
Asynchronous Distributed Genetic Algorithms with Javascript and
JSON

Juan Julián Merelo-Guervós, Pedro A. Castillo, JLJ Laredo, A. Mora Garcı́a, A. Prieto

Abstract— In a connected world, spare CPU cycles are up
for grabs, if you only make its obtention easy enough. In this
paper we present a distributed evolutionary computation system
that uses the computational capabilities of the ubiquituous web
browser. Asynchronous Javascript and JSON (Javascript Object
Notation, a serialization protocol) allows anybody with a web
browser (that is, mostly everybody connected to the Internet) to
participate in a genetic algorithm experiment with little effort,
or none at all. Since, in this case, computing becomes a social
activity and is inherently impredictable, in this paper we will
explore the performance of this kind of virtual computer by
solving simple problems such as the Royal Road function and
analyzing how many machines and evaluations it yields. We will
also examine possible performance bottlenecks and how to solve
them, and, finally, issue some advice on how to set up this kind of
experiments to maximize turnout and, thus, performance. The
experiments show that we we can obtain high, and to a certain
point, reliable performance from volunteer computing based on
AJAJ, with speedups of up to several (averaged) machines.

I. INTRODUCTION

Application–level networks (ALNs), are configured as a
set of clients/servers (servents) that can provide their spare
CPU cycles by means of a downloadable application, estab-
lishing a distributed computation network which can provide
ad hoc computational power. Some ALN like SETI@Home
have been quite successful [1], creating a virtual computer
that has proccesed a high number of teraflops, while other
experiments such as Popular Power (and most others, in fact)
have not [2].

The key feature of these application–level networks is the
simplicity of use: we believe that the best way to obtain
the participation of as many users as possible is to make
it as simple as possible. In particular, it will be easier if
they do not need to download a special application (such
as a screen-saver) to participate, as is needed in BOINC,
the core of SETI@Home. For this reason, we are exploring
the use of applications that are commonly installed in the
user’s computer, such as the web browser, which is available
even in PDAs and some cellular phones1. Moreover, most
browsers natively include a JavaScript interpreter [3], [4], [5]
or virtual machine. JavaScript is an interpreted language2,
initially proposed by Netscape, and later adopted as an
ECMA standard [6], [7], [8], [9]. In this way, most browsers
are compatible, at least at a language level (not always at

The authors are with the Departamento de Arquitectura y Tecnologı́a
de Computadores, University of Granada (Spain), corresponding email
jj@merelo.net

1Whose computing power is similar to four-year-old desktop machines
2Which has nothing to do with Java, other than the name and its syntactic

similarity

the level of browser objects, where there exists a reasonable
compatibility, anyway). Most browsers also include elements
such as a Java virtual machine and a Flash plugin, which,
with ActionScript, has more or less the same capabilities.
However, there are several disadvantages to these: they might
or might not be present (they are not native), they are
noisy in the sense that, since they act as plugins, their
execution is always noted by the user, their programs are
more heavyweight than simple text code, and, finally, its
integration with the browser is more awkward than the
seamless integration that JavaScript offers.

By itself, an interpreted languaje is not enough for creating
a metacomputer if there is no way to convey information
back from the client to the server in a seamless way. The
ability to use the virtual machine included in browsers for
distributed computing appeared with the XmlHttpRequest
object, which allows asynchronous petitions to the server,
in what has been called AJAX, Asynchronous JavaScript
and XML [10]. AJAX is just one of the possible ways
to perform asynchronous client-server communication, the
others being AJAJ (Asynchronous Javascript and JSON), and
remoting using applets or embedded objects. However, it is
quite popular, and a wide user base and documentation is
available for it, using any of these asynchronous client/server
communication protocols. The traditional client/server model
becomes then more egalitarian, or closer to a peer to peer
model, since a bidirectional communication line appears: the
browser can make calls to the server, do some computation
and later send the results to the server.

