
How To Withstand Mobile Virus Attacks

EXTENDED ABSTRACT

Rafail Ostrovsky*

Abstract

We initiate a study of distributed adversarial model
of computation in which faults are non-stationary and

can move through the net work, analogous to a spread

of a virus or a worm. We show how local computations

(at each processor) and global computations can be

polynomial factor-redundancy in the

1 Introduction

Computer viruses pose one of the central problems in
distributed computing today. In this work, we initi-

ate the study of “mobile viruses” (or computer net-

work viruses) — intruders which try to compromise

or destroy the system. Our machine model is a

synchronous distributed architecture in which a mali-

cious, infinitely-powerful adversary injects/distributes

computer viruses at a certain rate at every round. We

assume that the detection (of infected sites) can pro-

ceed with the same rate as the infection. We note that

in practice, this is indeed a reasonable assumption to

make [KW]. That is, we allow up to a constant frac-

tion of the machines to be infected at any single round,

and allow all the machines to be eventually infected

at diflerent rounds. When the virus is detected, the

machine is rebooted.

* MIT Laboratory for Computer Science, 545 Technology

Sq., Cambridge MA 02139; Supported by IBM Graduate Fel-

lowship. Part of this work was done while visiting IBM T.J.
Watson Research Center. Email: raf@theory.lcs.mit .edu

t IBM Research, T*J, Watmn Center, Yorktown, Ny 105984

Email: moti@watson.ibm. com

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct com-

mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To COPY

otherwise, or to republish, requires a fee and/or specific permission.

@ 1991 ACM O-89791 -439-2/91 AM07/0051 $1.50

Moti Yungt

We contrast our model with the model of seczsre
fault-tolerant synchronous distributed computation,
pioneered by [GM W2], where the faults are “station-

ary”. In the model of [G MW2], an adversary can

corrupt (during the entire life-time of the protocol)

only at most a constant fraction of the processors

[GMW2, GHY, BGW, CCD, BB, RB]. In this work,
we consider a strictly stronger model, in which we al-

low our adversary not only to be infinitely-powerful

and to corrupt a constant fraction of processors at any

time during execution of the protocol, but also, allow

him to “move” faults from processor to processor in
a dynamic fashion and thus to corrupt all the proces-

sors during the course of the protocol or the life-time

of the system (which can be very large). We show

that for this, strictly stronger notion of adversary, the

information-theoretic security can be maintained us-

ing a constant factor resilience and a polynomial factor

redundancy in the comput at ions. Moreover, we show

how to maintain our global computation correct and

secure in an on-line fashion. We stress that we do

not make any assumptions on the nature of the virus
— once the machine is infected, it is completely cor-
rupted by the adversary. Moreover, we consider only

information-theoretic notions of protection and secu-

rity.

We allow our adversary to request for any machine

and for any round to execute an arbitrary (and po-

tentially malicious) program. That is, in addition

to global distributed computation, we allow each ma-

chine to request an execution of its local, user-specified

(or adversary-specified) program. Of course, such

programs are not trusted — measures are taken to

make sure that such programs can not do any harm.

We show how to execute all such programs in a dis-

tributed, secure and reversible manner. (We call this

sequential computation protection.) Thus, our overall
system is self correcting/securing.

51

In summary, in this work, we make the first step
towards a concrete theory of computer viruses by pre-

senting a model which captures some folklore notions

of a virus and by showing how to defeat viruses in

that model. We model viruses as a certain (malicious)

types of faults, which we believe covers a variety of

“real” computer virus behaviors. This includes virus

activities such as mobility, spread, and the malicious

actions the virus itself can perform, including damage

to memory, performance of damaging computations,

and the compromise of privacy. We show how to cope
with all these attacks.

1.1 Motivation

We start from a very

and previous work

pragmatic scenario. The basic

assumption is that in order to combat viruses, the un-

derlying environment can be a distributed network.

Indeed, in many places local area networks (as well

as larger networks) are available to the organization.

Moreover, the current trend is that communication is

becoming less and less costly (using the soon-t~be-

available high capacity fiber-optics cables.) Indeed, in

many cases the right assumption is that communica-

tion is less costly than the computation itself (e.g.,

[CGK]). However, the ever-increasing reliance on

computer-networks increases already-existing threat

of computer-viruses. In this work, we wish to use this

weakness to our advantage — that is, we wish to ex-

ploit the distributed nature of the system in order to

combat viruses.

