
k-gram Based Software Birthmarks

Ginger Myles Christian Collberg
Department of Computer Science

University of Arizona
Tucson, AZ 85721

{mylesg,collberg}@cs.arizona.edu

ABSTRACT
Software birthmarking relies on unique characteristics that
are inherent to a program to identify the program in the
event of suspected theft. In this paper we present and
empirically evaluate a novel birthmarking technique which
uniquely identifies a program through instruction sequences.
To evaluate the strength of the birthmarking technique we
examine two properties: credibility and resilience to seman-
tics-preserving transformations. We show that the technique
provides both high credibility and resilience. Additionally, it
complements previously proposed static birthmarking tech-
niques.

Categories and Subject Descriptors
K.5.1 [Legal Aspects of Computing]: Hardware/Soft-
ware Protection—Proprietary rights

General Terms
Legal Aspects

Keywords
Software theft detection, Software birthmarking

1. INTRODUCTION
The theft of software occurs on a regular basis and in a

variety of different forms. People make copies of programs
to give to friends and relatives so they do not have to buy
a copy; software crackers illegally resell programs, often to
unsuspecting consumers; unscrupulous programmers steal a
portion of a program and incorporate it into another pro-
gram in order to decrease product cost and development
time. Each of these scenarios constitutes software theft and
has an economic impact.

Currently, there are a variety of techniques in use to try
to prevent, discourage, and detect theft. In this paper we
present and evaluate a specific technique, software birth-
marking, for the detection of software theft. A software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05,March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

birthmark relies on a unique characteristic, or set of char-
acteristics, that is inherent to a program to uniquely iden-
tify it. For an effective birthmarking technique it is highly
likely that two programs, or program parts, p and q, are
copies if they both have the same birthmark. In this paper
we propose the use of opcode-level k-grams as a software
birthmarking technique. This technique computes the set
of unique opcode sequences of length k for a set of modules.
k-grams have been previously used to detect similarity be-
tween documents [5, 6, 11, 13] and programs at the source
code level [15], but not at the opcode-level. We demonstrate
that k-gram birthmarks exhibit a high degree of credibility
and resiliency and that they nicely complement previously
proposed birthmarking techniques.

This paper makes the following contributions:

1. We propose and evaluate a novel static birthmarking
technique based on instruction sequences.

2. We provide an independent evaluation of the static
birthmarking technique by Tamada, et al. [16, 17].

3. We provide a comparative analysis between our birth-
marking technique and Tamada’s.

2. RELATED WORK
Splitting a file into k-grams or chunks is a common tech-

nique used to detect similarities between documents and
programs. A variety of techniques have been proposed based
on this general idea (e.g. [5, 6, 11, 13]). One such example is
Moss [1] which is an automated tool used to detect similar-
ities between programs at the source code level. The tech-
nique used to identify similarities is called winnowing [15]
which divides the file into k-grams. A hash of each k-gram
is then computed and a subset of hashes is selected as the
document fingerprint. This technique has proven to be quite
successful at detecting plagiarism within student programs.
However, one of the drawbacks of systems like Moss is that
similarity is computed at the source code level. Often source
code is unavailable. In addition, these systems do not con-
sider semantics-preserving transformations and the effects
of decompilation on the formatting of the source code. For
example, it was shown by Collberg, et al. [10] that given the
source code of a Java application, simply compiling then de-
compiling will cause Moss to indicate 0% similarity between
the original and the decompiled source code.

Code clones is another technique which is used to identify
similarities in code. A clone is a program fragment that is
identical to another fragment. Clones appear in software

314

2005 ACM Symposium on Applied Computing

for a variety of reasons such as code reuse by copying pre-
existing sections of code and then making minor changes.
It is desirable to identify and remove the duplicated code
to improve software maintenance costs. A variety of tech-
niques have been suggested for the identification of clones
such as using abstract syntax trees [4] and comparing sec-
tions of code while taking into consideration transformations
such as variable and function name changes [2]. Again, the
drawback to such techniques is that they are applied at the
source code level.

