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1 The field of benchmarking involves various topics,

in passive management by selecting the optimal numb
Van Dijk, 2002) or by deciding when to rebalance (Gaiv
an active manager can beat the benchmark using a sp
2000) or other specific strategies (Browne, 1999) is ano
ing. This subject is strictly related to the evaluation o
instance, Clarke et al., 2002; Cremers and Petajisto, 200
2008).
Asset managers are often given the task of restricting their activity by keeping both the value at risk (VaR)
and the tracking error volatility (TEV) under control. However, these constraints may be impossible to
satisfy simultaneously because VaR is independent of the benchmark portfolio. The management of these
restrictions is likely to affect portfolio performance and produces a wide variety of scenarios in the risk-
return space. The aim of this paper is to analyse various interactions between portfolio frontiers when
risk managers impose joint restrictions upon TEV and VaR. Specifically, we provide analytical solutions
for all the intersections and we propose simple numerical methods when such solutions are not available.
Finally, we introduce a new portfolio frontier.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that investors assign part of their funds to asset
managers with the task of beating a benchmark and the risk man-
agement usually imposes a maximum value on the tracking error
volatility (TEV) in order to keep the portfolio risk close to that of
a selected benchmark; in literature, the TEV is typically defined
as the mean of squared deviations from the return of a benchmark
portfolio (see for example, Clarke et al., 1994). Starting from the
seminal contribution of Markowitz (1959) in the risk-return space
(rP, lP), various contributions dedicate a lot of attention to con-
strained asset allocation strategies: for example, Jagannathan and
Ma (2003) provide evidence explaining why constraints are useful,
while others, such as Wagner (2002) or Boyle and Tian (2007),
study the topic of outperforming a benchmark1 in the presence of
constraints. Other contributions, such as Alexander and Baptista
(2006), show that a constrained portfolio selection negatively affects
ll rights reserved.

: +39 071 2207102.
lomba), l.riccetti@univpm.it

such as how to optimise costs
er of assets to use (Jansen and
oronski et al., 2005). Whether
ecific division of labour (Lee,
ther key topic in benchmark-
f the asset manager (see for

9; Grinold and Kahn, 2000; Lo,
the asset manager’s ability to track a benchmark because it substan-
tially reduces the region of feasible portfolios. The most commonly
used constraint on relative risk is the TEV, which is associated with
the investment goal expressed in terms of the excess return over a
benchmark (see Franks, 1992)2; furthermore, Roll (1992) shows that
asset managers who aim to produce positive return performance
over a benchmark whilst keeping TEV to a minimum, usually select
portfolios that are not mean/variance efficient.

The literature proposes several asset allocation strategies. Roll
(1992) suggests a restriction on the portfolio’s beta, whereas Jorion
(2003) shows that a TEV constraint produces an elliptic portfolio
frontier in variance-return space.3 The contribution of Bajeux-
Besnainou et al. (2011) improves this approach by deriving analyti-
cally the efficient portfolio frontier under a TEV limit and a portfolio
weights constraint dictated by the fund policy or by regulatory
restrictions. Chekhlov et al. (2005) determine a mean-drawdown
boundary by imposing several drawdown limits; in a related article,
Alexander and Baptista (2006) analyse the impact of a maximum
drawdown constraint to both the mean-variance and the mean-
TEV space. Other contributions use the value at risk (VaR) as a
2 However, Rudolf et al. (1999) apply four linear models for minimising the
distance between the return of a portfolio and a benchmark: specifically, they use
absolute deviations instead of squared deviations.

3 Other contributions use this methodology: for example, El-Hassan and Kofman
(2003) add further constraints such as no short-selling, Palomba (2008) inserts
portfolio frontiers into an econometric model for asset allocation and Riccetti (2012)
generalises the model of Jorion (2003) by inserting portfolio commissions.
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measure of portfolio risk: for example, Campbell et al. (2001) intro-
duce a model in which the maximisation of the expected portfolio
return is subject to a VaR limit, while Alexander and Baptista
(2008) impose a VaR constraint upon the standard asset allocation
framework in (rP, lP) space. Subsequently, Alexander and Baptista
(2010) present a strategy of active portfolio management in which
they use a target upon ex ante alpha, defined as the intercept of
the linear regression of the portfolio return on the benchmark re-
turn; in this case, the portfolio frontier contains all portfolios which
minimise the TEV for any given ex ante portfolio alpha.

As a consequence of the above, different (possibly conflicting)
asset allocation strategies may be equally justifiable on the basis
of different definitions of risk and of the different frontiers they
generate. Hence, it would be interesting to identify one or more
portfolios which are able to satisfy several criteria at the same
time. This paper compares different portfolio frontiers and pro-
vides a summary of their graphical and analytical properties. The
field of investigation is the usual framework of unlimited short
sales, quadratic utility function and normally distributed returns;
these assumptions rule out skewed and leptokurtic return distribu-
tions, so that the portfolio standard deviation is the unique factor
of risk. We calculate and discuss several portfolios of interest,
focussing on those that lie on the intersections between the differ-
ent frontiers.

The aim of this work is to analyse the situations in which man-
agers have to keep both the VaR and TEV under control. In doing so,
from the economic perspective, managers have to face two prob-
lems: first, TEV constrained portfolios could not satisfy the VaR
restriction and second, TEV-VaR constrained portfolios are usually
inefficient because they lie at the right of the so-called ‘‘Mean-
Variance Frontier’’ (hereafter MVF).

The remainder of the paper proceeds as follows: Section 2 con-
tains a summary of the principal portfolio frontiers put forward in
the literature; we dedicate particular attention to the frontiers
introduced by Jorion (2003) and Alexander and Baptista (2008)
whose possible intersections are successively discussed in Section
3, together with numerical methods for determining common
portfolios. In Section 4, we introduce a new boundary for which
TEV and VaR constraints can be satisfied at the same time. Section
5 closes the analysis with a short empirical example and Section 6
concludes. Finally, we also provide an Appendix containing some
useful results.
4 In r2
P ;lP

� �
space, the minimum portfolio in Eq. (2) is G � r2

B � D2
1=d;lC

� �
.

2. Review of portfolio frontiers

Before introducing the portfolio frontiers, we define some nota-
tion: assuming that the available data consist of n risky assets, an
n-dimensional column vector l contains their expected returns,
while the full rank n � n matrix X represents the covariance
matrix. In accordance with the literature, we define the following
constants: a = i0X�1i, b = i0X�1l, c = l0X�1l and d = c � b2/a, where
i is an n-dimensional column vector of ones. As all these parame-
ters depend exclusively on the data, they are independent of any
allocation strategy. In this setup, some subjective inputs are also
relevant because risk managers could impose some constraints
upon asset managers activity: in particular, they could set a desired
level of total return (lP) or impose restrictions upon TEV (T0) and/
or VaR (V0). We mostly conduct the geometric analysis in the
r2

P ;lP

� �
space, representing all the graphical implications in the

usual (rP, lP) space in which the axes refer to the absolute risk
and total return respectively.

Our study takes two fundamental portfolio frontiers into ac-
count: the popular MVF, first introduced by Markowitz (1959),
and the ‘‘Mean-TEV Frontier’’ (hereafter MTF) defined by Roll
(1992). The well known MVF consists of all the portfolios which
minimise the total portfolio variance, given a desired portfolio re-
turn; its equation is

r2
P ¼ r2

C þ
1
d
ðlP � lCÞ

2
; ð1Þ

which produces a parabola in the r2
P ;lP

� �
space or a hyperbola in

the (rP, lP) space. The expected return lC = b/a and the variance
r2

C ¼ a�1 are of the minimum variance portfolio (portfolio C), which
is independent of the desired portfolio return lP. All the portfolios
for which lP P lC belong to the efficient subset of MVF.