Despite the fact that computer viruses are here
today, and are considered to be the major threat

to computing, there was no attempt to treat them

as a general computational phenomenon. The only

work we are aware of is Adleman’s [A] characteriza-

tion of computer viruses using recursive theoretic no-

tions and getting impossibility y results. On the other
hand, there are several practical approaches for fight-

ing viruses. These include: examination and certi-
fication of the software (including cryptographic au-

thentication), and virus protection at run-time. In

this paper, we take the latter approach. For run-

time protection, two different approaches were sug-
gested in practice. One is isolation [Co, A], where

the system is closed to the rest of the world. How-

ever, this is not realistic for most computer networks.

Another approach is fault-tolerance during execution

time [De, Ka, Pi, JA]. We take the latter approach
here, and show that a very weak detection capability

is sufficient to make the computation robust against
virus attacks.

Another important point must be emphasized: our
solution requires processors to constantly exchange

messages in order to defeat the adversary. Being inac-

tive even for a constant number of rounds enables the

adversary to compromise the security of the system.

Remark: A natural question might be raised at this

point: how come the additional communication mes-

sages do not help in spreading the viruses, instead

of curbing their spread? The reason is that the addi-

tional messages that the processors must exchange are

(by virtue of our construction) of a very special form

and are guaranteed to be virus-free.

A required ingredient in our proof is the necessity of

every machine to be able to erase parts of its memory.

Indeed, without such capability, the protection against

mobile viruses is impossible. To the best of our knowl-

edge, this is the first distributed non-cryptographic

protocol where the security of the system depends on

the erasure capabilities of the machines. On the other

hand, for certain recovery procedures we need to rnern-

orize the history of the computation. In order to re-

solve these two (at a first glance contradictory) goaIs,

we develop a new mechanism which erases locally (at

the machine level) and at the same time remembers

gIobally (at the network level).

1.2 The adversarial setting

We assume that the spread rate is limited and the de-
tection rate competes well wit h it. That is, we require

that at any clock tick, only a fraction of the nodes is

infected (i.e. dishonest), but we do not put any re-

striction on the schedule of the adversary as to which

node to corrupt and for how long. We note that this

is the weakest possible requirement one must assume

– otherwise the network will be completely overtaken

at a very few steps by the bad processors.

Jumping ahead, we will show the protection mech-
anism for an on-line global computation. Thus, our

model is an application of secure distributed comput-

ing to real-time control in the presence of virus at-

tacks. That is, the global memory is “maintained cor-

rect” throughout. On the other hand, since local mem-

ories may be corrupted, we show how to maint ain local

reversible memory for each machine, so “local compu-

tations” which may be untrusted are recoverable as

well.

We allow our faults to be Byzantine. That is, once

a node is infected, we assume that it is both a Trojan.

home virus (which tries to compromise security) and
a destructive virus (which tries to divert the compu-

tation arbitrarily). Once the processor is infected,

52

the processor’s memory becomes known to the adver-

sary; this is a model of a Trojan horse which trans-

fers information out of the machine (and we take the

worst case assumption that the entire local memory

is compromised). Moreover, once infected, the node

is completely corrupted (i.e. does not have to fol-

low the prescribed protocol.) This models any misbe-

havior which the virus can create like stopping, mes-

sage flooding, memory erasing and so on. We assume

that an infinitely-powerful, malicious adversary con-

trols the virus behavior and spread. (In practice, mea-

sures are being developed to cope with both the Tro-

jan horse viruses [Ka, SG], and the destructive ones

[De, Pi].)

Thus, our adversary is allowed to be “mobile”, with

the following restrictions: First, we assume that we

have virus detection capabilities (such as in [De]), in

order to allow us to keep the number of infected cites

to a constant fraction of the total number of proces-

sors. Once the machine is found to be infected, a

complete (cold-start) reboot is performed in order to

bring a completely fresh version of the program from

ROM to memory. Second, we require that the future

coin-flips of the machine to be unpredictable prior to

the reboot to the adversary, even if he is allowed to

inspect the state of the machine just before the re-

boot. That is, we either require that each coin-flip

is generated on-line (which is the practical assump-

tion on generating randomness from physical devices

or noise), or, more abstractly, that the entire random

tape of the machine is replaced with a new one dur-

ing reboot. Third, we assume that the rate of the

infection spread versus the recovery rate is at most

equal, in order to make the system meaningful (oth-

erwise eventually the entire system is infected, which

is a hopeless case). Fourth, we require the minimum

amount of trusted hardware for 1/0 to make the inter-

action of the system with the external world possible.

