
Training Deep and Recurrent Networks with

Hessian-Free Optimization

James Martens and Ilya Sutskever
jmartens@cs.toronto.edu, ilya@cs.utoronto.ca

December 1, 2012

1 Introduction

Hessian-Free optimization (HF) is an approach for unconstrained minimization
of real-valued smooth objective functions. Like standard Newton’s method, it
uses local quadratic approximations to generate update proposals. It belongs
to the broad class of approximate Newton methods that are practical for prob-
lems of very high dimensionality, such as the training objectives of large neural
networks. Different algorithms that use many of the same key principles have
appeared in the literatures of various communities under different names such
as Newton-CG, CG-Steihaug, Newton-Lanczos, and Truncated Newton [27, 28],
but applications to machine learning and especially neural networks, have been
limited or non-existent until recently. With the work of Martens [22] and later
Martens and Sutskever [23] it has been demonstrated that such an approach,
if carefully designed and implemented, can work very well for optimizing non-
convex functions such as the training objective for deep neural networks and
recurrent neural networks (RNNs), given sensible random initializations. This
was significant because gradient descent methods have been observed to be very
slow and sometimes completely ineffective [16, 4, 17] on these problems, unless
special non-random initializations schemes like layer-wise pre-training [16, 15, 3]
are used. HF, which is a general optimization-based approach, can be used in
conjunction with or as an alternative to existing pre-training methods and is
more widely applicable, since it relies on fewer assumptions about the specific
structure of the network.

In this report we will first describe the basic HF approach, and then examine
well-known general purpose performance-improving techniques as well as others
that are specific to HF (versus other Truncated-Newton type approaches) or
to neural networks. We will also provide practical tips for creating efficient
and correct implementations, and discuss the pitfalls which may arise when
designing and using an HF-based approach in a particular application.

1

Notation Description
[x]i The i-th entry of a vector x
[A]i,j The (i, j)-th entry a matrix A
1m A vector of length m whose entries are 1
sq(·) The element-wise square of a vector or a matrix
vec(A) The vectorization of a matrix A
f The objective function
fi The objective function on case i
k the current iteration of HF
θk The parameter setting at the k-th HF iteration
n The dimension of θ
δk The variable being optimized by CG at the k-th HF iteration
Mk−1 A local quadratic approximation of f at θk−1
M̂k−1 A “damped” version of the above
Bk−1 The curvature matrix of Mk−1
B̂k−1 The curvature matrix of M̂k−1
h′, ∇h The gradient of a scalar function h
h′′, ∇2h The Hessian of a scalar function h
L(·) The loss function

ρ The reduction ratio
f(θk)− f(θk−1)

Mk−1(δk)
F (θ) A function that maps parameters to predictions on all training cases
D A damping matrix
P A preconditioning matrix
Ki(A, r0) The subspace span{r0, Ar0, . . . , Ai−1r0}
` The number of layers of a feedforward net
z The output of the network
m The dimension of z
T The number of time-steps of an RNN
λ Strength constant for penalty damping terms
λj j-th eigenvalue of curvature matrix
diag(A) A vector consisting of the diagonal of the matrix A
diag(v) A diagonal matrix A satisfying [A]i,i = [v]i

Table 1: A summary of the notation used. Note we will occasionally use some of
these symbols to describe certain concepts that are local to a given sub-section. The
subscripts “k” and “k − 1”, will often be dropped for compactness where they are
implied from the context.

2 Feedforward Neural Networks

We now formalize feedforward neural networks (FNNs). Given an input x
and setting of the parameters θ that determine weight matrices and the biases
(W1, . . . ,W`−1, b1, . . . , b`−1), the FNN computes its output y` by the following

2

recurrence:
yi+1 = si(Wiyi + bi)

where y1 = x. The vectors yi are the activations of the neural network, and the
activation functions si(·) are some nonlinear functions, typically sigmoid or a
tanh functions applied coordinate-wise.

Given a matching target t, the FNN’s training objective for a single case
f(θ; (x, t)) is given by

f(θ; (x, t)) = L(y`; t)

where L(z; t) is a loss function which quantifies how bad z is at predicting
the target t. Note that L may not compare z directly to t, but instead may
transform it first into some prediction vector p.

Finally, the training error, which is the objective of interest for learning, is
obtained by averaging the losses f(θ; (x, t)) over a set S of input-output pairs
(aka training cases):

f(θ) =
1

|S|
∑

(x,t)∈S

f(θ; (x, t))

Algorithm 1 An algorithm for computing the gradient of a feedforward neural
network
input: y0; θ mapped to (W1, . . . ,W`−1, b1, . . . , b`−1).
for all i from 1 to `− 1 do
xi+1 ←Wiyi + bi
yi+1 ← si+1(xi+1)

end for
dy` ← ∂L(y`; t`)/∂y` (t` is the target)
for all i from `− 1 downto 1 do
dxi+1 ← dyi+1s

′
i+1(xi+1)

dWi ← dxi+1y
>
i

dbi ← dxi+1

dyi ←W>i dxi+1

end for
output: ∇f(θ) as mapped from (dW1, . . . , dW`−1, db1, . . . , db`−1).

3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are the time-series analog of feedforward
neural networks. RNNs model the mapping from an input sequence to an output
sequence, and possess feedback connections in their hidden units that allow them
to use information about past inputs to inform the predictions of future outputs.
They may also be viewed as a special kind of feedforward net with a “layer” for
each time-step of the sequence. But unlike in a feedforward network where each
layer has its own parameters, the “layers” of an RNN share their parameters.

3

Their high-dimensional hidden state and nonlinear dynamics allow RNNs to
learn very general and versatile representations, and to express highly complex
sequential relationships. This representational power makes it possible, in prin-
ciple, for RNNs to learn compact solutions for very difficult sequence modeling
and labeling tasks. But despite their attractive qualities, RNNs did not enjoy
widespread adoption after their initial discovery due to the perception that they
were too difficult to properly train. The vanishing gradients problem [4, 17],
where the derivative terms can exponentially decay to zero or explode during
back-propagation through time is cited as one of the main reasons for this dif-
ficultly. In the case of decay, important back-propagated error signals from the
output at future time-steps may decay nearly to zero by the time they have
been back-propagated far enough to reach the relevant inputs.This makes the
unmodified gradient a poor direction to follow if the RNN is to learn to exploit
long-range input-output dependencies in the certain datasets.

Recent work by Martens & Sutskever [23] has demonstrated that HF is a
viable method for optimizing RNNs on datasets that exhibit pathological long
range dependencies that were believed difficult or impossible to learn with gradi-
ent descent. These problems were first examined by Hochreiter & Schmidhuber
[18] where the proposed solution was to modify the RNN architecture with
special memory units.

Basic RNNs are parameterized by three matrices and a special initial hidden
state vector, so that θ ≡ (Wxh,Whh,Wzh, h0), where Wxh are the connections
from the inputs to the hidden units, Whh are the recurrent connections, and
Wzh are the hidden-to-output connections. Given a sequence of vector-valued
inputs x = (x1, . . . , xT) and vector-valued target outputs t = (t1, . . . , tT), the
RNN computes a sequence of hidden states and predictions according to:

hτ = s(Wxhxτ +Whhhτ−1)

zτ = Wzhhτ

where h0 is a special parameter vector of the initial state and s(·) is a nonlinear
activation function (typically evaluated coordinate-wise).

