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A GENERALIZED CLARK REPRESENTATION 
FORMULA, WITH APPLICATION TO OPTIMAL 

PORTFOLIOS 

DANIEL L. OCONE* and IOANNIS KARATZASt 

Department of Mathematics, Rutgers University, New Brunswick, N J  08903, USA 

(Received 14 November 1989; in final form 20 June 1990) 

A modification of J. M. C. Clark's formula is established for the stochastic integral representation of 
Wiener functionals under an equivalent (Girsanov) change of probability measure. It is shown how this 
modified Clark formula leads to the representation of optimal portfolios for a variety of situations in 
the modern theory of financial economics. 

KEY WORDS: Clark's formula, Wiener functional derivatives, optimal portfolios, Sobolev spaces on 
Wiener space. 

1. INTRODUCTION 

In recent years there has been considerable interest in the applications of 
stochastic calculus to problems of financial economics. Beginning with the work of 
Harrison and Pliska [8, 91 which showed that the martingale representation 
theorem and the Girsanov change of probability measure are the "keys" to 
understanding option pricing in the celebrated Black and Scholes model, these 
methodologies have been applied with considerable success to questions of 
valuation of American options (Bensoussan [2], Karatzas [13]), consumption/ 
investment optimization (Karatzas et al. [15], Cox and Huang [5, 6]), equilibrium 
(Karatzas et al. [16]), and term structure of interest rates (Artzner and Delbaen 
[I], Heath et al. [Ill),  to name only a few. A recent survey of these developments 
appears in Karatzas [14]. 

For most stochastic optimization problems, posed in general financial market 
models, the above-mentioned methodologies are very successful in identifying 
closed-form expressions for quantities like the optimal consumption and terminal 
wealth levels, but are able to ascertain only the existence of the associated 
portfolio strategies. The purpose of this paper is to derive general representation 
formulae for the optimal portfolios associated with option pricing, maximizing 
utility from terminal wealth, and maximizing utility from consumption (formulae 
(3.10), (4.13) and (5.9), respectively. The case of utility from both consumption and 
terminal wealth can then be handled by superposition, as in Section 6 of Karatzas 
et al. [15]. 

*Supported in part by NSF grant DMS-89-03014. 
t o n  leave from Columbia University. Research supported in part by the National Science 

Foundation under grant NSF-DMS-87-23078. 
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188 D. L. OCONE AND I.  KARATZAS 

Instrumental in obtaining these representations is an extension of the familiar 
Clark formula (Clark 133, Haussmann [lo], Ocone [21]): 

under an equivalent change of probability meaasure; here W(.) is a multidimen- 
sional Wiener process on [0, TI, Fr = o( W(s); 0 5 s $ t), D is the Malliavin-Frechet 
functional derivative on Wiener space, and F is an FT-measurable Wiener 
functional in the Sobolev space D,,,. This extension, which we believe to be of 
sufficient independent interest, is carried out in Section 2, culminating with 
Theorem 2.5. In particular, the representation (2.8) is first extended to Wiener 
functionals in the space D l , ,  (Proposition 2.1), and is then re-expressed in the 
form 

where m(t) = W(t) + Sb 4 s )  ds, 0 5 t $ T is Brownian motion under the probability 
measure ~ ( A ) = E [ z ( T ) ~ , ]  on FT, under appropriate conditions on the random 
variable F and the bounded, {FJ-adapted process 0(.). 

In the particular contexts of option pricing, and of utility maximization from 
investment and/or consumption, the formula (2.20) leads directly to representations 
of optimal portfolios for these tasks; such developments are carried out in Sections 
3, 4 and 5, respectively, and lead to the representation formulae (3.10), (4.13) and 
(5.9). Much like (2.20), these expressions are fairly general but also quite hard to 
manipulate further, as they involve functional derivatives of the Malliavin type, 
stochastic integrals, and conditional expectations under the auxiliary probability 
measure P mentioned above. When specialized to the case of logarithmic utility 
functions, or to a financial market with deterministic coefficients, the formulae 
(4.20), (4.32) provide very explicit expressions for the optimal portfolios, in 
feedback form on the current level of wealth. This task is carried out in Section 6,  
and extends results of Karatzas et al. [15, Section 71. It would be interesting to try 
to extract more useful information from these formulae in situations with random, 
possibly Markovian, coefficients. 

A version of formula (3.12), in a more specialized context, was derived by 
Colwell et al. [4]. 

2. THE CLARK FORMULA UNDER AN EQUIVALENT CHANGE O F  
MEASURE 

Consider a complete probability space ( R , F , P )  and a standard, gd-valued 
Brownian motion W(t) = (W,(t), . . . , W,(t))*, 0 st 5 T defined on it. We shall denote 
by {Pf} the P-augmentation of the natural filtration 
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CLARK'S REPRESENTATION FORMULA 189 

As is well known, { F t )  satisfies the "usual conditions" of right-continuity and 
completion (of Fo) by P-negligible sets (Karatzas and Shreve [17, Section 2.71). 

Let now B(t) =(B,(t), . . . , B,(t))*, 0 s t  5 T be an Wd-valued, bounded and {Ft}- 
progressively measurable process, and consider the associated exponential 
martingale 

(where juxtaposition x * y = ~ ~ , ,  xiyi denotes inner product in Wd, and lx12=x*x). 
Then the process 

is a standard, Wd-valued Brownian motion under the new probability measure 

by virtue of the Girsanov Theorem (ibid, Section 3.5). Note also that, because of 
the boundedness of B(.), we have 

