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We introduce a general model to describe the risk process of an insurance company. This model allows 

for stochastic rate of return on investments as well as stochastic level of inflation, thus in theory enabling 

a decision maker to choose between insurance and investment risk. In the first part of the paper we 

discuss the model in itself and in the second part the problem of finding the probability of eventual ruin 

is posed. We obtain some integro-differential equations that in some cases lead us to the exact probability 

of eventual ruin and in other cases to inequalities. Examples are given showing that stochastic economic 

factors may have a serious impact on this probability. 

risk process * semimartingale * stochastic differential equation * process with stationary independent 

increments * ruin probability * characteristic function * Markov process * integro-differential equation 

1. Introduction 

Since the appearance of Gerber’s (1973) paper, the effect on an insurance portfolio 

of rate of return on investments and level of inflation has been subject to much 

study. In this paper we will consider a model for the risk process that takes into 

account stochastic rates of return and inflation, thus departing from former models 

which assume these quantities to be deterministic (see Segerdahl, 1942,19.59; Gerber, 

1973, 1979; Harrison, 1977; Taylor, 1979; Moriconi, 1985, 1986; Delbaen and 

Haezendonck, 1987; and Dassios and Embrechts, 1989). Recently Dufresne (1990) 

studied the case with stochastic interest rates, but with a different motivation. 

We will first introduce a rather general model and then go on to analyze in some 

detail a more restricted version. Then following the ideas of Harrison (1977), we 

will develop some integro-differential equations that may be useful in the calculation 

of the probability of eventual ruin. Some effort will be taken to find conditions that 

allow us to use these equations. Just as in Harrison (1977), we will be able to find 

exact values of the probability of eventual ruin in the special cases when the 

uninflated risk process follows a Brownian motion or a compound Poisson process 

with exponentially distributed claims. Otherwise only inequalities are obtained. 
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To motivate our model we will write the model in e.g. Delbaen and Haezendonck 

(1987) in a manner that makes it suitable for generalizations. If we denote the risk 

process measured in real units by Y, then Y is obtained through the following steps. 

Step 1. We start with the surplus generating process P given by 

p,=y+pt-; s,, 

where N is a Poissonprocess and the Si’s are i.i.d. random variables independent 

of IV. The process P is measured in real units unaffected by inflation. 

Step 2. There is an inflation generating process I, = it so that the level of inflation 

7 is given as the solution of 

di, = x_ dl, where f,= 1. (1.1) 

Step 3. Claims and premiums in the surplus generating process are then subject 

to inflation and we obtain the inflated surplus process P as the integral 
I 

P,=y+ f,- dP,. (1.2) 

Step 4. There is a return on investment generating process R, = rt so that the risk 

process in terms of nominal units is given as the solution of 

dY,=dl’,+Y,_dR, where Y,=y. (1.3) 

Step 5. The risk process in terms of real units at time t is then given as 

y = J-‘y 
I I I. 

It is easy to see that the solution of (1.4) is 

(1.4) 

(1.5) 

By letting T= 0 we obtain the expression on p. 67 of Harrison (1977). 

Remark 1.1. If we consider the real interest generating process R - I and make the 

calculations in terms of real units we can define 

d?,=dP,+ ?,_d(R-I),. 

It is easy to see that in this case ?= Y. The reason why we distinguish between ? 

and Y is that they are normally not equal when R and I are general semimartingales, 

as will be explained in Remark 2.1. 

A major drawback of this model is that the only source of uncertainty allowed 

for is in the number and severity of claims. Rate of return on investments and level 

of inflation are assumed known. But the reason that insurance companies run into 

financial trouble is just as often due to low or even negative return on investments, 

and this is of course unforeseeable. Unexpected levels of inflation may also have 

an impact on the solidity of an insurance company. 
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In this paper we will therefore allow for uncertainty in Steps 2 and 4 above. We 

start with a very general model where the surplus generating process P, the inflation 

generating process 1 and the return on investment generating process R, all are 

semimartingales. This level of generality allows us to obtain the solution Y of (1.4), 

but not very much more. So we are forced to put some restrictions on these processes. 

It turns out that assuming the vector process (P, 1, R) to be a process with stationary 

independent increments (and hence a semimartingale, see Jacod and Shiryaev, 1987, 

Corollary 4.19, p. 107) with a finite number of jumps on each finite interval, and in 

addition that P is independent of (Z, R), the process Y becomes fairly manageable. 

2. The model 

We will let all processes and random variables be defined on a filtered probability 

space (L!, 9, F, P) satisfying the usual conditions (i.e. 9, is right continuous and 

P-complete). This is just the notation used by Jacod and Shiryaev (1987, p. 2). 

We will now repeat Steps 1 to 5 in the introduction for our more general model. 

It is assumed that each semimartingale will be .F, adapted. 

Step 1. The surplus generating process P is a semimartingale with PO = y. 

Step 2. The inflation generating process Z is a semimartingale with I,, = 0. Then 

(1.1) is just the stochastic differential equation for the exponential formula, hence 

f is given as (see e.g. Jacod and Shiryaev, 1987, formula 4.64, p. 59) 

z = g(Z), = e’,-‘/2(“,“), n (1 + AI,) em”> (2.1) 
0=,--r 

where (I”, Z”) is the predictable quadratic variation of the continuous martingale 

part I’ of the semimartingale 1. 

Step 3. The inflated surplus process is as in (1.2). We will frequently use the 

standard notation 

P=y+i-. P where i+=O. (2.2) 

Step 4. The return on investment generating process R is a semimartingale with 

R,, = 0. Then with the above notation (1.3) becomes 

Y= P+ Y_ * R where Y,_=O. (2.3) 

Step 5. The risk process in terms of real units at time t is then given as 

Y, = 1;’ Y, where Y,_ = 0. (2.4) 

Here we have assumed that 7, >OVt, see Remark 2.2 for a justification of this 

assumption. 
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The unique solution of (2.4) is given in Jacod (1979, p. 194) as 

Y = c Y’“‘l[.,.,,+lI13 
n3-O 

Y(“), T-‘R,.,(Ajj,,+(I/R~“‘) . (r’7v~+~-p7~n) 

-((l/R’“‘)lll,,,,+,,) . [p, R’,~+I- RTf,]), 
(2.5) 

Here T,,=O, T,,,, = inf{ t > T,,: AR, = -1) and [p, R <,+I - R 7,r] is the optional quad- 

ratic covariation between p and R 7,1+1 - R 7,. By expressions like X’ is meant X,, T,, . 

Now from (2.2) and general results in stochastic calculus Ap, =y, AFT,? = 
fT,,,,APT,, when n 2 1, pr~r+t-p7s~ = im . (p7u~~-p7tr) and [p, R7tt+~-R7tz] = 
r_ . [p, RT,+, _ Rr,, 1. Since (r/R’“‘)) is locally bounded, associativity of the 

stochastic integral gives 

Y’“’ = f-‘R’“‘( fT,,mAPT,, + (( f/ I?“)) (pT,,+, _ p”,) 

-((I-lR~,,)11”,7,,+11[) [p, R7u+, _ R=n]) (2.6) 

where fO+ = 1 and fT,,,, = IT,,_, n 2 1. 

This expression is rather complicated so let us look for reasonable assumptions 

that make it easier to handle. 

First we will assume that the surplus generating process P and the return on 

investment generating process R are independent. Since these processes model 

different aspects of economic activity, this assumption is quite reasonable. It implies 

that [P, R7*+- R7fr] is indistinguishable from the zero process, so (2.6) takes the 

simplified form: 

YCn’ = fp’l?(n)(fT,,_APT,, +( f/l?‘“‘)- . (P’,,+l- P7rl)). (2.7) 

Next we will assume that it is impossible that all the assets of the insurance 

company become worthless in one stroke due to negative return on investment. This 

is perhaps a stronger assumption, but see Remark 2.2 below for a discussion in 

connection with ruin theory. To state it mathematically, we assume that P( T, < ~0) = 

0. Then using (2.7), Y in (2.5) takes the following form: 

Y = W’(y+ UP . P), U = FE-‘, I? = g(R). (2.8) 

Note the similarity between (2.8) and (1.5). 

Remark 2.1. The process U-’ = J?I-’ = 8(R)/%(Z) is a measure of real return on 

investment. In Remark 1.1 we considered the process ? given by 

?=P+??(R-I). 