The RNN learning objective for a single input-output pair of sequences (x, t)
is given by:

f(θ; (x, t)) = L(z; t) ≡
T∑
τ=1

Lτ (zτ ; tτ)

where Lτ is a loss function as in the previous section. As with FNNs, the
objective function is obtained by averaging the loss over the training cases:

f(θ) =
1

|S|
∑

(x,t)∈S

f(θ; (x, t))

4 Hessian-free optimization basics

We consider the setting of unconstrained minimization of a twice continuously
differentiable objective function f : Rn → R w.r.t. to a vector of real-valued

4

parameters θ ∈ Rn. 2nd-order optimizers such as HF are derived from the
classical Newton’s method (a.k.a. the Newton-Raphson method), an approach
based on the idea of iteratively optimizing a sequence of local quadratic mod-
els/approximations of the objective function in order to produce updates to θ.
In the simplest situation, given the previous setting of the parameters θk−1,
iteration k produces a new iterate θk by minimizing a local quadratic model
Mk−1(δ) of the objective f(θk−1 + δ), which is formed using gradient and cur-
vature information local to θk−1. More precisely, we define

Mk−1(δ) = f(θk−1) +∇f(θk−1)>δ +
1

2
δ>Bk−1δ (1)

where Bk−1 is the “curvature matrix”, and is chosen to be the Hessian H(θk−1)
of f at θk−1 in the case of standard Newton’s method. The new iterate θk is
computed as θk−1 + αkδ

∗
k where δ∗k is the minimizer of eqn. 1, and the step-

length αk ∈ [0, 1] is chosen typically chosen via a line-search, with a preference
for αk = 1. A standard efficient method for performing this kind of line search
will be briefly discussed in section 8.8. The multiplication of δk by αk can be
viewed as a crude instance of a general technique called “update damping”,
which we will introduce next, and later discuss in depth in section 8.

When Bk−1 is positive definite (PD), M(δk) will be bounded below and so its
minimizer will exist, and will be given by δ∗k = θk−B−1k−1∇f(θk−1), which is the
standard Newton step. Unfortunately, for many good choices of Bk−1, such as
the Hessian at θk−1, even computing the entire n×n curvature matrix Bk−1, let
alone inverting it/solving the system Bk−1δk = −∇f(θk−1) (at a computational
cost of O(n3)), will be impractical for all but very small neural networks.

The main idea in Truncated-Newton methods such as HF is to avoid this
costly inversion by partially optimizing the quadratic function M using the lin-
ear conjugate gradient algorithm (CG) [14], and using the resulting approximate
minimizer δk to update θ. CG is a specialized optimizer created specifically for
quadratic objectives of the form q(x) = 1/2x>Ax − b>x where A ∈ Rn×n is
positive definite (PD), and b ∈ Rn. CG works by constructing the update
from a sequence of vectors which have the property that they are mutually “A-
conjugate” and can thus be optimized independently in sequence. To apply CG
to eqn. 1 we take x = δ, A = Bk−1 and b = ∇f(θk−1), noting that the constant
term f(θk−1) can be ignored.

Note: From this point forward, we will abbreviate Mk−1 with M
and Bk−1 with B when the subscript is implied by the context.

CG has the nice property that it only requires access to matrix-vectors prod-
ucts with the curvature matrix B (which can be computed much more efficiently
than the entire matrix in many cases, as we will discuss in section 5), and it
has a fixed-size storage overhead of a few n-dimensional vectors. Moreover, CG
is a very powerful algorithm, which after i iterations, will find the provably op-
timal solution of any convex quadratic function q(x) over the Krylov subspace
Ki(A, r0) ≡ span{r0, Ar0, A2r0, ..., A

i−1r0}, where r0 = Ax0 − b and x0 is the

5

initial solution [33]. Any other gradient based method applied directly to a
quadratic function like M , even a very powerful one like Nesterov’s accelerated
gradient descent [29], can also be shown to produce solutions which lie in the
Krylov subspace, and thus, assuming exact arithmetic, will always be strictly
outperformed by CG given the same number of iterations1.

Fortunately, in addition to these strong optimality properties, CG works
extremely well in practice and may often converge in a number of iterations
i� n, depending on the structure of B. But even when it does not converge it
tends to make very good partial progress.

Algorithm 2 Preconditioned conjugate gradient algorithm (PCG)

inputs: b, A, x0, P
r0 ← Ax0 − b
y0 ← solution of Py = r0
p0 ← −y0
i← 0
while termination conditions do not apply do

αi ←
r>i yi
p>i Api

xi+1 ← xi + αipi
ri+1 ← ri + αiApi
yi+1 ← solution of Py = ri+1

βi+1 ←
r>i+1yi+1

r>i yi
pi+1 ← −yi+1 + βi+1pi
i← i+ 1

end while
output: xi

The preconditioned CG algorithm is given in alg. 2. Note that Api only
needs to be computed once in each iteration of the main loop, and the quadratic

objective q(xi) can be cheaply computed as q(xi) =
1

2
(ri − b)>xi. Also note

that any notation such as αi or yi should not be confused with the other uses of
these symbols that occur elsewhere in this report. The preconditioning matrix
P allows CG to operate within a transformed coordinate system and a good
choice of P can substantially accelerate the method. This is possible despite the
previously claimed optimality of CG because P induces a transformed Krylov
subspace. Preconditioning, methods for implementing it, its role within HF, and
its subtle interaction with other parts of the HF approach, will be discussed in
section 11.

1This being said, it is possible to construct quadratic optimization problems where CG will
perform essentially no better than accelerated gradient descent. Although it is also possible to
construct ones where CG converge in only a few iteration while accelerated gradient descent
will take much longer.

6

With practicality in mind, one can terminate CG according to various crite-
ria, balancing the quality of the solution with the number of iterations required
to obtain it (and hence number of matrix vector products – the main compu-
tational expense of the method). The approach taken by Martens [22] was to
terminate CG based on a measure of relative progress optimizing M , computed
as:

sj =
M(xj)−M(xj−k)

M(xj)

where xj is the j-th iterate of CG and k is the size of the window over which
the average is computed, which should be increased with j. A reasonable choice
that works well in practice is k = max(10, j/10). CG can be terminated at
iteration j when

sj < 0.0001 (2)

or some other such constant. Depending on the situation it may make more
sense to truncate earlier to find a more economical trade-off between relative
progress and computation.

However, deciding when to terminate CG turns out to be a much more
complex and subtle issue than implied by the above discussion, and in section
8.7 of this paper we will discuss additional reasons to terminate CG that have
nothing directly to do with the value of M . In particular, earlier truncations
may sometimes have a beneficial damping effect, producing updates that give a
better improvement in f than would be obtained by a fully converged solution
(or equivalently, one produced by exact inversion of the curvature matrix).

When f is non-convex (as it is with neural networks), B will sometimes be
indefinite, and so the minimizer of M may not exist. In particular, progressively
larger δ’s may produce arbitrarily low values of M , leading to nonsensical or
undefined updates. This issue can be viewed as an extreme example of the
general problem that the quadratic model M is only a crude local approximation
to f , and so its minimizer (assuming it even exists), might lie in a region of Rn
where the approximation breaks down, sometimes catastrophically. While the
aforementioned line-search can remedy this problem to some degree, this is a
general problem with 2nd-order optimization that must be carefully addressed.
Ways to do this are sometimes called “damping methods”, a term which we
shall use here, and include such techniques as restriction of the optimization
over M(·) to a “trust-region”, and the augmentation of M by penalty terms
which are designed to encourage the minimizer of M to be somewhere in Rn
where M remains a good approximation to f . Such approaches must be used
with care, since restricting/penalizing the optimization of M too much will
result in very reliable updates which are nonetheless useless due to being too
“small”. In section 8 we will discuss various general damping methods in 2nd-
order optimization, and some which are more specific to HF.