We shall need to recall the definition of the Malliavin derivative (Nualart and 
Pardoux [20, Section 21; see also Ikeda and Watanabe [12, p. 3601 and Ocone 
[22]). Denote by C,"(Wm) the set of Cm functions f:%'"-rW which are bounded 
and have bounded derivatives of all orders. Let Y be the class of smooth 
functionals, i.e., random variables of the form 

where (t,, . . . , t,) E [0, TIn and the function f (x", . . . , xdl,. . . , xln, . . . , xdn) belongs to 
C,"(Wdn). The gradient DF(w) of the smooth functional F is defined as the 
(L2([0, T]))d-valued random variable DF = (Dl F, . . . , DdF) with components 

a 
DiF(o)(t)= 1 -- f(W(t,, w), . . ., W(tn, w))llo,tjl(t) i =  1,. . . , d. (2.6) 

j =  axLJ 

Finally, let )I.)) denote the L2([0, TI) norm; 1 . 1  will be reserved for the Euclidean 
norm on Wn, n 2 1. For each p 2 1, we introduce the norm 
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D. L. OCONE AND I. KARATZAS 

on Y, and we denote by D,,, the Banach space which is the closure of Y under 
1l.llp,,. Shigekawa 124, Lemma 2.11 shows that DF is well-defined on D,,, by 
closure for any pz 1. Given FED,, ,, we can find a measurable process ( t ,  o ) w  
D,F(o) such that for a.e. ~ E R ,  D,F(w)=DF(w)(t) holds for almost all ~E[O, TI  
(more precisely, twD,F(w) is in the equivalence class in L2([0, TI) defined by 
DF(w)). D,F(w) is defined uniquely up to sets of measure zero on [0, T] x a. (In 
general, if X:R+L2([0, TI) is measurable, there exists a B([O, T1)Q.F measurable 
random variable, ( f ( t ,  o);  (t, w) E [0, TI x R), such that X(., o )  = X ( w )  holds almost 
surely. In the remainder of the paper we shall identify X(o)(t) with f ( t ,  o) without 
further comment.) 

We now state an extension of Clark's representation formula for Brownian 
martingales. For its proof, see the article by Karatzas, Ocone and Li [18]. 

PROPOSITION 2.1 For every F E D l ,  we have 

Remark 2.2 i) From (2.8) it follows also that 

ii) We need the extension of Clark's formula in (2.8) from D,, , to D l , ,  in order 
to give ourselves extra room in Theorem 2.5. In that theorem we shall want to 
represent p-martingales E ( F J ~ J  as stochastic integrals with respect to the process 
ii.' of (2.2), by using the Bayes formula E(F~P,) =(Z(t))-'E[FZ(T) I % ]  and then 
applying the Clark representation to FZ(T). The extension of (2.8) to D l , ,  is 
therefore useful for avoiding unnecessarily restrictive moment bounds on F and 
DF. For example, if F E ~,(1?), it does not follow that FZ(T) E L2(p). However, 

Let L:,, denote the set of gd-valued progressively measurable processes 
(u(s, w); 0 $ s 5 T, o E $2) such that 

i) For a.e, s E [0, TI, u(s, .) E (Dl ,  Jd; 

ii) (s, w ) ~ D u ( s ,  o )  ~ ( ~ ~ ( 1 0 ,  ~ 1 ) ) ~ '  admits a progressively measurable version; and 

iii) l/~ul~l;, 1 = 
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CLARK'S REPRESENTATION FORMULA 191 

Observe that for each (s, w), Du(s, w )  = [Diujs, w)] is a d x d matrix of elements in 
C([O, TI). Thus, in (2.10), l I ~ u ( s ) ( ( ~  should really be written as 

For notational convenience, we prefer to write simply II~u(s) l l~.  For U E L ~ ~ , , ,  there 
exist processes D:uj(s, w), 1 5 i, j 2 d which are progressively measurable in (t, s, a ) ,  
and for which 

~ ' u ~ ( s ) ( t )  = Dfuj(s, w) for a.e. t E [0, TI 

holds for dsQdP-a.e. (s, w). Here, progressive measurability of a process f (t, s, o )  
means that for each r > 0, the map (t, S, w) E [0, TI  x [0, r] x QI+ f (t, s, w) is 
g([O, TI) Q a([O, r]) Q 9,-measurable. Clearly, D,u(s, w) is defined uniquely up to 
sets of dt Q ds Q dP measure zero. Conversely, if we assume that u(s, .) E (Dl, Jd for 
a.e. s, and that (t, s, w)~+D,u(s, w) admits a progressively measurable version 
satisfying 

E j Iu(s)I2ds + j j C I ~ f u ~ ( s ) l ~ d t d s  < CQ, {(I )'I2 ( r I i , j  I 1 l 2 I  (2.1 1) 

then u E L:, and Du(s, w)(.) = D . u(s, w) for ds Q dP-a.e. (s, w). Finally, notice that, 
because u is progressively measurable, if u E L;, then 

D,u(s, w) = 0 for all t E (s, T) 

holds for ds Q dP-a.e. (s, a ) ;  see Corollary A.7 in the Appendix. 
In what follows we shall work with processes of the form 

for u E Lal, Y(t, w) is a parametrized stochastic integral, and it will be necessary to 
have a version of it measurable in (t, a ) .  Rather than proving the existence of a 
measurable version by appealing to some general theorem, we give Y(t, w) the 
following precise interpretation. Let X:R+(L2([0, be the random vector 

STOCH. C 
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192 D. L. OCONE AND I. KARATZAS 

This stochastic integral is well defined because, from (2.10), P(j;f ) ) ~ u ( s ) ) ) ~  ds < a)  = 
1. From the comments preceding Proposition 2.1, we can assume that X ( w ) ( t )  is 
measurable in ( t ,  w).  Corollary AS of the Appendix implies that, for almost every 
t  E LO, TI ,  X(w) ( t )  = Y( t ,  o) holds almost surely. We shall identify Y ( t ,  w )  with 
X(w)( t ) ,  because X ( o ) ( t )  supplies the desired measurable version. 

In Proposition A.6 of the Appendix we establish the following result. 