The MTF, on the other hand, shifts the asset allocation strategies
from the absolute risk perspective to that of the risk relative to a
benchmark portfolio B � r2

B;lB

� �
; in this context, we assume that

the manager deals with the risk component of portfolios by mini-
mising the TEV instead of the total portfolio variance. The equation
for the MTF is

r2
P ¼ r2

B þ
1
d
ðlP � lBÞ

2 þ 2
D1

d
ðlP � lBÞ; ð2Þ

where D1 = lB � lC. The constant D1/d does not depend upon the
expected portfolio return. Comparing Eqs. (1) and (2), it is evident
that the MTF is a horizontal translation of the MVF in the mean-var-
iance space; hence, it is easy to show that these curves have no
intersections. These frontiers have the same analytical form with
the only exception of the third addend in Eq. (2) which contributes
to the above mentioned translation. The MVF is calculated ‘‘around’’
the minimum variance portfolio (C), while the benchmark is the ref-
erence portfolio for the MTF, but does not correspond to its mini-
mum.4 However, Roll (1992) claims that portfolios belonging to
the MTF are generally suboptimal because they lie to the right of
the MVF and are thus overly risky. The horizontal distance between
the frontiers in the r2

P ;lP

� �
space represents the efficiency loss (dB):

for each value of the portfolio return (lP), we obtain this distance by
subtracting Eq. (1) from Eq. (2), hence

dB ¼ D2 �
D2

1

d
; ð3Þ

where D2 ¼ r2
B � r2

C . Given the impossibility of any intersection be-
tween MVF and MTF, dB is positive for all lP by construction. How-
ever, in the special case of the benchmark lying on the mean-
variance boundary, such frontiers coincide: in this context, the
benchmark minimises both the portfolio variance and the TEV at
the same time and the relationship D2 ¼ D2

1=d corresponds to Eq.
(1) for lP = lB; in this situation, the efficiency loss is clearly zero.

2.1. The Constrained TEV Frontier (CTF)

Jorion (2003) adds to the Markowitz setup a specific TEV
constraint

T0 ¼ ðxP �xBÞ0XðxP �xBÞ

where xP and xB are vectors of portfolio and benchmark weights
respectively. Thus, he obtains the ‘‘Constrained TEV Frontier’’ (here-
after CTF), a closed and bounded frontier in the r2

P ;lP

� �
space

whose equation is

d r2
P � r2

B � T0
� �2 þ 4D2ðlP � lBÞ

2 � 4D1 r2
P � r2

B � T0
� �

ðlP � lBÞ
� 4ddBT0 ¼ 0; ð4Þ

where D1, D2 and dB are as previously defined. Jorion (2003) shows
that Eq. (4) is that of an ellipse for which the horizontal axis has a
positive (negative) slope when D1 > 0 (D1 < 0). The horizontal cen-
tre of the ellipse is r2

B þ T0, hence an increase in T0 produces a sur-
face area expansion. This elliptic frontier becomes somewhat



Fig. 1. Portfolio frontiers when D1 > 0.

6 Formally, a negative intercept of the CVF represents a VaR (loss). Nevertheless, we
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distorted in the (rP, lP) space. Since we assume that asset managers
generally face constrained optimisation, the CTF contains the
benchmark and all the feasible portfolios for which TEV 6 T0; Jorion
(2003) and Palomba (2008) show that constraining TEV influences
the ellipse eccentricity, thus intersections between the CTF and
the MVF are possible. Specifically, the number of contacts depends
on the equation

W ¼ d T0 � dD2 þ D2
1: ð5Þ

When W < 0 the frontiers do not intersect, but when W = 0 they
have one portfolio in common. When W > 0, the frontiers have
two intersections which tend to move along the MVF as the value
of T0 increases. These contacts define two arcs on the ellipse, where
the left arc coincides with the mean-variance boundary. The most
interesting situation is W = 0 for which the frontiers are tangent
and the tangency TEV is

TH ¼ dB ¼ D2 �
D2

1

d
; ð6Þ

where H � r2
C þ D2

1=d;lB

� �
is the contact point between the fron-

tiers.5 Jorion (2003) also shows that the CTF intersects the MTF in
portfolios

J1 � r2
B þ T0 þ 2D1

ffiffiffiffiffiffiffiffiffiffi
T0=d

p
;lB þ

ffiffiffiffiffiffiffiffi
dT0

p� �
J2 � r2

B þ T0 � 2D1

ffiffiffiffiffiffiffiffiffiffi
T0=d

p
;lB �

ffiffiffiffiffiffiffiffi
dT0

p� �
;

8><>: ð7Þ

corresponding to those portfolios with the maximum and minimum
expected return respectively. The economic interpretation of this
result is straightforward: the minimum TEV boundary coincides
with the constrained TEV frontier for those portfolios with TEV = T0.
Given that portfolios in Eq. (7) belong to the MTF, their efficiency
loss is dB. Defining J1 � r2

1;l1

� �
and J2 � r2

2;l2

� �
, where l1 > l2,

all the portfolio frontiers are shown in Fig. 1. Managers could reduce
the efficiency loss by maintaining a TEV = T0: it is sufficient to select
a portfolio in the left arc dJ1J2 on the CTF because the absolute risk of
portfolios which lie on this arc is less than that of portfolios belong-
ing to the arc formed by J1 and J2 on the MTF.

2.2. The Constrained Value at Risk Frontier (CVF)

As is widely known, the VaR is the h-quantile of the portfolio
distribution, where 0.5 < h < 1; that is, the minimum loss that will
be sustained with probability 1 � h. Under normality, its equation
is V0 = zhrP � lP, where zh is the critical value taken from the stand-
5 Moreover, Eq. (6) confirms that dB P 0 for all lP.
ardised normal distribution. The risk managers fix the restriction
VaR = V0 which defines the intercept of the Constrained VaR
Frontier (hereafter CVF):

lP ¼ zhrP � V0; ð8Þ

a linear frontier in the (rP, lP) space, where zh represents the slope
which is always positive, while the intercept (�V0) should be nega-
tive.6 This frontier is independent of the benchmark and the space
lying to its left satisfies the VaR restriction. Clearly, the CVF may
intersect the MVF or not: if the straight line (8) lies to the left of
the mean-variance bound, they do not intersect and no feasible port-
folios exist which satisfy the VaR restriction. Conversely, if the CVF
intersects the MVF, a portfolio that is efficient by construction exists
(Alexander, 2009).

Using the asymptotic slope of the MVF as the critical value,
Alexander and Baptista (2008) distinguish a low confidence level
ð0 < zh 6

ffiffiffi
d
p
Þ from a high confidence level ðzh >

ffiffiffi
d
p
Þ and then pro-

vide a detailed discussion about the VaR constrained frontiers for
different scenarios. Focussing on the slope and the intercept in
Eq. (8), this type of analysis consists of an analytical geometry
problem: in this context, the objective is reaching intersections be-
tween the hyperbola MVF and a sheaf of straight lines depending
upon parameters V0 and zh. When this problem admits a solution,
they define the ‘‘Constrained Mean-TEV Frontier’’ (hereafter CMTF)
in the (rP, lP) space: this is the frontier which satisfies the VaR
constraint and it contains all the portfolios with the smallest
TEV. According to this definition, the CMTF could be

(i) an empty set if the CVF does not intersect the MVF,
(ii) a single portfolio if the CVF is tangent to the MVF,

(iii) a segment if the CVF crosses the MVF only,
(iv) an arc consecutive to two segments if the CVF crosses both

the MVF and the MTF (see Alexander and Baptista, 2008,
for details).