Under the same assumptions as above it follows that the unique solution is given by 

I;= ?(yf fi-. P) 
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where fi = (8(R - I))-’ is also a measure of real return on investment, but is 

generally different from U. Indeed it follows from Protter (1990, Corollary, p. 79) that 

%Y(R-1)8(Z)= g(R+[R- I, I]) 

and therefore 

fi= L%‘(R)(8(R+[R-I, 

This implies that fi = U and hence 

condition for this is that either R - 

11)) -I. 

? = Y if and only if [R - Z, I] = 0. A sufficient 

I or I is a continuous deterministic process. 

Finally we will assume that the vector process X = (P, Z, R) is a process with 

stationary independent increments with a finite number of jumps on each finite 

interval. Then X has representation (see Gihman and Skorohod, 1969, Chapter VI, 

for the necessary theory of processes with independent increments) 
-- 

X,=X,,+cit+CW,+c whereX,,=(y,O,O)‘. 

Here E is a constant vector, c is a 3 x 3 matrix with the property 

(2.9) 

where IpI s 1, %’ is a three-dimensional Brownian motion and v is a three 

dimensional compound Poisson process, independent of I%! We will assume that 

the first component of v is independent of the other two, and so (2.10) implies that 

P and (1, R) are independent. That P and I are independent is not necessary to 

obtain (2.8), but it will become so in our further work. It can also be justified by 

the same arguments as why P and R may be assumed independent. In terms of the 

components of X we have 

p, =.Y+pt+ wt>,,- c s,,, 
i=l 

R, = rt i- W,,, + N$’ SR,,, 

(2.11) 

(2.12) 

(2.13) 

-- 
where ( W,, W,, W,)‘= CW, Np, N, and NR are three Poisson processes with 

intensities hp, A, and AR respectively, and Np is independent of (N,, NR). Also the 

summands in each sum are i.i.d. and S,i and (g,,,;, S,,j) are independent tli, j. 

For future reference we will write 

Fp(s) = P(Sp s s), F,(s)= P(lfL+s), FR(s)= P(l+&%s). (2.14) 

We will assume that F, (0) = FR(0) = 0. 
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Remark 2.2. The assumption F,(O) = 0 excludes the possibility that inflation is 

-100% or more, i.e. it is impossible that all assets in the economy become worthless 

or of negative value. So from a practical point of view this assumption is no restriction 

at all. 

Similarly the assumption that FR(0) = 0 excludes the possibility that all assets of 

the insurance company become worthless or of negative value due to negative return 

on investments. As financial institutions often commit themselves to financial 

responsibilities far larger than their own assets, this is a much stricter assumption. 

However, the following argument justifies at least why we in the context of ruin 

theory in an infinite time interval may assume FR(O-) = 0. Let T = inf{t: AR, < -1). 

Since P and R are assumed independent, we see from (2.3) that A y, = FT_AR,, 

hence v, < 0. Therefore ruin occurs at time T (if not before). But AR,- = .?R,NR,, , 

s~ifwedefineM,=CIN=“d’S”~,,l~~~,,<_,), then M is a compound Poisson process with 

intensity hRFR (0-) and T = inf{ t: M, # O}. Therefore FR (0-) > 0 implies that P( T < 

~0) = 1, i.e. ruin occurs with probability one. This argument also shows that FR (0) = 0 

implies that P( T, (00) = 0, hence leading from (2.7) to (2.8). 

Remark 2.3. Although going from (2.5) to our present model implies lots of assump- 

tions, we are still at a level of generality that includes many models in the theory 

of finance, including the much celebrated Black and Scholes (1973) option pricing 

formula (see also Merton, 1973). There the underlying asset S is assumed to follow 

a geometric Brownian motion, i.e. S is the solution of dS, = S,_ dR, where R, is as 

in (2.13) with AR =O. Thus it is a special case of our model (see (2.3)) with p, = S, 

a constant. Also in the more general jump-diffusion option valuation formula of 

Merton (1976), S is the solution of the same equation, but now AR > 0 and 1 + s”, 

is assumed to be lognormally distributed, hence F,(O) = 0. On the other hand, in 

the constant elasticity of variance option pricing formula by Cox and Ross (1976), 

the underlying asset is the solution of dS, = rS,_ dr + S:/’ d W,,,, hence it is not a 

special case of (2.3) and (2.13). 

We will now proceed to compute Y. From (2.12) we see that I’= W,, hence 

(I’, I’), = E W:, = a: t. Also since 

we obtain from (2.1) that 

N1.t 
I,=exp{(F-#)t+ W,,,} n (l+S,,i). 

,=I 

Similarly 

(2.15) 

(2.16) R, =exp{(r-$Z,)t+ W,,,} N$’ (l+s”,i). 
i=l 
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Since U = R-‘i, we obtain 

(2.17) 

where W, is a Brownian motion so that uUWU = W, - WR, hence 

(Y -r-t+i(crf--vi), (T~=(T~-~~P(T,(T~+c&. u- (2.18) 

The problem with (2.17) is that nz,; (1+ s,,i) and n?i’ (l+ s,,,))’ will normally 

not be independent. But from (2.9) we see that I and R can alternatively be 

represented as 

NLi, I 
r,=it+w,.,+ c s I,,, R, = rt + W,,, + N2’ SR,i, 

,=I ,=, 

where No is a Poisson process with intensity AU, independent of Np, and the vectors 

(S,,i, S,,i) are i.i.d., independent of the Sp,i’s. 

As in the calculations leading to (2.17), we find that U can be written as 

U, =exp{-cu,t+~UWU,,} “ii“ SU,,, (2.19) 
,=I 

where the two products are independent and So,, = (l+S,,,)/(l +S,,,). If we let 

F,(s) = P(Su s s), (2.20) 

thenF,(O)=F,(O)=Oimp1iesF,(O)=OandF,(~)=1.Incase~,N_‘~;(1+~,,,)and 

n~i’ (1-C iRR,;) are independent, we have the following relationship between (2.17) 

and (2.19). 

Lemma 2.1. Assume 12,; s,,, in (2.12) and C2i’ sR,, in (2.13) are independent. Let 

v,=;i(l+s,,,)~~;--& 
I-=, R.1 

Then V can be written as 

Nv,, 
V = rI S,, 

I=, 

where N,is a Poissonprocess with intensity Av = A, + AR, theS,,‘s are i.i.d. independent 

of Nv and S, has the distribution 

F”(s) =? F,(s)+$$l -FR (5)). 

Proof. We have that 

log v, = 2’ log( 1+ &) - NT’ log( 1+ &i) 
r=, i=l 
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so if we define 

V?,(U) = E[exp{iu log(1 +S,)}] and (cIR(u) = E[exp{-iu log(l+~,)}], 

we get by independence and the formula for the characteristic function of a 

compound Poisson process (Feller, 1971, formula 2.4, p. 504), 

E[exp{iulog ~}l=exp{hlf(~l(u)-l)+h,t(~,,(u)-l)} 

= ev{Ad(h(u) - 111 

where I+!I”(u) = (h,/A,)rCI,(u)+(A,/A.)~,(u) is the characteristic function of the 

mixture G,(s)=(A,/AV)G,(s)+(A,/AV)G,(s), G,(s)=P(log(l+,?,)~s) and 

GK (s) = P( -log( 1 + sR) s s). This means that log V, is a compound Poisson process 

with intensity A”, i.e. 

NV,f 
log v, = c log S,; 

i-1 

where log S, has the distribution Gv, hence S, has the distribution 

3. Ruin theory 

In this section we will retain the assumptions of Section 2, i.e. Y is given as 

Y = V’(y+ U_ . P) where U and P are given in (2.19) and (2.11). If in addition 

we define 

m p,r. = E[GI, wk = ~[~~JI, 

then we will assume that rnp,* and mu,> both exist and are finite. 