(For example, we must assume that it is possible to

reboot a corrupted machine.)

In practice, the network viruses are usually notice-

able (i.e. detectable) once they reside long enough

and act at a node, and in many systems can be

backed-up to an uncorrupted stage. Moreover, in a re-

cent practically-motivated modeling and study of virus

spread [KW] it was noticed that after an initial dis-

tribution phase with an exponential growth rate, the

number of infected cites stabilizes around some frac-

tion of the total number of nodes, thus our assumption

is supported by experimental studies and analysis.

1.3 Results

We maintain security when the system runs for

polynomially-many rounds (and not just a constant),

sequentially executing many (perhaps not even known

in advance) protocols. We do not rely on any crypto-

graphic assumptions and exhibit how to achieve our

results for the non-trivial case when all the proces-

sors (during the life-span of the distributed system)

become infected at different times. In particular, we

establish the following:

There exists an c, such that if we allow an c frac-

tion of all the machines to be corrupted at each

stage, an in format ion-theoretically secure data-

base can be maintained in an on-line fashion with

polynomial overhead.

With polynomial overhead, the network can per-

form local untrusted updates in a trusted and re-

versible manner which stabilizes once the machine

is cleaned and not infected again.

The network can efficiently perform secure dis-

tributed computations (of global and trusted pro-

tocol) in an on-line, correct and secure fashion.

Thus, by extending results developed in [BGW,

CCD, BB, RB] to be resilient against a more pow-

erful adversary, we provide a computation technique

robust against mobile viruses, using a constant factor

resilience and a polynomial factor redundancy in the

computations. We note that this is the first applica-

tion which uses the full power of the results for secure

distributed computing (beside direct application for a

concrete problem such as secure election) as a building

block in our solution.

1.4 Organization of the paper

In the next section we explain the basic definitions,

model, and background. We describe the basic tools

used in the construction in section 3, in particular a

reduction of a distributed data-base system environ-

ment to one withstanding mobile virus attacks. Sec-

tion 4 gives a general review of the system computa-

tion. Section 5 shows a reduction of a local computa-

tion to a self-stabilized distributed procedure robust

against mobile viruses, while section 6 describes our

general reduction of a non-robust distributed protocol

to a protocol withstanding virus attacks.

33

2 Preliminaries

2. I The model

We consider a distributed network in which an

information-theoretically secure, distributed data-

base must be (securely) maintained and updated. Our

model of computation is a complete synchronous net-

work of n processors. Every processor is a probabilis-

tic interactive Turing Machine (as defined in [GMR]).

Every pair of processors has a private communication

channel and an access to a broadcast channel. The 1/0

to such a database is done through the hardware at

each node (we assume that a hardware device cannot

be corrupted) or from some trusted component (e.g.,

we use a reliable “reboot” mechanism). That is, each

processor has a read-only tape which corresponds to a

ROM non-volatile memory and a trusted 1/0 device.

2.2 The adversary

We assume that a fraction of all the nodes in the

network is (maliciously) corrupted by an infinitely-

powerful adversary at every step of the computation.

More specifically, the adversary has t “pebbles” which,

at the beginning of every round, he is free to place at

any t subset of processors, given all the information

coming from “pebbled” nodes. (Placing a pebble on

a processor corresponds to corrupting that processor.)

When the processor is corrupted, its work tape and

random tape can be arbitrarily changed by the adver-

sary. When the pebble is removed from a processor, at

the next round the processor is put into a pre-specified

(reboot) state and supplied with a new random tape.

Definition 1 For any c < 1, mobile c-adversary is

an infinitely-powerful machine with t = E . n pebbles

which operates on an n-processor network.