3. Intersections between the CTF and the CVF

Searching for the intersections between the CTF and the CVF is
interesting in practical situations in which risk managers have to
select a portfolio with restrictions on both TEV and VaR; this con-
strained strategy implies allocations which are generally subopti-
mal because they do not belong to the MVF. However, the
objective is to determine a non-empty subset of the (rP, lP) space
in which risk managers could set a bound on VaR in the presence of
restrictions on TEV. Given that the CVF is a straight line with a po-
sitive slope whose left half-plane contains all the portfolios with
VaR 6 V0, it can have zero, one or two contacts points with the
CTF, depending on T0, V0 and h. Specifically, the following situations
may arise:

1. if the CVF lies to the left of the CTF, then the VaR constraint is
too stringent. In such a case an intersection does not exist and
it is thus impossible to satisfy both constraints TEV = T0 and
VaR = V0 simultaneously;

2. if the CVF intersects the CTF, then at least one portfolio satisfies
both restrictions upon TEV and VaR. Specifically, a unique solu-
tion exists when the CVF is tangent to the CTF on the left,
whereas two contacts occur and an infinite number of solutions
are available when the CVF crosses the CTF;

3. if the CVF lies to the right of the CTF, the VaR constraint is
non-binding.
focus upon the mathematical relationships among portfolio frontiers in which the
condition �V0 < 0 is not guaranteed. The opposite condition �V0 > 0 produces a
situation that we define as the ‘‘worst expected return’’.



G. Palomba, L. Riccetti / Journal of Banking & Finance 36 (2012) 2604–2615 2607
The first two (relevant) scenarios are in Fig. 2 which focusses on
the VaR constraint. A value VK exists for which the curves become
tangent. In particular, only when V0 P VK at least one contact point
between the frontiers exists; such intersections occur indepen-
dently of the sign of D1 and the positions of portfolios J1 and J2.
Analytically, the intersections between the CTF and the CVF corre-
spond to the solutions of a system that includes the ellipse in Eq.
(4) and the parabola r2

P ¼ ðlP þ V0Þ2=z2
h in the r2

P ;lP

� �
space de-

rived from Eq. (8). The resolvent of such a system is the quartic
equation

c0 þ c1lP þ c2l2
P þ c3l3

P þ c4l4
P ¼ 0; ð9Þ

where

c0 ¼ f0 h;V0; T0;lB;r2
B

� �
c1 ¼ f1 h;V0; T0;lB;r2

B

� �
c2 ¼ f2 h;V0; T0;lB;r2

B

� �
c3 ¼ f3ðh;V0;lBÞ
c4 ¼ f4ðhÞ:

8>>>>>><>>>>>>:
Section A.3 provides the analytical expressions for the coefficients.
These parameters determine the positions of the frontiers (see
Fig. 2), thus:
Fig. 2. Contacts between
� h influences the magnitude of the parabola,
� V0 determines the position of the parabola’s vertex along the

lP-axis,
� T0 affects the eccentricity of the ellipse,
� the benchmark portfolio indicates the position of the ellipse.

In principle, Eq. (9) has four roots; however, the nature of the
problem ensures that at least two of those are complex conjugates.
The nature of the other two determines the existence of solutions
to the portfolio problem: if the remaining two roots are themselves
complex conjugates, then no solutions exist. On the other hand, if
real roots exist, then there are multiple solutions unless the real
roots coincide, in which case the solution is unique.

3.1. Two contacts between CTF and CVF

We calculate the solutions of Eq. (9) via the property

1þ c�1lP þ c�2l
2
P þ c�3l

3
P þ c�4l

4
P ¼

Y4

i¼1

ð1� kilPÞ; ð10Þ

where c�i ¼ ci=c0 and i = 1, 2, 3, 4; the parameters kis are the inverse
roots of the quartic equation corresponding to the eigenvalues of
the companion matrix
the CTF and the CVF.
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C� ¼

�c�1 �c�2 �c�3 �c�4

1 0 0 0

0 1 0 0

0 0 1 0

2666664

3777775:
7 This Technical supplement is available at http://dx.doi.org/10.1016/j.jbankfin.
2012.05.014
Proof. In short, the eigenvalues of the matrix C⁄ are the solutions
of

detðC� � kI4Þ ¼ 0) det

�c�1 � k �c�2 �c�3 �c�4
1 �k 0 0
0 1 �k 0
0 0 1 �k

26664
37775

0BBB@
1CCCA ¼ 0;

where I4 is the identity matrix of order 4. After some algebra, such
determinant is zero for those ks which solve the following charac-
teristic equation

c�4 þ c�3kþ c�2k
2 þ c�1k

3 þ k4 ¼ 0:

Eq. (10) arises after the substitution of k with 1/lP. h

This is a suitable and computationally convenient method for
obtaining numerically accurate solutions for the expected returns
of contact portfolios K1 � ðrK1 ;lK1

Þ and K2 � ðrK2 ;lK2
Þ. Analyti-

cally, these contact portfolios arise only when the polynomial (9)
admits two real solutions and two complex conjugates, so it is suf-
ficient to invert the real eigenvalues of C⁄ to have two solutions for
lP. This technique remains still valid when c0 = 0 for which a solu-
tion is lP = 0: under this conditions, the quartic equation reduces
to a cubic and C⁄ is 3 � 3 matrix with one real and two complex
eigenvalues.

3.2. Tangency

We obtain the tangency portfolio K � (rK, lK) by searching for
the value VK which makes the CVF tangent to the CTF for a given
T0. According to Section 3.1, this portfolio corresponds to the situ-
ation in which the companion matrix has one real eigenvalue with
multiplicity two.

A computationally convenient way of determining the tangency
portfolio is the grid search:

for li ¼ l1;l1 � e;l1 � 2e; . . . ;l2

Minli
V i ¼ zhS1=2

T ðliÞ � li

(
ð11Þ

where e is an arbitrary and numerically small increment and the
function

STðlPÞ ¼ r2
B þ T0

þ 2
d

D1ðlP � lBÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddB½dT0 � ðlP � lBÞ

2�
q� �

; ð12Þ

with l2 6 lP 6 l1 (see Eq. (7)), derives from Eq. (4), as the following
proof documents.

Proof of equation. (12).Setting x ¼ r2
P � r2

B � T0, the function (4)
becomes the following second order equation

dx2 � 4D1ðlP � lBÞxþ 4D2ðlP � lBÞ
2 � 4dT0dB ¼ 0: ð13Þ

Solving x, after some algebra, one can obtain

x ¼ 2
d

D1ðlP � lBÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddB½dT0 � ðlP � lBÞ

2�
q� �

:

Given that the CVF intersect the CTF on the left, we have to consider
the smaller solution of Eq. (13), therefore the function
r2
P ¼ r2

B þ T0 þ
2
d

D1ðlP � lBÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddB½dT0 � ðlP � lBÞ

2�
q� �

ð14Þ

defines ST(lP) in Eq. (12). h

This algorithm uses Eqs. (4) and (8), is fast to compute and re-
turns a numerical solution whose accuracy strictly depends upon
the magnitude of the increments. The solution is VK = min{Vi}.

4. The Fixed VaR-TEV Frontier (FVTF)

In this section we derive a new portfolio frontier. Before starting
the analysis, we have to make a fundamental remark about param-
eter D1 = lB � lC, because its sign is that of the horizontal axis of
the ellipse in the r2

P ;lP

� �
space (see Jorion, 2003). The most inter-

esting model in practice arises under the assumption D1 > 0, which
means that the horizontal axis of the CTF has a positive slope.
When a VaR constraint is at work, it becomes relevant, but only
when the CVF intersects the left arc dJ1J2 on the CTF; in this context,
the slope zh becomes crucial in determining the relationship be-
tween VaRs V1 and V2 for which the straight line passes through
J1 and J2 respectively (see Table A.3 for a summary).