PROPOSITION 2.3 L e t u ~ L " , , .  Then [ , T u * ( s ) d W ( s ) ~ D , , ~ , a n d  

Remark 2.4 i) The Burkholder-Davis-Gundy inequalities imply that there is a 
constant c, independent of the process u, such that 

E max 1 u(s)dW(s)  S c E  1 )u(s)12 ds { o s t T l  I} {(I Y'21 
and 

E max 1 Du(s) dW(s)  
{ O S t s T ~ ~  1 

These inequalities are not generally stated in the literature for the vector-valued 
case. However, suppose that K is a separable Hilbert space and f :[O, TI x !2+Kd 
is a measurable process such that P(j,Txd, ( 1  f i(s)((;ds< a)= 1.  Then the processes 
So f (s)  dW(s) ,  I / jb  f ( s )  d  w(s)l12 - So 1 / / ~ ( s ) / / i  ds are continuous local martingales. 
This fact is enough to derive the Burkholder-Davis-Gundy inequality 

by use of the "good ).-inequality"; see Rogers and Williams [23, pp. 94-95]. 

ii) From Proposition 2.3 and the inequalities (2.15), (2.16) it follows that 

We can present now the basic result of this section; it states conditions under 
which we can give a precise formula for the integrand in the representation of an 
FT-measurable random variable F as a stochastic integral with respect to 
Throughout, we shall let ~ I D F J ~ ~  denote z': I I D ' F I I ~  for notational convenience. 
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CLARK'S REPRESENTATION FORMULA 193 

THEOREM 2.5 Let {O(t); 0 5 t 5 T )  be a bounded process such that 8 E L'f . , . Consider 
also a random variable F, such that F E D l .  , and 

T 

D O ( S )  d W(S)  + f D O ( S ) .  O ( S )  ds < CO. 
0 Ill 

Then F Z ( T )  E D l ,  ,, and we have the stochastic integral representation 

Proof We write Z ( T )  = eG where G = - j :  O*(S) dW(s)  -(1/2) j: IO(s)I2 ds. 
Proposition 2.3 implies that fi O*(s) d W ( s )  E D  ,, ,. On the other hand, f ;  I O ( S )  l 2  ds is 
also in Dl , ,  by the following argument: thanks to Lemma A.2 of the Appendix we 
may approximate 6' in L", , by a uniformly bounded sequence of simple processes 
(B"(.)). For each ~ € 1 0 ,  TI ,  J o ~ ( s ) ) ~ E D , , ,  by Lemma A.l, using the boundedness of 
On(s). It is then simple to see that ~ , T I P ( s ) ~ ~  ds E D l , ,  and 

T T 

D f 10n(s)12 ds=2 j DOn(s) . On(s) ds. 
0 0 

From the uniform bound on (8") we obtain 

The first term tends to zero as n + q  since 1118"-O/ll'f,,+0 as n-co; the second 
term tends to zero along a subsequence for which Onk(s, w)+B(s,o) for 
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194 D. L. OCONE A N D  I.  KARATZAS 

ds O dP - almost every (s, w), by dominated convergence. It follows that 
J: Ie(s)12 ds E D,, and D J,T (o ( s ) /~  ds=2 j: D ~ ( s ) .  e ( ~ )  ds. 

We have thus proved that GED,, , .  Lemma A.1 shows that if EIFeGI, 
E[eGI/DFII], E[l ~ l e ~ l l  DGll] are finite, then F eG E Dl ,  ,. But these hypotheses are 
precisely those stated in (2.17), (2.18), (2.19); strictly speaking, we should have 
imposed 

instead of (2.19). However, since 8 is bounded, this condition is implied by (2.19) 
and (2.17). We conclude that FZ(T) ED,.  , and that, by Lemma A.l, 

From the Bayes formula and Proposition 2.1, we have 

where 

Because dA(t) = A(t)8*(t) d@(t), an application of It& rule yields 

But from (2.21) we obtain 
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CLARK'S REPRESENTATION FORMULA 

By sub: ;tituting back into (2.23) and integrating from 0 to T ,  we obtain 1 
representation formula (2.20). 1 

For the purposes of applying Theorem 2.5 we want to specify hypotheses on F 
and 8 separately. 

COROLLARY 2.6 Let {8(t);  0 4 t $ T )  be a bounded process such that 8 E L " ,  , and 

for some r> 1. Consider a random variable F such that F E D , , ,  and E [ I I D F I I P ]  < co 
for some p > 1, and suppose that F E E ( P )  for some q such that ( l l q )  + ( l l r )  < 1. Then 
F Z ( T )  E D l , ,  and the representation formula (2.20) is valid. 

Proof We exploit the fact that Z ( T )  E C(P) for all v > 1 (cf. (2.4)). It follows that 
F Z ( T )  E E ' (P)  for all q' with 1 5 q' < q. Let s > 1 satisfy (11s) + ( l / p )  = 1. Then, from 
Holder's inequality, 

Let q' satisfy (119') + ( l / r )  = 1. Then by Holder's inequality and the Burkholder- 
Davis-Gundy inequality, 

Finally, we remark that under the hypotheses of either Proposition 2.5 or 
Corollary 2.6, we obtain from the proof of Proposition 2.5 that 
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196 D. L. OCONE AND I. KARATZAS 

3. A FINANCIAL MARKET MODEL 

Consider now a financial market that consists of a bank account, where deposited 
money accrues interest at the rate r(.), and of d stocks with prices-per-share Pi(.), 
1 5 i 5 d governed by the stochastic equations 

The interest rate r(t), the vector of stock appreciation rates b(t) =(b,(t), . . . , bd(t))*, 
and the matrix o( t )=(o i j ( t ) ) l s i , j~d  of stock volatilities, will be referred to 
collectively as the "coefficients" of the model; these are bounded random processes, 
progressively measurable with respect to { F t )  (the augmentation of the natural 
filtration (97) generated by the Brownian motion W=(W,, . . . , Wd)*). The 
following nondegeneracy condition will be assumed throughout: there exists a real 
number E > 0 such that 

This is the Bensoussan [2] model, further expounded upon in Karatzas et al. [15], 
Karatzas [13, 141. 