While the damping methods such as those mentioned above allow one to op-
timize M even when B is indefinite, there is another way to deal with the indefi-
niteness problem directly. The classical Gauss-Newton algorithm for non-linear
least squares uses a positive semi-definite curvature matrix which is viewed as an

7

approximation to the Hessian, and Schraudolph [32] was able to generalize this
idea to cover a much larger class of objective functions that include most neural
network training objectives. This “generalized Gauss-Newton matrix” (GGN),
is also guaranteed to be positive semi-definite, and tends to work much better
than the Hessian in practice as a curvature matrix when optimizing non-convex
objectives. While using the GGN matrix will not eliminate the need for damp-
ing, Martens [22] nonetheless found that it was easier to use than the Hessian,
producing better updates and requiring less damping. The computational and
theoretical aspects of the GGN matrix and its use within HF will be discussed
in detail in section 6.

Objective functions f(θ) that appear in machine learning are almost always
defined as arithmetic averages over a training set S, and thus so can the gradient
and the curvature-matrix vector products:

f(θ) =
1

|S|
∑

(x,t)∈S

f(θ; (x, t))

∇f(θ) =
1

|S|
∑

(x,t)∈S

∇f(θ; (x, t))

B(θ)v =
1

|S|
∑

(x,t)∈S

B(θ; (x, t))v

where f(θ; (x, t)) is the objective and B(θ; (x, t)) the curvature matrix associated
with the training pair (x, t).

In order to make HF practical for large datasets it is necessary to estimate
the gradient and curvature matrix-vector products using subsets of the training
data, called “minibatches.” And while it may seem natural to compute the
matrix-vector products required by CG using a newly sampled minibatch at
each iteration of alg. 2, CG is unfortunately not designed to handle this kind
of “stochasticity” and its theory depends very much on a stable definition of
B for concepts like B-conjugacy to even make sense. And in practice, we have
found that such an approach does not seem to work very well, and results in
CG itself diverging in some cases. The solution advocated by Martens [22] and
independently by Byrd et al. [8] is to fix the minibatch used to define B for the
entire run of CG. Minibatches and the practical issues which arise when using
them will be discussed in more depth in section 12.

5 Exact Multiplication by the Hessian

To use the Hessian H of f as the curvature matrix B within HF we need an
algorithm to efficiently compute matrix-vector products with arbitrary vectors
v ∈ Rn. Noting that the Hessian is the Jacobian of the gradient, we have that
the Hessian-vector product H(θ)v is the directional derivative of the gradient

8

Algorithm 3 High-level outline for the basic Hessian-free approach. Various
details have been purposefully left unstated, and some aspects will be subject
to change throughout this report.

inputs: θ0, λ

Set δ0 ← ~0

k ← 1

while solution is not satisfactory do

Select a set of points S for the gradient sec. 12

b← −∇f(θk−1) on S sec. 2

Select a set of points S′ for the curvature sec. 12

Compute a preconditioner P at θk sec. 11

Compute a damping matrix Dk sec. 8

Define A(v) ≡ G(θk−1)v + λDkv on S′ sec. 6

Choose a decay constant ζ ∈ [0, 1] sec. 10

δk ← PCG(b, A, ζδk−1, P) alg. 2

Update λ with the Levenberg-Marquardt method sec. 8.5

Choose/compute a step-size α sec. 8.8

θk ← θk−1 + αδk

k ← k + 1

end while

∇f(θ) in the direction v, and so by the definition of directions derivatives,

H(θ)v = lim
ε→0

∇f(θ + εv)−∇f(θ)

ε

This equation implies a finite-differences algorithm for computing Hv at the
cost of a single extra gradient evaluation. But in practice, and in particular
when dealing with highly nonlinear functions like neural network training ob-
jectives, methods that use finite differences suffer from significant numerical
issues, which can make them generally undesirable and perhaps even unusable
in some situations.

Fortunately, there is a method for computing the sought-after directional
derivative in a numerically stable way that does not resort to finite differ-
ences. In the optimization theory literature, the method is known as “forward-
differentiation” [35, 30], although we follow the exposition of Pearlmutter [31],
who rediscovered it for neural networks and other related models. The idea
is to make repeated use of the chain rule, much like in the backpropagation
algorithm, to differentiate the value of every node in the computational graph
of the gradient. We formalize this notion by introducing the Rv-notation. Let
RvX denote the directional derivative of X in direction v:

RvX = lim
ε→0

X(θ + εv)−X(θ)

ε
=
∂X

∂θ
v (3)

9

Being a derivative, the Rv(·) operator obeys the usual rules of differentiation:

Rv(X + Y) = RvX + RvY linearity (4)

Rv(XY) = (RvX)Y +XRvY product rule (5)

Rv(h(X)) = (RvX)h′(X) chain rule (6)

where h′ denotes the Jacobian of h. From this point on we will abbreviate Rv
as simply “R” to keep the notation compact.

Noting thatHv = R(∇f(θ)), computing the Hessian-vector product amounts
to computing R(∇f(θ)) by applying these rules recursively to the computational
graph for∇f(θ), in a way analogous to back-propagation (but operating forward
instead of backwards).

Figure 1: An example of
a computational graph of
the loss of a neural network
objective. The weights are
considered the inputs here.

To make this precise, we will formalize the notion
of a computational graph for an arbitrary vector-
valued function h(θ), which can be thought of as a
special kind of graph which implements the compu-
tation of a given function by breaking it down as a
collection of simpler operations, represented by M
nodes, with various input-output dependencies be-
tween the nodes indicated by directed edges. The
nodes of the computational graph are vector val-
ued, and each node i computes an arbitrary dif-
ferentiable functions ai = γi(zi) of their input zi.
Each input vector zi is formally the concatenation
the output of each of its parent nodes aj ∈ Pi.
The input θ is distributed over a set of input nodes
I ⊂ {1, ...,M} and the outputs are computed at out-
put nodes O ⊂ {1, ...,M}.

In summary, the function h(θ) is computed ac-
cording to the following procedure:

1. For each i ∈ I set ai according to entries of θ

2. For i from 1 to M such that i 6∈ I:

zi = concatj∈Piaj

ai = γi(zi)

3. Output h(θ) according to the values in {ai}i∈O
where Pi is the set of parents of node i.

The advantage of the computational graph formalism is that it allows the ap-
plication of the R-operator to be performed in a fool-proof and mechanical way
that can be automated. In particular, our function R(h(θ)) can be computed
as follows:

1. For each i ∈ I set Rai according to entries of v (which correspond to
entries of θ)

10

2. For i from 1 to M such that i 6∈ I:

Rzi = concatj∈Pi
Raj (7)

Rai = γ′i(zi)Rzi (8)

3. Set output R(h(θ)) according to the values in {Rzi}i∈O

where γ′i(zi) is the Jacobian of γi.
In general, computing γ′i(zi) (or more simply multiplying it by a vector) is

simple2 and is of comparable cost to computing γi(zi), which makes computing
the Hessian-vector product using this method comparable to the cost of the
gradient. Notice however that we need to have each zi available in order to
evaluate γ′i(zi) in general, so all of the zi’s (or equivalently all of the ai’s) must
either be computed in tandem with the Rai’s and Rzi’s (making the cost of the
Hessian-vector product roughly comparable to the cost of two evaluations of the
gradient), or be precomputed and cached (e.g. during the initial computation
of the gradient).

When using an iterative algorithm like CG that requires multiple Hessian-
vector products for the same θ, caching can save considerable computation, but
as discussed in section 7 may require considerable extra storage when computing
matrix-vector products over large minibatches.

