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1 Introduction 
In [Mull] we gave a randomized, optimal, and efficient al- 
gorithm to find the partition of a plane induced by a set of 
linear segements. Optimal algorithms for the same problem 
were also independently given in [Ch],[Cl]. In this paper we 
extend the optimal planar partition algorithm of [Mull] to 
many other related problems. 

First we examine what happens if the segments in question 
are algebraic instead, but of a bounded degree. We shall 
approach this problem in two ways. The first approach is 
purely algebraic. Following this approach, we shall give an 
optimal, randomized O(tn + n log n) algorithm to find the 
planar partition induced by a set of algebraic segments of 
bounded degree, where n is the number of segments and 
m is the number of intersections. The second approach to 
the problem is based on linear approximations. Here we 
approximate every algebraic segment by a chain of linear 
segments. The problem now is to find the planar partition 
induced by a given set of linear chains of a bounded degree, 
where the degree of a chain is defined to be the maximum 
number of intersections between the chain and a straight 
line. Note that we are not making any assumptions about 
the size of a chain, i.e. the number of linear segments in a 
chain. The reason is that even if the degree of an algebraic 
segment is bounded, it, is not necessary that the size of its 
linear approximation will be bounded. For example, a larger 
circle has to be approximated by a larger set of linear seg- 
ments than a smaller a circle. In this setting, we consider 
the problem of finding the planar partition induced by n 
linear chains of bounded degree of total size N. We give 
an 0( N + nlog n + m) algorithm to find such a partition, 
where m is the number of intersections of the chains. Note 
that if we simply applied the planar partition algorithm of 
[Mull] to the derived set of N linear segments, we will get 
an 0( N log N + m) algorithm. 

The other problem treated in this paper is clipping. This 
is a very effective form of divide and conquer which is ex- 
tensively used in practice, especially in computer graphics 
[Suther]. It is done as follows. One first divides a given 
window into many subwindows, and then “clips” the input 
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against these subwindows. This gives us a set of smaller 
problems, one for each subwindow, and one can recur if 
necessary. In practice, the overhead of this conventional 
clipping per window W is O(& + n,), where nw is the 
number of endpoints of the input segments within W and 
& is the number of input segments intersecting W. The 
cost O(n,) is unavoidable. The linear dependence of the 
overhead on the “flux” Qw is, however, undesirable, and 
constitutes a major bottleneck for the conventional clipping. 
The reason is that the number of intersections between the 
input and all subwindow borders becomes large quite soon, 
as one increases the number of subwindows. In this paper, 
we present a new clipping technique called virtual clipping, 
for which the overhead per window W depends only loga 
rithmically on the flux q&,,. And yet, one gets all advantages 
of the conventional clipping, in the sense that, the work 
done within any given subwindow, in the amortized sense, 
obeys exactly the same bound as if the input were actually 
clipped against that subwindow. Note that the cost of vir- 
tual clipping is logarithmic in the window flux regardless of 
the position of that cIipping window with respect to the input. 
Besides making the clipping more efficient, this also makes 
it more robust than the conventional clipping with respect 
to the decisions regarding the positions and the number of 
clipping subwindows. Unlike the space requirement of the 
conventional clipper, the space requirement of the virtual 
clipper is guaranteed to be linear, regardless of the input or 
the locations of the clipping subwindows. This makes virtual 
clipping a favorable alternative to the conventional clipping. 
Our technique is intimately based on the ideas used in the 
planar partition algorithm of [Mull]. The name virtual clip 
ping comes from the fact that our algorithm does not clip 
the input against the specified subwindows actually, but only 
uirtually. This technique can be used not just in connection 
with the planar partition problem but many others, which 
include the problems in computer graphics. 

As an application of virtual clipping, we give a very 
efficient planar point location algorithm. Optimal alg* 
rithms taking O(nlogn) preprocessing time, O(n) space and 
O(log n) query time are known [Lipton,Kirpat,Edel,Sarnak]. 
(See also [Prep].) Yet a planar point location algorithm 
based on conventional clipping works equally well and some- 
times even better in practice [Edah]. Because of the ad- 
vantage of virtual clipping over conventional clipping, our 
algorithm is expected to be a favorable candidate in practice. 
In the worst case, our algorithm takes O(nlogn) time, but 
in practice, this should be linear. Its space requirement is 
guaranteed to be 0(n). Contrast this with the O(n3/‘) worst, 



case time and space requirement of a conventional clipping 
algorithm [Edah]. The querry time of our algorithm in pray- 
tice should be O(l), but no O(logn) theoretical guarantee 
can be given. Virtual clipping makes it feasible to choose 
quite small subwindows, making it unnecessary to set up 
any elaborate search structure within any subwindow. This 
makes the search structure of our algorithm simplest among 
all known search structures for the point location problem. 
This also means that in practice the query time of our al- 
gorithm should compare favorably with that of the other 
algorithms. 

The main theoretical tool which is used in the analysis of 
the algorithms in this paper is a probabilistic game involving 
certain stoppers and triggers. This is an extensive general- 
ization of the games considered in (Muil]. Our success in 
analyzing this general game directly enables us to handle, 
in a unifying framework, the situations which we could not 
handle before. It also allows us to give a more direct analysis 
of the algorithm in [Mull], which is a bit simpler. The proba- 
bilistic games of a similar nature have extensive applications 
in quite different situations too [Mul2]. For applications to 
the hidden surface removal problem see [Muls]. 

We shall assume that the reader is familiar with the alga 
rithm in [Mull], and the terminology used in its description. 
On the other hand, the analysis in this paper is almost self 
contained. 