Let us introduce now a "small investor" (i.e., an economic agent whose decisions 
cannot affect the prices), and at time t~ [0, TI denote by X(t) his wealth, by q ( t )  
the amount he invests in the ith stock, and by c(t)ZO the rate at which he 
withdraws money for consumption. The resulting portfolio {n(t) = 
(nl(t), . . . , nd(t))*, 0 5  t j T) and consumption {c(t), 0 j t 5 T) processes are assumed 
to be adapted to {Ft) ,  to take values in ad and [0, a ) ,  respectively, and to satisfy 
the integrability constraint 

The wealth process X(.) corresponding to such a pair (n, c) satisfies the equation 

or in vector form 

Here 1 is the vector in Bd with all entries equal to 1, and is the process of (2.2) 
with 
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CLARK'S REPRESENTATION FORMULA 

In terms of the "discount process" 

the solution of (3.4), corresponding to a pair (n, c) as above and to a given initial 
capital x > 0, is 

We call the pair (n, C) admissible for x (and write (n, c) E d(x) ) ,  if 

holds almost surely. 

3.1. The Portfolio that Attains a Given Level of Terminal Wealth 

Consider a non-negative, FT-measurable random variable B with E[BP(T)] = 
E[BP(T)Z(T)] =x.  From Proposition 4.7 in Karatzas [14], there exists a unique 
(up to equivalence) pair (n, c) E d ( x )  with c 0 ,  such that the corresponding wealth 
process X(.) of (3.7) satisfies X(O)=x and X(T)=B almost surely; this wealth 
process is given by 

In other words, the portfolio n attains the level X(T)=B of terminal wealth, 
starting with an initial capital X(0) =x. 

From (3.8) and (3.7) with c = 0, one obtains 

But now, if one imposes the assumptions of Corollary 2.6 on the process @(a) and 
the random variable F =  BP(T), one obtains the portfolio n(.) as 

for 0 5 t 5 T, by comparing (3.9) and (2.25). 
In the case of deterministic coefficients O(.) and r ( . ) ,  the only conditions of 
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198 D. L. OCONE AND I. KARATZAS 

Corollary 2.6 that are non-vacuous amount to F E D , , ,  and EIIDFIIP< CO, for some 
1 < p <  m. Under these conditions, the portfolio n(.) of (3.10) takes the form 

provided that %(.) and r(.) are deterministic. 
In particular, if for a.e. tc[O, TI the right-hand side of (3.10) (or (3.11). in the 

case of deterministic coefficients) is in [0, almost surely, then the portfolio that 
steers the initial capital X(0) = x into the terminal wealth X ( T )  = B does so without 
short-selling of any stock. 

Example 3.2 (Deterministic Coefficients) Consider a random variable B of the 
form B = tj(P(T)), where $:(0, w)~-[O, m) is a function of class C' and P(t) = 
(Pl(t), . . . , Pd(t))* is the vector of stock prices 

If $ and its partial derivatives satisfy polynomial growth conditions, then  BED,^, 
for every p ~ ( l , o o ) ,  and a simple computation shows that D,B= xf= Pi(T)(a$/api)(P(T))oi(t), where oi(t) denotes the ith row vector of the matrix 
o(t). Then the portfolio n(.) of (3.1 1) becomes 

where the function ai(t, p):[O, T] x (0, is defined by 

for every i = 1,. . . , d. In particular, if for every (t, p) E [0, T ]  x (0, the vector 
( o * ( t ) ) - ' ~ ~ = l  cci(t,p)oi(t) is in [0, the portfolio n(.) of (3.12) avoids any 
short-selling. 

4. OPTIMAL PORTFOLIO FOR INVESTMENT 

Let U:(O, m)+g be a strictly increasing, strictly concave function of class C2, with 
U(0 +) = lim, U(c) E [ - cc, oo) and U1(m) = lim,, , U1(c) = 0. We shall refer to 
such a function as a utility function, and denote by I:[O, U'(O+)]+[O, m] the 
inverse of its derivative U'(.). If U'(0 +) < co, we set I(y) E 0 for y 2 U'(0 +). 

In the setting of Section 3, an important question in financial economics can 
then be formulated as follows: to maximize the expected utility 
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CLARK'S REPRESENTATION FORMULA 199 

from terminal wealth, over all pairs ( n , c ) ~ d ( x ) .  Here, X(.)-Xxg'n~C)(.) is the 
wealth process corresponding to the initial capital x>O and an admissible pair 
(n, c) E d ( x ) ,  as in (3.7). 

This problem was discussed in Karatzas et al. [15] (hereafter abbreviated KLS) 
and in the review article Karatzas [14, Section 91. According to the theory of KLS 
[15, Section 51, there exists an optimal pair (fi, ? ) ~ d ( x )  for this problem, with 
t = 0 (naturally), corresponding optimal level of terminal wealth 

and corresponding wealth process 2(.) given by 

In (4.2) we use the notation 

(where B(.) is the process of (3.6) and Z ( . )  is the exponential martingale of (2.1) 
with O ( . )  as in (3.5)) and denote by %(a) the inverse of the continuous, decreasing 
function 

which we assume maps (0, co) into [O, co). Furthermore, under additional technical 
conditions on the utility function W, it is shown in KLS that the value function 

V(x) --L inf EU(X(T)) 
(n, C) E d ( x )  

of this problem can be computed as 

where 

The theory that we have just outlined describes very explicitly the optimal level 
of terminal wealth and the value function (in (4.2) and (4.7), respectively), but fails 
in general to ascertain anyting more than existence for the optimal portfolio fi. 
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200 D. L. OCONE AND I. KARATZAS 

The goal of this section is to obtain a representation for fi (formula (4.13) 
below), by applying Theorem 2.5 to the random variable 

suggested by (4.3) and (4.2). In order to do that, it will be necessary to impose 
additional conditions on the function I ( - )  and on the interest rate process r(.). 

We shall use extensively the notation 

THEOREM 4.2 (Representation of Optimal Portfolio for Investment) Suppose that 
U'(O+) = oo, so that I E C1(O, a), and 

holds for some real, positive constants a, P, K.  Assume also that the bounded 
processes 0 and r belong to La,, l ,  and that for some p > 1 we have 

Then the optimal portfolio (4.3) admits the representation 

Proof Given F as defined in (4.9), it suffices to verify the hypotheses of 
Corollary 2.6 and to compute DF. First, because r and hence P are bounded, 
assumption (4.1 1) yields in conjunction with (2.4): 

(Throughout, K is a generic positive constant, possibly different from equation to 
equation.) Therefore F E E(P), for all q  > 1. 

