ff (resp. b p) is a nondecreasing (resp. 
nonincreasing) function of the intensity of jumps ~.: tf~.l < ,k2, then 

F~( t , x )  < F~( t , x ) ,  V( t ,x)  E [0, T] x ~+ ,  

bP2(t ) <_ bxP. (t), Yt E (0, T]. 

- -  For a fixed intensity of jumps )v, F p (resp. b p) is a nondecreasing (resp. non- 
increasing) function of  the market price of jump risk p : / f  p t (') < P2 ('), then 

Fx p' (t, x) < FP:(t, x), ¥(t, x) E [0, T] x R+, 

bx p2(t) < bx p' (t), Vt E (0, T]. 

Proof. For a fixed market price of  jump risk p, we denote, for notational simplicity, by 
Fi (resp. bi) the American option price (resp. the critical stock price) when the intensity 
of  jumps (under P)  is ~.i, and also F = F2 - Fi. 

If  x _ < b l ( t ) ,  then F ( t , x ) = F 2 ( t , x ) - g ( x ) > _ O .  (5.1) 

I f x  > bl( t) ,  then Fl(t, x) > g(x) and, from Proposition 3.1, Fi is smooth and satisfies 

121Fl(t, x) ---- 0, 'v'x > bj(t), (5.2) 

where £i  is the operator £P defined in (2.3) with ~. replaced by ~q. We do not know a 
priori if b2 > bl, and so if F2 is smooth for x > bl (t). However, F2 satisfies, in the 
viscosity sense, 

/Z2F2(t, x) < 0, V(t, x) E (0, T] x JR+. (5.3) 

Relations (5.2) and (5.3) imply that £2F2(t, x) -- £1FI (t, x) < 0 for every x > bl (t), 
which can also be written as 

£ 2 F  < --(X2 -- )Vl) 

× £ [ F l ( t , x ( l  
OFL (, 1 + V(Y))) - F1 (t, x) - v ( y ) x T x  ~, x ) j  p(y)m(dy)  
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for every  x > bl (t). F r o m  convexi ty  o f  Fl  (t, -), the r ight-hand side o f  this inequal i ty  is 

nonposi t ive  w h e n e v e r  Lt <_ Lz. Moreover ,  s ince F ( 0 ,  x)  = 0, we  deduce  f rom (5.1) by 

the m a x i m u m  pr incip le  that F > 0 for all (t, x )  c [0, T]  × IR+, which  also impl ies  that 

b2(t) < bt (t). 

The  second assert ion o f  the proposi t ion  is p roved  by the same means  and is omi t ted  
here. []  

R e m a r k s .  1. The  main  point  is the convexi ty  o f  FP(t, .). Therefore ,  Propos i t ion  5.1 

remains  valid for  any Amer i can  opt ion with  payoff ,  a convex  funct ion  g, and genera l izes  

s tatements  p roved  for  European  opt ions  by [28]. 

2. The  first assert ion o f  the last p ropos i t ion  is consis tent  with the fo l lowing  e c o n o m i c  

intuition. As  the intensity o f  j u m p s  increases,  the marke t  is more  risky and A m e r i c a n  

put  option holders  are more  str ingent  in their exerc ise  decision.  This  makes  the op t imal  

exercise  boundary  lower. We find in part icular  the intuit ive result  that an Amer i can  opt ion  

on a stock with  a j u m p  componen t  is more  va luable  than its counterpar t  wi thout  j u m p  

uncertainty. 

Acknowledgments 

I am very grateful for discussions with Guy Barles, Pierre Brugi~re, Danielle Florens, and Damien Lamberton. 

References 

1. Aase, K. K. (1988), Contingent Claims Valuation When the Security Price is a Combination of an It6 
Process and a Random Point Process, Stochastic Process. Appl., 28, 185-220. 

2. Ahn, C. M., and H. E. Thompson (1992), The Impact of Jump Risks on Nominal Interest Rates and 
Foreign Exchange Rates, Rev. Quant. Finan. Account., 2, 17-31. 

3. Barles, G., J. Burdeau, M. Romano, and N. Samsoen (1995), Critical Stock Price Near Expiration, Math. 
Finan., 5(2), 77-95. 

4. Bensoussan, A., and J. L. Lions (1978), Applications des Indquations Variationnelles en Contr61e stochas- 
tique, Dunod, Paris. 

5. Black, E, and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, J. Polit. Econ., 81, 
637-659. 

6. Carr, P., R. Jarrow, and R. Myneni (1992), Alternative Characterizations of American Put Options, Math. 
Finan., 2, 87-106. 

7. Colwell, D. B., and R. J. Elliott (1993), Discontinuous Asset Prices and Non-Attainable Contingent 
Claims, Math. Finan., 3(3), 295-308. 

