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This study focuses on the simple setup of self-financing
investments, that is, investments whose gains and losses
are reinvested without consumption or deposits of fresh
funds, in assets whose prices are undergoing geometric
Brownian motion. The consequences of time irreversibil-
ity pertaining to studies of risk are discussed.
Understanding these consequences appears particularly
important in the light of the current financial and
economic crisis. This will be elaborated at the end, in
section 4, after establishing the main concepts.

In section 1 the portfolio selection problem, as intro-
duced by Markowitz (1952), is reviewed. Its use of utility
to express risk preferences is contrasted with a different
ansatz, proposed by Kelly (1956), that makes use solely of
the rôle of time in multiplicative processes. While in the
terminology of modern portfolio theory, the latter ansatz
can be interpreted as the assumption of logarithmic
utility, in section 1.1 the Kelly result is shown to be
equivalent, in the present setup, to an application of Itô’s
formula of stochastic calculus. In this sense it is not the

reflection of a particular investor’s risk preferences, but a

generic null hypothesis. Considerations of personal risk

preferences can improve upon this hypothesis but they

must not obscure the crucial rôle of time. In section 2 it is

shown by explicit calculation that the non-ergodicity of

geometric Brownian motion can create a difference

between ensemble-average and time-average growth

rates. Itô’s formula is seen as a means to account for

the effects of time. In section 3 the growth-optimal

leverage, which specifies a portfolio along the efficient

frontier, is derived and related to a minimum investment

time horizon. Optimal leverage is compared to the Sharpe

ratio. Finally, in section 4 implications of the results from

section 3 for real investments are discussed, and the

concept of stochastic market efficiency is introduced.

1. Introduction

Modern portfolio theory deals with the allocation of

funds among investment assets. We assume zero*Email: ole@santafe.edu
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transaction costs and portfolios whose prices p(t) follow
geometric Brownian motion,y

dpðtÞ ¼ pðtÞð�dtþ �dWtÞ, ð1Þ

where � is a drift term, � is the volatility, and

WðT Þ �

Z t¼T

t¼0

dWt ð2Þ

is a Wiener process.
Markowitz (1952) suggested calling portfolio i

efficient if

(a) there exists no other portfolio j in the market with
equal or smaller volatility, �j� �i, whose drift term
�j exceeds that of portfolio i,

for all j such that �j � �i, we have �j � �i; ð3Þ

(b) there exists no other portfolio j in the market with
equal or greater drift term, �j��i, whose volatility
�j is smaller than that of portfolio i,

for all j such that �j � �i, we have �j � �i: ð4Þ

Markowitz (1952) argued that it is unwise to invest in
any portfolio that is not efficient. In the presence of a
riskless asset (with �i¼ 0), all efficient portfolios lie along
a straight line—the efficient frontier—that intersects, in
the space of volatility and drift terms, the riskless asset, R,
and the so-called market portfolio, M (Tobin 1958)
(see figure 1).

Markowitz’ suggestion to focus on the mean � and the
variance �2 was later criticized because the first two
moments alone do not sufficiently constrain the return
distribution. Clearly preferable portfolios can appear
inferior if assessed only by Markowitz’ (1952) criteria
(Hanoch and Levy 1969). Below it will be stated
specifically in what sense large � and small � are desirable
under the dynamics of equation (1).

Since any point along the efficient frontier represents
an efficient portfolio, Markowitz’ (1952) arguments need
to be augmented with additional information in order to
select the optimal portfolio. This additional information
is generally considered a property of the investor, namely
his risk preference, represented by a utility function,
u¼ u( p(t)), that specifies the usefulness or desirability
of a particular investment outcome to a particular
investor.z

In a parallel development, Kelly (1956) considered
portfolios that were also described by two parameters.
In his case, the portfolios were double-or-nothing games
on which one could bet an arbitrary fraction of one’s
wealth (one parameter) and knew the outcome with some
probability (second parameter). Both Markowitz (1952)
and Kelly (1956) recognized that it is unwise to maximize

