
I

A PATTERN- RECOGNITION
PROGRAM THAT GENERATES,
EVALUATES, AND ADJUSTS
ITS OWN OPERATORS

Leonard Uhr& Charles Vossler

Background Review

The typical pattern-recognition program is either elaborately prepro-
grammed to process specific arrays of input patterns, or else it has been
designed as a tabula rasa, with certain abilities to adjust its values, or
"learn." The first type often cannot identify large classes of patterns that
appear only trivially different to the human eye, but that would com-
pletely escape the machine's logic (Bailey and Norrie, 1957; Greanias
et al., 1957). The best examples of this type are probably capable of
being extended to process new classes of patterns (Grimsdale et al.,
1959a; Sherman, 1959). But each such extension would seem to be

an ad hoc complication where it should be a simplification, and to
represent an additional burden of time and energy on both programmer
and computer.

The latter type of self-adjusting program does not, at least as yet, appear
to possess methods for accumulating experience that are sufficiently
powerful to succeed in interesting cases. The random machines show
relatively poor identification ability (Rosenblatt, 1958, 1960a). (One ex-
ception to this statement appears to be Roberts' modification of Rosen-
blatt's Perceptron (Roberts, 1960). But this modification appears to make
the Perceptron an essentially nonrandom computer.) The most successful
of this type of computer, to date, simply accumulates information or proba-
bilities about discrete cells in the input matrix (Baran and Estrin, 1960;
Highleyman and Kamentsky, 1960). But this is an unusually weak type
of learning (if it should be characterized by that vague epithet at all), and

251

252 ARTIFICIAL INTELLIGENCE

i

this type of program is bound to fail as soon as, and to the extent that,
patterns are allowed to vary.

Several programs compromise by making use of some of the self-
adapting and separate operator processing features of the latter type of
program, but with powerful built-in operations of the sort used by the
first type (Doyle, 1960; Unger, 1959). They appear to have gained in
flexibility in writing and modifying programs; but they have not, as yet,
given (published) results that indicate that they are any more powerful
than the weaker sort of program (e.g., Baran and Estrin) that uses indi-
vidual cells in the matrix in ways equivalent to their use of "demons" and
"operators." A final example of this mixed type of program is the ran-
domly coupled "n-tuple" operator used by Bledsoe and Browning (1959;
1961a). In this program, random choice of pairs, quintuples and other
tuples of cells in the input matrix is used to compose operators, in an
attempt to get around the problems of preanalyzing and preprogramming.
This method appears to be guaranteed to have at least as greatpower as the
single cell probability method (Uhr, 1961ft). But it has not as yet demon-
strated this power. And it would, like most of the other programs discussed
(or known to the authors) fall down when asked to process patterns which
differed very greatly from those with which it had originally "gained ex-
perience" by extracting information (Uhr, 1960).

Summary of Program Operation

In summary, the original running pattern recognition program works
as follows: Unknown patterns are presented to the computer in discrete
form, as a 20 X 20 matrix of zeros and ones. The program generates and
composes operators by one of several random methods, and uses this set
of operators to transform the unknown input matrix into a list of charac-
teristics. Or, alternately, the programmer can specify a set of pregenerated
operatorsin which he is interested.

These characteristics are then compared with lists of characteristics in
memory, one for each type of pattern previously processed. As a result of
similarity tests, the name of the list most similar to the list of characteristics
just computed is chosen as the name of the input pattern. The character-
istics are then examined by the program and, depending on whether they
individually contributed to success or failure in identifying the input, ampli-
fiers for each of these characteristics are then turned up or down. This
adjustment of amplifiers leads eventually to discarding operators which
produce poor characteristics, as indicated by low amplifier settings, and to
theirreplacement by newly generatedoperators.

One mode of operation of the present program is to begin with no
operators at all. In this case operators are initially generated by the pro-

I

A PATTERN-RECOGNITION PROGRAM 253
gram at a fixed rate until some maximum number of operators is reached.
The continual replacement of poor operators by new ones then tends to
produce an optimum set of operators for processing the given array of
inputs.

Details of Program Operation

The program can be run in a number of ways, and we will present results
for some of these. The details of the operation of the program follow.