2 Stoppers and Triggers 

A main theoretical tool used in the analysis of our algorithms 
is the probabilistic analysis of a certain game. As this game 
is theoretically interesting in its own right, we shall begin 
with this game and its analysis. The game itself is a gener- 
alization of the similar games in [Mull]. Its analysis given 
here is, however, more direct. 

Assume that we have three sets M, H and K. We assume 
that M is linearly ordered. H and K can be unordered. We 
also assume that H and K are disjoint. They can, however, 
intersect M. Imagine M placed on the positive real axis, 
according to its order; the ordering of M increases in the 
positive direction. This is just for the sake of visualization, 
otherwise, M is completely abstract. Imagine an observer 
located at the origin. 

Now we shall conduct a novel experiment. The experi- 
ment consists in repeatedly selecting, in a random fashion, 
an element from MUHUK, without replucement, until every 
element from the union has been selected. The observer 
will’be active during a part of this experiment which is 
determined as follows: The observer becomes active, if at 
all, immediately after all elements of H have been chosen, 
provided no element from K has been chosen before this 
instant. If the observer becomes active at all, he will go 
into the inactive state immediately after some element from 
K has been chosen; if K is empty he will remain active 
thereafter. Thus H can be regarded as a set of triggers and 
K can be regarded as a set of stoppers. 

Let us say that an element a E M was observed by the 
observer urhen it was chosen if 1) the observer was in the 

active state at this instant 2) no element b < a in M had 
been chosen before this instant. The idea is that the chosen 
elements of M are supposed to act as barriers to the sight 
of the observer. Hence if an element B < (1 in M had been 
chosen before u, the observer could not see a when it was 
chosen. Let 0 be the number of elements of M that were 
observed by the observer in the active state. We want to 
estimate E(O), the expected value of the random variable 0. 
Let IMI = m, [HI = h and 1K1 = L. The functional form 
of E(0) depends very crucially on what h and k are, as the 
following theorem shows. 

Theorem 1 Given the sets M, H and K as above, the ex- 
pected value E(0) is bounded as below: 

1) h = 0, k = 0: E(0) 5 ln(m + 1) + y, where y is the 
Euler’s constant. 

2) h = 0, k > 0: 

a) KnM=B: E(O)<ln(T+l). 

b) KnM#B:E(O)<l+ln(~+l). 

3) k = 0, h > 0: E(0) < ,&, 

4) h > 0, k > 0: 

a) KnM=B: E(O)<h=&. 

b) K”M#@:E(O)q&=&. 
k ;L 

Proof: Let Oi be the random variable which is one if the 
ith element of M was observed by the observer in his active 
phase, and zero otherwise. Then 0 = ci Oi and E(0) = 
ci E(Oi). Hence, it suffices to estimate E(Oi), for every i. 

For a fixed i, let ci be the ith element in M and let Mi 
denote the subset of’M consisting of the elements less than 
or equal to ci. We make the following crucial observation: 
E(Oi) can depend only on the sets Mi, H, and K. This 
is the restriction argument that was used in [Mull], and is 
easy to prove. Informally this can be easily seen as follows. 
Imagine a new observer who can only see the elements in 
Mi U H U K. Then as far as he can see, the elements in 
Mi U H U K are still chosen with a uniform randomness, and 
by the very definition of Oi, it is strictly a function of what 
happens within the universe Mi U H U K. 

First consider only the case K n M = 0. Let Ui = Mi U 

HuK. 
To estimate E(Oi), we now restrict our attention to Mi U 

H u K. 
First notice that E(Oi) =O,ifHnMi#B. Byouras- 

sumption, K and M are disjoint and H and K were already 
disjoint. Thus we need to estimate E(Oi) only when Mi, H 
and K are all disjoint; thus Ui = IUil = i + h + k. 

Now notice that ci can be observed if and only if 

1) the first h elements to be chosen from Vi, be- 
long to H. 

h! 
The probabililty of this happening is 

h 
Ui(Ui-l)“‘(U;--h+l) = (i+h+k)..:(i+k+l)’ 

2) The (h + 1)st element chosen from Vi is ci. The prob- 
ability of this happening is *j = h. 
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Hence, E(Oi) = ~i+h+~..(i+kT. 
If H II Mi # 0, E(Oi) = 0. Thus we conclude: 

E(“i) 5 (;+h+k;!..-(i+k)* 

Now we proceed by cases. 

1) h = 0, k = 0: in this case E(Oi) 5 +, hence 

E(O)=&zlnm+7, 
i=l 

where y is the Euler’s constant. 

2) h = 0, k > 0: in this case E(0;) 2 & and hence 

~(o)=~~~J~~~~=l~(l+~). 
i=l 0 

3) k=O, h>o: inthiscase 

E(Oi) < & = I&J . &. Hence 

E(O) 5 &e-t, 
i=l Cb~> 

1 O” 1 

< h+ljzO(jfr)’ c where r = h + 1, 

5 asr22, 

20° 1 

CC 

1 

= ‘“hfl 
j=O 

--j+2 i+l > 

2 

= h+l’ 

4) h > 0, k > 0: in this CSR E(Oi) 5 <i+h+,!&i+kl = 

&-&y* Hence 

where r = h + 1 (thus T 2 2), 

= - f g Ltrl(Hrl-l))(iy) ’ where r’ = r - 2, 

= (r-1) OJ mjzk j+i-1 c( -- j:r 1 
r-l 1 = 

m’(k+r-1) 

Now consider the case when K n M # 8. 
Let M’ = M - K be the relative complement of M with 

respect to K and let m’ = ]A4’]. Notice that M’, K, H are 
mutually disjoint. Let 0’ be the number of elements from 
M’ which were observed by the observer during the active 
state. Then E(0’) can be bounded as in the preceding part 
of the proof, because M’, K, and H are mutually disjoint. 