Throughout the section we will let TR = inf{ t: Y, < 0} = inf{ t: y, < 0} and TR = ~0 

if Y, 20 Vr. Then TR is the time of ruin, and we will let R(y) = P( TK <CO) be the 

probability of eventual ruin. If we define the semimartingale 2 by 2 = U_ . P, then 

since U, > 0 Vt (remember F, (0) = FR(0) = 0), 

TK = inf{ t: Z, < -y}. (3.1) 

This fact is made full use of in Harrison (1977), and we shall follow his steps with 

our more general model. We start by computing some expectations. By independence 

E[ U:] = exp{-kcuut}E[exp{kauWU,,}] . E $’ S”,,, . [ 1 i=l 
But ka,Wp,, is normally distributed with zero mean and variance equal to k2u:t, 

hence E[exp{ ka, W,,,}] = exp{$k2&, t}. Furthermore, by conditioning on NC,,,, 

rnLI (‘d)” -*d = exp{(m I, - 1)A , n!e u u t}. 
n=” 



J. Paulsen / Risks in stochastic environment 335 

We thus end up with 

E[Uf]=exp{-(ka, -$k’a~,-ho(mU,I, -l))t}%f em@“‘. (3.2) 

Here we have tacitly assumed that E[SL] exists. It follows from Jensen’s inequality 

that if pk > 0, then p, > 0 for 1 s k. By using (2.18) we find 

~,=r-t+pcT,a,-(Ta+hL,(l-m,,), 

pz=2(r- ~)+44pa,(~~-(~5-3~X+A~,(l-m~,~). 
(3.3) 

By Fubini’s theorem and the fact that I(s: U, # U,) = 0 where 1 denotes Lebesgue 

measure, we have 

(3.4) 

It is easy to see that for s Z= u, U,, and lJ,/ U,, are independent and that U,/ U,, has 

the same distribution as U,_,. (Consider log U,, and log( U,/ U,,) = log U, -log U,,.) 

Therefore 

E[ U,U,,] = E[ Uf,]E[ U,_,] = e--@l‘ e~‘P2~cLI”‘. 

So by the same arguments leading to (3.4), 

(3.5) 

And from what was said after (3.2), it follows that 

2 
mz(t)+---- when t-+oo it? p2>0. (3.6) 

IFLIP2 

We can now state the following theorem. The notation and assumptions are the 

same as above. 

Theorem 3.1. Let pP =p-h,m,,. Then Z, =I:, U,_ dl’, is a 

supermartingale ifpP < 0, 

martingale ifPP=O, 
submartingale if pP > 0. 

Assume p, > 0. Then lim,,, Z, = Z, exists and convergence takes place both almost 

surely and in L’. The expectation of Z, is 

Hz01 = PPlP,. 

Finally if p2 > 0 then E [ZL] < ~0. 
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Proof. Decompose the semimartingale P into P, = M, +ppt where M, = 

wp,, + c 2i1 S,, -Aprnp,,t is a martingale. Then 

2, = 
I 

I 
l-J_ dM,+pp 

0 I 

I 
lJ_ ds. (3.7) 

0 

The increasing process V, =jb U,_ ds is square integrable by (3.5), and by (3.4), 

E[V,,]<co iff p,>O. By (3.6) E[VS]<m iff pz>O. 

We now consider the local martingale N, =j: CJ_ dM,. Let NT = sup,, ,-_,]NFl 

and N$ = sup,1 NJ. By the Burkholder-Davis-Gundy inequality (Dellacherie and 

Meyer, 1980, Chapter VII, Theorem 92), 

E[(NT)P]sc,E[[N,N];‘2], Ost<co, (3.8) 

for p 3 1 and some constant c,, > 0. Since N = U_ . M, it is well known that [N, N] = 

UT . [M, M]. By definition of the optional quadratic variation process we see that 

[M,M],=a2,t+CjV=“;‘SZ,;.Let T,<T2<“’ be the times of jumps of Np. Since Np 

and NU are independent, we have a.s. U,- = U,. Therefore we have a.s. 

I 
’ 

Np,r 
[N, N],=a;> Uf ds+ C U&9& 

0 i=l 

and 

[N, N],=cT; Uf ds + i U@& (3.9) 
I=, 

and 

(3.10) 

By conditioning on Np,,, using (3.2) and the fact that given N,, = m, T,, . . . , T, 

have the same distribution as m ordered uniformly distributed random variables 

on [0, t], some calculations give 

E[N, N], =L(~~+hrEIS~~])(l -emF2’). 
PI 

Therefore by Protter (1990, Theorem 47, p, 35), N, is a square integrable martingale. 

This finishes the first part of the theorem. 

Using (3.2) and the fact that T, is gamma distributed with parameters hp and i, 

we obtain for k = 1,2, 

<a iff &>O. (3.11) 
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Furthermore 

Now for s> u, U, and U,/ U,, are independent with U,l U,, having the same 

distribution as U, --U. Therefore 

E[..:sut+, U,] =E[U.IE[sup, UT]. 

But supo_ c<, lJs s e”lJBl n~il (S,, v 1) where B, = max,,,,, W,,,. By Karatzas and 

Shreve (1988, formula (8.3), p. 96), E[e”cJRI] <co, hence by independence, 

E sup U, =a<m. 
[ 1 OS\<, 

Therefore 

(3.12) 

E[(I,I’Uids)“2]~Ul~Ue-Yln<* iff p,>O. (3.13) 

Combining (3.8), (3.10), (3.11) and (3.13) gives that p, >O implies E[Nz] <m, and 

again by Protter (1990, Theorem 4.7, p. 35), N, is a uniformly integrable martingale. 

From (3.2), (3.8), (3.9) and (3.11) we see that p2 > 0 implies E[( A!*,)‘] < CO. This 

finishes the proof of the theorem. 0 

Remark 3.1. With the exception of the final statement, Theorem 3.1 holds under 

the weaker conditions E[[S,l]~co and E[IS,I]<a. 

Remark 3.2. From (3.2) we see that if c: > 0, then for k sufficiently large the term 

k”ut, will be dominant in I”~, hence pu,, < 0 for all k 2 K say. By (3.7) and calculations 

similar to (3.5), this implies that E[lZ,l”]+a as t+a, hence Z, in Theorem 3.1 

can only have a finite number of finite moments. The same argument applies if 

A,, > 0 provided S, has positive probability of assuming values larger than one. 

In the rest of this paper we will always assume p, > 0, without explicitly stating 

so all the time. We will also assume that the model is not totally degenerate, i.e. we 

will assume that either 

1. cr’,,>Oor~~>O(andofcourseifh,>O,thenF,({1})=F~(1)-F,,(1-)~1), 

or 

2. a:>0 or A,>0 with Fp({O})< 1. 

If neither of the above conditions are satisfied, then Zm=p/(r- 7). In papers 

dealing with the classical ruin problem as well as those cited in the introduction, 

assumption 2 is satisfied, while assumption 1 is not. 

The following result is an extension of Proposition 2.2 and Theorem 2.3 of Harrison 

(1977). The proof follows closely those of Harrison, but because our model is more 

complicated, we will give it here. 
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Theorem 3.2. Let H be the distribution function of Z,, where Z, is given in Theorem 

3.1. Then H is continuous and the probability of eventual ruin is given by 

R(Y) = 
H(-Y) 

E[H(-Yr))T<oo]’ 

Proof. By assumptions of nondegeneracy, it is easy to see that H is not concentrated 

at one point. Let 

v, = u;; 
i 

“U,_dP,=j;($)_dP,=~: fi,-dp, (3.14) 
I 

where t?,=U,+,/U,-U, and P,=P,+,-P,-P,.(ByX-Y wewillmeanthat X 

and Y have the same distribution, see the argument after (3.4).) Since (P, I, R) is 

a process of stationary, independent increments it follows that both fi, and P, are 

independent of 9,,, hence V, is independent of 9, and V, is independent of 9T 

where T is any 9, stopping time. It also follows from (3.14) that V, -Z,, , and hence 

that V, - Z,. for any 9, stopping time T. 

Now let p be the largest probability of any point mass of Z,. Assume P(Z, = c;) = 

p, i = 1,. . . , K, and let G, be the distribution of U;!(c, -Z,). Then since Z,,= 

Z,t- u,-v,, 

I 
x p=P(Z,=c,)=P(v,= U;l(c,-Z,))= H({zl) dG,(z), ~~ 

which implies that G,({ c, , . . , cK}) = 1 Vt. But Z, + Z, a.s. and U, + 0 a.s. as t + 00. 

Hence 

H({c,}) = P(Zu = c,) 2 P 
( 

lim sup{Z, = c, - U,_{c,, . . , c,}} 
n > 

2 lim sup P(Z, = c, - U,,_{c,, . . . , cK}) = 1, 
,, 

a contradiction, hence p = 0 and H is continuous. 