In this section we carry out the whole analysis using the triple
condition D1 > 0; zh >

ffiffiffi
d
p

; T0 < TH , indicating that the ellipse has a
positive slope, that the confidence level is high (see Alexander and
Baptista, 2008) and that the CTF does not intersect the MVF. In
practice, a high confidence level is the most realistic, provided that
risk managers generally impose the VaR constraint with a h P 0.9.
The Technical supplement7 associated with this paper contains a
detailed discussion about the scenarios with D1 6 0, low confidence
level ðzh 6

ffiffiffi
d
p
Þ and contacts between the frontiers MVF and CTF.

4.1. The general setup

In this section we substantially revise the scenarios introduced
by Alexander and Baptista (2008) by also taking the TEV restriction
into account; hence, we carry out the analysis in order to identify
the intersections lying between the portfolio frontiers and a paral-
lel sheaf of lines. Fig. 3 illustrates our point from a geometric
perspective.

(a) Small bound: the VaR constraint is V0 < VM, where VM is the
VaR at which the CVF is tangent to the MVF. The analytical solu-
tion for VM is
VM ¼ �lC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Cðz2
h � dÞ

q
ð15Þ

corresponding, in ðr2
P ;lPÞ space, to portfolio

M � r2
C þ d

r2
C

z2
h � d

;lC þ d
rCffiffiffiffiffiffiffiffiffiffiffiffiffi

z2
h � d

p !
ð16Þ

which only depends upon the confidence level h (proof in Sec-
tion A.1). Under the small bound condition, the straight line
CVF lies to the left of the MVF. This implies that there are no fea-
sible portfolios which satisfy the VaR restriction which is too
stringent.
(b) Minimum bound: the point M, at which V0 = VM, is the tan-
gency portfolio between the MVF and the CVF and thus pro-
vides the only admissible solution. Nevertheless, this VaR
restriction is not compatible with the restriction TEV 6 T0.
(c) Strong bound: this situation is only available when
VM < V0 < VK, where VK is the value of VaR at which the CVF is

http://dx.doi.org/10.1016/j.jbankfin.2012.05.014
http://dx.doi.org/10.1016/j.jbankfin.2012.05.014
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tangent to the CTF. When this restriction holds, the CVF only

intersects the MVF in portfolios M1 � r2
M1
;lM1

� �
and

M2 � r2
M2
;lM2

� �
. Section A.1 provides the analytical expres-

sions for the expected returns. According to Alexander and Bap-
tista (2008), the admissible solution is the closed and bounded

region between arc dM1M2 and segment M1M2; segment M1M2

represents the CMTF. Nevertheless, the restriction on TEV can
not be satisfied in this portion of the (rP, lP) space.
(d) Medium bound: in this case, V0 = VK, thus the CVF is tangent
to the CTF in portfolio K r2

K ;lK

� �
which allows asset managers to

attain TEV = T0. As in the previous case, all the portfolios lying to
the left of the CVF satisfy the VaR constraint. Here portfolio
K 2 M1M2 defines a new frontier: this is the ‘‘Fixed VaR-TEV
Frontier’’ (FVTF), which includes all admissible portfolios which
satisfy the VaR constraint and guarantee a TEV that does not
exceed an ex ante fixed value T0.
(e) Intermediate bound: when VK < V0 < VR, the CVF crosses the
MVF (portfolios M1 and M2) and the CTF (portfolios K1 and
K2). The constraint on VaR is thus less stringent than in the pre-
vious case and the segment M1M2 corresponds to the CMTF, as
Alexander and Baptista (2008) observe. The value

VR ¼ �lC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

B �
D2

1

d

 !
ðz2

h � dÞ

vuut ; ð17Þ

where VR > VM, represents the VaR constraint at which the CVF is
tangent to MTF (see Section A.2). Given the slope zh, this tangency
occurs in portfolio
R � r2
C þ

dr2
B � D2

1

z2
h � d

;lC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

dr2
B � D2

1

z2
h � d

s0@ 1A; ð18Þ

which is independent of the VaR constraint V0. In such a situa-
tion, asset managers can satisfy both the VaR and the TEV
restrictions within the closed and bounded FVTF, the region in-
side the CTF lying to the left of the CMTF. In Fig. 3 (e), the FVTF

corresponds to the left arc dK1K2 and the segment K1K2, where
lK1

> lK2
. For each lK2

< lP < lK1
, asset managers have to make

a choice: they can reduce the TEV below T0 by augmenting the
overall risk or they can maintain TEV = T0 and consequently re-
duce the efficiency loss.
(f) Maximum bound: when V0 = VR, the FVTF is identical to the
previous case with the exception of portfolio R in which the
TEV is optimal by definition. Hence, the VaR restriction binds
all along the segment M1M2, while in segment K1K2 asset man-
agers maintain TEV 6 T0. On the other hand, all along the arcdK1K2 , managers can reduce the overall portfolio risk by main-
taining a fixed TEV.
(g) Large bound: in this situation VR < V0 < bV with bV ¼
maxfV1;V2g; thus, the CVF crosses the MVF in portfolios M1

and M2, the CTF in portfolios K1 and K2 and the MTF in portfolios
R1 and R2. The arc dK1K2 to the left of the CMTF ðK1R1; dR1R2 and
R2K2Þ corresponds to the FVTF. Furthermore, the portfolios lying
within the segment R1R2 do not belong to the FVTF since they
are dominated by those in dR1R2 : on the one hand, the TEV in
R1R2 is not minimised and, on the other hand, it is possible to
obtain the same TEV for portfolios in R1R2 to the left of the
MTF (arc dR1R2Þ, thus reducing the efficiency loss.
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(h) Larger bound: this bound occurs when V0 ¼ bV . In this case,
the FVTF corresponds to the two arcs formed by portfolios J1

and J2 on the frontiers CTF and MTF. Portfolios lying within
the CTF to the right of the arc dJ1J2 on the hyperbola MTF are
all dominated portfolios: this is the reason why the restriction
on V0 ¼ bV is the largest that risk managers can reasonably
impose.

Table A.3 shows that V1 < V2 when
ffiffiffi
d
p

< zh < z�h and V2 < V1

when zh > z�h, where the reference slope z�h guarantees that the
CVF passes through both J1 and J2; formally, this value depends
on T0 hence

z�h ¼
d

2D1
ðr1 þ r2Þ: ð19Þ

For simplicity, the plot in Fig. 3 (h) illustrates the condition zh ¼ z�h
for which the following theorem applies.

Theorem 1. In the (rP, lP) space, when D1 > 0, the straight line
passing through portfolios J1 and J2 has a slope that is steeper than the
asymptotic slope of the MVF.
Proof. We demonstrate this theorem from two viewpoints; from
the geometric perspective, the straight line passes through portfo-
lios J1(r1, l1) and J2(r2, l2), with r1 > r2 and l1 > l2, both belong-
ing to the MTF. Recalling that both the MVF and the MTF have the
same asymptotic slope

ffiffiffi
d
p

, the secant line passing through seg-
ment J1J2 has a larger slope than the asymptotic slope of the
frontier.