Let 0” be the number of elements from K which were 
observed by the observer during his active state. It remains 
to bound E(0”). Note that 0” 5 1, as the observer becomes 
inactive immediately after an element from K is chosen. In 
case h = 0 and k > 0, this immediately implies that E(0) 5 

l+ln l+$ 
( > 

5 l+ln(l+ji). Th e only case remaining 

is the case when h > 0 and k > 0. Fix an element c in k. 
Now note that an element c from K can be observed only if 
(but not necessarily if): 

1) The first h element chosen from aU K belong to H and 

2) the (h + 1)st element chosen from H UK is c itself. 

If 0, denotes the random variable which is one if c is ob- 
served and zero otherwise, it follows that 

E(oc)’ (k+$?.(k+l) + 
Hence 

E(0”) = c E(0,) 5 
CEK 

(k+h).:.(k+l) =+)=&* 

The rest follows because E(0) = E(0’) + E(0”). [I 

3 Algebraic segments 
In [Mull] we gave a randomized optimal, and efficient al- 
gorithm to find the partition of a plane induced by a set 
of linear segements. Now we examine what happens if the 
segments are algebraic instead, but of a bounded degree. 
There are two approaches to this problem, one is purely 
algebraic and the other is based on linear approximations to 
the algebraic segments. 

3.1 An algebraic approach 

In this section, we shall take the algebraic approach. For 
the sake of simplicity, we shall assume that the segments 
are bounded and are surrounded by a window. If there 
are unbounded segments, we can always take the window 
at %finity’. 

We have to first decide how an algebraic segment is going 
to specified in an unambiguous way. 

Let us first consider a simpler case when the algebraic 
segment in question is monotonic and bounded; we say that 
a segment is monotonic if it intersects any vertical line at 
most once. In this case, we specify the algebraic equation, 
f(z, y) = O, that the segment satisfies, We also specify, in 
addition, the two endpoints of the segment. As the segment 
is monotonic, we can also orient it so that the t coordinate 
increases in the direction of the orientation. Unfortunately, 



all this information is not always enough. For example, let 
p and q be the two extreme points of the circle where the 
tangents are vertical. Also assume that p has the smaller z 
coordinate. Now there are two segments from p to q which 
satisfy the same algebraic equation. Thus we also need to 
specify the tangential orientation of the segment at p. This 
can be done, for example, just by specifying if the segment 
is oriented upwards or downwards at p. 

We assumed above that the segment is monotonic. How- 
ever, monotonocity is not a severe restriction. Indeed, any 
algebraic curve of a bounded degree can always be broken 
down into a bounded number of monotonic segments. Let 
us see how. Assume that the curve satisfies an equation 

f(X,Y) = 0, which is of a bounded degree. We find all 
“critical’ points on the curve where the tangents become 
vertical. These points satisfy the equations f(z, y) = 0 and 

% = 0. By Bezout’s theorem, there are only a bounded 
number of solutions to this system of equations. Moreover, 
all these equations can be easily found out by forming a 
resultant R, which is a polynomial of a bounded degree in 
one variable. As R has a bounded degree, it is reasonable 
assume that its roots can be found in a bounded time. In 
practice, the roots have to be found by a numerical method, 
such as Newton’s method. Hence, to be precise we should 
also take into consideration the bit complexity of the root 
extraction. This indeed can be done, because in an algebraic 
problem such as this, we only need to approximate a root 
by calculating its first “few” bits [Canny]. For simplicity, we 
shall ignore the bit complexity issue here, and just charge 
ourselves O(1) time for the extraction of a root. So assume 
that we know all real solutions of the system f(z, y) = 0 and 
8 

f 
= 0. This gives us all critical points on the curve. But we 

so need to know how these critical points are topologically 
connected to each other. Towards this end, define the rank 
of a point a on the curve C : f(x, y) = 0 to be the num- 
ber of points of intersection between the curve C and the 
semi-infinite vertical line going upwards from a. The rank 
at 4 = (20, ys) can be found by simply evaluating the Sturm 
sequence of the function g(y) = f(xe, y) at y = ys [Waerden]. 
Such Sturm sequences were also used by Canny in his road 
map algorithm [Canny]. Once we know the rank of every 
critical point as well as its type (whether it is a left extreme 
or a right extreme) it is easy to figure out the topological 
structure by just scanning the critical points from left to 
right. Hence, we can assume hereafter that the segments are 
monotonic. 

We also need to specify how to find the points of inter- 
section of two monotonic segments R and S which satisfy 
the equations f(z, y) = 0, and g(x, y) = 0 respectively. By 
Berout’s theorem, the number of solutions to these equations 
is bounded. We find, as before, all real solutions to the 

system f(x, Y) = 0 and g(x, y) = 0. This gives us a set 
of points V of plausible solutions. Next we need to know 
which points in V lie on R and S. Let us see how we can 
find the subset of V which lies on R. We can then do a 
similar thing for S. Let re and rr be the endpoints of R 
and assume that rs has the smaller z coordinate. Define 
the rank of R at a given x-coordinate x0 to be the number 
of intersections between the curve C : f(x, y) = 0 and the 

vertical line x = x0, which lie strictly above R. Using the 
Sturm sequences as above, it is easy find the rank of R at any 
x coordinate by scanning the critical points of C from left 
to right. Now a point o = (x0, yo) in V belongs to R iff the 
rank of a coincides with the rank of R at 20. The scheme 
given here is purely theoretical. As we shall see later, in 
practice, we can do much better. 

Now assume that we are given n bounded monotonic alge- 
braic segments. All segments will be oriented in the direction 
of the increasing x-coordinate. We wish to find the induced 
partition of the plane, which is formed by passing a verti- 
cal attachment through each endpoint extending in either 
direction to a window border or another input segment. 