Baker and Manber [3] adapt three tools, previously de-
signed to identify similarity in source code and text, to iden-
tify similarities in Java bytecode. Siff is applied to a large
collection of files to identify pairs which contain a large num-
ber of common blocks. Dup can be applied to sets of files to
identify similar segments despite renaming transformations.
The third tool is the UNIX tool diff. Of the three tools, siff
and diff cannot be directly applied to the disassembled byte-
code but instead requires the bytecode to be processed into a
“normal form.” Additionally, the authors acknowledge that
their techniques will not withstand obfuscation.

Tamada, et al. [16, 17] have proposed a birthmarking tech-
nique specific to Java classfiles which is a combination of
four individual birthmarks: constant values in field vari-
ables (CVFV), sequence of method calls (SMC), inheritance
structure (IS), and used classes (UC). These four birthmarks
could be used individually but the combination yields a more
believable and reliable technique.

The Tamada technique relies on characteristics that are
statically available and targets class level theft. A dynamic
birthmark technique has also been developed which uniquely
identifies a program based on a complete control flow trace
of its execution [14]. This technique targets whole program
theft.

3. SOFTWARE BIRTHMARKS
The definition of a birthmark is tied to the meaning of

copy. What does it mean for a program module q to be a
copy of another module p? The most obvious definition is
that q is an exact duplicate of p. However, this does not take
into consideration that a software cracker is likely to apply
semantics-preserving transformations to q to disguise any
copying. For example, instructions could be reordered or
bogus code could be added that is never actually executed.
In the event of a program transformation we would still like
to be able to say that q is a copy of p. Additionally, it is
important to note that two programs can exhibit the same
external behavior and not be copies, but they must exhibit
the same external behavior if they are copies. For example,
iterative and recursive versions of the same function will
exhibit the same external behavior but are not copies of
each other.

The following definition of a birthmark is a restatement
of the definition given by Tamada, et. al. [16, 17].

Definition 1. (Static Birthmark) Let p, q be sets of mod-
ules. Let f be a method for extracting a set of characteristics
from a module. Then f(p) is a birthmark of p if:

1. f(p) is obtained only from p itself (without any extra
information), and

2. q is a copy of p ⇒ f(p) = f(q).

Window Size Unique k-grams Total k-grams
1 197 5,416,799
2 8727 5,281,483
3 86,345 5,109,318
4 310,659 4,914,995
5 634,551 4,765,130
6 937,360 4,631,019
7 1,170570 4,518,672

Table 1: Number of unique k-grams and total number of
k-grams for 1 ≤ k ≤ 7.

The strength of software birthmarking lies in its ability to
detect software theft given a potentially hostile adversary
even when the source code is unavailable. This is crucial
since most programs are distributed without source.

4. K-GRAM BASED BIRTHMARKS
A k-gram is a contiguous substring of length k which can

be comprised of letters, words, or in our case opcodes. The
k-gram birthmark is based on static analysis of the exe-
cutable program. For each method in a module we compute
the set of unique k-grams by sliding a window of length k
over the static instruction sequence as it is laid out in the
executable.

The birthmark for the module is the union of the birth-
marks of each method in the module. The order of the k-
grams within the set is unimportant as is the frequency of oc-
currence of each k-gram. By using the unique k-grams with-
out their associated frequency the birthmark is less suscep-
tible to semantics-preserving transformations. For example,
an obfuscation which duplicates basic blocks will increase
the frequency of those k-grams in the block. Additionally,
because the birthmark is independent of the order of the
methods in the module or the modules within the program,
the technique can be used at the module or program level.

In order to use k-grams to uniquely identify a program
it must be true that a specific set of k-grams is unique to
a program. To investigate this idea we examined the fre-
quency of k-grams , where 1 ≤ k ≤ 7, in 222 Java jar-files
obtained from the Internet. The programs range in size from
2 to 11,329 methods and 1 to 586 classes. We are assuming
that since these programs were obtained from a variety of
sources that they represent a reasonable random sampling
of Java programs. We discovered that even the top 10 most
frequently occurring k-grams have a very low frequency. For
k ≥ 3 the top 10 frequencies were less than 2%. This leads
to a hypothesis that two independent programs will have
very few k-grams in common. Table 1 shows the total num-
ber of unique k-grams over all 222 programs and the total
number of k-grams. From this data we see that as the value
of k increases the ratio of unique k-grams to total k-grams
decreases which also indicates that two programs will have
few k-grams in common for larger values of k.