what is often called the expected rate of return,

g
� �
¼

1

dt

dpðtÞ

pðtÞ

� �
, ð5Þ

where h i denotes the ensemble mean over realizations of

the Wiener process. Markowitz (1952) rejected such

strategies because the portfolio with maximum expected

rate of return is likely to be under-diversified. In Kelly’s

case the probability of bankruptcy approaches one as

games of maximum rate of return are repeated (Kelly

1956). In geometric Brownian motion, bankruptcy is

impossible, but the effects of time are essentially the same

as in Kelly’s setup.
While Markowitz emphasized parameters such as risk

preferences and personal circumstances (‘‘The proper

choice among portfolios depends on the willingness and

ability of the investor to assume risk.’’ (Markowitz 1991)),

Kelly used a fundamentally different ansatz by maximiz-

ing the so-called expected growth rate,

�g ¼
1

dt
d ln p
� �

, ð6Þ

rather than the expected rate of return, without an a priori

need for additional information. The exact meaning of

these two quantities will be worked out in section 2, and

M

lopt=1.54

R

g

l=1

 d
rif

t µ

M

available portfolios

µM

µexcess

µriskless

Figure 1. The efficient frontier (green straight line) intersects the
riskless asset R (here �riskless¼ 0.05 per time unit) and is tangent
to the space of available portfolios (green oval), touching at the
point defined as the market portfolio, M (here �M¼ 0.1 per time
unit, resulting in an excess expected return of M compared to R
of �excess¼ 0.05 per time unit; the volatility of the market
portfolio �M¼ 0.18 per square-root of time unit), corresponding
to leverage l¼ 1, left arrow. The color coding shows the
expected, more specifically time-average, growth rate,
�g ¼ �� �2=2; the portfolio of optimal leverage (see section 3,
here lopt� 1.54) along the efficient frontier is indicated by the
right arrow. Both for fixed volatility � and fixed expected return,
which we call the ensemble-average growth rate, �, there are no
obtainable portfolios (those below the efficient frontier) whose
time-average growth rates exceed that at the efficient frontier.
Zero time-average growth rate is indicated white.

ySome authors define the parameters of geometric Brownian motion differently (Timmermann 1993). The parameters in their
notation must be carefully translated for comparisons.
zThe concept of assigning a utility to a payoff from uncertain investments can be traced back to Bernoulli’s St. Petersburg Paradox
(Bernoulli 1738). The paradox captures the essence of the problem treated here: is an investment with infinite expected pay-off worth
an infinite risk? The recognition of non-ergodicity, as will be shown elsewhere, also resolves this paradox.
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a more precise nomenclature will be introduced shortly.
The conditions under which the growth-rate ansatz alone
yields meaningful results have been discussed in the
literature (Merton and Samuelson 1974, Markowitz 1976,
1991). For self-financing portfolios (the focus of this
study), where eventual outcomes are the product over
intermediate returns, these conditions are met. This is a
good approximation, for example, for large pension funds
where fluctuations in assets under management are
dominated by market fluctuations (Schwarzkopf and
Farmer 2008) and, arguably, for entire economies. Some
stock market indices, for example the DAX, also reflect
the value of a hypothetical constant rebalanced
self-financing portfolio with zero transaction costs.
Equation (6) shows that the Kelly criterion, maximizing
the expected growth rate, is mathematically similar to
using logarithmic utility. In this special case, i.e.
u( p(t))¼ ln( p(t)), the rate of change of the ensemble-
average utility happens to be the time average of the
growth rate in a multiplicative process. The fact that the
process is non-ergodic and the time average has to be used
explains why logarithmic utility so often yields intuitively
sensible results (see section 2).

The so-called Sharpe ratio, usually defined as
S¼ (hgi��riskless)/�, where �riskless is the rate of return
on a riskless asset, is a means of analysis using Markowitz’
framework. It can be thought of as the slope of a straight
line in figure 1 intersecting the riskless asset. We will return
to the Sharpe ratio in section 3.1, as it is best discussed
using the main results about to be presented.

1.1. Two averages

In this section the reader is reminded that the two
averages (5) and (6) are not necessarily identical. For
riskless assets, the chain rule of ordinary calculus implies
that (5) and (6) are identical, g

� �
riskless

¼ �griskless, but this is
not the case for non-zero volatility.

Combining (1) and (5), we now compute the expecta-
tion value of the fractional price increment per infinites-
imal time step, the expected rate of return,

g
� �
¼

1

dt

pðtÞ�dtþ pðtÞ�dWt

pðtÞ

� �

¼ �þ �
1

dt
dWth i

¼ �: ð7Þ

From now on we will call this quantity the ensemble-
average growth rate, for reasons that will be made clear in
section 2.

The object dln p in (6) has to be treated carefully using
Itô’s formula.y With the chain rule of ordinary calculus
replaced by Itô’s version, (5) and (6) now correspond to
different averages.

Itô’s formula for (1), which we need to evaluate (6),
takes the formz

df ¼
@f

@t
þ �p

@f

@p
þ
1

2
�2p2

@2f

@p2

� �
dtþ p�

@f

@p
dWt, ð8Þ

where f¼ f ( p(t), t) is some function of the Itô process p(t)
of (1) and time t. The dependencies of p(t) and f ( p(t), t)
have been left out of (8) to avoid clutter. The third term
on the right of (8) constitutes the difference from the
increment for a function of a deterministic process. Due
to the second derivative, Itô’s formula can only take effect
if f ( p(t), t) is nonlinear in p. To derive the increment dln p,
we need to choose f ( p(t), t)� ln( p(t)), that is, a nonlinear
function. We arrive at

d ln p ¼ ��
�2

2

� �
dtþ �dWt: ð9Þ

Notice that Itô’s formula changes the behavior in time,
whereas the noise term is unchanged. In the literature, the
corresponding average,

�g ¼
1

dt
dlnp
� �

¼ ��
�2

2
þ
�

dt
dWth i

¼ ��
�2

2
, ð10Þ

is called the expected growth rate, or logarithmic
geometric mean rate of return. Here we call it the
time-average growth rate.