1. An unknown pattern to be identified is digitized into a 20 X 20 0-1
input matrix (Fig. 1).

2. A rectangular mask is drawn around the input (its sides defined by
the leftmost, rightmost, bottommost, and topmost filled cells) (Fig. 2).

3. The input pattern is transformed into four 3-bit characteristics by
each of a set of 5 X 5 matrix operators,each cell of which may be visual-
ized as containing either a 0, 1, or blank. These small matrices which
measure local characteristics of the pattern are translated, one at a time,
across and then down that part of the matrix which lies within the mask.
The operator is considered to match the input matrix whenever the o's
and l's in the operator correspond to identical values in the pattern, and
for each match the location of the center cell of the 5 X 5 matrix operator
is temporarily recorded (Fig. 3). This information is then summarized
and scaled from 0 to 7 to form four 3-bit characteristics for the operator.
These represent (1) the number of matches, (2) the average horizontal
position of the matches within the rectangular mask, (3) the average

Unknown pattern Internal representation

Figure 1. An unknown pattern is input as a 20 X 20 matrix with the cells coveredby the pattern represented by "l's" and the other cells by

"Q's,"

<*

254 ARTIFICIAL INTELLIGENCE

I

vertical position of the matches, and (4) the average value of the square
of the radial distance from the centerof the mask.

A variable number of operators can be used in any machine run. This
can mean either a number preset for that specific run, or a number that
begins at zero and expands, under one of the rules described below, up to
the maximum. The string of 25 numbers which defines a 5 X 5 matrix
operator can be generatedin any of the following ways (Fig. 4) :

a. A preprogrammed string can be fed in by the experimenter.
b. A random string can be generated; this string can be restricted as

to the number of "ones" it will contain, and as to whether these
"ones" must be connected in the 5 X 5 matrix. (We have not
actually tested this method as yet.)

c. A random string can be "extracted" from the present input matrix
and modified by the following procedure (which in effect is imitat-
ing a certain part of the matrix). The process of inserting blanks

Figure 2. A rectangular mask is drawn
around the unknown pattern. Each of
the 5X5 matrix "operators" is then
translated over the pattern.

Figure 3. The operator at the lower left
in the figure is shown in the two posi-

tions where it matches the input matrix.
An operator gives a positive output each
time its "l's" cover "l's" and its "O's
cover "O's" in the unknown pattern.

r

A PATTERN-RECOGNITION PROGRAM 255
in the extracted operator allows for minor distortions in the local
characteristics which the operatormatches.
(1) A5X 5 matrix is extracted from a random position in the

input matrix.
(2) All "zero" cells connected to "one" cells are then replaced

by blanks.
(3) Each of the remaining cells, both "zeros" and "ones," is

thenreplaced by a blank with a probability of %.
(4) Tests are made to ensure that the operator does not have

"ones" in the same cells as any other currently used operator
or any operator in a list of those recently rejected by the
program. If the operator is similar to one of these in this

Figure 4. Operators are generated within the 5 X 5 matrix by either: (a) extraction
from the input pattern (random placement of a 5 X 5 matrix, elimination of "O's"
connected to "l's" and elimination of each of the remaining cells with a prob-
ability of %) or (b) by random designation of cells as either "0" or "1" (choose
a "1," then place a "0" two cells to its right). In 1) from 3 to 7 "l's" are chosen
completely at random, while in 2) the choice is limited to connected cells.

«*_>:. ~

256 ARTIFICIAL INTELLIGENCE

L

respect a new operator is generated by starting over at
step 1 (Fig. 5).

4. A second type of operator is also used. This is a combinatorial
operator which specifies one of 16 possible logical or arithmetic opera-
tions and two previously calculated characteristics which are to be com-
bined to produce a third characteristic. These operators are generated by
the program by randomly choosing one of the possible operations and the
two characteristics which are to be combined. This random generation
process is improved by generating a set of ten operators, and then pretest-
ing these using the last two examples of each pattern which have been
saved in memory for this purpose. This pretesting is designed to choose
an operator from the set which produces characteristics that tend to be
invariant over examples of the same pattern yet vary between different
patterns.

Since these operators may act upon characteristics produced by previous
operators of the same type, functions of considerable complexity may be
built up.