The analytical proof consists of a comparison between the
equation of the asymptotic slope of the MVF (or MTF) and the slope
of the line passing through portfolios J1 and J2, hence

ffiffiffi
d
p

< z�h.
Using Eq. (19) one can obtain

lB < lC þ
ffiffiffi
d
p r1 þ r2

2

� �
; ð20Þ

where lC þ
ffiffiffi
d
p

�r represents the value of the asymptote of MVF cal-
culated in �r ¼ ðr1 þ r2Þ=2; for the convexity of the hyperbola MTF
�r > rB, so

lB < lC þ
ffiffiffi
d
p

rB < lC þ
ffiffiffi
d
p

�r:

This demonstrates Eq. (20). h

(i) No bound: when V0 > bV , the VaR constraint does not affect
the FVTF which remains the same already defined in the larger
bound case.

4.2. Financial implications

The principal novelty of our approach is the concept of tolerable
constraints: contrary to previous literature, our proposed frame-
work is not strictly based on any minimisation process because it
combines the features of different portfolio frontiers. Hence, the
resulting FVTF is not a smooth function in the (rP, lP) space, but
it is a closed and bounded set inside which two indicators of risk
do not exceed a pre-set maximum value. In the context of a re-
stricted asset allocation activity this property produces three main
financial implications.

First, the FVTF models the possibility of managing portfolio risk
by constraining both the VaR and the TEV at the same time. Here
the compatibility of the maximum TEV and VaR is crucial: if the
CVF crosses that portion of the CTF lying between the arcs dJ1J2 ,
the FVTF is a subset of the (rP, lP) space where both restrictions
are satisfied. In general, along this frontier there are portfolios with
VaR = V0 and TEV < T0 or portfolios with TEV = T0 and VaR < V0 (left
arc dK1K2 of the CTF). The equalities TEV = T0 and VaR = V0 hold only
for special portfolios given by the contacts K1, K2, J1, J2 or by the
tangency portfolio K in the medium bound case (see Fig. 3). When
asset managers face intermediate, maximum or large bounds, they
often have to make a choice between TEV or VaR, therefore a trade
off emerges. When bounds are larger or non-existent altogether,
the VaR constraint is always satisfied by definition because the
FVTF is entirely formed by the CTF and the MTF. In this case, it is
sufficient to set only a restriction on the TEV.

Second, our approach makes it possible to analyse situations in
which stringent VaR or TEV constraints are incompatible to one an-
other. In this situation, the CVF lies to the left of the CTF, the FVTF is
an empty set and asset managers can only satisfy one constraint. In
particular:

� when the bound is small, managers can only invest in portfolios
close to the benchmark because all the portfolios lying to the
left of the CVF line are outside the admissible region provided
by the MVF;
� when the bound is minimum or strong, managers have to make

a choice between maximum VaR and maximum TEV. On the one
hand, they could satisfy the VaR constraint only via an active
strategy which selects a position far from the benchmark and
out of the CTF. On the other hand, keeping a small TEV value
implies the impossibility of keeping the overall portfolio risk
under a certain level because the benchmark itself is rather
risky.

When the above situation arises, clearly it is impossible to pur-
sue the VaR and TEV objectives at the same time. This, in turn,
poses a fundamental problem to the risk manager, because either
the VaR requirement is unrealistically conservative or the bench-
mark is an uncaracteristically volatile asset. In both cases the risk
management should revise its strategies.

Third, since the TEV minimisation implies a horizontal distance
dB between the MTF and the MVF (see Roll, 1992), the setting of a
tolerable risk relative to a benchmark could lead managers to a
substantial efficiency loss reduction. This is the case of active man-
agement strategies in which it is possible to invest also in those
portfolios lying far from the benchmark. In this situation a high
performance portfolio manager can lower the VaR and the overall
portfolio risk thus obtaining a substantial reduction of the effi-
ciency loss.

4.3. Extreme benchmarks

When the confidence level is high, our analysis shows that port-
folio R provides the position at which asset managers can minimise
TEV using the most stringent VaR constraint possible; Eq. (18) pro-
vides its analytical coordinates r2

R;lR

� �
. Moreover, for each

zh >
ffiffiffi
d
p

, portfolio R represents the tangency portfolio between
the MTF and the CVF which is independent of V0 and managers
are only able to minimise the TEV when V0 P VR.

However, asset managers can opt for a very stringent TEV and
the low eccentricity of the ellipse in the r2

P ;lP

� �
space can generate

a scenario which is more complex than those presented in the pre-
vious sections. In particular, once TR defines the TEV of the tan-
gency portfolio R, such portfolio could be placed outside the CTF,
thus T0 < TR and lR R [l1, l2]. In such a situation, the maximum
bound shifts from VR to V1 when D1 6 0, or to V2 when D1 > 0. In
both cases, these bounds are the most stringent VaR constraints
that allow managers to select a portfolio on the MTF lying inside
CTF.

Hence, given zh >
ffiffiffi
d
p

, we consider the benchmark portfolio B for
which T0 < TR, as extreme; heuristically, an extreme benchmark is a
benchmark that lies far from the point R. Moreover, when D1 > 0, the
so-called aggressive benchmarks could belong to this category.
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Fig. 4 shows various situations in which portfolio R lies outside the
CTF and D1 < 0 (when D1 > 0 the scenarios are the same). Specifi-
cally, using VR as the reference VaR constraint, Fig. 4(a)–(b)–(c)
shows the medium VaR bound in the presence of extreme bench-
marks. In particular, Fig. 4(b)–(c) highlight that the relationship
VK P VR could hold, which implies that the straight line CVF in the
medium bound scenario intersects the MTF. Fig. 4(d)–(e)–(f) illus-
trates the intermediate (VK < V0 < V1), maximum (V0 = V1) and large
(V1 < V0 < V2) bounds respectively, when the benchmark is extreme.

When the confidence is low (see Technical supplement), a
benchmark can not be extreme because asset managers are always
able to minimise the TEV by simply setting a VaR constraint. More
precisely, for each VaR bound, a straight line CVF crossing the MTF
must exists, thus an infinite number of intersections is available;
these contacts are not tangency portfolios and their coordinates
strictly depend on V0 (see Eq. (A.8)). As a consequence, it is not pos-
sible to select a unique reference portfolio R on the MTF.
5. An empirical example

It is important to note that our approach does not aim at solving
an asset allocation problem; it only identifies points in the r2

P ;lP

� �
space which are endowed with certain properties. While it is the
risk manager’s job to decide on TEV and VaR limits, it is the respon-
sibility of the asset managers to find a set of portfolio weights
which results in a portfolio with the desired characteristics. The
merit of our approach is that it translates the TEV and VaR indica-
tions from the risk managers into a set of constraints that can be
used by the asset managers to make a decision on the portfolio
weights. In order to illustrate how our approach works in practice,
now we provide a short empirical example.

The available data contain the quarterly returns (in percent-
ages) of the 50 stocks composing the DJ Eurostoxx 50 index. The
data set runs from the first quarter of 2003 to the fourth quarter
of 2010 and the sample size is 32.8 We use the Standard & Poor
8 Thomson Datastream is the source of data. The prices for Alcatel and Crédit
Agricole are unavailable prior to the last quarter of 2001, thus the dataset starts from
the first quarter of 2002. We also restrict the sample to the fourth quarter of 2010 to
avoid the negative effects of the recent crisis: in particular, the benchmark expected
returns are negative when the 2011 data are considered.
500 Composite index as the benchmark portfolio (B). In line with
Palomba (2008), we group all the stocks into 10 distinct asset
classes, as Table A.1 shows.