To complete the proof, we shall show that F E D , , ,  and E(IDFIIP'< co for 
1 5 p' < p. Let G be any positive random variable in D l , ,  such that GEE(P) for all 
q ~ % ,  and E [ I I D G I I ~ ] <  co for some r> 1. Then, using (4.11), the fact that I is 
decreasing, and an approximation argument similar to that in the proof of Lemma 
A.1, one can show that 

I(G), I'(G) E E(P), for all q  > 1, (4.14) 
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CLARK'S REPRESENTATION FORMULA 201 

and 

I(G) ED,,  ,, DI(G) = If(G)DG, and (4.15) 

Let G=Y(x)P(T)Z(T). Clearly GEB(P) for all ~ E W ,  and by Lemma A.l in the 
Appendix we obtain that GED,, , ,  with 

From (4.12), Holder's inequality, and the Burkholder-Davis-Gundy inequality, 
we see that E [ I I D G ~ ~ ' ]  < co, for any 1 s r c p .  Thus by (4.14)44.16), 
I(Y(x)B(T)Z(T)) E D l ,  1, and 

E [ I I D I ( Y ( X ) ( ( T ) ) I I P ' ] C ~ ~  for any 15p1<p.  

Finally, we can apply Lemma A.l and (4.17) to conclude that F =  
P(T)I(Y(x)l(T)) E Dl,  1 and 

Another application of (4.12) and Holder's inequality proves that 

E[ I IDF((P ' ]<~~ for all l s p ' c p .  

Therefore, the hypotheses of Corollary 2.6 are satisfied, and we may apply formula 
(2.20) to F. A comparison of (2.20) with (4.3) then yields 

By substituting F=j(T)I(Y(x)((T)) and the expression (4.18) for DF into (4.19) we 
obtain the representation (4.13). 1 

Example 4.3 U(x) =log x. In this case I(y) = lly, and so 4(y) = 1, - yI1(y) = I(y). 
The expressions (4.13), (4.3) yield 
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D. L. OCONE AND I. KARATZAS 

In other words, the entries of the vector (a(t)a*(t))- '[b(t)-r(t)l] provide, at every 
time t E [0, TI,  the proportions of wealth that are to be invested in the individual 
stocks. In this special case, we do not need to assume that 8, r belong to La,,,; the 
result is true without regularity assumptions on 8 and r (c.f. Section 9.3 in 
Karatzas [14]). 

Example 4.4 U ( x )  = (1/6)xd, 6 < 1, 6 # 0. In this case I(y) = y -I"' -d', 4(Y) = 
-811-d)  and - yI1(y) = [I(y)/(l-6)]. It follows from (4.13), (4.3): 

or equivalently 

In particular, if the coefficients r(.), O(.) are deterministic, the expression of (4.21) 
becomes 

Example 4.4 (Deterministic Coefficients) In this case the hypotheses on 8 and r 
of Theorem 4.2 are satisfied trivially; under the remaining assumptions 
U'(0 +) = cc and (4.1 I), we have from (4.13): 
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CLARK'S REPRESENTATION FORMULA 203 

On the other hand, (4.3) yields 

We would like to obtain e(t) as a function of 2( t ) ,  for every te[O, TI; in other 
words, to express at every time t the optimal portfolio in "feedback form" on the 
current level of wealth. 

In order to do this, introduce the notation 

and assume ~ ( t )  > 0, V 0 t < T With this notation, 

On the other hand, the conditional P law of Y(T), given g t ,  is normal with mean 
Y(t) and variance a(t) (this is because 

is independent of F , ,  and is a zero-mean normal random variable with variance 
a(t) =ST 1 1  O(S) [ I 2  ds). Therefore, with 

the expression (4.24) becomes 
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204 D. L. OCONE AND I. KARATZAS 

The function K(t, a )  of (4.28) is continuous and strictly decreasing; differentiating 
formally under the integral sign, we obtain 

for its derivative. In conjunction with (4.27), this expression lets us rewrite the 
optimal portfolio fi of (4.23) in the form 

In other words, the process Y(.) of (4.25) is a suficient statistic for the 
computation of both the optimal portfolio and wealth processes, via (4.31) and 
(4.29), respectively. 

Even more to the point is the following observation: let A(t, .) be the inverse 
function of K(t, .), i.e. K(t, A(t, 4)) = 4. Then from (4.29) we have 
Y(t) = A(t, ( /?( t )?( t ) /~(~))) ,  and substitution of this expression into (4.31) leads to 

a formula that provides the optimal portfolio as a (deterministic) function of the 
current level of wealth, as desired. 

In Section 6 we shall show that these heuristic considerations can be made 
precise, under very weak conditions; in particular, none of U'(0 +) = a, (4.11) will 
be necessary. 

Remark 4.5 In this remark we answer a question about optimal portfolio 
selection posed to us by Hk to r  Sussmann. From (4.32) it is clear that in the case 
of deterministic coefficients, the ratio 

of the optimal portfolios in any two different assets, is independent of the utility 
function U. Is this true more generally? The answer, in the case of general, random 
coefficients, is no. For instance, in the context of Example 4.4 we obtain from 
(4.21) and (4.2)-(4.5): 
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CLARK'S REPRESENTATION FORMULA 205 

for 1 5 i, j s d ,  with Q,(T) =(Pa(T)Z(T))'i(adl) and cr, a E(PT)z(T))*~*-~). Putting 
6 = 0  in (4.33), we recover the optimal portfolio for the logarithmic case of 
Example 4.3. It is not hard to see that, in general, the ratio 

72i(t) 
- is not independent of 6 E [O, 1) 
72ja(t) 

for i#j. Indeed, take a = l d  and O( . )  deterministic; the negation of (4.34) leads to 
the relation 

Oi(t)pj(t) = Oj(t)~;(t); V t E [0, T), 6 E (0, 1) (4.35) 

for all 1 2 i, j 5 d, where 

It is not hard to find interest rate processes r ( . )  and Wd-valued functions O(.), for 
which (4.35) is violated for some i Zj.  