5. The two types of operators just described produce a list of charac-
teristics by which the program attempts to recognize the unknown input

I|| | 1 10 1 lil |o] hi II 1

"

I_J_ J - o_ _t 0 _J
J£ £ £ J
__!__£_ £ £ L_
Mill 1010101010 l Mill'"

lb)

Figure 5. (a) Some typical examples of preprogrammed operators are shown.
(b) Six of the operators generated by the program, during a run that reached 94
per cent success on 7 sets of 5 patterns, are shown.

f

A PATTERN-RECOGNITION PROGRAM 257
pattern (Fig. 6). At any time the program has stored in memory a similar
list of characteristics for each type of pattern which the program has
previously encountered. Corresponding to each list of characteristics in
memory is a list of 3-bit amplifiers, which gives the current weighting for
each characteristic as a number from 0 to 7.

The recognition process proceeds by taking the difference between each
of the characteristics for the input pattern and those in the recognition list
of the first pattern. These differences are then weighted by the correspond-
ing pattern amplifiers, and then by general amplifiers which represent the
average of the pattern amplifiers across all patterns, producing a weighted
average difference between the input list and the list in memory. This
average difference is multiplied by a final "average difference" amplifier to
obtain a "difference score" for the list in memory. When a difference score
has been computed for each list in memory, the name of the list with the
smallest score is printed as the name of the input pattern (Fig. 7).

6. After each pattern is recognized the program modifies pattern
amplifiers in those patterns which have difference scores less than or only
slightly above the difference score for the correct pattern (Fig. 8). This
means that the program will tend to concentrate on the difficult discrimina-
tion problems, since amplifiers are adjusted only in those patterns which
appear similar to the correct pattern in terms of the difference scores and
therefore make identification of the input difficult. The correct pattern is
compared with each of the similar patterns in turn. Each characteristic in
the memory lists for a pair of patterns is examined individually, and a
determination is made as to whether the correct pattern would have been
chosen if the choice had been made on the basis of this characteristic
alone. If this one characteristic would have identified the correct pattern,
then the corresponding amplifier is turned up by one. If it would have
identified the wrong pattern then the amplifier is turned down by one. If
no information is given by the characteristic, for example, if it is the same

Figure 6. Operator outputs are listed for the unknown pattern in the same format
as in lists stored in memory.

1*

L

258 ARTIFICIAL INTELLIGENCE

for both patterns, then the amplifier is turned down with a probability of
ya. If the pattern compared with the correct pattern had the higher differ-
ence score then the amplifiers are adjusted only in that pattern. Other-
wise, amplifiers are adjusted in both patterns. This means that if several
patterns obtained lower scores than the correct pattern then the amplifiers
in the correct pattern will be drastically changed, since they will change
when compared with each of these patterns.

The list of characteristics in memory for the pattern just processed is
then modified. The first time a pattern is encountered its list of computed
characteristics is simply stored in memory along with its name. On the
second encounter of a pattern each of the characteristics in memory is
replaced by the new characteristic with a probability of %" For the third
and following encounters each characteristic is replaced by the new value
with a probability of V 4. Since about % of the characteristics will be
changing each time, after several examples of a pattern have been pro-
cessed, the list of characteristics in memory will tend to be more similar
to the characteristics of the last patterns processed than to those processed

PATTERN A
Characteristics (A)
Input (?)
Difference |A-?|
Pattern amplifiers
General amplifiers
Diff. X amplifiers

61

3 4 1 4 ... 3
2 2 2 2 ... 4
1212 . . . 1
3 1 2 0 ... 3
3 1 1 0 ... 3
9 2 2 0 ... 9

Diff. score

63

PATTERN B
Characteristics (B)
Input (?)
Difference |B-?|
Pattern amplifiers
General amplifiers
Diff. X amplifiers

2 3 2 3 ... 5
2 2 2 2 ... 4
0101 . . . 1
3 2 3 2 ... 2
3 1 1 0 ... 3
0 2 0 0 ... 6

Figure 7. Differences are obtained between the characteristics for the input pat-

tern and each list of characteristics in memory. These differences are then weighted
by the product of the "general amplifiers" and "pattern amplifiers," giving a
weighted average difference for each list in memory. When multiplied by corre-
sponding "average difference amplifiers," the weighted average differences give

"difference scores" for each pattern in memory. The name of the pattern with the

smallest "difference score" is chosen as the nameof the input.