In other words, an adversary is allowed to corrupt a

constant fraction of processors, (as in [GMW2, BGW,

CCD, RB]), and also, after each round, to move peb-

bles (i.e. faults) from node to node. The node from

which the pebble was removed (by an adversary) is

the one where a “virus” has been detected, and the

node has been “rebooted”. That is, the contents of its

work tapes are erased, a “fresh” version of its software

is loaded (from a read-only tape) and it is put into an

initial “reboot” state. In addition, the random tape

of the rebooted process is replaced by a new random

tape. (This is a fine point worth emphasizing: If the

random tape is left unchanged, then, to the adversary,

the player becomes deterministic.) We stress that in

our model we allow the adversary to decide where the

corruption will be detected. For example, if the adver-

sary does not move a pebble from some node during

the entire protocol — the node will never be detected

to be corrupted. In addition, we allow rushing, that

is, the adversary can see the messages sent to proces-

sors under its control in the current round before it

issues messages to be sent by controlled processors in

the round.

2.3 The Computation

As a requirement specification of our protocol, we are

given a security parameter k, so that ~ is negligible

and use a probabilistic notion of securit y, analogous to

[BGW, CCD, RB, MiRo]. Intuitively, the correct com-

putation of a protocol/program means that the result

computed at the processor while the adversary was ac-

tive and the program followed the protocol/program

in our system, is with very high probability y the result

of a computation of the program/protocol specifica-

tion without the presence of the adversary.

We note that the formalization of the above notion

is a delicate task, even in the case when the adversary

is not allowed to move faults around and especially in

protocols which are baaed on encryption and crypto

graphic assumptions e.g. [MiRo] (which is not our case
— in this work we deal with the information-theoretic

notions of correctness and security.) We defer formal

definitions and proofs to the full version of the paper.

Definition 2 We call a function p: N I+ N negligi-

ble if for every constant c >0 there exists a NC such

that for all n > Nc, p(n) <$.

If Al is a probabilistic algorithm, we denote by lkf[z]

the probability distribution on the outputs, given x as

an input. (The probability is taken over M’s coin

tosses.)

Definition 3 Let A[z] and B[x] be two distributions

of stn”ngs. A[z] and B[z] are statistically close if for

any subset of stm”ngs S,

for all polynomials q and for sufficiently large x.

We define the view

Definition 4 VIEW~ (Pm) of the adversary is the

probability space assigned to the sequence of messages

and memory snapshots of pebbled nodes during the ex-

ecution of protocol P on input x.

Informally, we say that the protocol P is secure

against c-adversary if for all c adversaries A there

exists a probabilistic polynomial time algorithm lkf,

54

such that the probability y distributions J4p(c) (1~) and

VIEW~ (Pz) are statistically indistinguishable, where

P(z) are the outputs of P, provided to the simulator.

Our protocol starts by the processors committing

themselves to the computation by an input distribu-

tion procedure.

Informally, we say that a protocol P for comput-

ing a vector of functions F is correct, if it enables

with high probability to detect processors which are

not committed to the computation (by not following

the input distribution procedure), and given the set

of processors which are committed, the outputs com-

puted by the protocol are with very high probability

the outputs computed by a machine implementing the

function F directly with access to the correct proces-

sor’s inputs. P has to be polynomial in the length of

the description of F, and the security parameter.

Our transformations of the program/protocol in-

struction stream will provide self-securing and self-

correcting system. We elaborate on this further in

the full version of the paper.

3 Basic Tools

In this section we discuss tools necessary for the so-

lution. In particular, we show how to reduce a dis-

tributed database system to one withstanding mo-

bile virus attacks. Notice that in our case, the faults

are not stationary. Nevertheless, we can still define

“faulty” and “non-faulty” processors for a time inter-

val from T. to Tm (n < m):

Definition 5 The processor Pi is faulty at rounds Tn

through Tm if for any j, n < j < m a pebble is placed

by the adversary on Pi.

We adopt the implementations of weak secret shar-

ing (WSS) and the verifiable secret sharing (VSS)

as in [RB]. In particular, we assume that there are

n players and t = en faulty players. Let s c ZP be

our secret, for some prime number p > n. We fix n

distinct points al, an E ZP known to all players.

We recall the definition of a vetified secret s of [RB]:

Definition 6 A group of n players holds a verified

secret (data) s, shared using the polynomial f(z), so

that f(0) = s, and satisfying the conditions of VSS if

1. The polynomial f(x) is of degree t.

2. Each player Pi holds a share of the secret pi =

f(aj)

3. Every piece jli was shared by Pi using WSS.

We use the following result of [RB]:

Theorem 1 (T. Rabin and M. Ben-Or [RB]): Se-

cure distn”buted circuit evaluation can be perfomned

on verijied secrets when the majody of the players

are honest, given a broadcast channel. Moreover, the

number of rounds is proportional to the depth of the

circuit,

We now introduce a new notion of a randomized

secret s. The goal is to make randomization of the

shares of the shares:

Definition 7 A group of n players holds a random-

ized secret s, if the following conditions are satisfied:

1. With s a polynomial f of degree t is associated,

such that f(0) = s. (f is hidden from all the

players)

2. With every player Pi a share @$ = f (cxi) is associ-

ated (~~ is hidden from all the players, including

Pi.)