Algorithm 5 gives the pseudo-code for computing the Hessian-vector product
associated with the feedforward neural network defined in section 2. The param-
eter vector θ defines the weight matrices and the biases (W1, . . . ,W`−1, b1, . . . , b`−1)
and v maps analogously to (RW1, . . . ,RW`−1,Rb1, . . . ,Rb`−1). This algorithm
was derived by applying the rules 4–6 to each line of alg. 2, where various re-
quired quantities such as yi are assumed to be available either because they are
cached, or by running the corresponding lines of alg. 2 in tandem.

6 The generalized Gauss-Newton matrix

The indefiniteness of the Hessian is problematic for 2nd-order optimization of
non-convex functions because an indefinite curvature matrix B may result in a
quadratic M which is not bounded below and thus does not have a minimizer to
use as the update δ. This problem can be addressed in a multitude of ways. For
example, imposing a trust-region (sec. 8.6) will constrain the optimization, or
a penalty-based damping method (sec. 8.1) will effectively add a positive semi-
definite (PSD) contribution to B which may render it positive definite (PD).
Another solution specific to truncated Newton methods is to truncate CG as
soon as it generates a conjugate direction with negative curvature (i.e., when
p>i Api < 0 in alg. 2), a solution which may be useful in some applications but
which we have not found to be particularly effective for neural network training.

Based on our experience, the best solution to the indefiniteness problem
is to instead use the generalized Gauss-Newton (GGN) matrix proposed by

2If this is not the case then node i should be split into several simpler operations.

11

Algorithm 4 An algorithm for computing H(θ)v in feedforward neural net-
works.
input: v mapped to (RW 1, . . . ,RW `−1,Rb1, . . . ,Rb`−1)
Ry0 ← 0 (since y0 is not a function of the parameters)
for all i from 1 to `− 1 do

Rxi+1 ← RWiyi +WiRyi + Rbi (product rule)
Ryi+1 ← Rxi+1s

′
i+1(xi+1) (chain rule)

end for

Rdy` ← R

(
∂L(y`; t`)

∂y`

)
=
∂{∂L(y`; t`)/∂y`}

∂y`
Ry` =

∂2L(y`; t`)

∂y2`
Ry`

for all i from `− 1 downto 1 do
Rdxi+1 ← Rdyi+1s

′
i+1(xi+1) + dyi+1R

{
s′i+1(xi+1)

}
(product rule)

= dyi+1s
′′
i+1(xi+1)Rxi+1 (chain rule)

RdWi ← Rdxi+1y
>
i + dxi+1Ry>i (product rule)

Rdbi ← Rdyi
Rdyi ← RW>i dxi+1 +W>i Rdxi+1 (product rule)

end for
output: H(θ)v as mapped from (RdW1, . . . ,RdW`−1,Rdb1, . . . , Rdb`−1).

Schraudolph [32], which is a provably positive semidefinite curvature matrix
that can be viewed as an approximation to the Hessian. We will denote this
matrix as G.

The generalized Gauss-Newton matrix can be derived in at least two ways,
and both require that the objective f(θ) be expressed as the composition of two
functions as f(θ) = L(F (θ)) where L is convex. In a neural network setting,
F maps the parameters θ to a m-dimensional vector of the neural network’s
outputs z ≡ F (θ), and L(z) is a convex “loss function” which typically measures
the difference between the network’s outputs (which may be further transformed
within L to produce “predictions” p) and the targets. For RNNs, z will be a
vector of the outputs from all the time-steps and L computes the sum over
losses at each one of them.

One way to view the GGN matrix is as an approximation of H where we
drop certain terms that involve the 2nd-derivatives of F . Applying the chain
rule to compute the Hessian of f (at θk−1), we get:

f = L(F (θ))

∇f(θ) = J>∇L

f ′′(θ) = J>L′′J +

m∑
i=1

[∇L]i([F]i)
′′

where J denotes the Jacobian of F , ∇L is the gradient of L(z) w.r.t. z, and
all 1st and 2nd derivatives are evaluated at θk−1. The first term J>L′′J is a
positive definite matrix whenever L(z) is convex in z, and is defined as the GGN
matrix. Note that in the special case where L(z) = 1/2‖z‖2 (so that L′′ = I)

12

we recover the standard Gauss-Newton matrix usually seen in the context of
non-linear least squares optimization and the Levenberg-Marquardt algorithm
[25].

Martens and Sutskever [23] showed that the GGN matrix can also be viewed
as the Hessian of a particular approximation of f constructed by replacing F
with its 1st-order approximation. Consider a local convex approximation f̂
to f at θk−1 that is obtained by taking the first-order approximation F (θ) ≈
F (θk−1) + Jδ (where δ = θ − θk−1):

f̂(δ) = L(F (θk−1) + Jδ) (9)

The approximation f̂ is convex because it is a composition of a convex function
and an affine function. It is easy to see that f̂ and f have the same derivative
when δ = 0, because

∇f̂ = J>∇L = J>∇L

which is precisely the derivative of f at θk−1. And the Hessian of f̂ at δ = 0 is
precisely the GGN matrix:

f̂ ′′ = J>L′′J = G

Note that it may be possible to represent a function f with multiple distinct
compositions of the form L(F (θ)), and each of these will give rise to a slightly
different GGN matrix. For neural networks, a natural choice for the output vec-
tor z is often just to identify it as the output of the final layer (i.e., y`), however
this may not always result in a convex L. As a rule of thumb, it is best to define
L and F in way that L performs “as much of the computation of f as possible”
(but this is a problematic concept due to the existence of multiple distinct se-
quences of operations for computing f). For the case of neural networks with
a softmax output layer and cross-entropy error, it is best to define L so that it
performs both the softmax and then the cross-entropy, while F computes only
the inputs to the soft-max function. This is also the recommendation made by
Schraudolph [32]. A possible reason that this choice works best is due to the
fact that F is being replaced with its first-order approximation whose range is
unbounded. Hence the GGN matrix makes sense only when L’s input domain
is Rm (as opposed to [0, 1]m for the cross-entropy error), since this is the range
of the 1st-order approximation of F .

6.1 Multiplying by the Gauss-Newton matrix

For the GGN matrix to be useful in the context of HF, we need an efficient
algorithm for computing the Gv products. Methods for multiplying by the
classical Gauss-Newton matrix are well-known in the optimization literature
[30], and these methods were generalized by Schraudolph [32] for the GGN
matrix, using an approach which we will now describe.

We know from the previous section that the GGN matrix can be expressed
as the product of three matrices: Gv = J>L′′Jv. Thus multiplication of a

13

vector v by the GGN matrix amounts to the sequential multiplication of that
vector by these 3 matrices. First, the product Jv is a Jacobian times vector
and is therefore precisely equal to the directional derivative Rv{F (θ)}, and thus
can be efficiently computed with the R-method as in section 5. Next, given
that the loss function L is usually simple, multiplication of Jv by L′′ is also
simple (sec. 6.2). Finally, we multiply the vector L′′Jv by the matrix J> using
the backpropagation algorithm. Note that the backpropagation algorithm takes
the derivatives w.r.t. the predictions (∇L) as inputs, and returns the derivative
w.r.t. the parameters, namely J>∇L, but we can replace ∇L with any vector
we want.

Algorithm 5 An algorithm for computing Gv of a feedforward neural network.

input: RW1, . . . ,RW`−1,Rb1, . . . ,Rb`−1.
Ry0 ← 0 (y0 is not a function of the parameters)
for all i from 1 to `− 1 do

Rxi+1 ← RWiyi +WiRyi + Rbi (product rule)
Ryi+1 ← Rxi+1s

′
i+1(xi+1)

end for

Rdy` ←
∂2L(y`; t`)

∂y2`
Ry`

for all i from `− 1 downto 1 do
Rdxi+1 ← Rdyi+1s

′
i+1(xi+1)

RdWi ← Rdxi+1y
>
i

Rdbi ← Rdxi+1

Rdyi ← RW>i dxi+1

end for
output: (RdW1, . . . ,RdW`−1,Rb1, . . . ,Rb`−1).