4.1 Similarity of k-gram Birthmarks
The k-gram birthmark is the set of unique opcode se-

quences of length k. Let f(p) = {p1, ..., pn} and f(q) =
{q1, ..., qm} be birthmarks of the sets of modules p and q re-
spectively. We say that two sets of modules are the same if
and only if f(p) = f(q), i.e. if |f(p)| = |f(q)| = |f(p)∩f(q)|.
The proliferation of code obfuscation and optimization tools

315

has made it far more likely that a software cracker will apply
a semantics-preserving transformation to defeat the detec-
tion of software theft. Even in the event of this type of
attack we would like to be able to conclude that q is a copy
of p.

Broder [6] explores a parallel idea for comparing docu-
ments. He defines the two mathematical notions of resem-
blance and containment in order to quantitatively measure
the similarity of two documents. The resemblance of two
documents, p and q, is defined to be:

r(p, q) =
|f(p) ∩ f(q)|
|f(p) ∪ f(q)|

while the containment of p within q is defined as:

c(p, q) =
|f(p) ∩ f(q)|

|f(p)|
To clarify which measurement we should choose to define

the similarity of two sets of modules consider the following
scenarios.

1. Alice creates a program and sells it to Bob. Bob makes
copies and re-sells the program under a new name.

2. Alice creates a program and sells it to Bob. Bob ap-
plies a series of semantics-preserving code transforma-
tions to the program, makes copies, and re-sells the
program under a new name.

3. Alice creates a program and sells it to Bob. Bob re-
moves a module to use in his own similar program to
make his program better. He then sells the program
at a cheaper price.

In each of these scenarios at least part of Alice’s program is
contained in Bob’s. If we can identify a large percentage of
Alice’s program in Bob’s then we are able to show that Bob
copied Alice’s, even if he made some changes or additions.
Since resemblance will also consider the additions made by
Bob, it is not the correct measure of similarity for detect-
ing theft. The containment measure c(p, q) is therefore the
correct quantity for us.

Definition 2. (Similarity) Let f(p) = {p1, ..., pn} and
f(q) = {q1, ..., qm} be k-gram birthmarks extracted from the
sets of modules p and q. The similarity between f(p) and
f(q) is defined by:

s(p, q) =
|f(p) ∩ f(q)|

|f(p)| × 100.

The above definition of similarity assumes that p is the
original and q is the stolen copy. It is often the case that
such an assumption is valid. However, in the event that it
is unknown which is the original, but it is still desirable to
compute the similarity, such as detecting plagiarism in two
student programs, then the similarity would be defined as
max(s(p, q), s(q, p)).

5. EVALUATION
The strength of a birthmark technique is evaluated based

on the following two properties:

Property 1. (Credibility) Let p and q be independently
written sets of modules which may accomplish the same
task. We say f is a credible measure if f(p) 6= f(q).

Property 2. (Resilience) Let p′ be a set of modules ob-
tained from p by applying semantics-preserving transforma-
tions T . We say that f is resilient to T if f(p) = f(p′).

The likelihood of the birthmark producing a false positive
is evaluated through the use of Property 1. It is undesirable
for the birthmark technique to indicate that two indepen-
dently implemented sets of modules are copies even if they
accomplish the same task. Since it is unlikely that the two
independent sets of modules contain all of the same details
the birthmark should capture those details which are likely
to differ.

It is also desirable that a birthmark technique is able to
detect theft even in the presence of semantics-preserving
transformations. There are a variety of code obfuscation
and optimization tools publicly available, for example Code-
shield [8], SandMark [9], and Smokescreen [12], thus it is
highly likely that a software cracker will apply at least one
transformation prior to the distribution of illegal copies.
Property 2 addresses this issue.

To evaluate the effectiveness of the k-gram birthmark we
examined its ability to satisfy the above two properties. For
Property 1 we performed two experiments. First we ex-
amined its ability to distinguish between randomly selected
Java applications. The second experiment focused on dis-
tinguishing between independently implemented programs
which accomplish the same task. To test Property 2 we
used three different code obfuscation tools.