3
2
1
2
3
6

Weighted av. diff. Ay. diff. omplifier

11=1.04

2
2
0
4
3
0

Weighted ay. diff. Ay. diff. amplifier

£ = 0.25 60

'I

259A PATTERN-RECOGNITION PROGRAM

i

;|

earlier. However, to the extent that the learning process is able toproduce
operators giving invariant characteristics for a single pattern, the list of
characteristics will be representative of all the examples processed. The
reason for not simply using the average value for each characteristic is
that this would require saving in memory more than the 3 bits otherwise
needed for each characteristic, as well as saving an indication of the num-
ber of times each characteristic had been calculated for each pattern.

An alternate scheme which we tried involved saving the highest and
lowest values obtained by each characteristic, and averaging these to obtain
a mean value with which to compare the input. This worked quite well in
all our test runs, which used a few samples of each pattern. But there is the
possibility that with large numbers of examples of a pattern, all the charac-
teristics will eventually have very large ranges; that is, the lower bounds
will tend to be 0 and the upper bounds will tend to be 7.

7. The average difference amplifiers which are used in the final step of
the recognition process provide only coarse adjustments. These amplifiers
are initially set to some fixed value, e.g., 60, and are then adjusted for the
same pairs of patterns as the pattern amplifiers. The amplifier for the cor-
rect pattern is turned down by N if there are N incorrect patterns, and the
amplifierfor each of the similar patterns is turned up by one.

8. The general characteristic amplifiers are now computed by averaging
the pattern amplifiers across all patterns. These indicate the general value
of each characteristic in the recognition process and form the basis for the
construction of success counts which control the replacement of operators.
Since the combinatorial operators combine characteristics to produce other
characteristics, the success count should reflect both the value of a charac-

Amplifiers : 1 2 2 1 .. . 1
Adjusted : +1 -1 -1 -1 ... +1
New total : 2 1 1 0 ... 2

Figure 8. The pattern amplifiers for certain lists are adjusted to increase weightings
°f individual characteristics that gave differences in the right direction, and to
decrease weightings that gave differences in the wrong direction.

Difference :
Amplifiers :
Adjusted

New total :

1
4

+1
+1
6

4
3
0

-1
2

2
2

+ 1
-1
2

!p:\n
-i ... -1
-1 ... +i

1 . . . i

Ist WRONG LIST
Difference : 2 4 5

7
2 .. . 2 'Amplifiers :

Adjusted :
New total :

2
+1

3

3
0
3

I
+ 1

2

4 ... 3
-1 ... -1
3.,. 2

2d WRONG LIST
Difference : 3 1 1

+/
2... 5/

17

L

260 ARTIFICIAL INTELLIGENCE

teristic in the recognition process and the importance of this characteristic
in aiding thecreation of other, possibly important characteristics.

9. This success count is formed by first storing the value of the general
characteristic amplifier corresponding to each characteristic in a table for
success counts. Then starting with the last combinatorial operator and
working back through the list of these operators, y2 the value of the success
count for the characteristic corresponding to the operator is added to the
success counts of the two characteristics which the operator combines.
Finally, two times the general characteristic amplifier setting is added to
each success count.

10. Whenever a new operator is generated, the characteristics produced
by the operator are computed for each of the possible patterns using the
last example of each pattern, which htfs been saved in the computer
memory. These newly calculated characteristics are then inserted into the
list of characteristics for their respective patterns. At the same time the
pattern amplifier settings for each of these new characteristics are set to 1
so that the characteristic will have very little weight in computing a dif-
ference score until it has been turned up as a function of proved ability at
differentiation. Since the general amplifier for a characteristic is simply the
average of the pattern amplifiers, it will also be 1 for the new characteristic.
The success count of a new characteristic which is not combined to produce
other characteristics is then 3 and this value will tend to increase if the
operator proves to be valuable. On the other hand if a success count drops
below 3 (or in the case of a matrix operator, if the average value of the
success counts of its four characteristics drops below 3) the operator is
rejected and a new operator is generatedto take its place.