For notational simplicity we replace TR by T. On {T < CO} we have as. 

y+z,=y+z,+u,-V,= u,.[u,‘(y+z,)+v,]= U,[Y,-tV,] 

since a.s. I, = r, _ and l?, = I?,_. This is because FL, (0) = 0, hence ruin will occur 

as a result of the behaviour of P at time T, and we have assumed that P and (I, R) 

are independent. Therefore by continuity of H (see (3.1)), 

H(-y)= P(y+Z,<O)= P(T<q y+Z,x,<O) 

= P(T<q VT<-YT)= 
I 

P(V,<-Y,/S;,)dP 
17-~ x-i 

z H(-Y,)dP=E[H(-Y,)IT<m]P(T<a). 
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Here the third equality follows since U, > 0 Vt, and the fourth is just the definition 

of conditional probability. Note that T is an 9, stopping time. The fifth equality 

follows since V, is independent of %T and has the same distribution as 2, (see 

above), and Yr is gT measurable. 0 

Remark 3.3. In Propositions 3.4 and 3.5 we will give sufficient conditions to ensure 

that H is twice continuously differentiable, thus strengthening the first part of 

Theorem 3.2. 

Now assume ruin is caused by a claim SP,Nrr, and not by drift in the term W,,. 

For simplicity we again replace TR by T. Then a.s. (see (2.3)) 

AY, = it’A& = AP, = -&x,,,,. 

Assume S, exponentially distributed. By definition of r,, Y7- 2 0 and Yr < 0, 

so we know that SP,Np,r > Y7_. But then the memoryless property of the exponential 

distribution implies that -YT has the same distribution as S,. 

More generally if Sp has an increasing failure rate, i.e. P(Sp > t + s 1 S, > t) S 

P(S,>s) tlt,s, then 

HH(- Yr) 1 I- < ~1 s E[H(&)I, 

hence 

R(Y) 2 H(-y)IE[H(&)I. 

Similarly if S, has a decreasing failure rate, we reverse the above inequality. Note 

that a mixture of decreasing failure rates is again a decreasing failure rate (Ross, 

1983, Theorem 8.1.5, p. 254). 

If ruin is caused by drift in W,, then - Yr = 0, so in this case 

R(y) = H(-y)IH(O). 

To summarize we have proved: 

Corollary 3.1. We always have 

R(Y) c H(-Y)IH(O) 

with equality ifAp = 0. 

If S, has increasing,failure rate, then 

R(Y) 3 H(-Y)IE[H(SP)I. 

If CT;= 0 and SP has decreasing failure rate, then 

R(Y)~ H(-Y)IE[H(SP)I 

with equality if SP is exponentially distributed. I? 
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Motivated by this result we will now set forth to find expressions for H(z). Since 

H is the distribution of Z,, which is just a randomly discounted infinite time income 

process so that E[Z,] = pp/p, may be regarded as net present value, our results 

may have applications other than those proposed in this article. See Dufresne (1990) 

who considers a special case. 

We define 

~(~)=iz4p-$4~o~-A~(l-f$-z4)) (3.15) 

where 

+( ~4) = E[ei”Sf,]. (3.16) 

This implies that 

E[e’“Pt] = ev(u)r. (3.17) 

Finally define 

(cl(u) = E[eiUZ-1. (3.18) 

The following proposition is an extension of a result in Proposition 2.2 in Harrison 

(1977). 

Proposition 3.1. With the above dejinitions we have 

v(uU,)d.s}] =E”[exp{[: v(U,)ds)l 

where in the jirst expectation U,, = 1 while in the second U, = u. 

Proof. The equality of the two expectations follows from the fact that U, = 

U,,( U,/ U,,) = U,,fi, where fit, = 1 and fi, is independent of U,]. 

To prove the first equality, let 9 = a{ U,: s SO}. Note that the a-algebras 9 and 

g{ P,: s b 0} are independent. Let 6:“’ = k2-“, k = 0, 1, . . , 2” - 1. Also define tk = 

tS:)“, U, = U,, and PL = P,,. Then if 

it follows from Dellacherie and Meyer (1980, Theorem VIII-1.5) that 2~“‘~ Z, as 

n + m. Therefore 

lim E[e iuZ’~‘l = ~[~tuZ,l. 

I, + x 

And since Z, + ZX a.s. as n + 03, 

lim lim E[e i”“?] = +(u). 
,+x ,1-u- 
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Now by independence and (3.17), 

E[e 

\ 

By (3.15) and (3.16), Re( v(uCJk)) s 0, and since v is continuous, dominated conver- 

gence gives 

lim E[e 
n-a, 

i”z’:l] = E [exp(I,: v(uU,) ds}]. 

Letting t+oo, dominated convergence yields the desired result. q 

From now on we will always assume that p.z > 0. One problem with V(U) is that 

it is unbounded. We therefore define 

+ 
ulI =min{uaO: Iv(u)1 = n}, u,=max{uGO: I~(u)l=n} 

and 

V,(u)=V((uAu;)vu,). (3.19) 

Then Iv,,(u)I c n and V,(U) + V(U) as n + ~0. We also set 

Ci 

A(u) = E exp 
[ (I 

v,(uU,) ds II . (3.20) 
0 

By 4’“‘(u) we will mean the kth derivative of (c/(u), $(O’= (cl(u). Similarly with 

+‘,“I( u). 

Lemma 3.1. I+!I and CL,, are both twice continuously diferentiable, and there exists 

constants M,, k = 0, 1,2 so that Vu, n, 

I#“‘(u)l v I$:“(u)l~ Mk, k=O, 1,2. 

Also lim,,, (clll”(u) = tic“‘(u), k = 0, 1, 2. 

Remark 3.4. According to Theorem 3.1, pL2 > 0 implies that E [ZL] < 00. Therefore, 

since rC, is the characteristic function of Z,, the fact that $ has the above properties 

follows from standard results on characteristic functions. But this does not apply 

to (Cln, so the tedious proof given below seems necessary. Some of the results obtained 

during the proof will also be needed later. 
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Proof of Lemma 3.1. Using le-‘” - 11 G 1x1 we have by independence of S, and U,, 

I+(-nU,) - II= IH(ev-iW&)- 111 Ull s Iul ~~~[l&41. 

And similarly 

G U,E[]S,(] and $(4(-UU-l)/ s U$[]S’,]]. 

So by the above there exists a constant K > 0 such that (see (3.15)) 

lv(uU,))~ K~u~U,+~~2,u*U~, (3.21) 

(3.22) 

(3.23) 

Since by assumption E[jr U: ds] <co, hence jt U: ds <co a.s. for k = 1,2, we 

obtain by Billingsley (1986, Theorem 16.8, p. 215), 

V( uU,) ds = 7v(uU,)ds, k=l,2. (3.24) 

Now let N,, ={s: v(uU,) ={u;, uz}}. If 1 denotes Lebesgue measure, then by 

Fubini’s theorem, 

cc 3; 
E[VN,)l= E 

[I 
lw=~u,,,u:~ ds = 1 I P(uU,={u,,u;})ds=O, 

0 II 

hence I( N,,) = 0 as. Furthermore if S is a time of jump of n?i’ Su,,, then P(u& = 

{u,, uz}) = 0, hence MU, will attain {u,, uz} at a point of continuity of U,. Since u 

is continuous, this implies that N, is closed, hence N’, is open. When s E NT,, 

v,(uU,) #{n,, uz}, and since v,, is continuous, there is a neighbourhood 0, around 

u so that v,(vU,)#{u~, uz} when v E 0,. Therefore v,( uU,) is twice continuously 

differentiable when SE N’,. So if we define (d/du)v,,(uU,)=(d’/du*)v,,(uU,)=O 

when s E N,, we have 

IY,(uU,)I~(K~U~U,+~~~~U*U~)A~, (3.21’) 

-& v,(uU,) s (KU, ++;I4 U~)l,u~,u~,WO, (3.22’) 

Let g,(u) = Jr v,(uU,) ds. Then 

gJu+k)-gJ4= u3 v,((u + h) Us) - y,(uU)) ds 

h h 

(3.23’) 

(3.25) 



J. Paulsen / Risks in stochastic environment 343 

and since IY,((u+~)U,)-~,(UU,)I~I~((U+~)U,)-~(UU,)I, we have from domi- 

nated convergence (as in Billingsley, 1986, Theorem 16.8), the fact that v,(uU,) is 

differentiable on N”, and that I( N,) = 0, that the limit as h + 0 on the right side of 

(3.25) exists and is the same whether h approaches zero from below or above. 

Therefore g;(u) exists, and (3.24) applies for V, when k = 1. Similarly we can prove 

that (3.24) applies for v,, when k = 2. 

Let 

X(u) = exp u(uU,) ds , X,(u) = exp v,(uU,) ds 
I 

. (3.26) 

Since Re(l-4(-uU,))Z=O, we have 

IX(u)1 s exp{- ja:u’ I,: Ut ds}. 