As observed by Martens and Sutskever [23], the second interpretation of the
GGN matrix given in the previous section immediately implies an alternative
method for computing Gv products. In particular, we can use the R method
from sec. 5 to efficiently multiply by the Hessian of f̂ , given a computational
graph for ∇f̂ . While doing this would require one to replace the part of the
forward pass corresponding to F with a multiplication by the analogous Jacobian
evaluated at θk−1 (which can be done using the R operator method applied to
f), a simpler approach is just to modify the algorithm for computing ∇f so that
all derivative terms involving intermediate quantities in the back-propagation
through F are treated as “constants”, which while they are computed from
θk−1, are formally independent of θ. This version will only compute f̂ properly
for θ = θk−1, but this is fine for our purposes since this is the point at which we
wish to evaluate the GGN matrix.

Algorithm 5 multiplies by the GGN matrix for the special case of a feedfor-
ward neural network and is derived using this second technique.

14

6.2 Typical losses

In this section we present a number of typical loss functions and their Hessians
(table 2). The function p(z) computes the predictions p from the network out-
puts z. These losses are convex and it is easy to multiply by their Hessians

Name L(z; t) ∇L(z; t) L′′(z; t) p

Squared error 1
2
‖p− t‖2 −(p− t) I p = z

Cross-entropy error −t log p− (1− t) log(1− p) −(p− t) diag(p(1− p)) p = Sigmoid(z)

Cross-entropy error (multi-dim) −
∑

i[t]i log[p]i −(p− t) diag(p)− pp> p = Softmax(z)

Table 2: Typical losses with their derivatives and Hessians. The loss L and the
nonlinearity p(z) are “matching”, which means that the Hessian is independent of the
target t and is PSD.

without explicitly forming the matrix, since they are each either diagonal or the
sum of a diagonal and a rank-1 term.

When applying this formulation to FNNs, tote that because it formally in-
cludes the computation of the predictions p from the network outputs z (as-
sumed to lie anywhere in Rm) in the loss function itself (instead of in the
activation function s` at the output layer), s` should be set to the identity
function.

6.3 Dealing with non-convex losses

We may sometimes want to have a non-convex loss function. The generalized
Gauss-Newton matrix construction will not produce a positive definite matrix in
this case because the GGN matrix J>L′′J will usually be PSD only when L′′ is,
which is a problem that can be addressed in one of several ways. For example,
if our loss is L(y; t) = ‖ tanh(y)− t‖2/2, which is non-convex, we could formally
treat the tanh nonlinearity as being part of F (replacing F with tanh ◦F), and
redefine the loss L as ‖y − t‖2/2. Another trick which may work would be to
approximate the loss-Hessian L′′ with a positive definite matrix, which could be
done, say, by adding a scaled multiple of the diagonal to L′′, or by taking the
eigen-decomposition of L′′ and discarding the eigenvectors that have negative
eigenvalues.

7 Implementation details

7.1 Efficiency via parallelism

A good implementation of HF can make fruitful use of parallelization in two
ways.

First, it can benefit from model parallelism, which is the ability to perform
the input and output computations associated with each neuron in a given layer
parallel. Although model parallelism accelerates any optimization algorithm

15

that is applied to neural networks, current hardware is incapable of fully taking
advantage of it, mostly because weights are stored in a centralized memory with
very limited bandwidth.

Second, an implementation of HF can benefit from data parallelism, where
the computation of the gradient or curvature matrix vector products is per-
formed independently and in parallel across the training cases in the current
minibatch. Data parallelism is much easier to exploit in current hardware be-
cause it requires minimal communication, in stark contrast to model parallelism,
which requires frequent and rapid communication of unit activations. The po-
tential speedup offered by data parallelism is limited by the gains that can be
derived from using larger minibatches to compute updates in HF, as well as the
sheer amount of parallel computing power available.

HF tends to benefit from using relatively large minibatches, especially com-
pared to first-order methods like stochastic gradient descent, and so exploiting
data parallelism may bring significant reductions in computation time. Nonethe-
less, there is a point of diminishing returns after which making the minibatch
larger provides limited or no benefit in terms of the quality of the update pro-
posals (as measured by how much they reduce f).

Data parallelism is typically implemented using vectorization, which is a way
of specifying a single computational process that is independently performed on
every element of a vector. Since most implementations that use vectorization
(e.g. GPU code) become more efficient per case as the size of the minibatch
increases, there is a distinct benefit to using larger minibatches (up until the
aforementioned point of diminishing returns, or the point where the implemen-
tations parallel computing resources are fully utilized).

Most of the computation performed by HF consists of computing the GGN
vector products and fortunately it is possible to obtain a 50% speedup over a
naive implementation of the GGN vector products using activity caching. Recall
that a multiplication by the GGN matrix consists of a multiplication by J which
is followed by a multiplication by J>, both of which require the neural network’s
unit activations (the yi’s in FNNs or yτ ’s in RNNs). However, given that the
network’s activations are a function of only θ, and that CG multiplies different
vectors by the same GGN matrix (so its setting of θ is fixed), it is possible to
cache the network’s activations yi and to reuse them for all the GGN-vector
products made during an entire run of CG.

When a model is very large, which is the case for a large RNN with a large
number of time-steps T , the unit activations produced by even a modestly-sized
minibatch may become too numerous to fit in memory. This is especially a
problem for GPU implementations since GPUs typically have much less memory
available than CPUs. This has two undesirable consequences. First, activity
caching becomes impossible, and second, it necessitates the splitting of a large
minibatch into many smaller “computational minibatches” (the results from
which will be summed up after each has been processed), which can greatly
reduce the cost-effectiveness of vectorization.

The problem can be addressed in at least 2 ways. One is to cache the
activations in a larger but slower memory storage (e.g. the CPU memory), and

16

Figure 2: An illustration of the method for conserving the memory of the RNN. Each
column represents a hidden state of an RNN, and only the highlighted columns reside
in memory at any given time.

to retrieve them as needed. This is often faster than the use of many smaller
minibatches.

Another way involves reducing the storage requirements at the cost of per-
forming re-computation of some of the states. In particular, we store the hidden
states at every multiple of

√
T time-steps (thus reducing the storage require-

ment by a factor of
√
T), and recompute sequences of

√
T between these “check-

points” as they become needed, discarding them immediately after use. Due to
the way the forward and backwards passes involved in computing gradients and
matrix-vector products go through the time-steps in linear order, the state at
each time-step needs to be recomputed at most once in the case of the gradient,
and twice in the case of the matrix-vector product.

7.2 Verifying the correctness of G products

A well-known pitfall for neural networks practitioners is an incorrect implemen-
tation for computing the gradient, which is hard to diagnose without having
a correct implementation to compare against. The usual procedure is to re-
implement the gradient computation using finite differences and verify that the
two implementations agree, up to some reasonable precision.

To verify the correctness of an implementation of Truncated Newton opti-
mizer like HF, as we must also verify the correctness of the curvature-matrix
vector products. When B = H, there are well-known black-box finite differen-
tiation implementations available which can be used for this purpose. Thus we
will concentrate on how to verify the correctness of the Gv products.

Given that G = J>L′′J so Gv = J>(L′′(Jv)), computing the G-vector
products via finite differences reduces to doing this for Jw, L′′w and J>w for
arbitrary vectors w of appropriate dimension (not necessarily the same for each).

1. For Jw we compute (F (θ + εw)− F (θ − εw))/(2ε) for a small ε.

2. For L′′w we can simply approximate L′′ using one of the aforementioned

17

finite-differences implementations that are available for approximating
Hessians.