AJAX (and AJAJ, which differ only in the way data
is serialized) works as follows: the XmlHttpRequest is
provided with a request to the server and a pointer to a
callback function. The request generates an event, which is
asynchronously activated when a reply is received making
use of the callback function. Following this approach the
browser is not locked, providing a way to program appli-
cations that are similar to the ones used at the desktop, in
the sense that they do not have to wait for the application
response to be loaded and rendered on the screen every time
a request is made. It also means that a user clicking on the
Submit button is no longer needed to initiate communication
with the server; any JavaScript thread can do so, with
the constraint that the only server they can communicate
with is the one that hosts the page in which the script is
included. On the other side, this provides a way to use the
browser for application level networks that create distributed
computing systems, since the request-response loop does not
need the user participation in a fashion very similar to any

1372

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

other distributed computing application; these ALN can be
controlled from the server with any programming language.
Of course, it can also be combined with other distributed
programming frameworks based on OpenGrid [11] or other
distributed computing paradigms.

We previously used Ruby on Rails for making this kind
of distributed AJAX application [12]; however, performance
and scaling behavior were not too satisfactory mainly for
two reasons: the nature of the Ruby on Rails server, which
required the setup of a load-balancing server, and the (prob-
ably determinant) fact that part of the genetic algorithm
was done on the server, with a low degree of paralellism
and thus a high impact on performance. Latest experiments
(after publication of that paper) yielded a maximum of 40
chromosome evaluation per second3.

In this paper, following the same concept of distributed
evolutionary computation on the browser via AJAX, we have
redesigned the application using Perl and PostgreSQL (on
the server) and Javascript, as before, on the client, and re-
named it AGAJAJ (pronounce it A-gah-yai), which stands for
Asynchronous Genetic Algorithm with Javascript and JSON;
in this case, the genetic algorithm (solving the well known
Royal Road problem) is carried out only on the clients, with
the server used just for interchange of information among
them. We will perform several experiments in which clients
donate computing power by just loading a web page to
find out what kind of performance we can expect from this
kind of setup, from the number of machines that will be
made available by their users to the number of evaluations
each one of them can perform; in these experiments, we
have improved two orders of magnitude the performance
achieved in the previous experiments which used Ruby on
Rails, and also the number of concurrent machines available
to perform them, showing that this kind of setup is ready to
take more computing-intensive experiments without the need
of an expensive server setup.

This paper follows our group’s line of work on distributing
evolutionary computation applications, which has already
been adapted to several parallel and distributed computing
paradigms (for example, Jini [13], JavaSpaces [14], Java
with applets [15], service oriented architectures [16] and P2P
systems [17], [18]).

Evolutionary computation is quite adequate for this kind of
distributed environment for several reasons: it is a population
based method, so computation can be distributed among
nodes (via distribution of population) in many different
ways; besides, some works suggest that there are synergies
among evolutionary algorithms and parallelization: isolated
populations that are connected only eventually avoid the
loss of diversity and produce better solutions in fewer time
obtaining, in some cases, superlinear accelerations [19].

Of course, with a suitable work division method, many
other algorithms could be adapted to browser-based dis-
tributed computation; however, in this paper will solve only
genetic algorithms, and concentrate on raw performance,

3The published figure was even lower.

rather than algorithmic behavior.
The rest of the paper is organized as follows: next section

concentrates on the application of volunteer/involuntary com-
puting to evolutionary computation; the setup is described in
Section III. Experiments and results are shown in Section IV
and discussed in V, along with future lines of work.

II. STATE OF THE ART

So called volunteer computing [20], [21] systems are
application-level networks set up so that different people can
donate CPU cycles for a joint computing effort. The best
known project is SETI@home4, which, from the user’s point
of view, is a screen-saver which has to be downloaded and
installed; when the user’s CPU is not busy it performs several
signal analysis operations. Some companies related to volun-
teer computing, such as Popular Power (and others; they are
referenced, for example, in [22]) did some experimentation
with Java based clients, but none has had commercial suc-
cess; on the other hand, the SETI@Home program has been
open-sourced and extended as the BOINC (Berkeley Open
Infrastructure for Network Computing) framework [23]. This
kind of volunteer computing has been adapted to evolutionary
computation in several ocasions, using frameworks such as
DREAM [24], which includes a Java-based virtual machine,
GOLEM@Home, Electric Sheep [25] and G2-P2P [26]. Both
approaches acknowledge that to achieve massive scalability,
a peer to peer (P2P) approach is advisable, since it eliminates
bottlenecks and single points of failure.