5.1 Credibility
The first experiment used to evaluate the credibility of the

k-gram birthmark examined the percentage of similarity of
111 pairs of Java programs. These pairs were obtained by
pairing the 222 Java applications obtained from the Inter-
net and used in Section 4. We examined the percentage of
similarity between the pairs using k-grams where 1 ≤ k ≤ 8.
We found that as k increased the percentage of similarity be-
tween the pairs decreased. However, with k = 8 there were
still 5 pairs with similarity greater than 60% and one pair
with 100% similarity. Because these pairs appeared to be
outliers we examined the programs and found that the pro-
grams with 100% similarity were in fact identical and that
the 4 other pairs consisted of programs where one was a later
version of the other. The results indicate that with larger
values of k there is a very minimal chance of producing a
false positive using k-grams.

An important feature of a birthmark technique is that it
can distinguish between two sets of modules that are inde-
pendently implemented even if they accomplish the same
task. To demonstrate that the k-gram birthmark technique
is able to make this distinction we applied it to two prob-
lems: calculating the factorial function and generating Fi-
bonacci numbers. For each of these problems there exists
an iterative and a recursive solution. We found that even
the smaller values of k produced results indicating that it is
unlikely one is a copy of the other. For k = 2 the similarity
was only 30% for both sets and the percentage decreased as
k increased.

5.2 Resilience
To test the resilience of the k-gram birthmark technique

we used three code obfuscation/optimization tools: Code-
shield, SandMark, and Smokescreen to automatically trans-

316

form a test program into a semantically equivalent but not
identical program. We chose the test program Conzilla [7]
from the set of 222 Java programs used in Section 4. Conzilla
is a tool designed to aid in organizing and exploring electron-
ically stored components of information. The Conzilla tool
has 524 classes and 3092 methods.

For Codeshield and Smokescreen we applied the highest
level of obfuscation provided by the tool. Both of these tools
include name obfuscation, the elimination of debugging in-
formation, and some type of control flow obfuscation. Addi-
tionally, Smokescreen supports dead code elimination. The
SandMark tool did not include an automatic obfuscation
tool but instead allowed us to pick between 33 obfuscations
which can be applied individually or in succession. We com-
puted the similarity using k-grams and the three obfuscation
tools for 2 ≤ k ≤ 8.

For Codeshield the similarity was found to be 100% for
each k and for Smokescreen the similarity decreased from
93% to 62% as k increased. Of the 33 single obfucations
in SandMark, 25 were discovered to have a similarity of at
least 80%.

One important characteristic to note about the k-gram
birthmark is that as k increases there is a decrease in similar-
ity for many of the transformations. This is to be expected
and thus the value of k must be chosen wisely. Choosing an
appropriate value for k is discussed in the next section.

5.3 Credibility vs. Resilience Tradeoff
It was shown in Sections 5.1 and 5.2 that as the value of

k increases the credibility increases and the resiliency de-
creases. Thus it is necessary to identify the value of k which
maximizes both the credibility and resiliency. Through the
data generated for the evaluation we are able to form a hy-
pothesis as to an appropriate value of k. At k = 4, 106
of the pairs exhibit a similarity < 55% and at k = 5 those
same 106 pairs exhibit a similarity ≤ 40%, which also holds
true for 6 ≤ k ≤ 8. The 5 remaining pairs should exhibit
a higher percentage of similarity since they are in fact sim-
ilar. For k = 4 and 5 only 11 of the transformations yield
a similarity of ≤ 90%, so k = 4 and 5 exhibit a high degree
of resistance to transformation. Thus our analysis indicates
that choosing k = 4 or 5 provides an appropriate tradeoff
between credibility and resilience for the k-gram birthmark
technique.