The pattern amplifiers play a crucial part both by aiding directly in the
recognition process and by providing the information which ultimately

determines the generation of new operators to replace poor ones. Since
the adjustment of these amplifiers is made selectively, based on their indi-
vidual success or failure in distinguishing pairs of patterns where confusion
is likely, the operators rejected by theprogram will tend to be those which
are not useful in making the more difficult discrimination. Also, because
amplifiers are usually changed more drastically when the computer makes
an incorrect guess, the 5 X 5 matrix operators will have a higher proba-
bility of being extracted from unrecognized patterns. Although the rules
governing the learning process seem rather arbitrary in many cases, and it
is difficult to describe their effects quantitatively, qualitative effects, such as
this ability to concentrate on difficult problems, are fairly easy to show.
The description of the program's operation shows that the emphasis is not
so much on the design of a specific problem-solving code as it is on the
design of a program which, at least in part, will construct such a problem-
solving code as aresult of experience.

r

261A PATTERN-RECOGNITION PROGRAM

i

It is interesting to note that the memory of the program exists in at least
three different places: (1) in the lists of characteristics in memory, (2)
in the settings of the various amplifiers, and (3) in the set of operators in
use by the program. While the lists of characteristics bear some direct
relationship to the individual patterns processed by the program, the values
of the amplifiers and the set of operators in use by the program depend
in a more complex way on the whole set of patterns processed by the
program, and on the program's success or failure in recognizing these
patterns. The learning in the first case, which involves simply storing
characteristics in memory, is merely "memorization" or "learning by rote."
In the second case, the learning is more subtle for it involves the program's
own analysis of its ability to deal with its environment, and its attempt to
improve this ability.

Test Results of OriginalProgram

The original program was written for the IBM 709 and required about
2000 machine instructions. The time required to process a single character
was about 25 seconds when 5 different patterns were used and 40 seconds
when each character had to be compared with ten possible patterns in
memory. While such times are not excessive, they are large enough to
make it impractical to run extremely large test cases.

In several early runs which we made, 48 preprogrammed matrix opera-
tors were used. These were designed to measure such things as straight
and curved lines, the ends of vertical and horizontal strokes, and various
other features. The program was tested using seven different sets of the
five hand-printed characters A, B, C, D, and E. These involved a fair
amount of distortion, and variation in size, but were not rotated to any
great extent.

The program's performance on the last three or four sets in a run
varied from about 70% to 80% depending on various changes which
were made to the rules governing the learning process.

One run was made using the individual cells of the input matrix as
first level operators, building up higher-level combinatorial operators on
these. This gave little better than 30% success. Finally, this version of the
program was tested without any preprogrammed operators, the program
achieved 97% on known and 70% on unknown examples of a ten-letter
alphabet. It also showed ability to recognize simple drawings of objects.

Test Results of Revised Program

The original program was modified, chiefly to increase its running speed,
and secondarily to simplify some of its logic. In order to make use of
logical machine instructions on the 709, all characteristics and their ampli-

«*

262 ARTIFICIAL INTELLIGENCE

L

0 12 3 4 5 6
Passes through entire set

(a)

100

90

80

70

| 60
o

" 50
c

i;4O

a.
30

20

10

0

r
/

/

/A
i I Vw/ y \ b
//

,\Vi

\// /\// N

V 1of i

Standard

<! ' Hand printedletters
/ (10 letters -4sets)

/ Pictures
/ Known 10patterns-4 sets
' Unknown -1 set

t

Arabic handwriting

' Known 10patterns-4sets
° Unknown -1 set

7
Posses through entire set

lb)

100

80

70

t 60
o
o
~ 50c
o
fc 40

30

20

10

0
0 1 2 3 4 5 6

Passes through entire set Passes through entire set
(c) Id)

Figure 9. (a) Results of the computer simulation program. Hand-printed alphabetic
patterns. Per cent correct on several sets of a 26-pattern, a 10-pattern, and a '-
pattern array. The program was tested on both known and unknown sets of
patterns, (b) Results with two additional 10-pattern arrays: (1) line drawings of
pictures (different examples of each of 5 faces and 5 objects), (2) arabic hand-
writing (written by the same person). The program was tested on both known