We carry out the analysis by imposing an expected portfolio re-
turn lP = 5.00 and setting the constraints T0 = 20.00 and V0 = 15.00.
Table A.2 provides the results. We set a high confidence level of
h = 99% and a low confidence level of h ¼ Uð

ffiffiffi
d
p
Þ, while D1 is posi-

tive (lB = 1.484 and lC = 1.337).9 Our analysis provides the results
for the following battery of portfolios:

� P is the portfolio lying on the MVF with an expected return
of 5%,

� T is the portfolio lying on the MTF with an expected return
of 5%,

� J is the portfolio lying on the CTF with an expected return
of 5%,

� AB is the portfolio lying on the CMTF (see Alexander and
Baptista, 2008) with an expected return of 5%,

� B is the benchmark,
� C is the minimum variance portfolio on the MVF,
� Q is the portfolio with the maximum Sharpe Ratio (Sharpe,

1994),
� J1 and J2 are the intersections between the MTF and the

CTF,
� H is the portfolio on the MVF with the same return as the

benchmark. It is also the contact portfolio between the
MVF and the CTF when W = 0,

� M and R are the tangency (intersection) portfolios between
the CVF and the two hyperbolic frontiers when the confi-
dence level is high (low),

� K represents the tangency portfolio between the CTF and
the CVF,

� K2 is the left intersection between the CVF and the CTF.

For each of these portfolios we evaluate the expected return,
variance, risk (standard deviation), Sharpe Ratio, Alpha, TEV and
Information Ratio (IR=Alpha/TEV, see for instance Lee, 2000).
Moreover, we also calculate the efficiency loss and the intercept
9 Table T-1 in the Technical supplement provides also an example where the DJ
Eurostoxx 50 index is the benchmark portfolio and D1 < 0.
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of the straight line CVF (the VaR restriction for a given h).
Obviously, portfolios P, T, J, B, C, Q, J1, J2 and H are independent of
the confidence level h. For the intersections M1, M2, K1, K2, R1 and
R2, illustrated in Fig. 3, we provide only the coordinates within
(rP, lP).

When the confidence level is high, the scenario is that of Fig. 3;
portfolio J on the CTF does not appear because the return of port-
folio J1 is less than 5%. The relationship VM < VK < VR < bV , wherebV ¼ V2, indicates that risk managers could impose any of the dif-
ferent restrictions upon VaR: small (V0 < VM), minimum (V0 = VM),
strong (VM < V0 < VK), medium (V0 = VK), intermediate (VK < V0 < VR),
maximum (V0 = VR), large (VR < V0 < V2), larger (V0 = V2) or no bound
(V0 > V2). The restriction V0 = 15.00 corresponds to an intermediate
VaR bound for which the FVTF is given by the segment K1K2 and
the arc dK1K2 on the CTF; the intersection portfolios are M1, M2,
K1 and K2 (see Fig. 3(e)). The TEV in portfolio R is TR = 5.888, thus
the Standard & Poor index is not an extreme benchmark.

In the low confidence scenario, we set V0 = 5.00 because the va-
lue of 15.00 is too feeble (it corresponds to the ‘‘no bound’’ situa-
tion) when the CVF has a small slope. Portfolios M and R are the
intersections between the CVF and the hyperbolic frontiers (the
MVF and the MTF respectively); K2 represents the portfolio lying
on the CVF with the maximum reduction of efficiency loss, while
the VaR restrictions in J1 and J2 (V1 and V2 respectively) depend
on the change in the confidence level. The coordinates of the tan-
gency portfolio K differ from those calculated when the confidence
level is high, while portfolio AB lies on the MTF (lP > lM), thus coin-
ciding with portfolio T. However, segment RK2 and arcs dJ1K2 anddRJ1 form the FVTF.
6. Concluding remarks and further research

The key task which asset managers have to face is that of beat-
ing a benchmark. Considering also that risk management usually
aim to keep risks under control, this paper attempts to formalise
asset allocation strategies in the presence of constraints put upon
tracking error volatility (TEV) and value at risk (VaR); all the results
arise under the classical hypothesis of normally distributed ex-
pected returns which translates into an optimisation in the
r2

P ;lP

� �
space.

Since traditional portfolio optimisation based upon a relative
risk measure is generally overly risky (see Roll, 1992), Alexander
and Baptista (2008) try to reduce the portfolio’s efficiency loss by
considering the ‘‘Constrained Mean-TEV Frontier’’ (CMTF) which
contains portfolios that satisfy a VaR constraint and minimise the
TEV. Unfortunately, this frontier does not take two economic prob-
lems into consideration. First, the VaR constraint is independent of
the benchmark portfolio, hence it is not related to the maximum
TEV constraint. On the other hand, Jorion (2003) highlights that as-
set managers can choose within a closed and bounded set of feasi-
ble portfolios (‘‘Constrained TEV Frontier’’, CTF) that lie around the
benchmark. The resulting asset allocation strategies thus suffer
from the fact that those restrictions reduce substantially the avail-
able subset of the (rP, lP) space. In such a situation, asset managers
could not be able to satisfy simultaneously restrictions on VaR and
TEV. Second, portfolios lying on the CMTF usually have a higher
efficiency loss when compared to those lying to the left-hand side
of the CTF; this depend on the definition of the CMTF (see Alexan-
der and Baptista, 2008) which is focussed on finding the smallest
TEV.

This paper introduces the concept of tolerable constraints and
shows that the imposition of a maximum TEV or VaR allows man-
agers to move away from the CMTF and select less risky portfolios,
thereby reducing efficiency loss. As shown in the paper, it is possi-
ble to summarise the above two problems as follows: if maximum
TEV and VaR limits are not compatible, there are no feasible
portfolios and, at most, only one of the two constraints can be sat-
isfied. Otherwise, there are portfolio allocations for which the TEV
and VaR restrictions hold at the same time; in such a situation, or
in the absence of a constraint on TEV, portfolios on the CMTF are
generally inefficient.

The whole analysis presents various scenarios exemplifying all
the possible interactions between different portfolio frontiers and
provides analytical solutions for all the intersections; moreover,
when TEV and VaR restrictions are not too stringent, we introduce
a new portfolio boundary, the ‘‘Fixed VaR-TEV Frontier’’ (FVTF).
When this frontier operates, an interesting trade-off between rela-
tive and absolute risk arises, consistent with Roll (1992). In other
words, for any given expected return within the FVTF, managers
can choose to reduce the relative risk (TEV) by augmenting the
absolute risk (overall portfolio variance) or increase the relative
risk by decreasing the absolute risk. This can also create a princi-
pal-agent problem between the fund investor and the asset man-
agers because the former is typically interested in the reduction
of the portfolio efficiency loss, while the latter has an incentive
to maintain the TEV under a fixed threshold of tolerability.