There are mainly two problems in this kind of volunteer
networks: first of all, it is important not to abuse the CPU
resources of volunteers; secondly, a sufficient number of
users is needed in order to be able to do the required
computation, which can be a problem on its own if there
are too many of them, bringing the network, or at least the
solution-collecting node, to its knees. A third problem is that
performance prediction is difficult when neither the number
of participants nor their individual node performances are
known in advance. Finally, fault-tolerance [27] and cheating
[28] are also important issues; if the environment is compet-
itive, or any single computation is important, they will have
to be taken into account.

In any case, we believe that the best way to obtain
a good amount of users is to make it easy for them to
participate, using technologies available in their computers,
as the browser is. In fact, some suggestions were published
(for example, the one from Jim Culbert in his weblog [29],
and in some mailing lists), and, besides our own [12], there
have been some recent papers and reports on similar setups.
For instance, W. Langdon has been running for some time
an interactive evolution experiment using Javascript in the
browser [30], which was mainly intended for achieving high
diversity in a fractal snowflake design than high performance.
Even more recently, Klein and Spector [31] present a system
based on the Push3 language, which is compiled to JavaScript

4See http://setiathome.berkeley.edu/ for downloading the
software and some reports.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1373

Fig. 1. Experiment running on two different browsers (Firefox and Epiphany) in the same machine. User interface is written in Spanish, since in this initial
experiment was addressed to audience speaking that language. The colored (or gray-scale) horizontal bar is a graphical representation of the chromosome,
with green (darker shade) standing for 1 and red for 0. The inset windows, which shows the experiment running on the Epiphany web browser started in
second place, and thus, the number of generations run so far (Generacion) is lower, although the state of the best solution is almost the same.

in the browser. This system would be the closest to what we
are presenting in this paper.

The proposed approach could also be considered as par-
asitic computing since, as stated in Section I, the only
participation from the user will be to load a web page and
click on a button; in fact, any AJAX-based could use these
resources without his consent (and, in any case, it would be
desirable to run without causing much trouble). The concept
was introduced by Barabási in [32], and followed by others
(for instance, Kohring in [33]). In that work they proposed
to use the Internet routers to compute a checksum by means
of a set of specially crafted packets, whose aggregated
result would be used to solve the SAT problem. Anyway,
although the concept is interesting, there seems not to be a
continuation for this work (at least openly), probably due to
its inherent dangers (as analyzed in a paper by Lam et al.
[34]).

The virtual machine embedded into the browser provides
a way to easily do that kind of sneaky/parasitic computing,
but JavaScript faces the handicap of being an interpreted
language, which means that the efficiency of different im-
plementations varies wildly. Moreover, it is not optimized
for numerical computation but for object tree management
(the so called DOM, document object model) and strings.
Nevertheless its wide availability makes us think about
considering it.

III. METHODOLOGY AND EXPERIMENTAL SETUP

For this experiments we have designed and implemented
a client-server program written in Perl (server-side) and
Javascript (client-side), communicating using JSON via the
XMLHttpRequest object. This object requires than the web-
site and the AJAX requests are served from the same host,
which is a constraint. Code for both is available, under

the GPL, from http://rubyforge.org/projects/
dconrails/.

The algorithm runs on the client for a fixed number of
generations, as shown in Figure 1; running parameters are
set from the server and are downloaded from it along with
the webpage from which the experiment is run. After the
preset number of generations, a request is made to the server
with the best individual in the last generation. The algorithm
stops and waits for the answer from the server. The server
receives the request, stores it in a database, and sends back
the best individual stored in the server. This individual is
incorporated in the client population, which starts again to
run. Several clients acting at the same time make requests
asynchronously, using the facilities of the standard Apache
web server. The server is thus used as a clearinghouse
for interchange of information among the different clients;
however, there’s no explicit comunication or topology among
the different nodes running the genetic algorithm. Besides,
the fact that the server always contain the best individuals
generated so far guarantees that the best solution (with
a fixed number of evaluations resolution) is always kept.
The server also sends back the number of generations the
client should run; which is usually the same number as
before, but turns to 0, thus stopping the client, when the
stopping condition is met. Clients leave the experiment by
the expeditive method of surfing away to another page or
closing the web browser; in tabbed browsers (most browsers
nowadays), a tab (or several) can run the experiment while
the browser is available for other tasks. When the experiment
has been running for a predeterminad number of evaluations
(which were set, for this experiment, to 750000), all clients
get a message to stop running, and change their user interface
to a message offering them to reload the (new) experiment
and start all over again. Besides, there is a watching daemon