Distributions of logarithmic returns for many asset
classes are highly non-Gaussian (see, e.g., Mantegna and
Stanley 1995). This does not affect the applicability of the
concepts about to be discussed, however, as their justi-
fication is the irreversibility of time (see section 2).
In general, the time-average growth rate of a self-financed
portfolio whose rates of return obey a given probability
distribution is the logarithm of the geometric mean of that
distribution (see, e.g., Kelly 1956 and Markowitz 1976).
Extending the results of this study to return distributions
that are not log-normal thus only requires the computa-
tion of the geometric mean.

Equation 10 shows that while the ensemble-average
growth rate enters into the time-average growth rate, it
does so in combination with the volatility, quantifying for
the present setup the statement that large returns and
small volatilities are desirable. This is illustrated in
figure 1.

2. Ergodicity

How can we make sense of the difference between the
quantities computed in (7) and (10) in the presence of
non-zero volatility? The problem that additional

yWe stress that Itô’s interpretation of increments like (1) is indeed the appropriate choice in the present context because it implies
statistical independence of p(t) and the increment dWt and no knowledge of the future. Alternative interpretations are possible,
notably Stratonovich’s, but they define different dynamics. For a detailed discussion, see van Kampen (1992, chapter 9), Øksendal
(2005, chapters 3 and 5) and Lau and Lubensky (2007).
zThis calculation can be found in any textbook on financial derivatives, for example Hull (2006, chapter 12).
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information is needed to select the right portfolio, which
was first treated by Bernoulli (1738), disappears when

using (10)—how did this problem arise in the first place,
and what is the meaning of (7)? It will be shown in this
section that the non-ergodic nature of (1) allows us to
obtain hgi ¼� from an estimate for the growth rate

averaged over an ensemble of infinitely many realizations
of the stochastic process, whereas the time average of the
same estimate produces �g ¼ �� �2=2.

To generate the ensemble average, stochasticity is
removed by letting the sample size, or number of
realizations, or number of parallel universes diverge

before the non-trivial effects of time, which arise from
multiplicative noise, are fully taken into account.
Equation (7) is thus the answer to the following question:
‘‘what is the rate of return on this investment, computed

from an average over all possible universes?’’, where a
universe is defined as a particular sequence of events, i.e.
one realization of the process (1). This nomenclature is
employed to emphasize that we only live in one realization

of the universe but stay alive in that universe for some
time. For most of us, therefore, this question is less
relevant than the question: ‘‘what is the rate of return on
this investment, averaged over time?’’, to which the
answer is (10). This is illustrated in figure 2, where one

realization of a self-financed portfolio is compared with
an average over an increasing number of universes. This is
achieved by producing independent sequences of wealth,

corresponding to resetting an investor’s wealth and

starting over again. The independent sequences are then

averaged (arithmetically) at equal times. As this averaging

procedure over universes destroys stochasticity, the sto-

chastic exponential growth process (whose time-average

growth rate is (10)) approaches the deterministic expo-

nential growth (whose growth rate is the ensemble-

average growth rate, (7)). The procedure of starting

over again is like going back in time, or periodically

resetting one’s investment to its initial value. But going

back in time is not possible, and the self-financing

portfolios considered here do not allow any resetting.y

For processes with Wiener noise, (2), Itô’s formula can

encode the multiplicative effect of time in the ensemble

average. These intuitive arguments will now be made

precise.
Ergodicity requires a unique stationary probability

distribution of the process p(T ) in the long-time limit

T!1. Geometric Brownian motion is therefore trivially

non-ergodic because it is not a stationary process. This

implies that there is no guarantee for the ensemble

average of an observable to be identical to its time

average. The observable we are interested in is the growth

rate. It will be shown that (5) corresponds to the ensemble

average of a particular estimator for the growth rate, and

that (6) corresponds to the time average.
In practice, an exponential growth rate is estimated

from observations over a finite time T. To add the

possibility of averaging over N parallel universes

(or completely independent systems), we consider the

estimator

gestðT,NÞ ¼
1

T
ln

pðT Þ

pð0Þ

� �
N

: ð11Þ

Here, the angled brackets denote the average over N

realizations, h iN¼ ð1=NÞ
PN

i¼1. The different pi(T ) are

obtained by solving the stochastic differential equation (1)

by integrating (9) over time and then exponentiating,

piðT Þ ¼ pð0Þ exp ��
�2

2

� �
Tþ �WiðT Þ

� �
: ð12Þ

The sample average in (11) must not enclose the

logarithm. The quantity that reveals the non-ergodic

properties of (1) and clarifies the meaning of (5) is

obtained by averaging the values pi(T ) from individual

realizations, i, first, before the logarithm translates them

into a growth rate. This procedure corresponds precisely

to figure 2, where outcomes pi(T ) are averaged first at

equal times, and then a growth rate is derived by taking

the logarithm. This is different from Bernoulli’s treat-

ment, where the logarithm is a utility function and would

be inside the sample average, obscuring the conceptual

failure of the ensemble average. It was Kelly (1956)