The algorithm is an extension of the algorithm in [Mull], 
so we shall only elaborate upon the differences. There were 
actually two algorithms given in [Mull]. The algorithm in 
this section is an extension of the one which maintains a 
trapezoidal decomposition of the window at every stage. 

We first form an initial partition GO of the window by 
passing vertical attachments extending to the window bor- 
ders through all endpoints of the input segments. All these 
vertical attachment are contractible and will contracted 
throughout the algorithm repeatedly. Starting with GO, we 
successively add the segments in a random order to get a 
succession of partitions GO, Gr , . . . , G,, where G, will be 
the partition sought. 

Shown in fig 1 is a partition G, obtained after adding 
four randomly selected segments to GO. Note how the ver- 
tical attachments through various endpoints have been con- 
tracted. Also note that each face of partition has a face- 
length less than or equal to four. This is done by passing a 
contractible vertical attachment through every point of in- 
tersection encountered. Because these vertical attachments 
are contractible, they will be contracted in the course of 
the algorithm, just like any other contractible attachment. 
Finally, note that the partition GJ also contains vertical 
attachments through the endpoints of the segments not yet 
added. In the fig. 1, these are shown as dotted. 

Remark: It is actually not necessary to maintain the 
points of attachment of the vertical segments through the 
endpoints of the segments not yet added. For example, con- 
sider the trapezoid pqrs in fig. 1 which contains endpoints as 
and al. The segments through the points se and al have not 
been added so far. In the figure the trapezoid pqrs has been 
explicitly decomposed further by the vertical attachments 
through the points as and or. In practice, this explicit 
decomposition is not necessary. Indeed, we only need to 
maintain the representation of pqrs together with a list of 
the interior endpoints of the unadded segments ordered by 
their z-coordinates. This representation is more efficient. 
However, for the sake of conceptual simplicity, we shall as- 
sume that all decompositions are explicit. The same remark 
is also applicable to all other algorithms to be discussed in 
this paper. 

The inductive step of adding S = Sk+, to Gk is achieved 
by 1) locating the first region & in Gk that S begins to 
traverse, 2) travelling along S in Gk, by repeatedly doing 
face traversals and face transitions, 3) updating Gk as we 
travel. 
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First consider the face traversal. Shown in fig 2a, is a face 
R of Gk which the segment S has entered through a point ao. 
We wish to find the ‘next” point al on the border of R that 
S intersects. When all segments are linear, R is convex, and 
hence, apart from as, there a unique point of intersection 
between S and the border of R. When the segments are 
algebraic, this need not be the case in general. Hence, using 
the procedure given in the begining of this section, we find 
all points of intersection between S and every border of R; 
remember that R has at the most four borders. Among 
these points of intersection, we select the one which is next 
to as, in its z-coordinate. This point is 01. (In practice, 
we do not need to find all points of intersection between 
S and a border of R. If one using Newton’s method, we 
can use as an initial guess a point close to ae.) Note that 
we can return to the same face R of the old partition Gk 
several times; see fig 2a again. If we update Gk as we travel 
through it, this should cause no problem. It is important for 
this reason, however, that the update proceed concurrently 
with the travel. Monotonicity ensures that at no time in 
our travel we need to contract a vertical attachment added 
during the preceding part of our travel along S. 

Next consider a face transition. Fig 2b shows S, the seg- 
ment being added, about to leave the face Re of GI, at point 
w. Suppose that the point of exit u lies on an input segment 
T. (If w lies on a vertical attachment, the case is easier.) We 
travel left on T until we meet the vertex a which is visible on 
the other side of T; note that travelling “left” makes sense 
because T is monotonic. At a we turn around, and travel 
right until we meet S again on the other side of T. When 
we do so, we are in the face RI that S enters next. We are 
now ready for the next face traversal. 

We travel in Gk from the initial point of S to its endpoint, 
using repeated face traversals and face transitions. As we 
travel, we update Gk. This consists in splitting the faces of 
Gk that are traversed by S and appropriately contracting 
the vertical attachments that are intersected by S. 

The partition G, obtained at the end of the above algo 
rithm, is precisely partition that we sought. 

The analysis of this algorithm is very similar to the anal- 
ysis of the algorithm for linear chains, to be considered next. 
Hence, we shall merely state the final result. 

Theorem 2 The expected running time of the above al- 
gorithm is O(d”(tn + nlogn)), where m is the number of 
intersections, n is the number of segments, and d is a bound 
on the degrees of the segments. 

3.2 Linear chains 

In this section we shall approach the problem concerning 
algebraic segments in a different way. This approach is based 
on linear approximations. We shall approximate every alge- 
braic segment by a chain of linear segments. The problem 
now is to find the planar partition induced by a given set 
of linear chains. As every chain is meant to represent an 
algebraic segment of a bounded degree, we will assume, in 
this approach, that its degree is bounded; the degree of a 
chain is defined to be the maximum number of intersections 

between the chain and a straight line. For the sake of sim- 
plicity, we will also assume, in addition, that every chain is 
monotonic, i.e. it intersects any vertical line at most once. 
This assumption can be readily removed. Note that we are 
not making any assumptions about the size of a chain, i.e. 
the number of linear segments in a chain. Let n be the 
number of linear chains, and let N be the sum of the sizes 
of all chains. In this section, we give an 0( N + n log n t m) 
algorithm to find a partition of the plane induced by the 
chains, where m is the number of intersections of the chains. 

The algorithm is an extension of the algorithm in [Mull], 
so again we shall only elaborate upon the differences. 

Each chain has two endpoints and possibly many inter- 
mediate points, which will be called link points. We form 
the initial partition Go, by passing contractible vertical at- 
tachments extending to the window borders, through the 
endpoints of the chains. Note that GO does not contain 
vertical attachments through the link points. Now we succeg 
sively refine Go, by throwing the chains in a random order, 
so as to get a succession of partitions Go,. . . , G,. G, will 
be the partition sought. 