1374 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Contributing machines

Number of machines

Fr
eq

ue
nc

y

0 10 20 30 40

0
10

20
30

40

Fig. 2. Histogram of the number of machines used in each experiment.
The median is 8.5 machines, and the 75% quartile is placed at 15 machines,
with a peak of 44 machines. A single client using several browsers counts as
a single machine. It should be noted that not all clients are simultaneously
connected.

running on the server which checks the database for the
number of individuals evaluated, and resets the experiment by
incrementing the experiment ID by one and eliminating the
population. Thus, experiments can run unchecked on a server
while this watchgad daemono is running. Several additional
utilities are also provided via several webpages, that inform
on the state of the experiment, or allow to set the GA
parameters. Experimental subjects were gathered by several
methods: sending it via email to department and project
coworkers, using the URL for the experiment as a Google
Talk status line, as a Twitter (http://twitter.com)
message, as a blog post, and, eventually, it was picked up by
a wildly popular Spanish blog 5, which managed to gather
the highest number of machines.

The experiment consisted in optimizing the 256-bits Royal
Road function, and each instance consisted in a maximum
of 750000 evaluations (which were barely enough to find
the solution). The algorithm was steady state (with incor-
poration of the inmigrant every 20 generations), with rank-
based selection and substitution; every generation, 50% of
the population was generated, substituting the worst 50%
individuals. Crossover priority was set to 80%, and mutation
to 20%, changing 1% of the bits. However, these settings
will have no influence on performance, other than the fact
that, if the solution is found before reaching the maximum

5Who posted it at http://www.microsiervos.com/archivo/
ordenadores/experimento-computacion-distribuida.
html.

number of evaluations, the users will get bored and change
to a new page6, instead of staying to see if the solution is
found.

Data was gathered from two different sources: the watcher-
daemon logs, which mainly gave data about the number of
individuals evaluated and the time needed for each experi-
ment, and the Apache daemon log; the relevant lines were
extracted just by using grep. It should be noted that the
server was not running exclusively the experiment, but doing
it along with the usual tasks. The server was a 700-MHz,
1 Gigabyte-RAM machine, with the database running in a
different, dual processor, 450-MHz machine. Both machines
were running obsolete RedHat 7.x and 9.x Linux operating
systems7.

Results of the set of experiments that have been performed
will be commented in the following section.

IV. EXPERIMENTAL RESULTS

Eventually, the experiment was running for several days,
with different degrees of intensity. Several hundred machines
participated in different instances, coming from all over the
world, although mainly from Spain. The first question we
wanted to answer was, how many machines should we expect
in this kind of experiment? BOINC and SETI@home have
gathered thousands of machines in its 10+ year run, but our
experiments were limited in time (several hours, at most, if
no machine was available, a few minutes if it was), so a
limited number of machines should also be expected. The
distribution of the number of machines is shown in Figure
2.

The exact number of machines and generations will vary in
every experiment, but it seems clear that the median number
of machines will hover around 1/4 of the maximum number.
Besides, it is quite easy to obtain 5 clients for a certain
number of evaluations; most experiments have less than 10
clients.

On the other hand, the number of evaluations each client
contributes are quite different, as is shown in Figure 3.
This figure reveals that most clients contribute just a few
generations, be it because the browser stops running the
program if it takes more than a predetermined number of
seconds (which can happen in IE or in Firefox if clients are
too slow; usually the predetermined number of generations
will be less than this number), because the user gets bored
and moves on, or because statistically most people join when
the experiment has been running for some time and show
up only when there are a few evaluations left. Each one
of these problems would have to be tackled separately, but
the baseline is that, even when a good number of machines
joins an experiment, they will do so only for a limited

6And this is just an example of how social factors in this kind of
experiments affect performance.