Many universes

Long-termNoise

3

µ-    /22

µ

Time

W
ea

lth

Figure 2. Wealth starts at unity at time T¼ 0 and then behaves
according to (1) with �¼ 0.05 per time unit and volatility
�¼ 0.45 per square root of one time unit, implying the
time-average exponential growth rate �g � �0:051 per time
unit. For short times the performance is noise-dominated;
after T� 75 time units (red arrow, (19)) the time-average growth
rate takes over (see also figure 3). To uncover the ensemble-
average growth rate (5) from the dynamics, an average over
many independent universes must be taken.

yThere are situations in which the ensemble average is more relevant. Kelly constructed the example of a gambler whose wife, once a
week, gives him an allowance of one dollar to bet on horses (Kelly 1956). The optimal strategy for this gambler is to maximize the
expected return (equation (7)). The reason is that the gambler resets his wealth in each round of the game instead of reinvesting. His
wealth is the sum (a linear object) of past gains, whereas under re-investment it would be the product (an object that is nonlinear and
hence affected by Itô’s formula). In section 3 we will see how this translates into preferred values of leverage.
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who first pointed out that the time average should be

considered instead.
The ensemble average of the estimator (11) can be

identified with the limit

g
� �
¼ lim

N!1
gestðT,NÞ, ð13Þ

whereas the time average results from the limit

�g ¼ lim
T!1

gestðT,N ¼ 1Þ: ð14Þ

Writing the averages as these two limits helps elucidate

the relation between (5) and (6), and it shows the

symmetry or absence thereof between effects of additional

time and effects of additional parallel universes included

in the estimate. We will now calculate both to show

explicitly that the limits are not interchangeable. We start

with the ensemble average. The Wiener process W(T ) in

(2) is Gaussian-distributed with mean 0 and standard

deviation
ffiffiffiffi
T
p

. Using the fundamental transformation law

of probabilities, equation (12) thus implies that ( p(T )/

p(0)) is log-normally distributed, according to

P
pðT Þ

pð0Þ

� �
¼

1

ð pðT Þ=pð0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT�2
p

� exp �
ðlnð pðT Þ=pð0ÞÞ � ð�� �2=2ÞTÞ2

2T�2

� �
:

ð15Þ

The first moment of ( p(T )/p(0)) is

lim
N!1

pðT Þ

pð0Þ

� �
N

¼ expð�T Þ, ð16Þ

the well-known expectation value of log-normally distrib-

uted variables. Using this in (13) in conjunction with (11)

yields

g
� �
¼ �

¼
1

dt

dpðtÞ

pðtÞ

� �
, ð17Þ

where the last line follows from (7), explaining our

nomenclature of referring to (5) as an ensemble-average

growth rate.
Next, we consider (14), where the long-time limit is

responsible for eliminating stochasticity. Using N¼ 1

since we are interested only in one realization that could

be our reality, and substituting (11) and (12) in (14) we

find

�g ¼ lim
T!1

1

T
��

�2

2

� �
Tþ �WðT Þ

� �

¼ ��
�2

2
þ lim

T!1
ð�T�1=2Wð1ÞÞ

¼ ��
�2

2

¼
1

dt
dlnp
� �

: ð18Þ

The step from line 1 to 2 of (18) follows from the scaling

properties of Brownian motion. Although clearly W(T )

cannot be equated to T1/2W(1) for any specific realization,

the step is valid because of the limit T!1. The final line

follows from (10), and we identify the time-average

growth rate with (6). The decay of the stochastic term

as T�1/2 is illustrated in figure 3.
Equation (12) shows that the median of ( p(T )/p(0)) is

exp((�� (�2/2))T ). But this is not the expectation value,

as the multiplicative nature of the process makes for very

large, although unlikely, positive fluctuations, and in the

ensemble but not in time these offset the term �(�2/2)T.
Interpreting this in an investment context exposes the

dangers of misinterpreting (5) and (6): using the ensemble-

average growth rate where the time-average growth rate

would be appropriate overestimates the effect of positive
fluctuations. Extreme situations can be envisaged, where

the investor is bound to lose everything, although from

the perspective of the ensemble average, a few lucky

copies of him in parallel universes make up for his loss,

making an investment proposition seem attractive (Peters

2009). But because resources cannot be exchanged with

other members of the ensemble (in parallel universes),

this offset is of no use to the investor as he progresses
through time.