And since v,(uU,) = v((uU,) A uz) v u,), 

1X,( u)l G exp 

BY (3.24), 

X’(u)=X(u) 

So by (3.22) and (3.27), 

I-= 

(3.27) 

(3.27’) 

(3.28) 

IX’(u)l~ J” ( KU,+~‘,lulU~)ds.exp{-f~‘,u2Jo U:ds} 

I 

CC 
SK Us ds+a;IuI 

0 I 

CC 
U:ds.exp{-$r~u2[o~ U:ds} 

I 

iT 
GK U, ds +e-“‘a, cc 

ir > 

l/2 
U: ds . (3.29) 

cl 0 

The last inequality follows from the fact that for a > 0, 

alu e-au2<e-“2J$. (3.30) 

By using (3.22’) and (3.27’), we find that (3.29) is valid for IXk(u)l as well. (We 

may replace U, by U, 1 [u;,u,,~ + (uU,), but this will not be needed in the sequel.) Since 

G(u) = EiIX(u)l and (Cl,,(u) = E[X,(u)l, we have from (3.29) and dominated conver- 

gence, 

I@‘(a)I = 1; E[Wu)ll = I~[WU)ll”~ -wc~)ll s MI, 

I!x(~~l s MI, 
where M, is some constant. 

(3.31) 

For n sufficiently large, v,(uU,) = v(uU,), therefore (d/du)v,(uU,)+ 

(d/du)v(uU,) as n-+a. Hence by (3.22’), (3.23’), (3.28) (which is valid for X, as 
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well), and dominated convergence, 

X,(u)+X(u) and X:,(u)+X’(u) as. as n+co. 

This implies 

lim I/J:,(U)= lim E[X:,(u)]= E Itm X,,(u) 
,? - -\ ,1 - r [,;__ ’ ] 

= E[X’(u)l=& E[X(u)l= G’(u) (3.32) 

by (3.29) and dominated convergence. 

By (3.24) and (3.28), 2 
)I . (3.33) 

So by (3.22), (3.23) and (3.27), 

IX”(u)1 s K I‘ U; ds 
0 

+2eC”‘Kn,( j,y U, ds)( I,,‘ CJt ds)“’ 

where we have used that for u > 0 and b > 0 (see (3.30)), 

(a+2blul)‘e ““‘<aa’+2&%e ‘l’a+4b. 

(3.34) 

Now by (3.2), (3.5) and the Cauchy-Schwarz inequality the expectation of all terms 

on the right of (3.34) are finite, hence for some constant M2, 

$“(u) =$ E[X(u), = E[X”(u)] + II,V’(U)I =z E[IX”(u)l] s Mz. (3.35) 

By using (3.21’)-(3.23’) and (3.27’), we see that (3.34) and thus (3.35) are valid 

for X, as well. That lim,,, @z(u) = $“(u) follows as in (3.32). 

Finally it follows from (3.33), (3.34) and dominated convergence that W’(u) is 

continuous. This finishes the proof of the lemma. 0 

Lemma 3.2. Let v,, and $,, be as in (3.19) and (3.20), and let A be the weak generator 

of I/. Then +!I, E SdA and is the solution of 

Ati,, = - y,,$::. 
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Proof. It is easy to see that U is a stochastically continuous, conservative Feller 

process, so by Dynkin (1965, p. 58), the domain gdA of the weak generator A consists 

of all functions R,g of the form 

R,g( u) = E” em”‘g( U,) dt 
I 

where cx > 0 and g is bounded and continuous. 

Let LY > 0 and define 

r 
z(u) = E” v,( U,) exp 

1 1 dt 

It follows from Lemma 3.1 that z is bounded. By (3.21’), 

xexp - 
1 1 

‘-(a+~(C;,,))du 
11 1 ds dt 

s I 
<(n-tcu)E” 

[I I 
Iv,( U,) em”“1 ds dt 

0 0 I 
G(n+a) E”[lv,,( U,)l] dr <a. 

We can therefore repeat verbatim the proof of Karatzas and Shreve (1988, pp. 272- 

273) to obtain 

R,(-(cu+u,)z)=R,v,-z. (3.36) 

By using the inversion formula (Dynkin, 1965, Theorem 1.7, p. 40), 

(a-A)R,g=g 

with g = V, and g= -(a+ Y,,)z, then using (3.36) in the latter case and finally 

subtracting the two expressions, we obtain 

A(& - 1) = (a -(a + v,))(& - I) - v,. 

Using that Al = 0 gives the desired result. 0 

We will denote by CE( R) the space of all bounded twice continuously differenti- 

able functions with a bounded first and second derivative. For such functions we 

have: 



346 J. Paulsen / Risks in stochastic environment 

Lemma 3.3. The integro-differential operator L deJined by 

Lf(u)=$T2,u2f”(u)-((Yu-&T~)uf’(u) 

a +AfJ 
I 

(f(us) -f(u)) @u(s) 
0 

(3.37) 

equals the weak generator A of U on gA n C;(R). Here au and (T: are given in (2.18). 

Proof. As in (1.1) and (2.15) we have that U (see (2.19)) is the solution of 

d U, = U,_ dS, where u,, = u. (3.38) 

Here S,=a,t+cr,W,,,+C~i’(SU,i-l) where a,=-(aU-fc&) and W,,, is a 

Brownian motion. Writing for simplicity W, = W”,,, It6’s formula (Jacod and 

Shiryaev, 1987, Theorem 4.57, p. 57) and (3.38) gives 

f(U)-f(n)= 
I 

‘f’(O,-)dU,+; ‘Y(U,_)d(C L”), 
0 I 0 

+o_;_, [f(~,)-f(U,-)-f’(U,~)AU,l <c 

= 
I 

’ (a,U,_f’( us_) +fu: Ui_f”( Us_)) ds 
0 

I 

+u, 

I 

Kf’( U,e) d K + C M UsI -f( UT-)I. (3.39) 
0 o=s=r 

Since f’ is bounded and E[ j,!, Uf ds] < 00, we have that 

[I 

, 
E U,_f’(lJJdW, =O. 

0 1 (3.40) 

Now let c be a constant such that [auf’(x)1 + I$a:f”(x)l s c Vx. Let r > 0 be given. 

Then 

’ sup ; 
CK,=r II 

’ (a,U,_f’( U,_)+&$ Ut_f”( UT_)) ds < c sup (U, + u:,, 
0 “s,=r 

and similarly as in the proof of (3.12) we find 

E sup Uf <a. 
[ 1 O-,--r 

Therefore by dominated convergence, continuity off’ and f “, stochastic continuity 

of U,, (3.39) and (3.40), 

fif(U,)-f(u))] 
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Finally since P( NU,, 2 2) = o(t) and f is bounded, it follows readily that the last 

limit equals hL,E[f(z4SC,) -f(u)]. 0 

Remark 3.5. If 12,; g,,, and C~i’ s,, are independent, then using Lemma 2.1 and 

a change of variable in the integral in (3.37), it is easily verified that Lf can 

alternatively be written as 

Lf(u)=t(TtUZf”(U)-((“--~t,)Uf’(U) 

+A, 
I 

m (f(ns) -f(n)) dF,(s) 
0 

I 

s 

fJ+R Mu/s) -f(u)) dF,(s). (3.41) 
0 

By Lemma 3.1 both I/J, and rC, belong to C:(R), and since $, E 9*, A$,, = L$n 

where LI,!J,, is given in (3.37) with f replaced by I+!J,~. But then Lemma 3.1 and 

dominated convergence implies that L$,, (u) + L$( u) and v,( u)$,,( u) + V( U)I/J( u) 

as n + 00. Therefore we have: 

Theorem 3.3. Let v and $ be given by (3.15) and (3.18) respectively. Then $ is the 

solution of 

L@(u) =-v(u)+(u) (3.42) 

where L is given by (3.37) (or (3.41) w h en it applies). Initial conditions are 

GO) = 1, 

+‘(O) = iE[Z,] = i: (see Theorem 3.1). 0 

Theorem 3.3 gives us an equation for the characteristic function $ of Z,. But as 

we want to use Theorem 3.2 and Corollary 3.1 we are more interested in H, the 

distribution function of Z,. The following theorem gives an equation for H. 

Theorem 3.4. Assume: 

(Al) If a: > 0 or w% > 0 then 

CT, 

I> 
~c( lu$(u)l du<a. 

Otherwise it is suJJicient that 

I 

CC 

I+(u)1 du <a. 
--s 

(A2) 
I 

-1 IrCr’(u)l du <a. 