) I I I 1 I I , I 1 U I 1 6 1 1

' v

7
01234567 01234 5 6'

I

A PATTERN-RECOGNITION PROGRAM 263

tiers were reduced to 1-bit values. The revised program stores nine one-
bit values for each operator—whether it hit at least once in each of nine
parts of the matrix. Operators are weighted either 1 (to be used) or 0 (not
to be used), referring to the characteristics they give for each pattern
stored in memory. Operators are eliminated when they have given wrong
outputs on the last n example for which the program as a whole has been
wrong. The "general amplifiers" have been eliminated. These changes
effected an increase of speed by a factor of about 40. Thus this program
takes about 1 second per example for a 10-pattern alphabet on the 709,
and less than .2 second on the 7090. This program is probably weaker
than the original program, since it has virtually no range within which to
search for a good set of weightings for its operators. But its increased
speed led to its use for the bulk of our tests on this version of the program.

The speeded up program has been tested on several different types of
input patterns, as shown in Fig. 9. In most cases, results were quite similar
on both "known" examples (that is, examples the program had previously
processed and hence had learned from) and "unknown" examples (that is,
different from the ones used in learning, and also produced by different
people). Figure 9a shows results for several different sizes of pattern
arrays, all of hand-printed capital letters, printed by different people.
These results show relatively little decrease in the program's abilities as
the array size is increased, at least up to the 26-letter alphabet. Thus, on
the sixth pass through the 26-letter alphabet the program was 100%
correct on known patterns and 96% correct on unknown patterns.

Figure 9b presents results for two 10-pattern arrays. These were: (1)
line drawings of cartoon faces and simple objects (such as shoes and
pliers), each copied from a different picture, as found in cartoon strips
and mail-order catalogs (Fig. 10 presents some examples of the cartoons),
and (2) handwritten arabic letters, written by the same person. The pro-
gram achieved 95% success on known and 70% success on unknown
pictures, and 60% success on known and 55% success on unknown
arabic letters (segmented handwriting) in the fifth pass. Figure 9c presents
results from two 5-pattern arrays: (1) digitized and degraded sound
spectrograms of speech (the numbers "zero," "one," "two," "three," and
"four," as spoken by different speakers) (Uhr and Vossler, 1961d), and
(2) segmented lower-case handwriting, written by different people. The

and unknown sets of patterns, (c) Results with two additional 5-pattern arrays-
(i) spoken numerals (spoken by different people), (ii) segmented handwriting
(written by different people). The program was tested on both known and unknown
sets of patterns, (d) Results from a comparison experiment. Per cent errors for
the program and mean per cent errors for human subjects (from 6 to 10 subjects
Per point) on one hard and one easy set of "meaningless" patterns. Both sets
contained five variant examplesof each of five patterns.

264 ARTIFICIAL INTELLIGENCE

program achieved 100% success on both known and unknown spoken
numerals by the fourth pass, and 100% success on known handwriting by
the third pass. It achieved 60% success on the unknown handwriting, but
it is likely that it would have improved further on these inputs if it had
been given more opportunity to learn (once it achieves 100% success on
known patterns it does not benefit appreciably from subsequent learning
experiences).

Finally, the program's performance was compared with the performance
of human subjects on sets of "meaningless" patterns. This sort of pattern
minimizes the effects of the human being's lifetime of experience and
resulting associative context. Figure 9d presents results from two such
experiments, in both of which the program performed appreciably better
than did any of the human subjects. Three additional experiments pre-
viously reported in the psychological literature were replicated. In all cases
the program performed at a higher level than did the human subjects
(Uhr, Vossler, and Uleman, 1962)

Figure 10. Two examples of each of two cartoon faces as presented to the simula-
tion program (digitized by hand into a 20 X 20 matrix, after optical projection
from the newspaper original).

I

A PATTERN-RECOGNITION PROGRAM 265 I

I

This program was also tested for its ability to handle continuous pat-
terns such as handwritten words and spoken sentences. Simple additional
subroutines were written to allow it to input matrices any number of col-
umns long, to make very primitive tentative segmentations (in every nth
column, n usually around 7, and in columns with fewer than two filled
cells), and to decide among the various alternatives at the various different
tentative segmentation points. The program reached 100% correct per-
formance when asked to segment and recognize the words, or alternativelythe phonemes, in the simple sentence "Did Dad say before," spoken by
different people.