Using the estimator (11), we have shown that (5) is an

ensemble-average growth rate where stochasticity is

removed by the limit N!1 and the effects of time are

suppressed. Equation (6) is the time-average growth rate,

where stochasticity is removed by the limit T!1. The

difference between the two explicitly calculated growth

rates, i.e. the fact that the limits limN!1 and limT!1 do

not commute, is a manifestation of the non-ergodicity of
the system. Both rates can be obtained as ensemble

averages as in (7) and (10); in differential form, the

ensemble-average growth rate is straightforward, whereas

the time-average growth rate requires the application of

Itô’s formula. Intuitively, Itô’s formula corresponds to

Figure 3. Relative errors ½ gestðT,N ¼ 1Þ � �g�= �g in estimates of
the time-average growth rate, using the estimator
gest(T,N¼ 1)¼ (1/T )ln(p(T )/p(0)) in single realizations of the
process described in the caption of figure 2. Green lines show
one relative standard deviation from expected estimates,
�T�1=2= �g, blue lines show two standard deviations. Inset:
Long-time averages approach deterministic behavior with the
time-average growth rate.
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the inclusion of effects of ignorance regarding the future
(see Øksendal 2005, chapter 3 and Lau and Lubensky
2007), and it encodes the effect of time correctly for noise
terms of the type (2).

At zero volatility the ‘time-average’ (certain) growth
rate equals the ensemble-average growth rate, and any
investor will choose the highest-yielding portfolio avail-
able, maximizing both the time-average growth rate and
the ensemble-average growth rate over all possible
universes (there is only one possible universe now).
Generalizing to the stochastic case, it is still sensible to
maximize time-average growth rates, but this is not
equivalent to maximizing ensemble-average growth rates.
A good guide, whether investing with or without volatil-
ity, is concern for the future, rather than concern for
copies of oneself in parallel universes.

3. Minimum investment horizon and optimal leverage

Logarithmic utility, the Kelly criterion and time-average
growth rates are often associated with ‘long-term invest-
ment’. The long term here means a time scale that is long
enough for the deterministic part of the exponent in (12)
to dominate over the noise. Applying this terminology to
the present case, one is investing either for the long term,
or in a regime where randomness dominates—the latter
case may be described as ‘gambling’. If in (12), W(T ) is

replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðT Þ2
� �q

¼
ffiffiffiffi
T
p

, we estimate that gambling
stops, and the long term begins when

t4 tc ¼
�2

ð�� ð�2=2ÞÞ2
: ð19Þ

In figure 2 the corresponding time scale is tc� 75 time
steps, indicated by the break in the red arrow. At this
point, the typical relative error in estimates gest(T, N¼ 1)
of �g based on past performance is unity, indicated by a
break in the arrow in figure 3. In a single universe, such as
our reality, the system is never dominated by the
ensemble-average growth rate—neither in the short run
nor in the long run. Instead, there is an initial noise
regime where no significant trends can be discerned,
whereafter the time-average growth rate dominates the
performance.

Equation (19) indicates how long we must expect to
wait for the trend of the market to become distinguishable
from fluctuations, wherefore tc may be viewed as a
minimum investment horizon. The parameters of figure 1,
with a time unit of one year, imply tc� 4.6 years.
Historical comparisons between portfolios with similar
stochastic properties are meaningful only on much longer
time scales.

The use of the null model of maximizing the
time-average growth rate eliminates the a priori need to
specify risk preferences. Tailoring real-life investments to
real investors’ needs does require difficult to formalize
knowledge of their circumstances, but a number of issues

can be illuminated without such knowledge in the simple

context of the null hypothesis. For instance, a

well-defined optimal leverage can be computed as will

be shown now. The result follows directly from Kelly’s

(1956) arguments, and several authors have come to the

same conclusions using different methods (Kestner 2003,

Thorp 2006). In addition, the characteristic time scale of

(19) is calculated for the leveraged case, which defines a

critical leverage where the expected growth rate vanishes.
Any efficient portfolio along the straight efficient

frontier can be specified by its fractional holdings of the

market portfolio (Sharpe 1964), which we define as the

leverage, l. For instance, an investor who keeps all his

money in the riskless asset holds a portfolio of leverage

l¼ 0; half the money in the riskless asset and half in the

market portfolio is leverage l¼ 0.5, and borrowing as

much money as one owns and investing everything in the

market portfolio corresponds to l¼ 2, etc.
The ensemble-average growth rate in the leveraged case

can be written as the sum �riskless þ l�excess, where �excess

is the excess ensemble-average growth rate of the market

portfolio over the riskless growth rate (see figure 1). At

zero leverage, only the riskless growth rate enters; the

excess ensemble-average growth rate is added in propor-

tion to the leverage. Noting that both the ensemble-

average growth rate and the volatility depend linearly on

the leverage, we obtain the leveraged stochastic process

dpl ðtÞ ¼ pl ðtÞð�riskless þ l�excessÞdtþ l�MdWtÞ, ð20Þ

where �M is the volatility of the market portfolio. Just like

with (1), we can use Itô’s formula, (8), to derive the

equation of motion for the logarithm of the price, pl(t), of

the leveraged portfolio,

dln pl ¼ �riskless þ l�excess �
l2�2M
2

� �
dtþ l�M dWt: ð21Þ

The time-average leveraged exponential growth rate

is thusy

�gl ¼
1

dt
dln pl
� �

¼ �riskless þ l�excess �
l2�2M
2

� �
: ð22Þ

The positive contribution to �gl is linear in the leverage,

but the negative contribution is quadratic in the leverage.