(A3) E[llog SuIl<~. 
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Then the distribution function H of 2, is twice continuously d@erentiable and is the 

solution of 

~(~~~z*+c~;)H”(z)+((q, +&:)z-p)H’(z)-(&,+A,)H(z) 

I 

ic 

I 

30 

+ALf H(zls) dF,(s) + hp H(z+s) dF,(s)=O. (3.43) 
0 -rn 

Boundary conditions are H(-oo) =0 and H(m) = 1. Also 

I 
0 

H(z) dz+ 
-CC 

(1 -H(z)) dz =E. (3.44) 

If a2 = tr?p = 0 the weaker version of (Al) is suficient, and in this case H is the 

once continuously differentiable solution of (3.43). 

Proof. Assume for the moment that in case a: > 0, (Al)-(A3) imply 

I 
v- Iu#‘(u)l du <a. 
-CC 

(3.45) 

Since by (Al) and Feller (1971, formula (3.11), p. 511), 

-e -iuz 

iu 
ccl(u) du, (3.46) 

we multiply each term in (3.42) with (emiUO -ee-iuz)/2inu, integrate from -cc to ~0 

(must check that the integrals exist), and let a + --CO. The calculations are term by 

term (see (3.37)), 

I 
cc e-iua _ e-iuz ac, 

lim 
cI+-CXZ _n iu 

u’$“( u) du = i u e-iuz$“( u) du 
-co 

-iU=,“( u) du 

= +Y,V( u) du) 

d zor 

=-(i I dz _m 
e~iuZ$( u) du 

=; z* $ (2~H(z)) 

=2rr(z2H”(z)+2zH’(z)). (3.47) 

Here the first equality follows from the Riemann-Lebesgue Lemma (Feller, 1971, 

Lemma 3, p. 513) and (3.45). The other equalities are just integration by parts, use 



J. Paulsen J Risks in stochastic environment 349 

of (Al), (A2), (3.45) and Billingsley (1986, Theorem 16.8, p. 215). Similarly we find 

that 

,im x emlua _e_lUZ 

J iu 
u@(u) du = -27rH’(z). 

“-muI ~lr (3.48) 

We will now prove that 

x * ~~II,U 
I= 

J Jl 

e 

mx 0 

-e-‘“’ I / 

iu 
dF,(s)du<m. (3.49) 

For some constant c> 0 we have j(emiurr -e-‘“‘)/iul G c Vu, and since II/J(U) < 1, 

we get 

I 1c e-iuu _ e-iuz 

JJI 
@(us) dF,,(s) du ~2c. 

-1 0 iu 

Also by Fubini and a change of variables, 

x XI mt*,u 

JJI 

- e-‘“’ 

1 iu 

sk:J I 

Icl(us) dF,,(s) du 

‘% *(us) 
- du dFo(s) 

1 

=2i 1. I 

U 1 

= NV) 

-21: J I 

- dv dF,,(s) 
V I 

IX L’ 
G(v) 
- dF,(s)dv 

0 V I 
I 

s2 
JJ 

l’ 1 
-dF,,(s) dv+2 

r *l(v) 
- F,(v)dv 

0 0 v ,I I V 

I 
s2 

JJ 

‘1 
-dv dF,,(s)+Z - 

0 ,v Jl I 

x IL(v) du<a 
(3.50) 

1 V 

since the first integral on the right equals E[Jlog(S, A l)/] which is finite by (Al). 

The integral from --CO to -1 in (3.49) is similar to (3.50). Therefore 

lim 
Jm Jx e--iua _emiuz 

u--r us 0 iu ccl(us) @u(s) du 

x K -iw 

= lim 
JJ 

e - eP’“’ 

a--Jr ” $(us) du dF,,(s) ~~ iu 

= lim u- m e 
JJ 

-iL’O/5 

a--cc ” 
-e-‘V”’ $(v) dv dF,,(s) 

~~ iv 

=27~ lim 
J 

cr (ff(z/s)- H(als) dF,(s) a--Lx ” 

J 
m 

=27r H(zls) dF,(s), 
0 

(3.51) 
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where the first equality is Fubini and (3.49), the second a change of variables v = us 

and the last monotone convergence. 

This ends the calculations for the expressions on the left of (3.42). We proceed 

to the expressions on the right. As in (3.47), 

-itra -iui K’ 
lim J 

ix 

e -e u’$( u) du = i 
(1+-X us iu J 

u eeiUi$( u) du 
-cc 

= -2rrH”( z), (3.52) 

and 

lim 
J 

U e-iuc, _ e-iuz 

u+(u) du = 2riH’(z). 
u--v‘ ~~ iu 

(3.53) 

It is straightforward to verify that 

Hence by Fubini and monotone convergence (see (3.16)), 

J 

‘X -iua 

lim 
e -em’“’ 

LI--u^ or iu 
+(-u)+(u) du 

= lim 
J 

u^ e-iuo _ emiuz 

a--m ~;cI iu 
4(u) (‘ e-‘“‘ dF,(s) du 

--a 

CC Cr 
= lim 

J J 

epiu(a+.7) -e -in(;+,) 

$(u) du dF,(s) 
o--x _K -_iT iu 

=2~ lim 
J 

K (H(z+s)-H(a+s)) dF,(s) 
u---u7 _m 

J 
m 

= 2,i-i H(z+s) dF,(s). (3.54) 
-a7 

Now (3.43) follows from (3.15), (3.37), (3.42), (3.46)-(3.48) and (3.51)-(3.54). The 

expression in (3.44) is just E[Z,] = BP/~, . 

It only remains to prove (3.45). Divide by fablul throughout in (3.42) where L 

is defined in (3.37). Take absolute values, use the triangle inequality and integrate 

from --oo to cc. Then for some constants c, , c2 and c3, 

J 
m (z@“(u)( du 5 c, 

--a^ 
J-1 I+‘(u)/ du + cz JI I+1 Ith( du 

cr CC 

+ c3 
J Jl 

q(Us) -@(u) dF 
u 

(s) d 
U. 

mu1 0 u 
(3.55) 

The first integral on the right is finite by (A2). By (3.21) Iv(u)/u]s K+#,(u(, 

hence the second integral is finite by (Al). 
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We will now prove that the third integral on the right side of (3.55) is finite. From 

Feller (1971, formula (4.14), p. 514), 

Is- 11 dF,(s) du 

Furthermore, 

The first integral on the left is finite by (3.50) and the second is finite by (Al). The 

integral from --CO to -1 is similar, hence finiteness of the third integral on the right 

of (3.55) follows. This finishes the proof of the theorem. 0 

Remark 3.6. If x2,; s”,_, and Chid S,,, are independent, then using (3.41) instead of 

(3.37) we find that (3.43) takes the form 

$(a:z’+aZ,)H”(z)+(( aU+~(T:)Z-~)H’(z)-(A,+hR+hp)H(z) 

0? s 

+A, 
I 

H(zls) dF,(s)+AR 
0 I 

H(zs) dF,(s) 
0 

‘c-c 

+AP H(z+s)dFp(s)=O. 
-s 

In the same way as Theorem 3.4 we can prove: 

Proposition 3.2. Assume: 

(Bl) If& >O or a;>0 then 

5 

or 

lu’1+4(u)l du < ~0. IT 

Otherwise it is suficient that 

I 

cr 

IN( du < 00. mu- 

I 

a 
032) _-oc lu~‘(u)l du<a. 

(B3) E[l/S,]<oo. 

Then Z, has a twice continuously diflerentiable density h which is the solution of 

~(~~z2+~~)h”(z)+((~~+~~~)~-p)h’(z)+(~~+~~~-AU-Ap)h(z) 

I 

CC s 

+Au h(zls) dFu(s)+Ap h(z+s) dF,(s) =O. 
0 -I? 
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With side conditions 

x 
h(z)dz=l and h(z)>0 Vz. 

-XI 

Also 

We also have: 

Proposition 3.3. Assume claims exponentially distributed with expectation I/,u, i.e. 

Fp(s) = (1 - e-l*‘)Z{, .(,). Assume also that o’, = 0 and that (Al)-(A3) in Theorem 3.9 

are satisjied. Let 

I 

r 

V(P) = E[ff( Y-,,) 1 T’ <ml = E[H(S,)I = H(z)p em&” dz. 
0 

(See Theorem 3.2 and Corollary 3.1 for notation.) Then V(~_L) is twice continuously 

dtflerentiable and is the solution of 

Boundary conditions are V(0) = 1 and V(m) = H(O). 