7Both machines host our group web server and home pages; we thought
it was better to run the experiment in our standard setup instead of a
dedicated one, since the whole point of the experiment is to prove that
no big modifications have to be made to run it, be it from the client or the
experimenter point of view

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1375

Generations Histogram

Generations

Fre
que

ncy

0 100 200 300 400

0
200

400
600

800

Fig. 3. Histogram of the number of generations all machines participating in the experiment have contributed, cut off at 400 generations. Each generation
corresponds to 50 new individuals. Most clients contribute 100 generations or less, with a few contributing more than 200. The median is 16 generations,
with the 3rd quartile placed at 55 generations.

amount of time on average. Besides, these limitations in
number of generations translate also to limitations in time,
so that experiments will have to be designed in a way that
sufficient information is transmitted from clients during the
expected time they are going to spend in the experiment.
However, different clients have different performance, so it
is also interesting to measure what is the average time (and
thus average performance) it takes the clients between two
communications to the server (that is, 20 * 50 evaluations +
waiting time). This is interesting for two main reasons: server
performance will have to be tuned to be able to serve this
level of requests, and second, the generation gap will also
have to be fine-tuned so that waiting time and the possibility
that the script is blocked due to overtime is minimized. The
performance figures obtained in the experiment are shown in
Figure 4.

The graph represented in Figure 4 shows that, for this
kind of problem, the vast majority of clients will have a gap
smaller than two seconds. This quantity will vary for different
problems, but the conclusion is that most clients will have
high or median performance, with few clients having lower
performance. This measure also gives us an estimate of the
average performance (2.906 seconds/20 generations).

However, at the end of the day the setup is intended
to achieve high performance when running an evolutionary
computation experiment. This data is presented in Figure 5.

This figure is quite similar to Figure 4. Median is at

1000 seconds, with a minimum at 292 and 3rd quartile at
2323; 75% of runs will last less than 2323 seconds. Taking
into account that the average 20-generation step is 2.906
seconds, and a single experiment needs 375 such steps, the
average single machine run would take 1089.75 seconds; this
means that the maximum speedup achieved is 1089.75/292
= 3.73 clients running simultaneously, and the median is
approximately a single average machine. This will probably
vary for experiments of different duration, but, on average,
we could say that significative (albeit small) speedups can be
achieved using spontaneous volunteer computing. In general,
however, several machines will sequentially provide CPU
cycles to an experiment, adding up to a single machine doing
all the work. In general also, the fact that there are up to
44 machines working in a single experiment, or that the
range of running times can vary in a factor of up to one
hundred, indicates that, for this experiment, no bottleneck
has been found. Of course, more simultaneous machines will
have to be tested to find the limit. Finally, the fact that all
contributions are volunteer means that the evaluation rate
is not constant, yielding figures like Figure 6, where the
steepness of each line is roughly equivalent to the evaluation
speed, since the x axis corresponds to time, and the y axis
number of individuals evaluated.

V. CONCLUSIONS, DISCUSSION AND FUTURE WORK

While in previous papers [12] we proved that this kind of
AJAX based, volunteer, and potentially sneaky, computation

1376 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

0 100 200 300 400 500 600

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

Experiments running time

Seconds

Nu
mb

er
 o

f e
va

lua
tio

ns

Fig. 6. Plot showing the number of individuals evaluated vs. time for a few dozens experiments; time is plotted up to 600 seconds only. As is seen,
some experiments have a more or less constant evaluation rate (constant inclination), while other are more step-like with clients leaving and joining the
experiment all the time.

could be used profitably for performing genetic algorithm
experiments, in this paper we have proved that, without an
expensive or far-fetched setup, it can achieve high perfor-
mance, equivalent, at most, to several computers of average
performance. The code used to perform the experiment is
publicly available and is modular so that creating different
experiments is just a matter of writing a new JavaScript
fitness function and tuning the GA parameters accordingly.

The experiments have proved that there is a good amount
of computational power that can be easily tapped and used for
evolutionary computation experiments, however, the nature
of AGAJAJ constrains also the way users donate computing
power, as well as the number of clients available for an
experiment. In this paper we have found some figures, which
will undoubtedly vary for other experiments; however, the
general shape of the curves will probably be the same,
following a very steep decrease from the maximum values
obtained.