3. For J>w we exploit [J]>j,i = [Jej]i where ej is the j-th standard basis
vector, and use the method in point 1 to approximate Jej

To be especially thorough, one should probably test that Gej agrees with its
finite differences version for each j, effectively constructing the whole matrix G.

For this kind of finite-differences numerical differentiation to be practical it
is important to use small toy versions of the target networks, with much fewer
units in each layer, and smaller values for the depth ` or sequence length T (such
as 4). In most situations, a good value of ε is often around 10−4, and it is possible
to achieve a relative estimation error from the finite differences approximation
of around 10−6, assuming a high-precision floating point implementation (i.e.
float64 rather than float32).

It is also important to use random θ’s that are of a reasonable scale. Param-
eters that are too small will fail to engage the nonlinearities, leaving them in
their “linear regions” and making them behave like linear functions, while pa-
rameters that are too large may cause “saturation” of the units of the network,
making them behave like step-functions (the opposite extreme). In either case,
a proposed implementation of some exact derivative computation could match
the finite differences versions to high precision despite being incorrect, as the
local derivatives of the activation functions may be constant or even zero.

Another option to consider when implementing complex gradient/matrix
computations is to use an automatic differentiation system package such as
Theano [5]. This approach has the advantage of being mostly fool proof, at the
possible cost of customization and efficiency (e.g. it may be hard to cache the
activities using previously discussed techniques).

8 Damping

While unmodified Newton’s method may work well for certain objectives, it
tends to do very poorly if applied directly to highly nonlinear objective func-
tions, such as those which arise when training neural networks. The reason for
this failure has to do with the fact that the minimizer δ∗ of the quadratic approx-
imation M may be very large and “aggressive” in the early and the intermediate
stages of the optimization, in the sense that it is often located far beyond the
region where the quadratic approximation is reasonably trust-worthy.

The convergence theory for non-convex smooth optimization problems (which
include neural net training objectives) describes what happens only when the
optimization process gets close enough to a local minimum so that the steps
taken are small compared to the change in curvature (e.g. as measured by the
Lipschitz constant of the Hessian). In such a situation, the quadratic model will
always be highly accurate at δ∗, and so one can fully optimize M and generate a
sequence of updates which will converge “quadratically” to the local minimum

18

of f . And for some very simply optimization problems which can arise in prac-
tice it may even be possible to apply unmodified Newton’s method without any
trouble, ignoring the theoretical requirement of proximity to a local minimum.
However, for neural network training objectives, and in particular deep feedfor-
ward networks and RNNs, the necessity of these proximity assumptions quickly
becomes clear after basic experiments, where such naive 2nd-order optimization
tends to diverge rapidly from most sensible random initializations of θ.

The solution that is sometimes advocated for this problem is to use a more
stable and reliable method, like gradient-descent for the beginning of optimiza-
tion, and then switch later to 2nd-order methods for “fine convergence”. Op-
timization theory guarantees that as long as the learning rate constant is suf-
ficiently small, gradient descent will converge from any starting point. But
precise convergence is often not necessary [7], or even undesirable (due to issues
of overfitting). Instead, if we believe that making use of curvature information
can be beneficial in constructing updates long before the “fine convergence”
regime described by local convergence theory sets in, it may be worthwhile to
consider how to make more careful and conservative use of curvature informa-
tion in order to construct large but still sensible update proposals, instead of
defaulting to 1st-order ones out of necessity.

“Damping”, a term used mostly in the engineering literature, and one which
we will adopt here, refers to methods which modify M or constrain the opti-
mization over it in order to make it more likely that the resulting update δ will
lie in a region where M remains a reasonable approximation to f and hence
yield a substantial reduction. The key difficulty with damping methods is that
if they are overused or improperly calibrated, the resulting updates will be “re-
liable” but also be too small and insignificant (as measured by the reduction in
f).

An effective damping method is of critical importance to the performance of
a 2nd-order method, and obtaining the best results will likely require the use of a
variety of different techniques, whose usefulness depends both on the particular
application and the underlying 2nd-order method. In this section we will discuss
some generic damping methods that can be used in 2nd-order optimizers and
how to apply them in HF (either separately or in some combination) along with
methods which are specific to neural networks and HF.

One thing to keep in mind when reading this section is that while the im-
mediate goal of damping methods is to increase the quality of the parameter
update produced by optimizing M (as measured by the immediate improvement
in the objective f), damping methods can and will have an important influence
on the global optimization performance of 2nd-order optimizers when applied to
multimodal objectives functions, in ways that are sometimes difficult to predict
or explain, and will be problem dependent. For example, we have observed em-
pirically that on difficult neural-net training objectives, damping schemes which
tend to produce updates that give the best reductions in f in the short term,
may not always yield the best global optimization performance in the long term.

19

8.1 Tikhonov Damping

“Tikhonov regularization” or Tikhonov damping 3 is arguably the most well-
known damping method, and works by penalizing the squared magnitude ‖δ‖2
of the update δ by introducing an additional quadratic penalty term into the
quadratic model M . Thus, instead of minimizing M , we minimize a “damped”
quadratic

M̂(δ) ≡M(δ) +
λ

2
δ>δ = f(θ) +∇f(θ)>δ +

1

2
δ>B̂δ

where B̂ = B+λI, where λ ≥ 0 is a scalar parameter determining the “strength”
of the damping. Computing the matrix-vector product with B̂ is straightforward
since B̂v = (B + λI)v = Bv + λv.

As λ → ∞, the damped curvature matrix B̂ tends to a multiple of the
identity and the minimizer δ∗ has the property that δ∗ → ∇f(θ)/λ, meaning
the overall optimization process reduces to gradient descent with a particular
learning rate.

To better understand the effect of the Tikhonov damping, note that the
addition of a scalar multiple of the identity matrix to B has the effect of in-
creasing each of the eigenvalues by precisely λ. This can be seen by noting
that if B = V ΣV > where V = [v1|v2| . . . |vn] are eigenvectors of B (which are
orthonormal since B is symmetric), and Σ ≡ diag(λ1, λ2, . . . , λn) the diagonal
matrix of eigenvalues, then B̂ = V ΣV >+λI = V ΣV >+λV V > = V (Σ+λI)V >.
Thus the curvature associated with each eigenvector vj in the damped matrix

is given by v>j B̂vj = λj + λ.

This modulation of the curvature has profound effect on the inverse of B̂ since
B̂ = V >(Σ+λI)−1V , where (Σ+λI)−1 = diag

(
(λ1 + λ)−1, (λ2 + λ)−1, . . . , (λn + λ)−1

)
and this will be particularly significant for λj ’s that are small compared to λ,
since (λj + λ)−1 will generally be much smaller than λ−1j in such cases.

The effect on the minimizer δ∗ of M̂ can be seen by noting that

δ∗ = −
∑
j

v>j ∇f(θk−1)

λj + λ
vj

so the distance v>j δ
∗ that δ∗ moves θ in the direction vj will be effectively

multiplied by
λj

λj + λ
. Thus, Tikhonov damping should be appropriate when the

quadratic model is most untrustworthy along directions of very low-curvature
(along which δ∗ will tend to travel very far in the absence of damping).