Proof. Multiply each term in (3.43) by p eeFZ and integrate from 0 to ~0. The 

calculations are much the same as in the proof of Theorem 3.4 and are omitted. 0 

We will now return to Theorem 3.4 and find some sufficient conditions for (Al) 

and (A2) there to hold. We start with the following fairly general result: 

Proposition 3.4. Assume cr: > 0 and that 

E[l/S’,]<co. 

Then (Al)-(A3) in Theorem 3.4 are satisjied. 

Proof. By Proposition 3.1 and (3.15), 

1$(u)] s E[e-UZX’2], 

and by (3.29) and (3.31), 

IG’(u)l s c,H Y e -U2x’2]+ c,lujE[X e6U2x’2], 
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where X = a: 57 Ut ds, Y =I: U, ds and c,, c2 are constants. By the above 

inequalities, Fubini and Cauchy-Schwarz inequality, 

I 

00 
_mlut,b(u)lduGE 

[I 
_~~~le-“~~‘~du =2E[X-‘1, 1 

I 
co _m l~,V(u)l du < c,E Oc e-U2x’2 du] + c,E [X [: In] eeUzx12 du] 

--co 
112 

e -$x/2 du +2c, 

=& c,(E[ Y’])“‘(E[X-‘)]“‘+2c,. 

By (3.5) we have that E[ Y*] <co so it remains to prove that E[X-‘1 COO, i.e. 

E[(j-OmU:ds)l]<m. 

By (2.19), Uz = exp{-2aUt+2a,WU,,} fl2i’ SL,i, SO we define 

T, = inf{ t : exp{ -2aUt + 2a, W,,} = exp{ -2ao}}, 

T, = inf{ t: No,, = 2). 

Then 

I 
00 

Us ds 2 exp{-2cu}( T, A Tz)( 1 A S:.,). 
0 

By independence of T,, Tz and S,, we get 

E[(I,‘u~d~)-‘]~enp(2~u)E[~]E[~] 
sexpi2oo}(E[+]+E[$])(I+E[&]). (3.56) 

By assumption E[S;*] < 00. Furthermore, 

- h2,t em”,’ dt = AU. 

Note that Tl = inf{ t: W”,, - (b/au)t = -l}, so by Karatzas and Shreve (1988, formula 

(5.12), p. 197), 

E [-!-I =&I: l-5/2exp( -(1-(b~~u)‘)2} dt<oo. 

Hence the right side of (3.56) is finite. 0 

Remark 3.7. If we strengthen the assumption to E[Si3] < ~0, then the assumptions 

(Bl)-(B3) of Proposition 3.2 are satisfied. 

We will now consider the more difficult task of verifying (Al) and (A2) in Theorem 

3.4 when u’p = 0. Here only a special case is solved. We begin with a lemma. 
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Lemma 3.4. Assume I& = 0. Let k(u) = Re( 1 - 4(--u)) 2 0 and consider the equation 

Lf = -akf, (3.57) 

where L is given by (3.37). 

Let y(u) and z(u) be solutions of (3.57) with (Y = hp and LY = 2hP respectively, and 

such that 0~ y(u), z(u) s 1. Assume: 

(Cl) ifaL>0 then 

J 

J- 

luy(u)l du <a. ~c( 

Otherwise it is sujicient that 

I 

iT 
y(u) du<oo. 

--a? 

(C2) Ix1 
I 

(z(u))“’ du < 00. 
-XI 

Then conditions (Al) and (A2) of Theorem 3.4 are satisfied. 

Proof. Let X(u) = exp{lr v(uU,) ds} b e as in (3.26). Then since k is real, 

I+(u)1 = IE[X(u)ll s 35 [Iv{ -b [: k(uU) ds}i] 

=E[exp{-*,.~UWk(uU,)ds}]. 

And as in Theorem 3.3, 

is the solution of (3.57) with (Y = hp. Hence (Cl) implies (Al). Furthermore by 

(3.22), (3.28) and (3.31), for some constant c, 

l~‘(U)~E,lX’(u)llCKE[ lx(u) 1,: us dsi] 

s K (E [ ( jo= U, ds)*])“*(E[X(u)~*,)~~* 

--,(E[iexp{-2~P[~(‘k(ul/.)ds~~])”2=c(z(u))1”. 

Since by (3.5) E[(jF U, ds)*] <CO. Again as in Theorem 3.3, 

is the solution of (3.57) with LY =2hP. Hence (C2) implies (A2). 0 
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We will use Lemma 3.4 to prove the following: 

Proposition 3.5. Assume u’p = AU = 0 and that there exist positive constants k, c and 

E such that when IuI 2 K, Re(+(u)) s cCF. Assume 

hp>2aU+2&=2(r-i)+3gf++4puIuR. (3.58) 

Then conditions (Al) and (A2) of Theorem 3.4 are satisfied. 

Proof. The equation Ly = -APky in Lemma 3.4 now takes the form iy = ry, where 

r(u) = -Ap Re(4(-u)) and i is the differential operator 

2 

i=f&+(a” 
d 

-&)U-- hp. 
du 

First we solve iw = 0. This is just the Euler equation, and two independent solutions 

are given by 

w,(u) = luID, and w2(u) = IuI’z, 

where /3, and p2 are solutions of the equation $&/?(P - 1) - ( LY” -$(T:)/? - hp. The 

solution is 

/3=z*JW. (3.59) 

If we let /?, denote the negative solution, direct calculation and use of (3.58) give 

that p, < -2. This also implies that p2 > 2. 

Let u > K. By the method of variation of parameters, a general solution is given 

as 

y(u) = a,u”l+a,uP2+ 
I 

U 

G(u, t)r(t)y(t) dt, 
K 

where G(u, t) = -(1/(P2-p,))(UPl/tB1+’ - uP2/tP2+‘) is the one-sided Green’s func- 

tion. This gives 

By assumption r(t) s ctCf when t > K. Also O~y(u) s 1 (see Lemma 3.4), hence 

for some constants c, and A4, 

I 

IA 
r( t)y( t) dt G cup1 fP(P,+I+F) dt 

K 

s c,(upl+ urn’) < M. (3.60) 
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Therefore since pz > 0 we must have 

-@z+‘)r( t)y( t) dt. 

which implies 

y(u) = a,u”l-L up1 J 
u 

@2-P, K t 
+l+“r( t)y( t) dt 

1 cn 
_- UP2 

P2-PI u 1 

-(Pz-t')r(t)y(t) dt. (3.61) 

Using the upper bounds of r(t) and y(t) gives 

x 
tC@+‘)r( t)y( t) dt < cup2 t+~+‘+~) dt < czu-F (3.62) 

II 

for some constant cz. 

Inserting (3.60) and (3.62) into (3.61) and using the triangle inequality gives for 

some constant c3, 

o~y(u)~c,(u”~+u7). (3.63) 

If E > 2 then j: uy(u) du <CO (since p, < -2), and we can stop the argument. 

Otherwise by (3.63), OGy(u)s c,u-’ for some constant cd, and inserting this 

inequality into the left sides of (3.60) and (3.62) gives for some constants cs and c6, 

uP, u t-W,+1) 
I 

r(t)y(t) dts c,(u~~+u~*~), 
K 

p2 w J tfCp2+‘)r( t)y( t) dt i c~u-*~. 
u 

Inserting these inequalities into (3.61) and using the triangle inequality gives for 

some constant c,, 

Like this we may continue N steps until NE > -p, . Then for some constant cx, 

O~y(u)~cc,u @I. Hence we get that 

J 
02 
uy(u) d” <O”. K 

The case jI2 luy(u)l du <ox is treated similarly. Since O~y(u) s 1, we thus have 

J 
‘x _~ luy(u)l du <a. (3.64) 
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Obviously 2hp > 2aU +2o:, hence as above (see Lemma 3.4) when u > K, 0 s 

z(u) 4 cguc(l where cg is some constant. But /3, < -2 and we get as above, 

I 

u 
(z( .))I’? du < 00. (3.65) 

-IX 

The result now follows from (3.64), (3.65) and Lemma 3.4. 0 

Remark 3.8. If in Proposition 3.5 we instead of (3.58) assume that 

Ap>3aI,+$rf,=3(r- ~)+6~~~+3~$9gpa,a~, 

then p, < -3 (see (3.59)). It can be proved along the same lines as above that this 

implies that both (Bl) and (B2) in Proposition 3.2 are satisfied. 

Remark 3.9. The assumption hp > 2au,, + 2&, is normally very weak. On a yearly 

basis typically 2a,, +2& < 0.5, while hp * 1. 