3. Every 13~ (1 5 j < n) is distributed among n

players as a verified secret ~~

Suppose a bit b is a randomized secret. Our first goal

is to establish ‘that b can be securely maintained in

the presence of mobile viruses, despite the fact that

we have to re-supply nodes which claim to be “just

rebooted” with (presumably lost) data. We achieve

this without security breach and show:

Theorem 2 There exists (an absolute constant) c,

such that a distributed data base can be maintained

correctly and securely in the presence of mobile $-

adversary.

Proof Outline: With every /3~, for every player Pi a

share flj,i is associated. We call it a fragment. If these

fragments are going to be kept for long enough time,

the adversary will move around and will get enough

pieces so to reconstruct ~~.

We add self-securing procedure to prevent this. The

community executes secure circuit evaluation protocol

where the inputs (from each player) are its fragments

(of current round) and a (polynomial number of) ran-

dom bits: (1) The community draws a random polyno-

mial f‘ of degree t so that f(0) = O; (2) Computes new

shares (secret from every player) /3~’ = f (&i),+ f ‘(~~)

for every Pi; (3) Distributes new shares pi as new

verified secrets. Note that the above protocol can be

achieved in constant 6 number of rounds. After the

distribution is done, every (honest) player is required

to erase the old fragments, and keep only the new

ones. (Since all the currently-honest players actually

55

do erase, the remaining shares of the bad guys are use-

less — the secret can not be reconstructed from the

remaining old shares.)

More formally, we construct the simulator which,

not having the value of the secret can nevertheless

construct the view of the adversary, which is statisti-

cally close to the act uzd view of the adversary. Hence,

the fragments for the new shares ~~ do not reveal any

information about the old shares.

Since there are at most en infected processors at

each round and the entire procedure takes less than 6

rounds, a polynomial of degree deg greater than cc%

can be kept information theoretically secure in the pro-

cess. Hence, we can keep a value alive and secret in

the system, while fragments become independent of

their old values. ■

The above protocol allows us to implement (local)

erasing without (global) forgetting. However, we al-

ready assumed that the input is already somehow dis-

tributed as a randomized secret. There are a few pos-

sible assumptions about the input model, the easy one

assumes that it is done by a special trusted device or

at a starting state before the faults start, or that when

it is done correctly all processor can agree to this fact.

The more complex way is when the processors do not

know at any point that the input is correct. In this

case, however, the process can be made self-stabilized

[Dij] and the system will eventually start from correct

data items. In the full version of the paper we will

elaborate on the actual possibilities of input process

of the initial values and show that in the worst sce-

nario we can nevertheless achieve self-stabilizing cor-

rect computation in our model. The self-stabilized

protocol will be correct in executions in which even-

tually all faults are eliminated (even though this state

may

4

not be recognizable as in [Dij]).

Processor Computation:

a global view

Next we describe the global view of the operations that

every uninfected (i.e. honest) machine must follow:

1. Regular operation — at each clock tick each node

participates in:

●

●

Maintenance of the global database.

Taking part in a network distributed compu-

tation which implements all the individual

machines’ RAM programs (which we make

sure are reversible since the software itself is

2.

●

not trusted). These are called local untrusted

computation.

Taking part in global secure distributed

computation protocols These protocols are

maintained correct and secure at all times

in an on-line fashion. We call such a com-

putation globally trusted computation, since

the soft ware is reliable.

When the virus is detected, (by an auditing sys-

tem aa was modeled in [De]: and perhaps by a

diligent work of a system manager, or even by

the system itself — we leave this act out of the

current scope), the node is rebooted, which is a

necessary basic procedure required for the vital-

ity of the system.