5. OPTIMAL PORTFOLIO FOR CONSUMPTION 

Let us now turn our attention to the problem of maximizing expected utility 

from consumption during the finite interval [O, TI, over all admissiblk pairs 
(n, c)E&(x). We retain the setting and notation of Section 3. In (5.1) the function 
U(t ,  c):[O, T] x (0, m)+W is of class CO,' and such that, for every t E [0, TI, U(t, a )  

satisfies the properties of a utility function set forth in Section 4; I(t, .) will denote 
the inverse of U1(t, .) on [0, U'(t, 0 +)I,  and I(t, y) -0 for y 2 U'(t, O+). 

This problem was addressed in KLS [15, Section 41 (see also Karatzas [14, 
Section 81). It follows from the theory of this article that there exists an optimal 
pair (72,i.) E &(x) for this problem, with 

and corresponding wealth process 2 given by 
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D. L. OCONE AND I. KARATZAS 

for O s t  5 ?: Here again, x>O is the initial capital and Y(.) is the inverse of the 
continuous, decreasing function 

which maps (0, co) into [0, a), and the value function 

T 

V(x) a inf E [ U(t, c(t)) dt 
( n , c ) ~ d ( x )  0 

of this problem can be expressed as 

where 

(under additional technical conditions on the function U(t, c)). 
By analogy with Theorem 4.2, we have the following representation for the 

optimal portfolio i? of (5.3). 

THEOREM 5.1 (Representation of Optimal Portfolio for Consumption) Suppose 
that Uf(t, 0 + )  = rn for all t E [0, T I ,  1(t, )I) E Covl([O, TI x (0, a)), and let 

hold for some positive constants cc, P,  K. Furthermore, let {6(t), O s t s  T )  and 
{r(t), 0 5 t 5 T )  be bounded processes such that 6 E Ly , ,, r E L", , and, for some p > 1, 
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CLARK'S REPRESENTATION FORMULA 

and 

Then the optimal portfolio fi of (5.3) is given by 

Proof Let F = J , T B ( S ) I ( S ,  %(x)[(s))  ds. To prove Theorem 5.1, it is sufficient to 
verify that the hypotheses of Corollary 2.6 hold for F. Let y(s) =P(s)I(s, %(x)[(s)) .  
We shall prove 

sup y(s) E E ( P )  for all q > 1, and 
[O,  TI 

It follows from (5.10) and (5.11) that F E D , , ,  and 

To prove (5.10), observe that the boundedness of the process r(.) and assumption 
(5.6) imply 

sup y(s) 5 K [(mar Z( t ) ) l+  ~ ( t ) ) - ~ ] .  
[O,  TI [O,  TI 10, TI 

(Again, K is a generic positive constant, and the K in (5.12) may differ from that 
in (5.6).) Because { Z ( t ) ;  0  5 t  5 T )  is a martingale with Z ( T )  E E ( P )  for all q > 1, 
we also have maxIo, Z ( t )  E E ( P ) ,  for all q > 1.  Likewise, because { V ( t )  = 
Z- ' ( t )  exp[- So 10(s)12 ds], 05 t  5 T }  is a martingale with V ( T )  E E(P)  for all q > 1, 
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208 D. L. OCONE AND I. KARATZAS 

maxIoa TI Z -  ' ( t )  E I?(P), for all q > 1. The claim (5.10) follows immediately. By the 
same argument, assumption (5.6) also yields 

sup I/?(s)i(s)I'(s, Y(x) ((s)) 1 E E(P) for all q > 1. 
[O, TI 

To demonstrate (5.11), first note that the proof of Theorem 4.2 shows that for 
every s, y ( s ) ~ D ~ , ~  and 

Therefore, because of (5.12), (5.13) and the boundedness of 8, 

where X is a random variable satisfying X E E ( P )  for all q >  1. If 1 s p ' < p ,  we 
obtain 

where (ljq) +(pf/p) = 1. On the other hand, we have 

and similarly with DO(u); moreover, since 

sup J DB(u) d W(u) '(iI0, Tllll il'l 
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CLARK'S REPRESENTATION FORMULA 

by the Burkholder-Davis-Gundy inequalities, it follows from (5.16) that 

for 1 5 p' < p. This implies y E Ly , , . Also, (5.17) implies that 

The inequality (5.18) verifies the remaining hypothesis on F in Corollary 2.6 and 
so completes the proof. I 

Example 5.2 ~ ( t ,  c) = e-Sod"d~og C, where p: [0, TI 4% is a bounded, measur- 
able function (a deterministic discount factor). In this case I(t, y) = e-~Op(s'ds. (lly) 
and - yI1(t, y) = I(t, y), so (5.1 1) and (5.3) give 

just as in Example 4.3. 

Example 5.3 U(t, ~ ) = e - ~ ~ " " ~ " 1 / 6 ) ~ ~ ,  where p(+) is as in Example 5.2 and 6 <  1, 
6 +o. Then ~ ( t ,  y) = e-l/(l-6)So&s)d"/(1-6) Y ,  #(t, Y) = e-M-d)Sbr(s)ds y-6/(1-6) and 
- yI1(t, y) =(I(t, y)/(l - 6)); it follows from (5.9), (5.3) that 

whence 
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D. L. OCONE AND I. KARATZAS 

In the case of deterministic r(.) and O(.), this portfolio takes the form (4.22). 

6. DETERMINISTIC COEFFICIENTS 

This section continues the discussion on models with deterministic coefficients, 
started in Example 4.4. The basic observation is that, in this case, the driving 
Brownian motion W and the process fi of (2.2) generate the same filtration. This 
means, in particular, that { F J  is also the P-augmentation of (9:). Thus, when 
representing P-martingales as stochastic integrals with respect to fi via the Clark 
formula, we can work on the probability space ( R , F , P ) .  There will be no need to 
transform back to the original probability space ( Q F ,  P), as was the case in the 
more general representation formulae (2.20) and (2.25). Of course, the formula we 
get could be derived from (2.20) with D,O=O. However, the proof of formula (2.20) 
required assumptions (2.17) and (2.18), and these become unnecessary if we apply 
the Clark formula directly to In this way we avoid unnecessarily stringent 
conditions. 