Example 3.1. Assume AL, = Ar, = 0 and that u’, > 0. Then 

zr= l- 
I 

exp{--aof + ~rJWU,,J dP, 
0 

(3.66) 

where P, = pt + upWp,,. Here W,, and W,, are independent Brownian motions. 

If v:, = 0, it follows directly from (3.66) and isometric properties of the stochastic 

integral that 2, is normally distributed with expectation p/a0 and variance uy/2a,,. 

If u; > 0, it follows from Theorem 3.4 and Proposition 3.4 that the density h of 

Z,, is given as the solution of 

~(u~,z~+uy)h’(z)=(p-(a,,-t~u~)z)h(z). 

The solution is easily found to be 

(3.67) 

h(z) = 
ho 

(u;>+u;,Z ) - 
z I/V<r[,/<r; exp (3.68) 

where h, is a normalizing constant. Note that the solution of (3.67) gives the above 

mentioned distribution when & = 0 as well. 

Wesee that h(z) hasafinitefirst moment iff i+tcu(,/wL> l,i.e.iff cyU --&f, = p, > 0 

(see (3.2)). Similarly h(z) has a finite second moment iff (Y” -CL =$.L>> 0. This is 

in accordance with Theorem 3.1. 

On the other hand we only know that h(z) is the density of Z, when puz > 0. In 

our derivation of (3.68) we made use of Theorem 3.3 which involves the second 

derivative of $(u) = E[exp{iuZ,}], and r,V’(O)<cc iff E[Z$]<co (Feller, 1971, 

Corollary, p. 512). It therefore looks difficult to verify whether h(z) is the density 

of Z, under the weaker assumption p, > 0. 

By Corollary 3.1, the probability of eventual ruin is 

R(Y) = H(-Y)IH(O). (3.69) 
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Substituting u = arctan((cT,/a,)z) in the integral H(x) = jr, h(z) dz, and cancelling 

common constants in the nominator and denominator in (3.69), we find that 

R(y) = G(-arctan((uUlop)v)) 

G(0) 

where 

I 
x 

G(x) = cosa v. epu dv. 
-n/2 

Here (Y = 2a,/a: - 1 and /3 = 2p/a,aP. 

Table 1 gives R(y) when E - 1, r = 0.1, oR = 0, 0.1, 0.2 and 0.3, p = 1, up = 1 and 

y = 0.2, 0.4,. . . ,4.0. We see that the impact of a stochastic interest rate is fairly 

small when the probability of ruin is large, but becomes increasingly important as 

the probability of ruin decreases. For large values of y we see that the uncertainty 

in return on investments may increase the probability of eventual ruin several times. 

This impression has been confirmed by making other choices of r, wR, p and up. 

For this special case we see that p2> 0 iff (TV <m~0.258. Therefore we do 

not know whether Table 1 is valid for the case u R = 0.3. On the other hand p, > 0 

iff uR <m==O.316. Calculating R(y) for various values of uR in the vicinity of 

0.258 there was no evidence of discontinuity. 

Table 1 

0.20 0.65559 0.65695 0.66119 0.66896 

0.40 0.42651 0.42873 0.43567 0.44841 

0.60 0.27534 0.27803 0.28645 0.30201 

0.80 0.11639 0.17923 0.18819 0.20489 

1.00 0.11213 0.11490 0.12369 0.14034 

1.20 0.07073 0.07328 0.08144 0.09723 

1.40 0.04427 0.04651 0.05377 0.06823 

1.60 0.02750 0.02939 0.03565 0.04856 

1.80 0.01695 0.01849 0.02375 0.03507 

2.00 0.01036 0.01160 0.01591 0.02571 

2.20 0.00629 0.00725 0.01073 0.01914 

2.40 0.00379 0.00452 0.00729 0.01446 

2.60 0.00226 0.00281 0.00499 0.01109 

2.80 0.00134 0.00174 0.00344 0.00863 

3.00 0.00079 0.00108 0.00240 0.00680 

3.20 0.00046 0.00067 0.00168 0.00543 

3.40 0.00027 0.00041 0.00119 0.00439 

3.60 0.00015 0.00025 0.00085 0.00360 

3.80 0.00009 0.00016 0.00062 0.00297 

4.00 0.00005 0.00010 0.00045 0.00249 

0.00 0.10 0.20 0.30 
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Example 3.2. Assume AU = a$ = 0 and that Fp(s) = (1 -em’*‘)Zi5Z_oj. Then 2, is as 

in (3.66), but where 

NE, 
P,=pt+ c s,,. 

111 

By Theorem 3.4 and Proposition 3.5, the assumption hp > 2cuc, + 2~; implies that 

the distribution H of 2, satisfies the integro-differential equation LYH = 0 where 

~‘H(~)=$T’,~~H”(~)+((~~~+~(T~,)z-~)H’(z) 

x 

-hpH(z)+pAp epz 
1, 

H(u) emwo dv. 

Assuming Ap > 3aL, +:a:, , by Remark 3.8, H is three times continuously differenti- 

able. The equation 

can then be written as 

$T~Z2h”(z)-(&.Lu~Z2- q:z+p)h’(z) 

-(/~((Y~,+~~&)z+(A~-(Y~-$(T~,-~~))~(z)=O 

where h is the density of 2,. Side conditions are 

0; s 

h(z) dz= 1 and PP zh(z) dz =-. 
mm J; /11 

This is a rather complicated second order differential equation with unpleasant side 

conditions, making it less attractive for numerical solutions. 

On the other hand we may use Theorem 3.3 which gives us the characteristic 

function 4 of 2, as the solution of 

(3.70) 

with the more pleasant initial conditions 

I/J(O) = 0 and $‘(O) = ipp/p,. 

For computations it is probably easiest to solve (3.70) numerically and then numeri- 

cally invert the solution to obtain H(z) for various values of z. Then Corollary 3.1 

may be invoked to find numerical values for the probability of eventual ruin. Note 

that in this case we do not have to make any assumptions about hp. 

If we assume Ap > 2c~” +2&, by Proposition 3.3 the denominator of R(y) in 

Corollary 3.1, i.e. V(p) = E[H(S,)], is given as the solution of 

$7’UjL2V(jL) -(au -;~~‘L,+A.)cLV’(~)-PWV(W)=-PLLH(O) (3.71) 



360 J. Paulsen / Risks in stochastic environment 

with boundary conditions V(0) = 1 and V(a) = H(0). It is easy to see that a particular 

solution of this equation is V(p) = H(0). Hence if we can find a solution of 

$&Luzg”(/_L) -(czyu -~a:+hp)~g’(~)-P~g(~)=O (3.72) 

with boundary conditions g(0) = 1 -H(O) and g(a) = 0, the solution of (3.71) is 

given by V(p) = g(p) + H(0). By the method of Frobenius, straightforward calcula- 

tions show that two linearly independent solutions of (3.72) are 

g,(/Ju)= f n=” n! n;;‘(i _ u) CLn = ~(-~)(b~.)“+““*~~,l+,,(2~), 

g*(p) = F’+O f” n! Il:‘,I;;+2+u) PLn = rc2+ Q)(b~L)(‘+~)‘*z,l+,,(2~). 

Herea=2(a,+A,)/g:- 1 must be a noninteger, b = 2p/w: and I,(z) is the Bessel 

function with purely imaginary argument. We see that g,(O) = 1 and g,(O) = 0, hence 

by using the asymptotic expansion of ID(z) when z becomes large (Whittaker and 

Watson, 1958, Section 17.7), V(p) is readily found to be 

V(p) = H(0) + (I- H(0))~(-a)(bp)“+a)‘2 

x (~L,+dma -h+.(N7G)). (3.73) 

Another way of solving (3.72) is to use contour integration. Trying a solution of 

the form 

g(p) = 
I 

‘x 
e-@P( I) dt 

gives that P(t) = c~~‘2+U’ e-‘/I, i.e. 

I 

r 

g(P) = c 
t-‘2+a’ 

e 
-(fir+h/rl dt 

0 
(3.74) 

where a and b are as above. Monotone convergence gives that lim,,, g(p) = 0 and 

it is easy to verify that g(0) = 1 - H(0) implies that 

1 -H(O) b,+” 

C=r(l+u) . 

Substituting u = m/ t in (3.74) then gives 

(3.75) 

Now the probability of eventual ruin is by Corollary 3.1, 

R(y) = H(Y)/ V(P). 

Therefore we only need to calculate numerically If-y) and H(0) and then use 

either (3.73) or (3.75). 
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