To conclude, generalising the results to non normally distrib-
uted returns and disallowing short sales would surely represent
the natural extensions of our analysis: the possibility of allowing
for skewed or leptokurtotic return distributions would enable us
to consider additional risk factors into the optimal portfolio selec-
tion problem. As for the impossibility of short sales, a more realis-
tic constraint on portfolio weights arises, which is consistent with
several fund policies or contracts between managers and investors;
moreover, fixing a percentage for the share of certain types of as-
sets could comply with some regulatory restrictions (see Bajeux-
Besnainou et al., 2011).
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Appendix A

A.1. Intersection between the MVF and the CVF

Alexander and Baptista (2008) discuss the relationships be-
tween the MVF and the CVF, but they omit the analytic solutions
for the contact portfolios M, M1 and M2 (see Fig. 3). This section
proves the existence of such analytical solutions. The condition un-
der which the frontiers intersect in r2

P ;lP

� �
space is the equality

between Eqs. (1) and (8)

lP þ V0

zh

	 
2

¼ r2
C þ

1
d
ðlP � lCÞ

2
: ðA:1Þ

After some algebra, the resolvent becomes the quadratic
expression

ðz2
h � dÞl2

P � 2ðz2
hlC þ dV0ÞlP þ cz2

hr
2
C � dV2

0 ¼ 0; ðA:2Þ

where c = l0X�1l (see page 2); the solutions for portfolios M1 and
M2 are

lP ¼
ðz2

hlC þ dV0Þ �
ffiffiffiffiffiffi
D0
p

ðz2
h � dÞ : ðA:3Þ

If z2
h � d > 0 the discriminant
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D0 ¼ z2
hlC þ dV0

� �2 � z2
h � d

� �
cz2

hr
2
C � dV2

0

� �
¼ V2

0 þ 2lCV0 þ r2
C c � z2

h

� �
ðA:4Þ

is strictly positive when

V0 P �lC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Cðz2
h � dÞ

q
; ðA:5Þ

which represents the VaR restriction according to which the CVF
intersects the efficient set.10 However, D0 > 0 holds when the confi-
dence level is low z2

h � d < 0
� �

, hence a contact point always exists.
The tangency condition D0 = 0 demonstrates Eq. (15) for the

portfolio M. Moreover, the result in Eq. (16) derives from the sub-
stitution of D0 = 0 in Eq. (A.3).

When the tangency between the MVF and the CVF holds, some
mathematical aspects have to be taken into consideration:

– if z2
h < d (low confidence level), the radical is negative hence the

solution (15) is not real and the tangency between the frontiers
is not possible (see Figure T-2 of the Technical supplement);

– if z2
h ¼ d (low confidence level), the solution is the small bound

V0 = �lC (see Fig. 3): in this case, the straight line CVF is the
asymptote of the MVF, hence the tangency can not exist for
finite values of rP or lP. This situation corresponds to Proposi-
tion 1. (ii) in Alexander and Baptista (2008);

– if z2
h > d (high confidence level), the tangency condition always

holds when VaR=VM in Eq. (15).

A.2. Intersection between the MTF and the CVF

The process of finding the intersection between the MTF and the
CVF is similar to that of the previous case: the frontiers show com-
mon portfolios in r2

P ;lP

� �
space when

lP þ V0

zh

	 
2

¼ r2
B þ

1
d
ðlP � lBÞ

2 þ 2
D1

d
ðlP � lBÞ: ðA:6Þ

The resolvent is the following second degree equation

z2
h � d

� �
l2

P � 2 z2
hlC þ dV0

� �
lP þ z2

h dr2
B � l2

B þ 2lClB

� �
� dV2

0 ¼ 0;

ðA:7Þ

and the solutions (for portfolios R1 and R2) are

lP ¼
ðz2

hlC þ dV0Þ �
ffiffiffiffiffiffi
D1
p

z2
h � dð Þ ; ðA:8Þ

where the discriminant is

D1 ¼ z2
hlC þ dV0

� �2 � z2
h � d

� �
z2

h dr2
B � l2

B þ 2lBlC

� �
� dV0

� �
¼ V2

0 þ 2lCV0 � z2
h r2

B �
D2

1

d

 !
þ dr2

B � D2
1 þ l2

C : ðA:9Þ

Given that the objective of the MTF is to optimise TEV, Eq. (A.9)
takes a benchmark portfolio into consideration. The tangency con-
dition D1 = 0 is satisfied when the value of the constrained VaR is

VR ¼ �lC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

B �
D2

1

d

 !
z2

h � dð Þ

vuut : ðA:10Þ

As in the previous case, the analytical solution for this constraint
depends on the data and the confidence level h. The relationship
VR > VM indicates that this constraint is less stringent. In short:
10 We omit all the algebra for brevity. It is clear that if Eq. (A.4) admits two real
solutions, only the relationship (A.5) has to be considered; in practice, the other

condition V0 6 �lC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

C z2
h � d

� �q
corresponds to a small bound (see for instance,

Fig. 3).
VR > VM ) z2
h r2

B �
D2

1

d

 !
> r2

C z2
h � d

� �
) z2

h > �d
r2

C

dB
:

This is true because d > 0;r2
C > 0 and dB > 0 by construction.

Furthermore, the analysis conducted for z2
h � d

� �
Q0, for the inter-

section MVF-CVF, is substantially confirmed. Finally, substituting
V0 = VR in Eq. (A.7), the resulting portfolio is R, as already defined
in Eq. (18).

A.3. Intersection between the CTF and the CVF: the system

Starting from Eqs. (4) and (8), the intersections between the CTF
and the CVF correspond to the solutions of the system

x ¼ lP þ V0

zh

	 
2

� A0

dx2 þ /1ðlP � lBÞ
2 þ /2xðlP � lBÞ þ /3 ¼ 0

8><>: ðA:11Þ

where A0 ¼ r2
B þ T0; x ¼ r2

P � A0;/1 ¼ 4D2;/2 ¼ �4D1 and
/3 = �4ddBT0. The resolvent is the quartic function

d
lP þ V0

zh

	 
2

� A0

" #2

þ /1ðlP � lBÞ
2

þ /2
lP þ V0

zh

	 
2

� A0

" #
ðlP � lBÞ þ /3 ¼ 0: ðA:12Þ

The algebra for obtaining Eq. (9) is:

d
l4

P þ 4V0l3
P þ 6V2

0l2
P þ 4V3

0lP þ V4
0

z4
h

� 2A0
l2

P þ 2V0lP þ V2
0

z2
h

þ A2
0

" #

þ /1l2
P � 2/1lBlP þ /1l2

B þ /2

l2
P þ 2V0lP þ V2

0

� �
ðlP � lBÞ

z2
h

� /2A0ðlP � lBÞ þ /3 ¼ 0

then

d
z4

h

l4
P þ 4V0l3

P þ 2ð3V2
0 � z2

hA0Þl2
P þ 4V0 V2

0 � z2
h A0

� �
lP þ V2

0 � z2
hA0

� �2
 �
þ /1l2

P � 2/1lBlP þ /1l2
B

þ /2

z2
h

l3
P þ 2V0l2

P þ V2
0lP � lBl

2
P � 2V0lBlP � V2

0lB

� �
:þ /2A0lP

þ /2A0lB þ /3 ¼ 0:

Thus, the coefficients are:

c0 ¼
d
z4

h

V2
0 � z2

h A0

� �2
þ /1l2

B � /2lB
V2

0

z2
h

� A0

 !
þ /3

c1 ¼ 4
d
z4

h

V3
0 � 4

d
z2

h

A0V0 � 2/1lB � /2A0 þ
/2

z2
h

V0ðV0 � 2lBÞ

c2 ¼ 6
d
z4

h

V2
0 � 2

d
z2

h

A0 þ /1 þ 2
/2

z2
h

V0 �
/2

z2
h

lB

c3 ¼ 4
d
z4

h

V0 þ
/2

z2
h

c4 ¼
d
z4

h

:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
System (A.11) should return two distinct real solutions for the

expected return lP when the parabola CVF crosses the ellipse in
r2

P ;lP

� �
space, a double root when the curves are tangent and no

solutions when the frontiers do not have any portfolios in com-
mon. This implies that, when the intersections occur, the polyno-
mial of the fourth degree (9) always has two complex conjugate
roots; this result is very difficult to handle, so we determine the
contacts points between the frontiers via the methods proposed
in Section 3.
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see TableA.3.
Table A.1
Asset classes.

