
Hierarchy-Driven Approach for Attack Patterns in Software Security Education

Joshua J. Pauli
College of Business and Information Systems

Dakota State University
Madison, SD, 57042, USA

josh.pauli@dsu.edu

Patrick H. Engebretson
 College of Business and Information Systems

Dakota State University
Madison, SD, 57042, USA
pat.engebretson@dsu.edu

Abstract

We propose a hierarchy-driven approach to facilitate

student learning and foster a deeper understanding of the
importance of attack patterns in computer, network, and
software security. This is a fundamental point in computer
and software security education because the “patch and
pray” mentality of software security is insufficient. The
importance and significance of our approach is justified
by accentuating the deficiencies in previous ad-hoc
approaches to teaching attack patterns. Because of the
vast amount of information in attack pattern repositories,
it is unrealistic to expect students to fully comprehend
attack pattern fundamentals and its place in computer,
network, and software security.

Keywords: Attack Trees, Attack Patterns, Refinement,
Hierarchy.

1. Introduction

Within the past five years, the fields of network,
computer, and software security has begun to shift its
focus away from perimeter defensive models, such as
border routers, firewalls, and intrusion detection systems,
to more proactive defensive models [1]. Until recently
many companies have simply relied on a patch-when-
exploited methodology to writing secure software [2]. In
order to better instantiate a proactive defense model, one
must begin with software security and make sure that
these priorities are carried throughout every phase of the
software development lifecycle.

The goal of teaching attack patterns to students is to
provide them with a semi-formalized representation of the
attacker’s perspective. Equally as important is providing
each student with a security-focused, expert level
understanding of software development and the various
ways in which software is currently exploited. Good

security and the ability to combat malicious code is the
byproduct of understanding said code’s mechanics as well
as its motivations [3]. By applying this approach, students
are able to see how the elements of each attack pattern are
related to each other and how each element is related to
elements of other attack patterns.

2. Hierarchy-Driven Model

The CAPEC list creates a forum for researchers,

developers, security experts, and students to collaborate
and share information through a common dialect.
However, because of the vast quantities of information
within CAPEC, an instructor has a daunting task to
introduce the concept of attack patterns and attempt to
make use of the CAPEC resource. With over 100 attack
patterns and the corresponding Primary and Supporting
elements for each, students can be easily overwhelmed by
the size, scope and nature of learning such a system.

Given the significance of the subject matter and
importance of such concepts, we developed our approach
for teaching attack patterns. Our model will rely on
utilizing a hierarchy to present attack pattern information
logically. One of the major categories for learning
strategies is the creation or use of a hierarchy [4].
Furthermore, the process of learning can be facilitated
through the implementation of a teaching strategy and
good teaching can be defined as one which encourages
students to think and remember concepts for themselves
[4]. Utilization of a hierarchy will help to bring order as
well as facilitate a deeper understanding of relevant attack
pattern elements. In order to help solidify the new model,
students will first be introduced to the concept of a
hierarchy model outside the realm of attack patterns.
Upon completion of the abstracted model, students will be
asked to apply the hierarchical model to the CAPEC
Release 1 attack pattern list.

Specifically, we will focus on a slim element set to
incorporate into our hierarchy model [1]. We utilize a top-
down approach with the highest level being the most

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.15

1157

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.15

1157

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.15

1156

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.15

1156

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.15

1156

general element. Subsequent hierarch levels will become
more specific in nature and scope. Students are required
to follow a minimum 1:1 ratio for each level of the
hierarchy as refinement continues from level to the next.
While higher ratios of refinement may be possible at each
level, the 1:1 ratio between each level is sufficient to
introduce attack patterns in an educational setting.

Our hierarchy model is introduced in Figure 1 where
more details are realized about the attack pattern as
refinement continues to subsequent levels of abstract.
Vulnerabilities are at the highest level of abstraction to
effectively group the attack patterns in understandable
contexts for students.

The purpose is to give students a solid introduction to
attack patterns, as well as introduce the CAPEC Release 1
list of attack patterns. As the hierarchy is populated, more
details are known about each attack pattern. This
information is more useful in a hierarchical format than a
textual description with no clear connection between the
elements because it is now known what elements
influence other elements in the same attack pattern.
Students can clearly see these connections between each
level of refinement for each attack pattern; this knowledge
can then be leveraged when analyzing and designing
secure software.

In order to foster a deeper understanding for the
students, a significant portion of time was spent
specifying and documenting consistent definitions for our
approach before populating the hierarchy. We use existing
and accepted definitions as summarized below [3].

Level 1: Vulnerability is defined as a large or general
classification used to group a collection of related of
errors that an attacker can exploit. Every attack pattern
outlined by CAPEC is a child of one of the following
vulnerabilities: Abuse of Functionality, Spoofing,
Probabilistic Techniques, Exploitation of Authentication,
Resource Depletion, Exploitation of Privilege/Trust,
Injection, Data Structure Attacks, Data Leakage Attacks,
Resource Manipulation, Protocol Manipulation, and Time
State Attacks.

Level 2: Attack Pattern is a high level blueprint that
describes various types of software attacks.

Level 3: Exploit describes a specific instance of an
attack pattern. Level 3.1 Bug / Flaw is used to explain
difference between a logical or design issue (flaw) and an
implementation or coding issue (bug). CAPEC does not
specify specific attack patterns as either a bug or flaw.
Level 3.1 has been added to force the student to think
deeply about the exploit being explored.

Level 4: Activation Zone is the area in a software
package which is capable of activating or executing a
payload or exploit.

Level 5: Injection Vector refers to the actual format of
the input used in an attack. Level 5.1: Payload references
any input given to the software in order to carry out an

exploit. Note, the hierarchy allows for the fact that not
every Attack Pattern makes use of a payload.

Level 6: Reward is the output event or desired
outcome of a successful exploit.

Figure 1. Hierarchy Framework

3. Conclusions

Because of the significance of the attack patterns in

relationship to software security it is important that a
student’s overture to the topic be positive. In order to
avoid a negative experience for the students, our
introduction to attack patterns and CAPEC focuses on a
pared down number of elements and applying them to a
hierarchy to aid in retention of information.

References

[1] I. Arce. Why Attacking Systems Is a Good Idea, in

Security and Privacy, IEEE. 2004. p. 17-19.
[2] E. Fernandez. A Methodology for Secure Software

Design. In Proc of the Conference on Software
Engineering Research and Practice (SERP'04). 2004.
Las Vegas, Nevada.

[3] G. Hoglund and G. McGraw, Exploiting Software:
How to Break Code. 2004: Pearson Higher
Education.

[4] C. Weinstein and R.E. Mayer, The teaching of
learning strategies. Handbook of research on
teaching, 1986. 3: p. 315-327.

11581158115711571157