The GA, being asynchronous, faces some problems that
have not been tackled in this paper. What is the best approach
to preserve diversity? To generate a new population in each
client, and receive inmigrants as soon as possible, which are
incorporated into the population? Or is it better to create
new client populations based on existing populations? What
is really the algorithmic contribution of new clients? These
issues will be explored as future work. We will also try to
measure the limits of this technology, and test the impact
of servers of varying performance and workload on overall
performance. Eventually, we will also try to perform a sneaky
experiment, to check what kind of performance can be
expected in that kind of setups.

Another venue of work will be to examine the algorithmic
performance of AGAJAJ; even as new clients are added to
an experiment, what’s the improvement obtained from them?
In order to check that, a controlled experiment using known
computers will be used, adding them one at a time, so that the

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1377

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Generation gap

Seconds

Nu
mb

er
 o

f g
ap

s

1 2 3 4 5 6 8 10 13 17 22 29 38 49 63 81

Fig. 4. Distribution of gap time, that is, time between two requests from a
particular client; it has been rounded to the closest number of seconds (since
the webserver logs it has been extracted from have that resolution). Most
clients take 3 second or less to process 20 generations, with a majority taking
2 or less. Gaps bigger than 10-15 seconds are probably non-significative, in
fact, negative gaps and those bigger than 100 have been eliminated from the
data set. For this set of experiments, the median is at 2. x axis is logarithmic,
to emphasize the fact that the distribution of client performance falls very
fast, although a different median value should be expected for a different
problem.

real impact on the genetic algorithm is evaluated. Once that
is know, it would be interesting to experiment with adaptive
client parameters, instead of the one-size-fits-all parameter
settings used so far.

ACKNOWLEDGEMENTS

This paper has been funded in part by the Spanish MI-
CYT project NoHNES (Spanish Ministerio de Educación
y Ciencia - TIN2007-68083) and the Junta de Andalucı́a
P06-TIC-02025. We are also grateful to the editors of the
Microsiervos.com blog for talking about our experiment, and
to the readers of that article for participating in it. We are also
grateful to the anonymous people who have known about the
experiment via several possible ways8 and participated in it.

REFERENCES

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@home: an experiment in public-resource computing,” Com-
mun. ACM, vol. 45, no. 11, pp. 56–61, 2002.

[2] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applica-
tions, ser. Lecture Notes in Computer Science, vol. 3485. Springer,
2005.

[3] Gilorien, DHTML and JavaScript. Upper Saddle River, NJ 07458,
USA: Prentice-Hall PTR, 2000.

8For instance, this article in my own blog http://atalaya.
blogalia.com/historias/53480

Experiment running time − Histogram

Seconds

Fr
eq

ue
nc

y

0 2000 4000 6000 8000 10000

0
10

20
30

40

Fig. 5. Distribution of running times for a fixed amount of evaluations.
Some outliers have been cut off; approximately 10% of runs took more than
10000 seconds. The mode is between 500 and 1000 seconds, and most runs
end before 2000 seconds. Time starts to count from the moment the first
client connects to the server.

[4] R. Shah, “A beginner’s guide to JavaScript,” JavaWorld: IDG’s
magazine for the Java community, vol. 1, no. 1, pp. ??–??, Mar. 1996,
http://www.javaworld.com/javaworld/jw-03-1996/jw-03-javascript.
intro.htm.

[5] D. Flanagan, JavaScript Pocket Reference (2nd Edition). O’Reilly,
October 2002. [Online]. Available: http://www.amazon.fr/exec/obidos/
ASIN/0596004117/citeulike04-21

[6] ECMA, ECMA-262: ECMAScript Language Specification, 3rd ed.
Geneva, Switzerland: ECMA (European Association for Standardizing
Information and Communication Systems), Dec. 1999. [Online].
Available: http://www.ecma-international.org/publications/standards/
Ecma-262.HTM

[7] ——, ECMA-290: ECMAScript Components Specification. Geneva,
Switzerland: ECMA (European Association for Standardizing
Information and Communication Systems), Jun. 1999. [Online].
Available: http://www.ecma-international.org/publications/standards/
Ecma-290.HTM