On the handwritten sequences "pattern one," "pattern two," "pattern
three" (written by different people), the program reached about 60%
success in recognizing the letters. These tests do not in any adequate way
sample the range of problems to be encountered with such stimuli. But
they give some indication that the program is capable of at least beginning
to handle continuous inputs. And it should be relatively easy to improve
upon this performance by adding more sophisticated segmenting methods
and a straightforward method (such as the use of letter «-tuple frequencies
in the language) for making use of contextual information.

Discussion

When this program is given a neurophysiological interpretation, or a
neural, net analog, it can be seen to embody relatively weak, plausible,
and "natural-looking" assumptions. The 5X5 matrix operator is equiva-
lent to a 5 X 5 net of input retinal cones or photocells converging on a
single output, with "ones" denoting excitatory and "zeros" denoting inhibi-
tory connections, and the threshold for firing the output unit set at the sum
of the "ones." Each translation step of the operator matrix over the larger
matrix gives a sequential simulation of the parallel placement of many of
these simple neural net operators throughout the matrix. Each different
operator, then, is the equivalent of an additional connection pattern be-
tween input cones, firing onto a new output unit that computes the output
for that operation. This is all quite plausible for the retina as known ana-
tomically, with a single matrix of cones in parallel that feed into several
layers of neurons. Evidence for excitatory and inhibitory connections is
also strong (Hartline, 1938). And there is even beginning to be evidence
of several types of simple net operators that exist in parallel iterated form
throughout the retinal matrix [four of these as determined by Lettvin,
Maturana, McCulloch, and Pitts in the frog (1959); and probably even
more as determined by Hubel and Wiesel in the cat (1959)].

It would seem, however, that the known physiological constraints and
the plausible geometric constraints on operators would suggest fewer than

**." ~

266 ARTIFICIAL INTELLIGENCE

the 40-odd operators that we have used [or than the 30-odd used by Doyle
(1960) or the 75 used by Bledsoe and Browning (1959) ignoring the
fact that they cannot be so easily interpreted neurophysiologically]. For
example, straight-line and sharp-curve operators would seem to be more
plausible in terms of the ease of connection and the importance of the
information to which they respond. A possible operator that might over-
come this problem, with which we are now working, is a simple differenc-
ing operator that will, by means of several additional layers of operations,
first delineate contour and then compute successively higher order differ-
ences, and hence straightness, slope and curvature, for the unknown pat-
tern. This operator appears to be equivalent to a simple net of excitatory
and inhibitory elements (Uhr and Vossler, 1961a).

This, then, suggests that the mapping part of the program would be
effected by two layers of parallel basic units in a neuron netlike arrange-
ment. The matching part might similarly be performed by storing the
previously mapped lists in a parallel memory and sweeping the input list,
now mapped into the same standard format, through these lists. Finally,
the amplifiers can be interpreted as threshold values as to when the differ-
ences thus computed lead to an output. The specific pattern characteristic
amplifier would be an additional single unit layer lying right behind the
memory list; the interpretation of the general amplifiers might be made in
terms of chemical gradients,but is more obscure.

Thus a suitable parallel computer would perform all of the operationsof this program in from three to ten serial steps. This is a somewhat greaterdepth than those programs, such as Selfridge's (1959) and Rosenblatt's
(1958), that attempt to remain true to this aspect of the visual nervous
system. But it is well within the limits, and actually closer to the specifica-
tions, of that system. It also takes into consideration the very precise (and
amazing) point-to-point and nearness relations that are seen in the visual
system, both between several spots on the retina or any particular neural
layer, and from retina to cortex (Sperry, 1951). It also is using operatorsthat seem more plausible in terms of neural interconnections—again, in
the living system, heavily biased toward nearness.