Picking a good value of λ is critical to the success of a Tikhonov damping
approach. Too high, and the update will resemble gradient descent with a very
small learning rate and most of the power of 2nd-order optimization will be
lost, with the low-curvature directions particularly affected. Conversely, if λ is

3a name which we will use to avoid confusion with the other meaning of term regularization
in the learning context

20

too small, the quadratic model M̂ will be too aggressively optimized by CG,
resulting in a very large parameter update (particular in directions of low cur-
vature) which may cause an increase in f instead of a decrease. Unfortunately,
determining a good value of λ is a nontrivial problem, which is sensitive to the
overall scale of the objective function (i.e. using λ = 1 for f gives the same
update as λ = 2 would for 2f), and other more subtle properties of f , many of
which will vary over the parameter space. It is in fact very rarely the case that
a single value of λ will be appropriate at all θ’s.

A method for dynamically adapting λ during optimization, which we have
found works reasonably well in practice, will be discussed in section 8.5. Note
that Tikhonov damping is the method used by Lecun et al. [21, 20], where the
constant “µ” (which is not adapted) plays the role of λ.

It is worth noting that Vinyals and Povey [34] have recently developed an
alternative approach to Tikhonov damping, based on the idea of directly opti-
mizing f over a K-dimensional Krylov basis generated by CG (or equivalently a
Lanczos iteration). Because the Krylov subspace generated using a B̂ = B + λI
doesn’t depend on λ (assuming a CG initialization of x0 = 0), this method
searches over a space of solutions that contain all those which would be found
by optimizing a Tikhonov-damped M̂ for some λ. Because of this, it can find
solutions which will give more reduction in f than CG could obtain for any
value of λ. The downsides of the approach are that the searching must be
performed using a general-purpose 2nd-order optimizer like BFGS, which will
require extra gradient and function evaluations, that a basis for the entire Krylov
subspace must be stored in memory (which may not always be practical when
n is large), and finally that CG initializations cannot influence the construction
of the Krylov subspace.

8.2 Problems with Tikhonov damping

For standard parameterizations of neural networks, where entries of the weight-
matrices and bias vectors are precisely the entries of θ, and the regularization
is the standard spherical L2 penalty β‖θ‖2, Tikhonov damping appears to be
a natural choice, and works pretty well in practice. This is because for certain
nicely behaved and also useful areas of the parameter space, the effective scale
at which each parameter operates is (very) roughly equal. But imagine a simple
reparameterization of a FNN so that at some particular layer j, θ parameterizes
104Wj instead of Wj . Now the objective function is 104 times more sensitive
than it was before to changes in the parameters associated with layer j and
only layer j, and imposing a Tikhonov damping penalty consisting of an equally
weighted sum of squared changes over all entries of θ (given by λ/2‖δ‖2 =
λ/2

∑n
i=1 δ

2
i) no longer seems like a good idea.

For an even more extreme example, consider the case where we would like
to constrain some of the weights of the network to be positive, and do this by
a simple reparameterization via the exp function, so that for each component
[θ]i of θ corresponding to one of these weights w, we have w = exp([θ]i) instead
w = [θ]i. By applying the chain rule we see that in the new parameterization,

21

the i-th component of the gradient, and the i-th row and column of the GGN
matrix are both effectively multiplied by exp([θ]i), resulting in the update δ∗

changing by a factor exp([θ]i)
−1 in entry i.

More formally, if we define C ∈ Rn×n to be Jacobian of the function φ which
maps the new parameters back to the default ones, then the gradient and GGN
matrix in the new parameterization can be expressed in terms of those from
the original parameterization as C>∇f and C>GC respectively4. The optimal
update thus becomes:

δ∗ = (C>BC)−1C>∇f = C−>B−1∇f

For our particular example, C is a diagonal matrix satisfying [C]i,i = exp([θ]i)
for reparameterized entries of θ, and [C]i,i = 1 for the rest.

Assuming that the original 2nd-order update was a reasonable one in the
original parameterization, the 2nd-order update as computed in the new param-
eterization should also reasonable (when taken in the new parameterization).
In particular, a reparameterized weight w (and hence f) will become exponen-
tially more sensitive to changes in [θ]i as [θ]i itself grows, and exponentially less
sensitive as it shrinks, so an extra multiplicative factor of exp([θ]i)

−1 compen-
sates for this nicely. This should be contrasted with gradient descent, where the
update will change in exactly the opposite way (being multiplied by exp([θ]i))
thus further compounding the sensitivity problem.

Unfortunately, if we use standard Tikhonov damping directly in the repa-
rameterized space, the assumption that all parameters operate at similar scales
will be strongly violated, and we will lose the nice self-rescaling property of our
update. For example, the curvature associated with [θ]i, which is equal to the
curvature for w multiplied by exp([θ]i)

2, may be completely overwhelmed by
the addition of λ to the diagonal of G when [θ]i is below zero, resulting in an
update which will fail to make a substantial change in [θ]i. Conversely, if [θ]i
is large then the Tikhonov damping contribution won’t properly penalize large
changes to [θ]i which may lead to a very large and untrustworthy update.

We could hope that a sensible scheme for adapting λ would compensate by
adjusting λ in proportion with exp([θ]i), but the issue is that there are many
other components of θ, such as other exp-reparameterized weights, and these
may easily be small or larger than [θ]i, and thus operate at vastly different
scales. In practice, what will mostly likely happen is that any sensible scheme
for dynamically adjusting λ will cause it to increase until it matches the scale of
the largest of these reparameterized weights, resulting in updates which make
virtually no changes to the other weights of the network.

In general, Tikhonov and any of the other quadratic penalty based damping
methods we will discuss in the following sections, can all be made arbitrarily
strong through the choice of λ, thus constraining the optimization of M̂ to a
degree sufficient to ensure that the update will not leave the region where M is
a sensible approximation. What differentiates good approaches from bad ones

4Note that this result holds for smooth and invertible φ, as long as we use the GGN matrix.
If we use the Hessian, it holds only if φ is affine.

22

is how they weigh different directions relative to each other. Schemes that tend
to assign more weight to directions associated with more serious violations of
the approximation quality of M will get away with using smaller values of λ,
thus allowing the sub-optimization of M̂ to be less constrained and thus produce
larger and more useful updates to θ.

8.3 Scale-Sensitive damping

The scale sensitivity of the Tikhonov damping is similar to the scale sensitivity
that plagues 1st-order methods, and is precisely the type of issue we would like
to avoid by moving to 2nd-order methods. Tikhonov damping makes the same
implicit assumptions about scale that are made by first-order methods: that
the default norm ‖ · ‖ on Rn is a reasonable way to measure change in θ and
a reasonable quantity to penalize when searching for a suitable update to θ.
1st-order methods can even be viewed as a special case of 2nd-order methods
where the curvature term is given entirely by a Tikhonov-type damping penalty,
so that B̂ = λI and δ∗ = −1/λ∇f(θ).

One solution to this problem is to only use parameterizations which exhibit
approximately uniform sensitivity properties, but this is limiting and it may be
hard to tell at-a-glance if such a property holds for a particular network and
associated parameterization.

A potential way to address this problem is to use a quadratic penalty function
which depends on the current position in parameter space (θk−1) and is designed
to better respect the local scale properties of f at θk−1. In particular, instead
of adding the penalty term λ/2‖δ‖2 to M we may instead add λ/2‖δ‖2Dk−1

=

λ/2δ>Dk−1δ, where Dk−1 is some symmetric positive definite (PD) matrix that
depends on θk−1. Such a term may provide a more meaningful measure of
change in θ, by accounting for the sensitivity properties of f more precisely. We
call the matrix Dk−1, the damping matrix, and will drop the subscript k − 1
for brevity. Scale sensitive damping is implemented in HF by working with
a “damped” curvature matrix given B̂ = B + λD, where the required matrix-
vector products can be computed using as B̂v = Bv+λDv, assuming an efficient
algorithm for computing matrix-vector products with D.