8. El Karoui, N., A. Millet, and J. P. Lepeltier (I992), A Probabilistic Approach to the R~duite in Optimal 
Stopping, Probab. Math. Statist., 13, 97-121. 

9. Friedman, A. (1975), Parabolic Variational Inequalities in One Space Dimension and Smoothness of the 
Free Boundary, J. Funct. Anal. 18, 151-176. 

10. Friedman, A,  and M. Robin (1978), The Free Boundary for Variational Inequalities with Nonlocal 
Operators, SIAM J. Control Optim., 16(2), 347-372. 

11. Harrison, J. M., and D. M. Kreps (1979), Martingale and Arbitrage in Multiperiods Securities Markets, 
J. Econ. Theory, 20, 381-408. 

12. Harrison, J. M., and S. R. Pliska (1981), Martingales and Stochastic Integrals in the Theory of Continuous 
Trading, Stochastic Process. Appl., 11,215-260. 

13. Jacka, S. (1991), Optimal Stopping and the American Put, Math. Finan., 1, 1-14. 



164 Huy~n Pham 

14. Jacod, J. (1979), Calcul Stochastique et Probl~mes de Martingales, Lectures Notes in Mathematics, 
vol. 714, Springer-Verlag, Berlin. 

15. Jaillet, P., D. Lamberton, and B. Lapeyre (1990), Variational Inequalities and the Pricing of American 
Options, Acta Appl. Math., 21,263-289. 

16. Jorion, P. (1988), On Jump Processes in the Foreign Exchange and Stock Markets, Rev. Finan. Stud., 4, 
427-445. 

17. Kim, I. J. (1990), The Analytic Valuation of American Options, Rev. Finan. Stud., 3,547-572. 
18. Ladyzenskaja, O. A., V. A. Solonnikov, and N. N. Ural'ceva (1968), Linear and Quasilinear Equations 

of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 
Providence, RI. 

19. Lamberton, D. (1994), Critical Price for an American Option near Maturity, Preprint, Universit6 Marne 
la ValiSe. 

20. Lions, P. L. (1983), Optima/Control of Diffusion Processes and Hamilton-Jacobi-Bellman Equations. 
Part 1: The Dynamic Programming Principle and Applications and Part 2: Viscosity Solutions and Unique- 
ness, Comm. Partial Differential Equations, 8, 1101-1174 and 1229-1276. 

21. Maingueneau, M. A. (1978), Temps d'Arr~ts Optimaux et Th6orie G6n6rale, S6minaire de Probabilit6s 
XII, Lecture Notes in Mathematics, vol. 649, Springer-Verlag, Berlin, pp. 457-467. 

22. McKean, H. P., Jr. (1965), Appendix: a Free Boundary Problem for the Heat Equation Arising from a 
Problem in Mathematical Economics, Indust. Manage. Rev., 6, 32-39. 

23. Merton, R. (1973), Theory of Rational Option Pricing, Bell J. Econ. Manage. Sci., 4, 141-183. 
24. Merton, R. (1976), Option Pricing when the Underlying Stock Returns are Discontinuous, J. Finan. Econ., 

5, 125-144. 
25. Meyer, P. A. (1976), Un Cours sur les lnt6grales Stochastiques, Lecture Notes in Mathematics, vol, 511, 

Springer-Verlag, Berlin, 245-398. 
26. Myneni, R, (1992), The Pricing of American Option, Ann. Appl. Probab., 2, 1-23. 
27. Naik, V., and M. Lee (1990), General Equilibrium Pricing of Options on the Market Portfolio with 

Discontinuous Returns, Rev. Finan. Stud., 3,493-521. 
28. Pham, H. (1995), Applications des Methodes Probabilistes et de Contr61e Stochastique aux Mathema- 

tiques Financi~res, Part Ilk Doctoral dissertation, Universit6 Paris IX Dauphine. 
29. Pham, H. (1995), Optimal Stopping of Controlled Jump Diffusion Processes: a Viscosity Solution Ap- 

proach, C. R. Acad. Sci. S6r. I, 320, 1113-1118. Forthcoming in J. Math. System Estim. Control. 
30. Shiryaev, A. N. (1978), Optimal Stopping Rules, Springer-Vertag, New York. 
31. Van Moerbeke, P. (1976), On Optimal Stopping and Free Boundary Problems, Arch. Rational Mech. 

Anal., 60, 101-148. 
32. Zhang, X. (1994). Analyse Num6rique des Options Am6ricaines dans un ModUle de Diffusion avec des 

Sauts, Doctoral dissertation, Ecole Nationale des Ponts et Chauss6es. 

Accepted 5 June 1995 