Asset class Expected return (%) Std. dev. (%) Correlations

Auto Bank

Automobiles 4.068 15.620 1.000 –
Banks 0.953 16.532 0.661 1.000
Chemicals 2.993 9.858 0.606 0.708
Constructions 3.353 12.449 0.564 0.725
Energy 1.412 8.822 0.592 0.715
Industrial 3.674 9.682 0.696 0.784
Insurance 1.119 16.970 0.698 0.845
Telecommunications 0.597 10.199 0.440 0.661
Utilities 2.788 10.873 0.512 0.698
Other 0.630 13.171 0.658 0.855
DJ Eurostoxx 50 0.985 10.004 0.726 0.887
Standard & Poor 500 1.484 8.510 0.687 0.829

Notes: The expected return of asset class j is calculated via the formula Rj ¼ 1
nj

Pnj
i¼1Ri , w

ASSET CLASSES
Automobiles: Daimler, Renault, Volkswagen.
Banks: Banco Santander, BBV Argentaria, BNP. Paribas, Crédit Agricole, Deutsche Bank,
Chemicals: Air Liquide, Basf, Bayer, Sanofi Aventis.
Constructions: Saint Gobain, Vinci.
Energy: Enel, ENI, Repsol, GDF Suez, Total.
Industrial: Arcelor Mittal, Danone, L’Oréal, LVMH, Philips, SAP, Schneider Electric, Sieme
Insurance: Aegon, Allianz, AXA, Generali, Ing Groep, Münchener Ruck.
Telecommunications: Alcatel, Deutsche Telekom, France Telecom, Nokia, Telecom Italia,
Utilities: E.On, Iberdrola, RWE.
Other: Carrefour (Retail), Deutsche Börse (Financial services).

Table A.2
Empirical results (benchmark portfolio: standard and poor 500 composite index).

Portfolio expected return: 5.000
TEV constraint (T0): 20.000
D1: 0.147, D2: 37.176

Tangency TEV (TH): 37.130, W: -8.141
The benchmark is not extreme (T0 > TR, VK < VR)

Portfolios P T J AB B C

Exp. return 5.000 5.000 – 5.000 1.484 1.337
Variance 63.485 100.620 – 73.911 72.423 35.247
Risk 7.968 10.031 – 8.597 8.510 5.937
Sharpe Ratio 0.628 0.498 – 0.582 0.174 0.225
Alpha 3.516 3.516 – 3.516 – �0.147
TEV 63.147 26.017 – 112.920 – 37.175
Information ratio 0.056 0.135 – 0.031 – �0.004
Efficiency loss – 37.130 – 10.426 37.130 –
VaR 13.536 18.335 – 15.000 18.314 12.475

Large bound Portfolios:

VaR constraint (V0): 5.00, with V0 > lC Exp. return
Low confidence level, h: 0.755 (see Technical supplement) Variance

Threshold zh ¼
ffiffiffi
d
p

: 0.689 Risk

V1: 2.129, V2: 8.1583 Sharpe Ratio
lP > lR) AB = T Alpha

TEV
Information ratio
Efficiency loss
VaR
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jbankfin.2012.
05.014.
Chem. Cons. Ener. Ind. Ins. Tel. Util. Oth.

– – – – – – – –
- – – – – – – –
1.000 – – – – – – –
0.729 1.000 – – – – – –
0.768 0.727 1.000 – – – – –
0.805 0.749 0.750 1.000 – – – –
0.819 0.768 0.748 0.777 1.000 – – –
0.620 0.722 0.727 0.650 0.672 1.000 – –
0.731 0.749 0.843 0.707 0.729 0.761 1.000 –
0.661 0.629 0.558 0.690 0.744 0.539 0.545 1.000
0.893 0.838 0.882 0.887 0.918 0.788 0.864 0.779
0.791 0.774 0.799 0.866 0.826 0.761 0.775 0.686

here nj is the number of stocks included in class j.

Fortis, Intesa Sanpaolo, Société Générale, Unicredit.

ns, Unilever.

Telefonica, Vivendi.

Intermediate bound
VaR constraint (V0): 15.000

High confidence level, h: 99%, zh: 2.326, Threshold (
ffiffiffi
d
p

): 0.689, bV ¼ V2

Intersections in (rP, lP) space: M1 � (7.086,4.004) and M2 � (5.937,1.330)
Intersections in (rP, lP) space: K1 � (8.250,4.192) and K2 � (6.514,0.154)
Efficiency loss – dK1 : 15.657, dK2 : 4.239
zH
h : 19.204, h� 	 1; z�h 	 þ1; V�: 297.248

Q J1 J2 H M K R

13.870 4.567 �1.599 1.483 2.606 2.295 3.156
365.760 94.330 90.515 35.293 38.641 40.345 79.345

19.125 9.712 9.514 5.941 6.216 6.352 8.908
0.725 0.470 �0.168 0.250 0.419 0.361 0.354

12.386 3.083 �3.083 – 1.123 0.811 1.673
359.940 20.000 20.000 37.130 39.783 20.000 5.888

0.034 0.154 �0.154 – 0.028 0.041 0.284
– 37.130 37.130 – – 3.165 37.130

30.621 18.028 23.732 12.337 11.854 12.481 17.566

AB M K2 K R

5.000 �0.510 �0.288 3.875 0.883
100.620 42.421 46.720 59.503 72.811

10.031 6.513 6.835 7.714 8.533

0.498 �0.078 �0.042 0.502 0.103
3.516 �1.993 �1.771 2.391 �0.601

26.017 45.492 20.000 20.000 0.760
0.135 �0.043 �0.089 0.120 �0.791

37.130 – 5.920 10.698 37.130
10.742 5.000 5.000 1.443 5.000

http://dx.doi.org/10.1016/j.jbankfin.2012.05.014
http://dx.doi.org/10.1016/j.jbankfin.2012.05.014


Table A.3
Hierarchy of VaR constraints (T0 6 TH).

High confidence level

D1 > 0 D1 6 0 (see Technical supplement)ffiffiffi
d
p

< zh < zH
h

VM < VK < VH < VR < V1 < V2 zh >
ffiffiffi
d
p

VM < VK < VH < VR < V1 < V2

zh ¼ zH
h

VM 6 VK 6 VH < VR < V1 < V2

zH
h < zh < z�h VM < VK < VH < VR < V1 < V2

zh ¼ z�h VM < VK < VH < VR < V1 = V2

zh > z�h VM < VK < VH < VR < V2 < V1

Extreme benchmarks

zh >
ffiffiffi
d
p

, T0 < TR VM < VH < VR < bV , where VK Q VR

Low confidence level (see Technical supplement)

Small bound Minimum bound Strong bound

0 < zh <
ffiffiffi
d
p

- - VM = VR < VK < V1 < V2

zh ¼
ffiffiffi
d
p

a No solutions (VM < �lC) No solutions (VM = �lC) � lC < VM < VK < V1 < V2

Medium bound Intermediate bound Maximum bound

0 < zh <
ffiffiffi
d
p

VM = VR = VK < V1 < V2 VK < VM = VR < V1 < V2 VK < VM = VR = V1 < V2

zh ¼
ffiffiffi
d
p

a �lC < VM = VK < V1 < V2 � lC < VK < VM < V1 < V2 �lC < VK < VM = V1 < V2

Large bound Larger bound No bound

0 < zh <
ffiffiffi
d
p

Vk < V1 < VM = VR < V2 VK < V1 < VM = VR = V2 VK < V1 < V2 < VM = VR

zh ¼
ffiffiffi
d
p

a �lC < VK < V1 < VM < V2 � lC < VK < V1 < VM = V2 �lC < VK < V1 < V2 < VM

a When VM > cB ¼ lC �
ffiffiffiffiffiffiffiffi
ddB

p
, where cB is the intercept of the MTF asymptote, it follows that VM = VR.
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These are a Technical Supplement, all the data and the routines
for the analysis carried out in this paper.
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