The quadratic term is an effect of time and makes the

time-average growth rate non-monotonic in the leverage.
Markowitz (1952) rejected strategies of maximum

ensemble-average growth because the corresponding

portfolios are likely to be under-diversified and hence to

have an unacceptably high volatility. Equation (22) shows

that, in the limit of large leverage, seeking high ensemble-

average growth rates, the time-average growth rate

along the efficient frontier diverges negatively, as

liml!1 �gl=l
2 ¼ ��2M=25 0.

yThis can also be seen immediately by replacing in (10), �!�riskless þ l�excess, �! l�M.
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To find the optimal leverage, we differentiate (22) with
respect to l and set the result to zero, obtaining

lopt ¼ �excess=�
2
M: ð23Þ

The second derivative of (22) with respect to l is ��2M,
which is always negative, implying that �gl corresponding
to lopt is maximized. This calculation shows that there
exists a privileged portfolio along the efficient frontier.
If the market portfolio has a lower volatility than the
portfolio of maximum time-average growth rate, as in
figure 1, then the wise investor will leverage his position
by borrowing (lopt41). If, on the other hand, the market
portfolio has a higher volatility, as in figure 2, then he will
keep some fraction of his money safe (lopt51).

We note that, in geometric Brownian motion, �g can
never be increased by decreasing � at constant volatility,
nor can it be increased by increasing volatility at constant
�, because from (10), @ �g=@�4 0 and @ �g=@�5 0.
Therefore, the globally (i.e. selected from all possible
portfolios) growth-optimal portfolio will be located on
the efficient frontier. This temporal optimization thus
does not contradict modern portfolio theory. For the
dynamics of (1) it confirms (3) and (4) as the definition of
efficient, i.e. potentially optimal, portfolios.

Including the leverage in (19) results in the leveraged
characteristic time scale separating gambling from
investing

tlc ¼
l2�2M

ð�riskless þ l�excess � ðl2�2M=2ÞÞ
2
: ð24Þ

This time scale diverges at the critical leverages,

l	c ¼ lopt 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2opt þ 2

�riskless

�2M

� �s
: ð25Þ

We are interested especially in the positive root,y lþc ,
where the time-average leveraged growth rate (the
denominator of (24)) is zero due to over-leveraging. The
minimum investment horizon (24) becomes infinite,
meaning that such an investment will forever be a
gamble. The parameters of figure 1, for example, imply
lþc � 3:88, where the extrapolations of the white and green
lines in the figure cross.

For leverages, l4 lþc , the time-average growth rate is
negative, and the time scale (24) is finite and marks the
transition between noise and discernible loss of invested
capital. This is the case in figure 2, where lopt� 0.25, the
critical leverage lc� 0.49, the system runs at l¼ 1, and
tl¼1c � 75 time units.

3.1. Sharpe ratio

The results from section 3 also yield insights into the
Sharpe ratio, mentioned in section 1. Writing in 1966,
Sharpe suggested assessing the quality of a portfolio
specified by some � and � using the slope of the straight

line in the � vs. � plane in figure 1 that corresponds to
combinations of the portfolio and the riskless asset (i.e. to
all possible values of l),

S ¼
�� �riskless

�
: ð26Þ

The concept of ergodicity is relatively young, with major
results in ergodic theory emerging in the second half of
the twentieth century (Lebowitz and Penrose 1973). For
early roots of the discussion, see Uffink (2004). The
concepts did not immediately diffuse into the economics
literature: in the 1966 paper, Sharpe makes no distinction
between time- and ensemble averages. It is assumed here
that he refers to ensemble averages throughout the paper.
Some authors assume that he refers to time averages
(Bouchaud and Potters 2000), but the resulting quantity,
(�� (�2/2)��riskless)/�, has a less straightforward mean-
ing. Despite the exclusive use of ensemble averages in (26),
S is also meaningful in the context of time averages in
geometric Brownian motion: given two portfolios M1 and
M2, where S(M1)4S(M2), the optimally leveraged port-
folio M

lopt 1
1 always has a greater time-average growth rate

than the optimally leveraged portfolio M
lopt 2
2 .