5.4 Tamada Birthmark Technique
Tamada, et al. [16, 17] proposed a Java specific birthmark-

ing technique which is composed of four individual birth-
marks: constant values in field variables (CVFV), sequence
of method calls (SMC), inheritance structure (IS), and used
classes (UC). CVFV extracts type and initialization values
for the field variables declared in the class. SMC examines
the sequence of method calls in the class as they appear in
the classfile. Because it is easy to change the names of meth-
ods within the application only those method calls which
are members of well-known classes (e.g. classes in J2SDK)
are considered in the sequence. IS traverses the inheritance
structure of the class back to java.lang.Object only con-
sidering those classes within the set of well-known classes.
If a class not in the well-known set is encountered null is
inserted in the sequence in its place. UC examines an alpha-
betic ordering of all classes in the set of well-known classes
used by the class, i.e. superclass of the given class, return

Similarity
Obfuscation CVFV SMC IS UC All 4 k = 5

SM Test 1 80 31 89 100 49 84
SM Test 2 3 0 9 6 1 65
Codeshield 1 2 23 40 5 100
Smokescreen 1 2 25 100 7 74

SM Test 1 : Instruction Ordering, Opaque Branch
Insertion, Modify If Else
SM Test 2 : Class Splitter, Buggy Code, Primitive
Promoter, Add Bogus Fields

Table 2: Similarity using the Tamada et al. birthmark tech-
niques and k-grams with k = 5 on an original and obfuscated
version of Conzilla.jar.

and argument types of methods, types of fields, etc.
The Tamada birthmark works well given two classfiles,

but the strength suffers when given two collections of class-
files. This is because three of the four individual birthmarks
are order dependent, i.e. they rely on the order of the char-
acteristics as they are statically laid out in the classfile. For
example, consider the SMC birthmark, i.e. the sequence of
method calls as they are laid out in the classfile. The or-
der is easy to manipulate by simply rearranging the meth-
ods in the class. Performing such a transformation would
cause the birthmark to indicate a lower similarity. Only UC
addresses this issue by using an alphabetic ordering of the
classes. In addition, after an obfuscation has been applied
it is not always clear which original class to compare with
which obfuscated class. To handle this problem every class
in the original must be compared with every class in the
obfuscated program, which for large programs may not be
a feasible option.

We used the same automated credibility and resilience
evaluation on the Tamada birthmark. Using the k-grams
we identified a single pair of applications which were identi-
cal and four pairs where one program was a later version of
the other. All four techniques identified the pair of identical
programs as being 100% similar, but only UC was able to
identify even one of the four additional very similar pairs. In
fact, IS and UC identified a pair of very different programs as
being remarkably similar even though they were not. Ad-
ditionally, the four techniques were unable to distinguish
between the recursive and iterative versions of factorial and
Fibonacci. Only SMC was able to make a single distinction
and that was for the factorial programs. Thus, when used at
the program level, without manual intervention, the birth-
marks produce both false positives and false negatives. If it
is known which classfiles to compare or only single classes
are compared then the credibility may increase.

We also evaluated the resiliency of the four techniques us-
ing the three obfuscation tools on Conzilla.jar. The results
are given in Table 2. These results show that the SMC birth-
mark performs very poorly when applied blindly, CVFV and
IS perform adequately for many of the transformations, and
UC demonstrates the highest level of resiliency. When the
four birthmarks are used in conjunction the overall resiliency
is very low.

317

Similarity
Obfuscation Tamada Tamada and 5-gram

SM Test 1 49 75
SM Test 2 1 21
Codeshield 5 75
Smokescreen 7 55

SM Test 1 : Instruction Ordering, Opaque Branch
Insertion, Modify If Else
SM Test 2 : Class Splitter, Buggy Code, Primitive
Promoter, Add Bogus Fields

Table 3: By combining the Tamada Birthmark and the k-
gram birthmark it is possible to provide stronger evidence of
software theft than just using the Tamada, et al. technique.

5.5 k-gram Birthmark vs. Tamada Birthmark
The Tamada birthmarking technique is the only known

module level technique which targets program theft at the
bytecode level. Because of this we are using it as an evalu-
ation base for the k-gram technique.

Table 2 includes the resiliency results for the k-gram birth-
mark with k = 5 and the Tamada Birthmark. From this
table it can be seen that the k-gram birthmark has a sig-
nificantly higher level of resilience for every transformation
tested.