Thus, when a node participates in distributed compu-

tation, it fulfills two separate tasks: One is the main-

tenance and execution of what we call a “global op-

erating system” which maintains the secure network

aa a whole. The other task of each node is the ex-

ecution of (untrusted) programs, requested by single

processors. While “global operating system” is ini-

tially trusted not to have any viruses, the second type

of (user-provided) software (requested at a site) can

potentially be infected. Hence, the (distributed) ex-

ecution of untrusted software is made “reversible” in

case we need to roll it back when virus is detected.

s Self-Stabilizing

Local Program Execution

In this section we show how to reduce a “local se-

quential virus” to a “network virus” (or worms, like

the Internet Worm [ER]) which propagates in the net-

work. That is, we show how to protect each machine

against a local virus attack, provided that one can

protect against a global, mobile virus attack. We do

so by making computation running at each individual

machine reversible and then running computations of

each individual machine in a distributed fashion.

For these local untrusted computations we use a

monotone memory. Self-stabilizing computation is

performed on it (in executions in which the machine

with the correct program stops being faulty, the cor-

rect program is eventually evaluated– only the ma

chine with the program “knows” about the correct-

ness). In particular, we have a memory array as a

monotone memory in which its history is accessible,

(along the lines of a fully persistent Data structure as

in Driscoll, Sarnak, Sleater, and Tarjan [DSST]). The

operation on the memory are refined to local oper~

tions on this data structure which enables any refresh

56

of the memory (ss in section 3) and monotonically

adding values as the comput at ion progresses, no ac-

tual erasing is allowed by the hardware (or program)

controlling this memory tape.

Upon detection of faulty (local) computation we

perform a “virtual rollback” of the computation:

●

●

●

Before any local computation starts, we record

the (initial) state of every machine. With every

processor p we associate a local variable iP, which

is globally (and securely) maintained.

Every time we start a new local computation of

processor p, at time t’ we reset iP to zero.

If virus is detected at time t, we roll back the local

computation to the time rnax{t – iP, t’} and set

iP to iP+l.

Thus, the sequential computation of each individual

machine can be corrupted and then cleaned: our sys-

tem can tolerate repetitive infection of the same mw

chine.

Theorem 3 There exists an (absolute constant) c,

such that a local computation request i issued by an un-

trusted processor can be performed in a secure, correct,

non-destructive, and self-stabilized fashion, assuming

at most ~ fraction of the machines are infected at each

stage.

Proof Outline: The self-stabilizing computation

goes as follows. Given any round r in the computa-

tion, the system can produce a state of any machine’s

memory. The machine can than start from there as

the new state (without erasing the history which has

declared “bad” since the declaration may have been

produced by a virus) The comput at ion is as follows:

● When a machine has to execute a command on

its memory it broadcasts it.

● If the command is “reboot” which means that

the machine declares an existence of a virus the

system performs “virtual rollback” by copying

the current memory of the round to which we

are rolling back as explained above, and then

the community provides a new, global random-

ization of it.

● If the command is a RAM instruction — a pro-

tocol is executed by the community to simulate

this command and the result is randomized and

stored in a new place (this community compu-

tation stage is explained in the next section).

Eventually, when there is a period in which the ma-

chine is not attacked for long enough time (but enough

to complete the computation), the computation stabi-

lizes on the result (though no one but the machine

itself can tell it), the final value is distributed in the

global data-base and is maintained as in section 3.

(The security and correctness of global computation

steps are implied by the result of the coming section.)

❑

6 Self-Correcting

and Self-Securing Distributed

Computation

In this section we cope with “mobile viruses” spread-

ing and attacking global distributed computation.

These computations are global protocols known in ad-

vance to all machines (unlike “sequential computa-

tion” which are results of activating software of a spe-

cific, possibly infected, machine.) These computations

are maintained correct and secure by the distributed

network as a whole. Our goal is to maintain them

on-line without the need of backtracking.

In order to perform globally trusted computations

we use fast information theoretically secure computa-

tions of small circuits of [RB, BGW, CCD, BB] and

self correcting-securing database maintenance (as ex-

plained in section 3).

6.1 Rebooting

First, we consider the issue of rebooting of machines.