Sharpe was fully aware of the limitations of his
measure: S(M1)4S(M2) does not mean that an invest-
ment in M1 will outperform an investment in M2, as it is
possible that M1 is far from optimally leveraged. He
concluded that ‘‘The investor’s task is to select from
among the efficient portfolios the one that he considers
most desirable [i.e. to choose a leverage l], based on his
particular feelings regarding risk and expected return’’
(Sharpe 1966). Without considerations of ergodicity,
investors are indeed left to making decisions based on
their feelings.

The optimal leverage lopt ¼ �excess=�
2
M, differs from the

Sharpe ratio (26) for the market portfolio only by a
square in the volatility. Indeed, it may also be considered
a fundamental measure of the quality of a portfolio: if the
optimal leverage for a given investment opportunity is
high, then this is a good opportunity that calls for a large
commitment.

Optimal leverage, unlike the Sharpe ratio, is a dimen-
sionless quantity. This is a significant difference, as it
implies that the numerical value of the optimal leverage,
which is a pure number, can distinguish between funda-
mentally different dynamical regimes (see, e.g., Barenblatt
2003). For example, a value lopt51, irrespective of its
constituting �M and �excess, or the unit of time used to
measure these quantities, implies that an investor will be
better off keeping some of his money safe. The Sharpe
ratio, (26), on the other hand, has dimension [S ]¼T�1/2,
wherefore it depends on the chosen unit of time, implying
that its numerical value is arbitrary. For example, a
portfolio with Sharpe ratio 5, where � is measured as a
percentage per year and � as a percentage per square-root
of one year, would have Sharpe ratio 5=

ffiffiffiffiffiffiffiffi
365
p

� 0:26 if
the chosen time unit were one day.

yThe negative root corresponds to zero expected growth rate in a negatively leveraged portfolio, consisting of the riskless asset and a
small short position in the market portfolio; with the parameters in figure 1 this happens at l�c � �0:80.
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In the context of the current crisis the limitation of the
Sharpe ratio is perhaps best expressed by its insensitivity
to leverage,

Sl ¼
l ð�� �risklessÞ

l�
¼ S: ð27Þ

Using the Sharpe ratio alone to assess the quality of an
investment would be dangerous, as this measure cannot
detect the negative effects of leverage. Given the systemic
incentives for using large leverage, this insensitivity can
become a danger to market stability.

4. Discussion

Practically relevant lessons from the above considerations
may be learned from the extremes. A 100% mortgage, for
instance, corresponds to infinite leverage, implying
�g!�1, on the borrower’s investment (assuming that
the purchase is not part of a larger investment portfolio).
Although total loss on a home purchase only means
dipping into negative equity, certain financial products
that have become popular in recent years must be
regarded as irresponsible. Conversely, (22) shows that
for l
 1 the time-average growth rate is well approxi-
mated by the ensemble average. From the very beginning,
treatments of gambling focused on ensemble-average
outcomes, for example Cardano’s 16th century ‘Liber de
Ludo Aleae’, translated by Gould in Ore (1953). This is
appropriate as long as wagers are much less than total
wealth, meaning leverage close to zero, where �g becomes
indistinguishable from hgi.

The current financial crisis started in the summer of
2007, with the US housing market collapsing and the
visible consequence of Northern Rock in the UK
suddenly unable to raise credit, i.e. leverage, on the
open market. Subsequently, credit markets began to
freeze. After the nationalization of Fannie Mae and
Freddie Mac and the bankruptcy of Lehman Brothers in
September 2008 entire markets for leverage-oriented
financial products disappeared (securitization and credit
default swaps, for instance, were strongly affected).
Leverage clearly played a big rôle. The scale of this
crisis suggests revisiting some of the basic tenets of the
economic formalism, including the concept of equilib-
rium, the rôle of time, and indeed the frequent implicit
assumption of ergodicity.

It is emphasized here that ergodicity can be inadver-
tently assumed by writing an expectation value h i, which
implies the limit N!1 of infinitely many realizations
of a process. The straightforward expected outcome,
hp(T )i¼

R
pP( p)dp, of some investment is indeed an

average over many universes. Even if subsequently an
exponential growth rate is derived from this as (1/T )
ln(hp(T )i/p(0)), the multiplicative effects of time are
ignored, and the result will not be the time-average
growth rate. We have seen that this problem persists, even
if Itô’s formula is used to find the distribution of p(T ).

Real portfolios of constant leverage (apart from l¼ 0
and possibly l¼ 1) need to be constantly rebalanced as the

value of the market portfolio fluctuates and changes the
fraction of wealth invested in it. Holding any such
portfolio is costly, both in terms of monitoring time and
in terms of transaction costs. For applications, the above
considerations would thus need to be adapted, even if real
prices were perfectly described by (1). The value of real
optimal leverage depends on the investor’s ability to
balance portfolios, which is affected by the available
technology and, due to market impact, by the volume of
the investment. The assumptions made in this study are
likely to lead to an over-estimate of optimal leverage:
equation (23) was derived in continuous time, corre-
sponding to truly constantly rebalanced portfolios, zero
transaction costs were assumed, log-normal return distri-
butions, certain knowledge of � and �, and no risk
premiums charged on money borrowed for leveraging.