The k-gram birthmark provides an advantage over the
Tamada techniques in that it can be blindly applied at either
the module or program level. It is also a technique which
is more likely to be able to stand on its own and would not
necessarily have to be used in conjunction with other tech-
niques. The four Tamada techniques really should be used in
conjunction especially for smaller classes or programs. The
k-gram birthmark could be used with other techniques to
provide more conclusive evidence of program theft. Table 3
shows that if the Tamada birthmark is combined with the
k-gram birthmark it is possible to provide stronger evidence
of software theft than just using the Tamada technique.

6. SUMMARY
In this paper we proposed the use of opcode level k-grams

for use in identifying software theft. We evaluated the tech-
nique with respect to two properties: credibility and re-
silience. We found that as the value of k increases the cred-
ibility increases but the resilience decreases. We conclude
that k = 4 or 5 is an appropriate value which maximizes
both credibility and resilience. Additionally, we provided an
independent evaluation of Tamada’s birthmark algorithm.
We discovered that the k-gram technique could be blindly
used at both the module and program level, but that the
Tamada technique would require human interaction to be
used reliably at the program level. We additionally dis-
covered that the k-grams produce fewer false positives and
false negatives and could reliably be used to identify differ-
ent versions of programs. Overall, we demonstrated that
the k-gram birthmark could be used individually to detect
program theft or in conjunction with other techniques to
provide stronger evidence. It is currently unknown whether
the k-gram technique is sensitive enough to be used to detect
plagiarism in student programs. This is due to the nature of

student assignments which often result in very similar pro-
grams. However, we feel this would be an interesting future
evaluation.

7. REFERENCES
[1] A. Aiken. Moss – a system for detecting software

plagiarism.
http://www.cs.berkeley.edu/~aiken/moss.html.

[2] B. Baker. On finding duplication and near-duplication
in large software systems. In Second Working
Conference on Reverse Engineering, pages 86–95,
1995.

[3] B. Baker and U. Manber. Deducing similarities in java
sources from bytecodes. In Proceedings of the USENIX
Annual Technical Conference, 1998.

[4] I. D. Baxter, A. Yahin, L. M. D. Moura,
M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM: The Internation
Conference on Software Maintance, pages 368–377,
1998.

[5] S. Brin, J. Davis, and H. Garcia-Molina. Copy
detection mechanisms for digital documents. In ACM
SIGMOD international conference on Management of
data, pages 398–409, 1995.

[6] A. Z. Broder. On the resemblance and containment of
documents. In Compression and Complexity of
Sequences (SEQUENCES ’97), pages 21–29, 1998.

[7] Center for User Oriented IT Design. Conzilla the
concept browser. http://www.conzilla.org.

[8] CodingArt. Codeshield java bytecode obfuscator.
http://www.codingart.com/codeshield.html.

[9] C. Collberg. Sandmark.
http://www.cs.arizona.edu/sandmark/.

[10] C. Collberg, G. Myles, and M. Stepp. Cheating
cheating detectors. Technical Report TR04-05,
University of Arizona, 2004.

[11] N. Heintze. Scalable document fingerprinting. In
Proceedings of USENIX Workshop on Electronic
Commerce, 1996.

[12] Lee Software. Smokescreen java obfuscator.
http://leesw.com.

[13] U. Manber. Finding similar files in a large file system.
In Proceedings of the USENIX Winter 1994 Technical
Conference, pages 1–10, San Fransisco, CA, USA,
17–21 1994.

[14] G. Myles and C. Collberg. Detecting software theft
via whole program path birthmarks. In Information
Security Conference, 2004.

[15] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing:
Local algorithms for document fingerprinting. In
Proceedings of the 2003 SIGMOD Conference, 2003.

[16] H. Tamada, M. Nakamura, A. Monden, and
K. Matsumoto. Detecting the theft of programs using
birthmarks. Information Science Technical Report
NAIST-IS-TR2003014 ISSN 0919-9527, Graduate
School of Information Science, Nara Institute of
Science and Technology, Nov 2003.

[17] H. Tamada, M. Nakamura, A. Monden, and
K. Matsumoto. Design and evaluation of birthmarks
for detecting theft of java programs. In Proc. IASTED
International Conference on Software Engineering
(IASTED SE 2004), pages 569–575, Feb 2004.

318