We place ourselves in the setting of the financial market model of Section 3 with 
deterministic coefficients, and address first the question of maximizing the expected 
utility from terminal wealth (4.1) over admissible pairs ( n , c ) ~ d ( x ) .  The utility 
function U will be as in the opening paragraph of Section 4. Recalling the 
notation of (4.25)-(4.28), we write the optimal wealth process 2 of (4.3) in the 
form 

KT)  X(t) =--- M(t), where 
Kt) 

- z2/2a(t) 

K(t, x) = I(y ex+") - (t, x) E [O. T) x 9. (4.28) 
8 

We also introduce the function 

z - z2/2a(t) 

L( t, x) = -- I( y ex + ") -------- ( t ,  x) E [0, T) x 9. 
9 4 t )  

Under the condition 
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CLARK'S REPRESENTATION FORMULA 211 

the functions K and L of (4.31) and (6.3) are well-defined on [0, T] x W, provided 
that ( l + l z l ) ~ ( e ~ + ~ )  is integrable with respect to exp(-(z2/2a(t)))dz, for every 
(t, x) E [0, T) x B. A sufficient condition will be imposed below (cf. (6.7)), which will 
guarantee this. 

Remark 6.1 If I is smooth, a formal integration by parts in (6.3) suggests the 
computations 

if one ignores boundary terms and recalls the other heuristic computation (4.30). It 
follows then, from this formula and (4.31): 

Despite the heuristic character of both (4.31) and (6.5), their consequence (6.6) 
can be made completely rigorous, as the following theorem demonstrates. 

THEOREM 6.2 Let (6.4) hold, and assume 

for some p > 1, a > ~ ( 0 ) .  Then the P-martingale M of (6.2) admits the representation 

and the optimal portfolio f i  of (4.3) is given by (6.6). 

Remark 6.3 It is a consequence of the proof that all terms in (6.8) make sense. 
This is interesting in the case I $  C', for it is not easy then to see a priori that 
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212 D. L. OCONE AND I. KARATZAS 

Remark 6.4 Observe that the condition (6.7) implies 

I(b ez),  / z l l (b  ez) E ~ ( e - " ~ ' ~ "  dz) (6.9) 

for every a ~ ( 0 ,  a),  b E 8. In particular then, the functions K, L of (4.31), (6.3) are 
well-defined on [0, TI x B ,  and 

The Proof of Theorem 6.2 will proceed in two steps: 

Step 1 Theorem 6.2 holds if, in addition to the assumptions stated there, one 
imposes also I E C1. 

Step 2 One may relax the assumption I E C'. 

Proof of Step 2 from Step 1: Smoothing argument. 
Let p:W+[O, a) be a Cm-function with compact support and j a p ( x ) d x = l .  Let 

pn(x) = np(nx), x E W for n 2 1, and define 

Then it is easy to see that 

1 ( y )  ( y ) ,  V y > 0 
n- m 

lim ,!?I I,(y ey(T))  - I(y eY(T))  I P =  0 ,  
n+m 

for every ( t ,  x )  E [0, TI x 9. 
Consider now the P-martingales 

for n 2 1, which admit the representations 
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CLARK'S REPRESENTATION FORMULA 213 

for some {el-progressively measurable, 92d-valued process $ with J,T I$(t)l2 dt < a, 
as.  (from the martingale representation theorem), as well as 

(from Step 1). From the Burkholder-Davis-Gundy and Doob inequalities, we have 
then 

and by virtue of (6.12) this last expression tends to zero, as n+m. It follows then 
from (6.13) that $(s, w) = - L(s, Y(s, o))  . B(s, o) holds for dt @ dg-a.e. (s, o )  on 
[0, TI x Q, and therefore we may take $(t) = - L(t, Y(t)). B(t) in (6.16). 

Proof of Step 1 Cut-off argument. 
Consider a Cm-function $:92+[0, 11 with 

and define the functions 

and the random variables 

for n = 1,2,. . .. We are interested in representing the g-martingale M(t) =E(G\PJ, 
O s t s  T as a stochastic integral with respect to the p-~rownian  motion ttj in the 
specific form (6.8). 

Now every G, belongs to the space D2, ,, and so from Proposition 2.1: 
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for 0 5 t 5 T, n = 1,2, . . .. (Strictly speaking, in (6.18) D denotes the operation of 
differentiation with respect to fi This does not contradict the representation 
formula (2.20) because, when 8 is deterministic, differentiation with respect to 
and with respect to W give the same result.) Now recalling (4.27') and the fact that 
8(.) is non-random, we obtain 

and 

-E[D,G,~F~] = E[f ~(Y(T)) (F~] .  8(t) 

after integrating by 
expression converges 

parts. By the Dominated Convergence Theorem, this last 
to 

as n - a ,  for every (t, o) E [0, T] x R. On the other hand, recalling (6.10) we obtain 

and arguing as before we arrive from (6.18) to the desired representation (6.8). 1 

Finally, we discuss the question of maximizing the expected utility from 
consumption (5.1) over all admissible pairs (71, c) ~ d ( x )  in the setting of a financial 
market with deterministic coefficients. The utility function U ( t ,  c) is as in the 
opening paragraph of Section 5, whose notation we recall. By analogy with (4.25), 
(4.26), (6.3) we introduce the additional notation 
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THEOREM 6.5 Suppose that I( t ,  y )  is continuous on [0, T ]  x (0,  a), and that 

hold, for some constants p > 1 ,  a > c, > c ,  > 0.  Then the 9-martingale 

and the optimal portfolio fi(t) of (5.3) admit the representations 

and 

respectively. I 

The proof is similar to that of Theorem 6.2; we omit the details. 
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APPENDIX 

In this appendix we collect and prove some technical results which are used 
throughout the paper. The first result is simply the chain rule with proper 
attention to function spaces. While the result is simple, it has not been previously 
stated in the setting of Dl , ,  except by Enchev [7], section 10, in the context of a 
weaker definition of the gradient D. 