Consider the (k + 1)st refinement which consists in adding 
a randomly chosen chain S = Sk+1 = (so, 51,. . . , sk) to Gk, 
so as to get Gk+l. We locate the initial face RQ that S starts 
traversing, by going to the vertical attachment associated 
with so. Now we travel from SO to sr in Gk and update it 
precisely as in @full]. The only difference comes when we 
arrive at si, which can lie in the middle of some face R; 
see fig 3a. In this case, we split the face R by passing a 
contractible vertical attachment through si which extends in 
either direction to the border of R. Being contractible, the 
attachment will contract later just like the other contractible 
attachments. Having done this, we proceed to 92, and so on. 
Note that we can visit the same face R of the old partition 
Gk several times (see fig 3b), but if we update Gk, ss we 
travel, this should cause no problem. 

For this algorithm, the following two theorems hold. 

Theorem 3 The expected number of face splits is 
O(nlog n t N t m), where m is the number of intersections 
of the chains. The constant within 0 is small and does not 
depend upon the degree bound d. 

Theorem 4 The expected number of vertices visited during 
the face transitions is O(d’(n log n + N + m)), where d is the 
degree bound. 1f the same vertex is visited during many face 
transitions, then every visit is counted. 

Theorem 5 The average facelength of the partition re- 
mains less than or equal to 4 throughout the algorithm. 

Just as in [Mull], Th eorem 3 and Theorem 4 by them- 
selves do not guarantee that the expected running time of 
the algorithm is O(n log n + N + m), because the facelength, 
at least theoretically, is unbounded. Theorem 5 indicates 
that this should not be a problem in practice. One can get 
around this problem, as in [Mull], by passing a contractible 
vertical attachment through every point of intersection en- 
countered in the algorithm. For this new algorithm, Theo- 
rem 3 and Theorem4 still hold. As every face formed in this 
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algorithm has length 5 4, it follows that the algorithm is 
O(n log n + N + m). In the following analysis we shall only 
analyze this new algorithm for linear chains. The proof of 
Theorem 5 is similar to the proof of the analogous theorem 
for the planar partition algorithm in dull]. 

If t is an endpoint, a link point, or a point of intersection, 
we denote by Ft the number of times the vertical attachment 
through t is contracted after it came into existence. 

The total number of face splits F = m + N + c Ft. Thus 
we only need to estimate E(Ft). For a vertex t, define nt 
to be the vertical spanlength at 1, i.e. the number of chains 
that intersect the imaginary vertical line through t. The 
following lemma proves Theorem 3. 

Lemma 1 1. If t is an endpoint, then E(Ft) is O(log nt). 

2. If 1 is a point of intersection, then E(Ft) is O(1). 

3. If t is a link point, then E(Ft) is O(1). 

ProOf 
Case 1, t is an endpoint: Let FF (F:) be the number 

of times the upper (lower) part of the vertical attachment 
through t is contracted in the course of the algorithm. We 
will only estimate E(FF); E(F:) can be estimated similarly. 
Let M be the set of chains which intersect the imaginary 
semi-infinite vertical line going upwards from t. Because 
of the monotonicity, each chain can intersect this line only 
once. Hence, the set M can be linearly ordered according to 
the order of the associated points of intersection, with the 
order increasing upwards. Let H and K be empty sets. The 
Lemma follows by applying Theorem 1 to the sets M, H 
and K. 

Case 2, t is a point of intersection of chains RI and 
R2: 

We proceed precisely as above. The only difference is that 
now we let H = {RI, Rz} instead. 

Case 3, t is a link point of a chain R: 
Let H = (R}, and proceed as before. [I 

Now we turn to estimating the cost of face transitions. 
A face transition across a vertical attachments is achieved 
in a constant time. Moreover, a face transition across a 
vertical attachment is always accompanied by a contraction 
(splitting) of that attachment. As we have already estimated 
the expected number face splits, we need not worry about 
the face transitions across vertical attachments anymore. We 
estimate the expected cost of the rest of the transitions by 
amortization. More precisely, we shall distribute this cost 
among the endpoints and the link points of the chains, as 
well as the points of intersections of the chains. Then we only 
need to estimate the cost charged to a fixed endpoint, link 
point, or a point of intersection. Towards this end, we first 
define, as in [Mull], what it means for a point of attachment 
p, lying on a segment T of some input chain, to witness a 
face transition when a new chain S is being added. Notice 
first that the number of intersections between T and S is 
bounded. Hence, during the addition of S, only a bounded 
number of face transitions can occur across T. Fix a point 
of attachment p on T, and define the right side and the 
left side of T with respect to p arbitrarily. We say that p 

witnesses, on its right side, a face transition along S and 
across T if 1) S intersects T, 2) there is no chain C, added 
before S, that intersects T on the right side of p and before 
S (more precisely, between p and the nearest point, on the 
right side of p, where S intersects T). Note that every point 
of attachment that is visited during a face transition of S 
across T is a witness to the transition, but not conversely. 
Moreover, the number of transitions of S across T is bounded 
by d, where d is the degree bound. This means that, if p is 
a witness to a transition of S across T, it can be visited 
at the most d times during the face transitions along S. If 
c (5 d), is the number of intersections between S and T, 
all face transitions of S across T can be carried out in time 
O(cw+c), where w is the number of points of attachment on 
T which were the witnesses. The cost O(c) can be charged 
to the c new points of intersection formed. Hence, we only 
need to estimate the expected sum of w over all transitions. 
If t is an endpoint, a link point, or a point of intersection, let 
Qt be the number of face transitions witnessed by an either 
end of the vertical attachment through t, after it came into 
existence. Theorem 4 now follows from the following lemma. 