The size of the over-all input matrix has also been chosen with the re-
quirements of pattern perception in mind. Good psychophysical data show
clearly that when patterns of the complexity of alphanumeric letters are
presented to the human eye, recognition is just as sure and quick no matter
how small the retinal cone mosaic, until the pattern subtends a mosaic of
about the 20 X 20 size, at which time recognition begins to fall off, in
both speed and accuracy, until a 10 X 10 mosaic is reached, at whichpoint the pattern cannot be resolved at all. This further suggests something
about the size of the basic operator, when we consider that most letters
are composed of loops and strokes that are on the order of % or % of the

I

A PATTERN-RECOGNITION PROGRAM 267

A.

whole For our present purposes, the advantage of the 5 X 5 operatorwasnot only its plausibility but also the fact that it cuts down to a workablesize the space within which to generate random operators of the sort weare using when we permute through all possible combinations of thematrix. Again, with the constraint that these random operators be con-el? 11, TmeS 3 m°re P°Werful geometry- and topology-sensitive op-erator, and also a simulation of a more plausible neural net.Finally, psychophysical evidence also strongly suggests that the resolvingpower of the human perceptual mechanism is on the order of only two ornree bits worth of differentiation as to dimensions of pattern character-iq^T .T?88 SUCh 3S length' slope' and curvature (Alluisi, 1957; Millermallow' 1959
v,

)- ThiS 3gain' SUggCStSa5X 5 matrix as a "*""matrix that is capable of making these resolutions
ci,n

he,,!Pc?fiCatlonS f°r and meth°ds Used by livinS svste". and espe-cially the human visual system, suggest certain design possibilities for apattern-recognition computer; but they certainly do not suggest the onlyPossibilities. Nor should they be slavishly imitated. They should, however,ceJfT 111? SCTSIy' f°r thC living Pattern recognizers are the only suc-cessful systems that we know of today. Nor does it seem that the sort ofuse we have been making of these human specifications will impose anytundamental hm.tation on a program such as this, one that generates andadjusts its own operators. We have, in fact, already found the programmaking a different, and, apparently, more powerful, choice of operatorshan eh suggested to us by the psychophysiological data and CQn
_

lectures we have just described. The program's "learning" methods cannow depend both on built-in connections (maturation) and on the inputsthat need to be learned. The program will develop differently as a functionot Afferent input sets. It appears to be capable of extracting and success-uily using information from these sets. This would seem to be as com-pletely adaptive-being adaptive to inputs-as a computer or organismcan be expected to be.
This sort of design would seem to have some applicability to a variety°t more intelligent" machines. The program replaces the programmer-analyst by a programmed operator that first generatesoperators that makeelective enough use of the unknown input space, and then makes use ofeedback as to the success of these new operators in mapping unknownnputs in order to increase their effectiveness. Thus neither programmernor program needs to know anything specific about the problem ahead of'me. The program performs, as part of its natural routine, the data col-lection, analysis, and inference that is typically left to the programmer,

an i
W°,U,tbe a

foo,ish

waste of time for a problem that had already beenna yzed. But pattern recognition, and many other problems of machineintelligence, have not been sufficiently analyzed. The different pattern-

-pi

268 ARTIFICIAL INTELLIGENCE

recognition programs are, themselves, attempts to make this analysis. As
long as pattern recognition remains in the experimental stage (as it must
do until it is effectively solved), a program of this sort would seem to be
the most convenient and flexible format for running what is, in effect, a
continuing series of experiments upon whose results continuing modifica-
tions of theories are made. This becomes an extremely interesting process
for the biologist or psychologist, especially to the extent that the program
can be interpreted either physiologically or functionally, or at the least
does not violate any known data. For the experimentation and concomitant
theory building and modification being undertaken today is rapidly build-
ing what appears to us to be the first relatively firm and meaningful theo-
retical structure—for pattern, or form, perception—for the science of
"higher mental processes."

Self-generation of operators, by the various methods employed in this
program, may also suggest approaches toward solving a wide variety of
pattern-recognition and pattern-extraction problems. Thus there is some
hope that relatively powerful operators are being extracted and generated
as a result of experience with and feedback from the program's quasi-
experimental analysis on the body of data that is available to it—its inputs
and the consequences of its actions. Further, the level of power of these
operators, and the serial ordering of operators can also be placed under
similar control. Thus operators need not be overly simple or random to
be machine-chosen; nor preprogrammed to be powerful. Rather, they can
arise from the problem, and thus be sensitive to the problem, and to
changes in the problem.