LEMMA A.l Let F  =(F,, . . . , F,) E (Dl, Let 4 E C'(Wk) be a real-valued function 
and assume that 

E I~(F)/+ C-(F)DF, < m. { ll Ill 
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Then 4 ( F )  E D l , ,  and D 4 ( F )  =x  (a4/dxi ) (F)DFi .  

Proof It is easy to see that the lemma is true if 4 E Ci (Wk) ,  that is, if 4 and its 
first derivatives are bounded. Now consider the general case. Let $ E C,"(W) satisfy 
$( z )  =z ,  if I z I  s 1, I$(z)I 5 I z I  for all ~€9. For any integer n, let +,(x) =n$(q5(x)/n), 
x e W k .  For each n, 4 , ~  Ci (Wk) ,  and thus 4,(F)  ED^,^ and D$,(F)= 
$ ' ( $ ~ ( ~ ) / n ) ~ ( d 4 / d x ~ ) ( F ) D F ~ .  Note that I $ , ( F ) ~  5 I ~ ( F ) /  for all n and limn,, 4,(F) = 
4 ( F )  almost surely. Likewise, 

a4 lim D&(F) = 1 - (F)DFi ,  almost surely. 
n+m axi  

Therefore, 

by dominated convergence. The result follows because D is a closed operator on 
1 I 

The next result extends a technique of Liptser and Shiryayev [19, pp. 92-95], 
which is useful for approximating stochastic integrals; see also Karatzas and 
Shreve [17, Problem 3.251. The proof is a minor modification of the arguments in 
these references, and so we omit it. 

LEMMA A.2 Let K be a separable Hilbert space and let f :[O, T ]  x R+K be a 
measurable function such that 

E {(I l l f ( s ) l ~ ~ d s ) ~ ' ~ } <  a. 

Let $,(t) =x?, 1(j,2n,(j+ l),2nl(t) and extend f ( t )  to  all t E W by setting f ( t ,  w) =O for 
t $ [0, T I .  Then there exists a subsequence {nil  such that 

for almost every s E [0, T I .  

Remark A.3 For every (n ,  s), f ("'(t) = f ( s  + $,(t - s))  is a simple function, and 
f("' is adapted to a filtration i f f  is. Therefore, Lemma A.2 establishes the existence 
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of adapted, simple approximations to adapted vector-valued processes. Recall now 
the definition of Ly,, from Section 2, and the norm 

COROLLARY A.4 Simple processes are dense in L", , with respect to I ( l . 1  l l y ,  ,. 
Proof Apply Lemma A.2 to the process 

It follows that we may choose a subsequence {n,},  such that if we define 

However, u(s) ED,,? only for Lebesgue-almost every s, and so we must in addition 
choose S so that uLni(s)  € D l ,  for all s. This can always be done. Let N = {slu(s)  
fails to be in Dl , , ) .  If 

then u(s"+j/2") belongs to D l , ,  for all j, and hence so does 

for all s. Because the Lebesgue measure of B is zero, we can choose S#B so that 
(A.2) holds. 

COROLLARY A.5 Let f : [ O ,  T ]  x Q+(L2([0, be an {9t}-progressively measur- 
able process satisfying 

Let Y:[O, T ]  x R + B  be a measurable function such that for P-almost every W ,  

P(., W )  = J O T  f (s)* d W ( S ) .  Then 
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T 

P(t, W) = j 7(t, S, u )  d W(s), as., for almost every t E [0, TI, 
0 

(A.4) 

where 7: [0, T] x [0, T] x R+Wd is progressively measurable, and J(., s, w) = f (s, w) 
for dsQ dP almost every (s, w). 

Remark Note that for almost every t, (s, w)wf(t ,  s, u )  is progressively measur- 
able, and from (A.3) P(j; Ir(t, s, u)12 ds e co) = 1. Hence the right-hand side of (A.4) 
is well-defined for almost every t E [0, TI. 

Proof Corollary A.5 is certainly true for simple processes. To prove the general 
case, let f'") be the approximating sequence of processes obtained by Lemma A.3. 
Then pass to the limit using almost surely converging subsequences and the 
Burkholder-Davis-Gundy inequality for Hilbert space valued integrands (see 
Remark 2.4(i)). 

PROPOSITION A.6 Let u E L';, . Then j; U(S) d W(S) E Dl ,  and 

Proof Eq. (AS) is written as an identity between processes. However, from 
Corollary AS and the remarks preceding Proposition 2.3, Eq. (AS) is equivalent 
to the identity between (L2([0, T]))d-valued random vectors: 

We shall prove (A.6). Let uni(s)=u(s"+$,,(s-3) be chosen as in the proof of 
Corollary A.4, such that uni(s) € D l ,  for every s, for all n,, and 

Now observe that 

Because U ( . ? + ~ / ~ ~ ) E D ~ ,  for each j, and the random vectors u(5+ j/2"), 
W(i+ ( j + 1)/2") - W(s"+ j/T) are independent, Lemma A. 1 implies that each term 
on the right-hand side of (A.8) is in D l , ,  and 
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It follows that 

Now, by the Burkholder-Davis-Gundy inequalities (2.15) and (2.16), we have 

and 

It follows that j,T u*(s) d W ( S )  E Dl,  and that D u*(s) d W ( s )  is given by Eq. (A.6). 

COROLLARY A.7 1; D,u(s) d W ( s )  =ST D,u(s) d W ( s )  for almost every t. Indeed, 
Dtu(s, o) = 0 for t > s for ds O dP-a.e. (s ,  w). 

Proof Let uni be defined as in the proof of Proposition A.6. Then by the 
adaptedness of u, Dtuni(s, w )  = 0, for T 2 t > s. for ds 8 dP-almost every (s, w).  Thus 
1; ~ , u " ' ( s )  d W ( s )  =if D,uni(s) d W ( s )  for every n,. Now take limits as ni+ co. 
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