Lemma 2 1. If t is an endpoint, then E(Qt) is O(log nt). 

2. If t is a point of intersection, then E(Qt) is O(1). 

3. If t is a link point, then E(Qt) is O(1). 

Proof. 
Case 1, t is an endpoint of a chain: 
Let & be the set of chains which intersect the infinite 

vertical line T through t. For every S E &, place an observe 
od at the (unique) intersection of S with T. Fix S. Let Mf be 
the set of chains which intersect S to the left of o, (looking 
from t). Mi is defined analogously to be the set of chains 
intersecting S to the right of 0,. Let Hs = {S}. Let K, be 
the set of chains intersecting T between 0, and t. We linearly 
order Mf by the rightmost points of intersection of chains 
in Md with S. More precisely, a chain R E Mf is defined to 
be less than R’ E Mf iff the rightmost point of intersection 
between R and S is to the right of the rightmost of point of 
intersection between R’ and S. Thus the ordering increases 
along S away from the observer o, in the left direction. 

Define the active state of the observer o., as in Theorem 
l,bylettingM=M:, H=H,andK= K,. Letk,=]K,], 
Let O’, be the number of elements observed by o. during his 
active state. 0: is defined analogously. From Theorem 1, it 

follows that E(Of) is 0 (f) . Similarly E(O:) is 0 (r> . 

Let 0, = Of, + 0: be the iumber of elements in Mi U bl 

observed by od along S in either direction, during his active 

state. Then E(0.) is 0 & . 
( > 

Now it is easy to see that 

Qt = I& 0,. Hence E(Ql) = O(xaE+c f) = O(log nt). 

Case 2, t is a point of intersection of &ah RI and 
R2: 

Proceed as above, but now let H, = {S, RI, Rz). From 

Theorem 1, it follows that E(0,) is 0 (;) . Hence E(Qt) = 
8 

OE 
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Case 3, t is a link point of a chain R: 
Now let HI = {S, R}. From Theorem 1, it fylows 

that E(0,) is 0 
( ) F’ 

a 
Hence WQt) = O(CsE+t ~1 = 

O(l). 0 

Remark: The analysis of this section, when specialized 
to the case of segments, instead of the chains of segments, 
gives a somewhat simpler and a more direct proof of the 
optimality of the algorithm in [Mull]. 

4 Virtual clipping 

The planar partition algorithm in [Mull] takes O(m+n log n) 
time, where n is the number of input segments, and m is the 
number of intersections. We are interested in knowing if 
the second term can be made almost linear in n in prac- 
tice. Clearly if m is very large compared to nlog n, this 
is worthless. But if m is not that large, aa is often the 
case in computer graphics, this is clearly useful. We shall 
see how this can be achieved by using a form of clipping, 
which we shall call virtual clipping. In this section, we shall 
describe the algorithm that results when virtual clipping is 
incorporated in the algorithm of [Mull]. 

But first let us recall the conventional clipping. This is a 
form of divide and conquer which is often used in practice. 
For the planar partition problem, the conventional clipping 
can be used as follows. 

1) divide the window into subwindows, 

2) “clip” the input segments against the subwindows, 

3) solve the subproblem for each subwindow. If the size 
of the clipped input for a subwindow is below a cer- 
tain threshold use “the basic algorithm” to solve the 
subproblem, otherwise recur. 

Two factors determine the efficiency of the resulting algo- 
rithm: 1) the cost of clipping; 2) the cost of the basic al- 
gorithm. Indeed the threshold size in the third step has to 
be chosen judiciously, so that the two costs are balanced. 
The cost of conventional clipping per window W is at least 
O(a.n, + b), where n w is the number of endpoints of the 
input segments within W, & is the number of intersections 
of the input segments with the borders of W, and a is the 
search time required to locate a subwindow containing a 
given endpoint of a segment. In practice, one can use some 
kind of a bucket search to locate a subwindow, hence a is 
almost a constant. Hence the cost of conventional clipping 
per window W is O(& + n,) in practice. The cost of 
O(n,) is unavoidable. The cost O(&,), on the other hand, 
is undesirable, and constitutes a major bottleneck in the 
conventional clipping. The reason is that the number of 
intersections between the input and all subwindow borders 
becomes large quite soon, as one increases the number of 
subwindows. 

The virtual clipping introduced in this section clips the 
input against any subwindow not actually but “virtually”. 
For all practical purposes, the cost of virtual clipping per 
window W is O(n, + log(l + &,)). This clearly shows why 

it is preferable to the conventional clipping. Finally, our 
“basic algorithm” will be none else but the planar partition 
algorithm in [Mull]. We have already seen in [Mull] that it 
is optimal and very efficient. This makes the combination 
of virtual clipping and the basic algorithm of [Mull] a very 
efficient algorithm in practice. 