The computation has to take care of rebooting re-

quests agreed upon. Not ice that when the processor

is re-booted, it comes up in a neutral state. The in-

formation that it has “lost” must be re-delivered to

him — if this is not done, then after a while (when

all processors are rebooted, for example) all the infor-

mation is lost from the network. On the other hand,

the “rebooting” processor should not get any “addi-

tional” information even if it is a corrupted processor

which just pretends to be re-booting. (Such an addi-

tional information, is, for example, old shares.) This

two goals seem contradictory at a first glance. To cir-

cumvent the problem we first define a legal state (i.e.

finite state control and contents of work tapes) of the

processor at a current state with the computation to

be the state of the processor which always follows the

(prescribed) protocol. We then claim that the above

two goals are not contradictory if what is delivered to

the “re-booting” processor is his current legal state.

57

That is, if current legal state is given to each pro-

cessor at each state, the adversary does not gain any

additional information it would of not gained without

such re-booting information:

Lemma 1 There exists an (absolute constant) c, such

that on-line reboot mechanism is possible, tolerating $-

adversary.

Proof Outline: Consider two scenarios, the one in

which the adversary corrupts the node and then asks

for “rebooting “ information, and the other in which

the adversary moves a pebble to a given node in order

to learn its current legal state. In both cases in order

to learn the same information, the adversary must put

(or keep) a pebble at a current node at a current step.

Since every consecutive step (for each processor) is

randomized, and since the adversary can look only at

$ nodes at any instance. This allows us to construct

the simulator which produces conversations which are

statistically close to the real ones. ■

To summarize, the community (as a whole) keeps

the current legal state of each machine in its “global”

(and shared) memory. We must stress here that by

“keeping” some values by the community, we mean

keeping them in the distributed (i.e. shared) and con-

st anti y randomizing fashion, aa explained in the pre-

vious section.

6.2 Global computation step

Next, we explore how the community can make a sin-

gle, global computation step:

Theorem 4 There exists a (absolute constant) c,

such that on-line, robust global poly-time computa-

tions are possible in our model withstanding ~ mobile

viruses.

Proof Outline: The community must perform a

secure distributed circuit evaluation, simulating the

computation of each machine (in parallel) with “ran-

domization”. This, however, requires to do oblivious

circuit evaluation, which brings us to a crucial point

in our solution: we do simulation of each step of each

machine (with randomization) gate by gate (similar to

[RB,BB,BGW,CCD], but &O randomizing afier each

level (i.e. gate) of the circuit. Notice that randomiza-

tion happens on two (different) levela – randomization

for each (consecutive in the computation) “legal” (but

randomized) states of each machine is the “first” level

which we compute gate by gate using another level of

randomization (in-bet ween gates.) Are we running in

circles? The answer is no — since the last (second)

level can be done in constant rounds, reducing the so-

lution to the simple case (i.e. if the total number of

pebbles ~ the adversary can have times the (constant)

number of rounds of our (second level) protocol is less

then ~ we are done, by work of [RB].)

We note that in addition to keeping the current,

legal and randomized states of every node, the goal

of the community is to maintain and update the dis-

tributed database according to a trusted global pro-

gram. The trusted program is performed in a similar

fashion aa above, maintaining the data-base, comput-

ing new gates and re-randomizing the represent at ion.

■

We remark that in the absence of a broadcast chan-

nel we can still carry out the secure computation in

the presence of mobile viruses. The problem, though,

is that fast agreement and collective agreement proto-

cols are only ezpected constant time. This may lead

to unexpected delays. In the full paper we show what

adaptations are needed in order to perform our com-

putations in this sit uat ion.

Our results have certain generalizations which we

do not describe here. One is the extension to more

general topologies [RB, DDWY], and the other is im-

provements in efficiency, building on the works of [BE]

and [FY1.

7 Conclusions and Open Prob-

lems

As we stated, this is an initial direction of attacking

the “mobile virus” problem. Many questions are left

open, regarding efficiency, refinements and improve-

ments of the model, improving our protocols and our

results and their adaptation to practical systems, as

well as better characterization (generalization or spe-

cializat ion) of the nature of viruses.

Acknowledgments

We thank Jeff Kephart, Matt Franklin and Steve

White for helpful discussions and comments.

58

References

[A]

[BB]

[BMR]

[BG]

[BGW]

[BE]

[CCD]

[co]

[CGK]

[De]

[Dij]

[DDW~

[DSST]

[ER]

[FM]

[F]

L. Adelman Abstract Theory of Computer

Viruses CRYPTO 88.

Bar Ilan J. and D. Beaver, Non-Cryptographic

Secure Computation in Constant Rounds

PODC 1989, ACM.