[8] ——, ECMA-327: ECMAScript 3: Compact Profile, 3rd ed. Geneva,
Switzerland: ECMA (European Association for Standardizing
Information and Communication Systems), Jun. 2001. [Online].
Available: http://www.ecma-international.org/publications/standards/
Ecma-327.htm

[9] ——, ECMA-357: ECMAScript for XML (E4X) Specification.
Geneva, Switzerland: ECMA (European Association for Standardizing
Information and Communication Systems), Jun. 2004. [Online].
Available: http://www.ecma-international.org/publications/standards/
Ecma-357.htm

[10] Wikipedia, “Ajax (programming) — wikipedia, the free
encyclopedia,” 2008, [Online; accessed 12-February-2008].
[Online]. Available: http://en.wikipedia.org/w/index.php?title=Ajax \
%28programming\%29&oldid=190788850

[11] “Towards Open Grid Services Architecture,” http://www.globus.org/
ogsa/.

[12] J. J. Merelo, A. M. Garcı́a, J. L. J. Laredo, J. Lupión, and F. Tricas,
“Browser-based distributed evolutionary computation: performance
and scaling behavior,” in GECCO ’07: Proceedings of the 2007
GECCO conference companion on Genetic and evolutionary compu-

1378 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

tation. New York, NY, USA: ACM Press, 2007, pp. 2851–2858.
[13] M. Garcı́a-Arenas, J. G. Castellano, P. A. Castillo, J. Carpio,

M. Cillero, J.-J. Merelo-Guervós, A. Prieto, V. Rivas, and G. Romero,
“Speedup measurements for a distributed evolutionary algorithm that
uses Jini,” in XI Jornadas de Paralelismo, U. d. G. Depto. ATC, Ed.,
2000, pp. 241–246.

[14] C. Setzkorn and R. C. Paton, “Javaspaces - an affordable
technology for the simple implementation of reusable parallel
evolutionary algorithms,” in Proceedings of the International
Symposium on Knowledge Exploration in Life Science Informatics,
KELSI 2004, ser. Lecture Notes in Artificial Inteligence,
J. A. López, E. Benfenati, and W. Dubitzky, Eds., vol.
3303. Milan, Italy: Springer, 25-26 Nov. 2004, pp. 151–
160. [Online]. Available: http://springerlink.metapress.com/openurl.
asp?genre=article&issn=0302-9743&volume=3303&spage=151

[15] F. S. Chong and W. B. Langdon, “Java based distributed genetic
programming on the internet,” in Proceedings of the Genetic
and Evolutionary Computation Conference, W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, Eds., vol. 2. Orlando, Florida, USA: Morgan Kaufmann,
13-17 Jul. 1999, p. 1229, full text in technical report CSRP-99-
7. [Online]. Available: http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/
papers/p.chong/DGPposter.pdf

[16] D. S. Myers and M. P. Cummings, “Necessity is the mother of
invention: a simple grid computing system using commodity tools,”
J. Parallel Distrib. Comput., vol. 63, no. 5, pp. 578–589, 2003.

[17] J. L. J. Laredo, P. A. Castillo, B. Paechter, A. M. Mora, E. Alfaro-
Cid, A. I. Esparcia-Alcázar, and J. J. Merelo, “Empirical validation of
a gossiping communication mechanism for parallel EAs,” ser. Lecture
Notes in Computer Science, M. G. et al., Ed., vol. 4448. Springer,
2007, pp. 129–136.

[18] E. A. Eiben, M. Schoenauer, J. L. J. Laredo, P. A. Castillo, A. M. Mora,
and J. J. Merelo, “Exploring selection mechanisms for an agent-based
distributed evolutionary algorithm,” in GECCO ’07: Proceedings of
the 2007 GECCO conference companion on Genetic and evolutionary
computation. New York, NY, USA: ACM Press, 2007, pp. 2801–
2808.

[19] E. Cantú-Paz, “Migration policies, selection pressure, and parallel
evolutionary algorithms,” Journal of Heuristics, vol. 7, no. 4, pp. 311–
334, 2001.