Incorporation of virtual clipping in the basic algorithm 
of [Mull] turns out to be very natural. We shall describe 
now the algorithm that results after this incorporation. AS 
to be expected, it does not clip the input segments against 
the subwindows right in the beginning, but only when it be- 
comes necessary. In the begining of the algorithm, we divide 
the window, hierarchically, based only on the distribution 
of the endpoints of the input segments. This subdivision 
of the window can be done recursively, until the number 
of endpoints in every subwindow is below a certain thresh- 
old. Recall that the conventional clipper will recursively 
clip a subwindow further if the number of input segments 
intersecting the subwindow is larger than a threshhold. The 
number of input segments intersecting a given subwindow 
can be much larger than the number of endpoints contained 
within the subwindow. Because our clipping is virtual, we 
can not base our decisions on the number of input segments 
intersecting a subwindow. Indeed, we can not afford to 
know this number! But, let us see why it is justified, in 
our case, to make the decisions regarding the number and 
the locations of the subwindows solely on the distribution of 
the endpoints. There are three reasons for this. First, our 
basic algorithm, which is the planar partition algorithm in 
[Mull], discovers every point of intersection t of the input 
segments in a constant (amortized) time regardless of the 
size of the window containing t; Hence, as far as the decision 
regarding the subwindows is concerned, one does not need 
to worry too much about the time spent in detecting the 
intersections of the input segments. Secondly, the running 
time of the virtual clipper will depend only logarithmically 
on the flux through any subwindow. Thirdly, if we disregard 
the time spent in detecting the intersections of the input 
segments, the time spent “within” any subwindow will de- 
pend, in the amortized sense, only on the number of input 
endpoints contained within that subwindow. All this makes 
it feasible to divide the window right in the beginning of the 
algorithm, solely on the basis of the distribution of the input 
endpoints. 

So assume that we are already given a subdivision of the 
main window. Theoretically, for an arbitrary input, a sub- 
division of the main window can always be found recursively 
in O(n log n) time, so that the number of endpoints within 
every subwindow of this division is below a required thresh- 
old. In practice, invariably, some kind of a bucket sort can 
be used, which should take almost linear time. In the rest of 
the section, we shall make no assumption about the window 
subdivision or the input. We simply assume that a window 
subdivision is given to us, and that we are also told which 
endpoint belongs to which subwindow. Other than this, we 
assume nothing regarding the input. In fact, we do not even 
assume that the number of endpoints within a subwindow 
is below any threshold. Obviously better the subdivision of 
the window, better the running time. But the lack any extra 
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assumptions will clearly show us how robust our algorithm 
is with respect to the locations of the clipping subwindows. 

The algorithm is an extension of the planar partition al- 
gorithm in [Mull], and has the same outline: we first form 
an initial partition Go, and refine it successively by adding a 
randomly chosen input segment to get a succession of parti- 
tions, GO , . . . ,G,. We shall elaborate upon the differences. 

The first major difference comes right in the formation of 
initial partition Go. In the basic algorithm of [Mull], the 
initial partition is formed by passing a vertical attachment 
through every endpoint which extends in either direction 
upto the main window border. Now we shall form Go, by 
passing a vertical attachment through every input endpoint 
1, which extends in either direction up to the borders of 
the subwindow containing t. Fig 4 shows a subdivision 
of the main window into seven subwindows, based on the 
distribution of the endpoints in an input. The resulting 
initial partition Go is also shown. The window borders are 
thickened and we shall follow the same convention in other 
figures. 

After this the algorithm proceeds as in [Mull]: start- 
ing with GO we successively refine the current partition by 
adding a randomly chosen segment to it. The refinement of 
Ga due to the addition of a segment S = Sk+1 = (se,sl) 
consists in: 1) locating the first face & of Gk that S starts 
traversing, by using a pointer to the vertical attachment 
through SO; 2) travelling from se to sr in the partition by 
doing face traversals and face transitions repeatedly; 3) up 
dating the partition as we travel. The only additional thing 
that needs to be specified is what happens when one passes 
through a subwindow border. In fig 5a, the new segment 
S =-Sk+1 crosses the border between windows WI and Wz. 
It is clear that the part of the border just to the right of S 
can be erased (contracted) without violating the convexity 
of the resulting partition. The resulting partition is shown in 
fig 5b. A similar thing can be done if the part of the border 
immediately to the left of S can be contracted. Shown in 
fig 5c is a situation where no contraction can be carried out, 
as that will destroy the convexity of the partition. Note that, 
because of our rules for contraction, the situation in fig. 5d 
cannot arise. Also, there is one exception to the above rule 
for contraction. We do not contract a window border if this 
involves destroying (or removing) a window corner. Thus, 
in fig. 5e, we contract only one part (see fig. 5f). 

It also becomes necessary to modify the procedure in 
[Mull] for a face transition, when the transition takes place 
across a subwindow border. In fig. 6 the new segment S is 
about to leave a face in the window WI and enter a face in 
the window Wz. The procedure in (Mull] will find the face 
of Wz that S enters, as follows (see fig 6): travel left on the 
border until we reach the first vertex d which is visible on 
the other side of the border. Here turn around, and travel 
right until we reach S again on the other side. When we do 
so, we are in the correct face. The problem here is that we 
end up visiting too many points of attachment, especially 
the ones in the windows W3, Wr, Ws, One can get around 
this difficulty as follows. Recall that by our definition of 
visibility in [Mull], the window corner a is invisible in the 
face R. Now we shall force a to be visible in R. This is done 

by simply including a in the representation of the face R. 
A similar thing is done for every window corner, which is a 
t-junction. Coming back to the transition of S across the 
border between WI and WZ, it is clear that we can now turn 
around at the corner a, thereby visiting only the points of 
attachments on the borders of WI and Wz. 

The rest of the algorithm, is as in mull], hence we shall 
not discuss it any further. However, a few remarks are in 
order. Even when the input segment S lies strictly within 
a window, we can %tray” outside the window during our 
travel along S. Fig 7 shows straying during one typical face 
transition during a journey along S. Such straying cannot be 
avoided. Indeed, that is an unavoidable part of the virtual 
clipping. Yet, our analysis shows that, in the amortized 
sense, the expected work done “within” any subwindow is 
close to the expected work that would be done even if the 
input were actually clipped along the window border. Thus 
we get the full effect of the conventional clipping at a nominal 
overhead. 

Remark: Virtual clipping can also be used in conjuction 
with our algorithms for algebraic segments and linear chains. 
In fact, it can be used in any problem that benefits from 
the conventional clipping. These include the problems in 
computer graphics. 