Beaver D., S. Micali and P. Rogaway, The

Round Complexity of Secure Protocols, STOC

1990, ACM, pp. 503-513.

Beaver D., S. Goldwasser Multiparty Computa-

tion with Faulty Majority FOCS 1989, IEEE,

pp. 468-4’73.

Ben-Or M., S. Goldwasser and A. Wigderson,

Completeness Theorem for Noncryptographic

Fault-tolerant Distributed Computing, STOC

1988, ACM, pp. 1-10.

Ben-Or M. and G. E1-Yaniv. , Manuscript,

D. Chaum, C. Crepeau and I. Damgard, Multi-

party Unconditionally Secure Protocols, STOC

1988, ACM, pp. 11-19.

F. Cohen, Computer Viruses, Ph.D. disserta-

tion, UCS, 1986.

I. Cldon, I. Goapl, and S. Kutten, New Mod-

els and Algorithms for Future Networks, 7-th

ACM PODC, pp. 75-89.

D. Denning, An Intrusion-Detection Model,

IEEE Sym. on Security and Privacy, 1986, pp.

118-131.

E. W. Dijkstra, Self-Stabilizing Systems in

spite of Distributed Control, CA CM,17, 1974,

pp. 643-644.

D. Dolev, C. Dwork, O. Waarts and M. Yung,

Perfectly Secure Message Transmission, FOCS

1990, IEEE.

J. Driscoll, N. Sarnak, D. Sleator, and R. Tar-

jan, Making Data Structure Persistent, STOC

1986, ACM.

M. Eichin and J. Rochlis, With Microscope and

Tweezers: An A nalysis of the Internet Virus of

November 1988, IEEE Sym. on Security and

Privacy, 1989, pp. 326-343.

P. Feldman and S. Micali, Ara Optimal Algo-

rithms For Synchronous Byzantine Agreement,

STOC 1988, ACM, pp. 148-161.

P. Feldman Optimal Algorithms for Bgzantine

Agreement, MIT Ph.D. Thesis, 1988.

[FYl

[GHYl

[GMW1]

[GMW2]

[GMR]

[JA]

[Ka]

[KW]

[MiRo]

[MR]

[Pi]

[PSL]

[SG]

[RB]

[w]

M. Franklin and M. Yung, Parallel Secure Dz’s-

tributed Computing, manuscript.

Z. Galil, S. Haber and M. Yung, Cryptographic

Computations and the Public-Key Model, The

7-th Crypto 1987, Springer-Verlag, pp. 135-

155.

0. Goldreich, S. Micali and A. Wigderson,

Proofs that Yield Nothing But their Validity,

FOCS 1986, IEEE, pp. 174-187.

0. Goldreich, S. Micali and A. Wigderson, How

to Play any Mental Poker, STOC 1987, ACM,

pp. 218-229.

S. Goldwasser, S. Micali and C. Rackoff, The

Knowledge Complexity of Interactive Proof-

Systems, STOC 1985, ACM, pp. 291-304.

M. Joseph, and A. Avizienis, A Fault- Tolerance

Approach to Computer Viruses, IEEE Sym. on

Security and Privacy, 1988, pp. 52-58.

P.A. Kager, Limiting the Damage Potential of

Discretionary Trojan Horses, IEEE Sym. on

Security and Privacy, 1987, pp. 32-37.

Jeff Kephart and Steve White, Directed-Graph

Epidemioiogical Models of Computer Viruses,

IBM Research Report, also in IEEE Sym. on

Security and Privacy, 1991.

S. Micali and P. Rogaway Secure Computation,

a manuscript.

S. Micali and T. Rabin. Collective Coin

Tossing without Assumptions nor Broadcast,

Crypto-90.

J. Piccioto, The Design of an Effective Audit-

ing Subsystem, IEEE Sym. on Security and Pri-

vacy, 1987, pp. 13-22.

M. Pease, R. Shostak, and L. Lamport Reach-

ing agreement in the presence of fardts, JACM,

27(2), 1980.

S-P. Shieh, and V. Gligor, Auditing the Use

of Covert Channels in Secure Systems, IEEE

Sym. on Security and Privacy, 1990, pp. 285-

295.

T. Rabin and M. Ben-Or, Verifiable Secret

Sharing and Multiparty Protocols with Honest

Majority, STOC 1989, ACM, pp. 73-85.

Steve White, Personal Communication.