[20] L. F. G. Sarmenta and S. Hirano, “Bayanihan: building and
studying Web-based volunteer computing systems using Java,” Future
Generation Computer Systems, vol. 15, no. 5-6, pp. 675–686, 1999.
[Online]. Available: citeseer.nj.nec.com/sarmenta99bayanihan.html

[21] D. P. Anderson, E. Korpela, and R. Walton, “High-performance task
distribution for volunteer computing,” in E-SCIENCE ’05: Proceedings
of the First International Conference on e-Science and Grid Com-
puting. Washington, DC, USA: IEEE Computer Society, 2005, pp.
196–203.

[22] P. Cappello and D. Mourloukos, “A scalable, robust network for
parallel computing,” in JGI ’01: Proceedings of the 2001 joint ACM-
ISCOPE conference on Java Grande. New York, NY, USA: ACM
Press, 2001, pp. 78–86.

[23] D. Anderson, “BOINC: a system for public-resource computing and
storage,” Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-
national Workshop on, pp. 4–10, 8 Nov. 2004.

[24] M. Arenas, P. Collet, A. Eiben, M. Jelasity, J. J. Merelo,
B. Paechter, M. Preuß, and M. Schoenauer, “A framework for
distributed evolutionary algorithms,” ser. Lecture Notes in Computer
Science,LNCS, J.-J. M. Guervós, P. Adamidis, H.-G. Beyer, J.-
L. Fernández-Villacañas, and H.-P. Schwefel, Eds., no. 2439.
Springer-Verlag, September 2002, pp. 665–675. [Online]. Available:
http://www.springerlink.com/link.asp?id=h4n29kbl69jvab4c

[25] Wikipedia, “Electric sheep — wikipedia, the free encyclopedia,” 2007,
http://en.wikipedia.org/w/index.php?title=Electric Sheep&oldid=
159677937.

[26] R. Mason and W. Kelly, “G2-P2P: a fully decentralised fault-tolerant
cycle-stealing framework,” in ACSW Frontiers ’05: Proceedings of
the 2005 Australasian workshop on Grid computing and e-research.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc.,
2005, pp. 33–39.

[27] F. F. D. Vega, “A fault tolerant optimization algorithm based on evolu-
tionary computation,” in DEPCOS-RELCOMEX ’06: Proceedings of
the International Conference on Dependability of Computer Systems
(DEPCOS-RELCOMEX’06). Washington, DC, USA: IEEE Computer
Society, 2006, pp. 335–342.

[28] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer
computing systems,” Future Generation Computer Systems, vol. 18,
no. 4, pp. 561–572, 2002. [Online]. Available: citeseer.nj.nec.com/
449803.html

[29] J. Culbert, “Ajax and distributed computation thoughts,” Published at
http://culbert.net/?p=6, March 2006, last Accessed December 2007.

[30] W. B. Langdon, “Pfeiffer – A distributed open-ended evolutionary
system,” in AISB’05: Proceedings of the Joint Symposium on
Socially Inspired Computing (METAS 2005), B. Edmonds, N. Gilbert,
S. Gustafson, D. Hales, and N. Krasnogor, Eds., University of
Hertfordshire, Hatfield, UK, 12-15 Apr. 2005, pp. 7–13, sSAISB
2005 Convention. [Online]. Available: http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/wbl metas2005.pdf

[31] J. Klein and L. Spector, “Unwitting distributed genetic programming
via asynchronous JavaScript and XML,” in GECCO ’07: Proceedings
of the 9th annual conference on Genetic and evolutionary computation.
New York, NY, USA: ACM, 2007, pp. 1628–1635.

[32] A.-L. Barabási, V. W. Freeh, H. Jeong, and J. B. Brockman, “Parasitic
computing,” Nature, vol. 412, no. 6850, pp. 894–897, August 2001.
[Online]. Available: http://www.nature.com/cgi-taf/DynaPage.taf?file=
/nature/journal/v412/n6850/abs/412894a0 fs.html

[33] G. A. Kohring, “Implicit simulations using messaging protocols,”
COMPUTERS AND PHYSICS, vol. 14, p. 203, 2003.
[Online]. Available: http://www.citebase.org/abstract?id=oai:arXiv.org:
cs/0208021

[34] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis, “Pup-
petnets: misusing web browsers as a distributed attack infrastructure,”
in CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security. New York, NY, USA: ACM, 2006, pp.
221–234.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1379

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