The analysis of virtual clipping is somewhat complicated. 
It can be found in ~ul4]. Here we shall merely state the 
final result. 

For t, which is an input endpoint or a point of intersec- 
tion of input segments, let n; denote the number of input 
segments which intersect the imaginary vertical segment ex- 
tending upwards from t to the border of the subwindow 
containing 1. We define nf similarly with respect to the 
bottom border of the window containing t. We shall call 
nt = n: + nt the vertical spanlength at t. For a window W, 
let &, denote the number of input segments intersecting the 
left border of W. Note that this border is going shrink in the 
course of the algorithm, but &, is defined with respect to 
the initial complete left border of w. We define &,, q$, &, 
for the right, upper, and bottom borders similarly, Let 

dw = df, + &, + 4:: + &, be the total flux through W. 
For a given window W, let raw be the number of endpoints 
within W, and let m, be the number of intersections of the 
input segments within W. 

It turns out that the total cost (i.e.the running time) of 
the algorithm can be amortized in such a way that if C,,, is 
the total cost (of face splits as well as transitions) charged to 
the endpoints, and the intersections of the input segments 
within W, as well as to the corners of W, then 

Theorem 6 E(C,) = 

+0 (n, + mw + log(1 -I- nt)) , where t ranges over the end- 
points within W. The expected running time of the algo- 
rithm is obtained by summing E(C,) over alI windows. 

Note that O(m,+n,+~tEWlog(f+nt)) is precisely the 
expected running time of the basic algorithm in [Mull], if we 
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were to actually clip the input against the subwindow W and 
then run this basic algorithm on the clipped input. (This 
excludes the cost of actual clipping.) The remaining terms 
in the expression for E(C,) give the overhead of virtual 

clipping. Note that s is the ratio of a horizontal flux 

and a vertical flux. For a square window, the two flux quan- 
tities should be comparable. Hence, the logarithmic ratio of 
the horizontal and the vertical flux, when averaged over all 
endpoints within the window W, is very close to a constant. 
This means that, for all practical purposes, the overhead 
of virtual clipping per window W is O(log(1 + &,) + n,). 
In contrast, the overhead of the conventional clipping per 
window W is O(r& + n,). This clearly shows why virtual 
clipping is preferable to the conventional clipping. 

5 A planar point location algo- 
rit hm 

As an application of virtual clipping, we will give an efficient 
planar point location algorithm. The point location problem 
is defined as follows. We are given a planar graph G, not 
necessarily connected. We have to preprocess the input and 
build a search structure such that given a query point p, we 
can quickly locate p within G. 

Assume that the input graph G is surrounded by a win- 
dow. Subdivide the window (recursively, if necessary) into 
many “buckets” or subwindows, such that each subwindow 
contains only a constant number of input points. Now 
run the algorithm of the last section. This builds a pla- 
nar partition induced by G. But this planar partition also 
has in addition, the corners of all subwindows or buckets 
embedded in it. This turns out to be useful in answering 
a query. Given a query point p, we first locate it in the 
appropriate bucket (subwindow), using a bucket search; in 
practice this will take only a constant time. Now choose 
any corner u of this subwindow, which is already embedded 
in the partition, and travel from u to p precisely as in the 
partition algorithm, by repeatedly doing face traversals and 
face transitions. In practice, this should again take only 
a constant time; Using the terminology of Theorem 6, it 
follows that the preprocessing time is 0 (n, + log(1 + nt)) + 

o cc, log(l +-kj + C, frog (s j + log (-gig) jl 
where W ranges over all windows, and-t ranges’over a.li knd- 
points in G. Here nt is the vertical span length at t defined 
with respect to the window W containing t and 4; is the 
flux through the upper border of the window W containing 
t; & is similarly defined. (Note that in Theorem 6, m,, 
the number of intersections of the input segments within 
a window W, is now set to zero.) In the worst case, this 
preprocessing time is O(nlogn), where n is the number of 
vertices in G. By what we have discussed in the last section, 
it is clear that the dominating term in the running time 
expression is c, log(1 + ) nt , w h ere t runs over all vertices of 
G. Remember that nt is the number of edges in G that inter- 
sect the imaginary vertical segment through t extending only 
upto the borders of the subwindow containg t. By choosing 
the subwindows sufficiently small, one can ensure that this 

term too becomes almost linear in n. Thus, in practice, the 
algorithm should run in linear time. The space requirement 
of the algorithm is always O(n). Though the search time 
should be O(1) in practice, no theoretical O(log n) guarantee 
can be given. 

We shall compare our algorithm with the one based upon 
conventional clipping [Edah], which is reported to be as 
fast, and sometimes faster, than other planar partition al- 
gorithms. For this conventional clipping algorithm no the- 
oretical guarantee can be given even for the preprocessing 
time or the storage requirement-they could be as high as 
O(n3i2). But even in practice, the storage and the time 
requirement of the virtual clipper should be better, because 
it detects and retains only a few points of intersection with 
the window borders. This also makes it possible to choose 
the subwindows quite small, so that the number of input 
points within any given subwindow is a small constant. In 
turn, this makes it unnecessary to build any elaborate search 
structure within a subwindow. Conventional clippers do not 
have this freedom. Unlike the algorithm of [Edah], our al- 
gorithm detects the point of intersection of the edges in the 
input graph G, if it is not actually planar. This makes it 
more robust. 

6 Concluding reinarks 

In [Mu14], we also give one more, completely different, al- 
gorithm to find the planar partition induced by a set of 
linear segments. A novel feature of this algorithm is that 
it combines randomization with a topological sweep, as in 
[Guib]. The theory of probabilistic games, as used in this 
paper, can be extended much further. For this extension 
and the related applications see [Mu121 and [Mu13]. 
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