Modeling the S&P500 or the DJIA with (1), one would
choose parameters close to those of figure 1 with time
units of one year. This implies an optimal leverage, as
calculated above, of 1.54, but it is unlikely that the simple
strategy of borrowing money and investing it in the
S&P500 would outperform the market. It is equally
unlikely that investing only part of one’s money in the
S&P500 would outperform the market, as would be the
case if lopt51. A reasonable guess is that the real optimal
leverage is close to lopt¼ 1, a possible attractor for a
self-organized market system. How could such stochastic
market efficiency work? If lopt41, money will be bor-
rowed to be invested. This situation can arise as a
consequence of low interest rates and low-cost credit.
Leverage tends to increase volatility due to potential
margin calls and similar constraints on investors
(Geanakoplos 1997). Thus, as investors increase their
leverage, they reduce optimal leverage, creating a negative
feedback loop whose strength depends on the magnitude
of the impact of leverage on volatility (‘d�/dl’); this brings
optimal leverage down, lopt! 1þ. Conversely, if optimal
leverage is less than unity, investors will sell risky assets,
thereby reducing prices and increasing expected returns,
such that optimal leverage increases, possibly up to
lopt! 1�.

The time scales associated with such a feedback loop
can be long, especially in situations where leverage
initially reduces volatility. The current financial crisis
has been related to a continued extension of credit (Soros
2008a, b), i.e. increasingly leveraged investments. Effects
of leverage that are initially volatility-reducing can be
discussed in terms of mortgages: easy availability of
mortgages increases house prices, which leads to few
defaults, even if loans are given to borrowers who cannot
service them from wages. In turn, because volatility
decreases, optimal leverage increases, and houses appear a
good investment. Consequently, more money is lent to
home buyers, leading to a destabilizing run-away dynam-
ics. Soros (2008a) has called such interaction between the
asset price and the investment in the asset (the loan)
‘reflexivity’. After this initial reflexive phase of bubble
creation, leverage will be perceived in some areas to have
risen far beyond optimality, creating an unstable market
situation. The ensuing crisis may be viewed as a response
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where volatility suddenly increases, reducing optimal
leverage, which in turn leads to deleveraging and falling
prices.

The use of leverage is not fundamentally constrained by
the prevailing framework of portfolio selection, which
relies on a necessarily and explicitly subjective notion of
optimality, dependent on utility, or risk preferences. This
has become problematic because asymmetric reward
structures have encouraged excessive leveraging.
Securitization, for example, creates such structures by
separating the sellers of leverage products (such as
mortgages), who are rewarded for every sale, from those
who eventually bear the risk. Similarly, an investment
manager who benefits from gains in the account he
manages but is not personally liable for losses has an
incentive to exceed growth-optimal leverage (see footnote
on p. 4). In the ideal setup discussed above, the growth-
optimal ansatz suggests a simple reward scheme through
alignment of interests: requiring investment managers to
invest all their wealth in the accounts managed by them.
It is thereby achieved that the growth-optimal investment
strategy for the account is also growth-optimal for the
investment manager. It is commonly said that excessive
leverage arises when investors are short-term oriented, but
there is no benefit from leveraging beyond optimality
even in the short term—this regime is dominated by noise,
not by ensemble-average growth rates. It is harmless to
reward investment managers daily, hourly or indeed
continuously for their performance—as long as they
share the risks as much as the rewards.

Equation (22) carries an important message regarding
reward structures in the financial industry. Excessive
leverage leads to large fluctuations in asset prices but also
more generally in economic output (the current recession
being a case in point). The introduction of such fluctu-
ations must reduce time-average economic growth.
Remuneration practices have been criticized on a moral
basis, using concepts like greed, excess and inequality.
Objectively one can argue that remuneration structures
can go against the common good by reducing economic
growth by generating unnecessary fluctuations.

In conclusion, utility functions were introduced in the
early 18th century to solve a problem that arose from
using ensemble averages where time averages seem more
appropriate. Much of the subsequently developed eco-
nomic formalism is limited by a similar use of ensemble
averages and often overlooks the general problem that
time- and ensemble averages need not be identical. This
issue was treated in detail only in the 20th century in the
field of ergodic theory. Making use of this work, a
privileged portfolio uniquely specified by an optimal
leverage and a maximized time-average growth rate is
seen to exist along the efficient frontier, the advantages of
which have also been discussed elsewhere (Breiman 1961,
Merton and Samuelson 1974, Cover and Thomas 1991).
The concept of many universes is a useful tool to
understand the limited significance of ensemble averages.
While modern portfolio theory does not preclude the use
of, in its nomenclature, logarithmic utility, it seems to
underemphasize its fundamental significance. It was

pointed out here that the default choice to optimize the
time-average growth rate is physically motivated by
the passage of time and the non-ergodic nature of the
multiplicative process.
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