A specific damping matrix which may work well in the case of the exp-
reparameterized network discussed in the previous sub-section would be D =
C>C (for a definition of C, see the previous sub-section). With such a choice we
find that the update δ∗ produced by fully optimizing M̂ is equal to C−1 times
the update which would have been obtained with the original parameterization
and standard Tikhonov damping with strength λ. Similarly to the undamped
case, this is true because:

(C>BC + λC>C)−1C>g = C−1(B + λI)−1C−>C>g = C−1(B + λI)−1g

It should also be noted that this choice of damping matrix corresponds to a
penalty function 1

2‖δ‖
2
C>C which is precisely the Gauss-Newton approximation

of λ
2 ‖θ
†‖2 = λ

2 ‖φ(θ)‖2 w.r.t. to the new parameters θ, where θ† = φ(θ) are the

23

default/original parameters. The interpretation is that we are penalizing change
in the original parameters (which are assumed to have a very roughly uniform
scale), despite performing optimization w.r.t. the new ones.

While we were able to design a sensible custom scheme in this example,
exploiting the fact that the default parameterization of a neural network gives
parameters which tend to operate at approximately similar scales (in most ar-
eas of the parameter space anyway), it would be nice to have a more generic
and self-adaptive approach in the cases where we do not have such a property.
One possible approach is to set D to be the diagonal matrix formed by tak-
ing the diagonal of B (i.e. D = diag(diag(B))), a choice made in the classical
Levenberg-Marquardt algorithm. With this choice, the update δ†

∗
produced by

fully optimizing the damped quadratic M̂ will be invariant to diagonal linear
reparameterizations of θ.

Another nice property of this choice of D is that it produces an update
which is invariant to rescaling of f (i.e. optimizing βf instead of f for some
β > 0). By contrast, a pure Tikhonov damping scheme would rely on the careful
adjustment of λ to achieve such an invariance.

One obvious way to overcome the deficiencies of a damping approach based
on a diagonal matrix would be to use a non-diagonal one, such as the original
curvature matrix B itself. Such a choice for D produces updates that share all
of the desirable invariance properties associated with a pure undamped Newton
approach (assuming full optimization of M̂), such as invariance to arbitrary
linear reparameterizations, and rescalings of f . This is because with this choice,
the damping-modified curvature matrix B̂ is simply (1 + λ)B, and if we assume
either full optimization of M̂ , or partial optimization via a run of CG initialized
from 0, this type of damping has the effect of simply rescaling the update δ by
a factor of 1/(1 + δ). In section 8.8 we will discuss line-search methods which
effectively accomplish the same type of rescaling.

Despite the nice scale invariance properties associated with these choices,
there are good reasons not to use either of them in practice, or at least to use
them only with certain modifications, and in conjunction with other approaches.
While the Tikhonov approach arguably makes too few assumptions about the
local properties of f , damping approaches based on D = B or its diagonal may
make too many. In particular, they make the same modeling assumptions as the
original undamped quadratic approximation M itself. For example, B may not
even be full-rank, and in such a situation it may be the case that M will predict
unbounded improvement along some direction in B’s nullspace, a problem which
will not be handled by damping with D = B for any value of λ, no matter how
big. Even if B is full-rank, there may be directions of near-zero curvature which
can cause a less extreme version of the same problem. Since the diagonal B will
usually be full-rank even when B isn’t, or just better conditioned in general,
using it instead may give some limited immunity to these kinds of problems,
but it is far from an ideal solution, as demonstrated in fig. 8.3.

In order to explain such degeneracies and understand why choices like D = B
can be bad, it is useful to more closely examine and critique our original choices
for making them. The quadratic approximation breaks down due to higher-

24

3 2 1 0 1 2
3

2

1

0

1

2

u v

update

Figure 3: A 2D toy example of how using D = diag(B) results in an overly restricted
update. Let u = [−1, 1]> and v = [1, 1]>, and let B be uu> + avv> where a is large
(e.g. 104, although we take a = 15 for display purposes). This matrix is full rank,
and its diagonal entries are given by [a + 1, a + 1]>, representing the fact that the
quadratic is highly sensitive to independent changes to the 2 parameters. The small
circular region is where the update will be effectively restricted to when we make λ
large enough.

order effects (and even certain unmodelled 2nd-order effects in the case of the
GGN matrix) and it is the goal of damping to help compensate for this. By
taking D = B we are penalizing directions according to their curvature, and
so are in some sense assuming that the relative strength of the contribution to
f from the high-order terms (and thus the untrustworthiness of M) along two
different directions can be predicted reasonably well by looking at the ratio of
their respective curvatures. And while there is a tendency for this to be true
for certain objective functions, making this assumption too strongly may be
dangerous.

Unfortunately, in the absence of any other information about the semi-local
behavior of the function f , it may not always be clear what kind of assumption
we should fall back on. To move towards the uniform scale assumption implied
by the Tikhonov approach by choosing D to be some interpolation between the
diagonal of B and a multiple of the identity (e.g. using the methods discussed in
11.2) seems like an arbitrary choice, since in general there may not be anything
particularly special or natural about whatever default parameterization of f
that we are given to work with. Despite this, such a strategy can be reasonably
effective in some situations, and a reasonable compromise between Tikhonov
damping and damping with B.

A conceivably better approach would be to collect information about higher-
order derivatives, or to use information collected and aggregated from previous
iterations of the optimization process to build a simple model of the coarse
geometric structure of f . Or perhaps some useful information could be gleaned

25

from examining the structure of the computational graph of f . Unfortunately
we are unaware of the existence of general methods for building D based on
such ideas, and so this remains a direction for future research.

In the next section we discuss a method called “structural damping” which
constructs D using knowledge of the particular structure of deep and recurrent
neural networks, in order to construct damping matrices which may be better
at selectively penalizing directions for the purposes of damping.

8.4 Structural Damping

Recurrent Neural Networks are known to be difficult to train with gradient de-
scent, so it is conceivable that problematic variations in scale and curvature
are responsible. Indeed, a direct application of the implementation of HF pre-
sented by Martens [22] to RNNs can yield reasonable results, performing well
on a family of synthetic pathological problems [18, 23] designed to have very
long-range temporal dependencies of up to 100 time-steps. However Martens
and Sutskever [23] found that performance could be made substantially better
and more robust using an idea called “structural damping”.

Martens and Sutskever [23] found that a basic Tikhonov damping approach
performed poorly when applied to training RNNs. In particular, in order to
avoid very large and untrustworthy update proposals, they found λ needed to
be very high, and this in turn would lead to much slower optimization. This
need for a large λ can be explained by the extreme sensitivity of the RNN’s
long sequence of hidden states to changes in the parameters and in particular
the hidden dynamics matrix Whh. While these sorts of problems exist with
deep feedforward neural networks like the autoencoders considered in Hinton
and Salakhutdinov [16] and Martens [22], the situation with RNNs is much more
extreme, since they have many more effective “layers”, and their parameters are
applied repeatedly at every time-step and can thus have a dramatic effect on the
entire hidden state sequence [4, 17]. Due to this extreme and highly non-linear
sensitivity, local quadratic approximations are likely to be highly inaccurate
in certain directions in parameter space, even over very small distances. A
Tikhonov damping approach can only compensate for this by imposing a strict
penalty against changes in all directions, since it lacks any mechanism to be
more selective.

Structural damping addresses this problem by imposing a quadratic penalty
not just to changes in parameters, but also to cetain intermediate quantities
that appear in the evaluation of f , such as the hidden state activities of an
RNN. This allows us to be more selective in the way we penalize directions of
change in parameter space, focusing on those that are more likely to lead to the
large changes in the hidden state sequence, which due to their highly nonlinear
nature, tend to correspond to catastrophic breakdowns in the accuracy of the
quadratic approximation.

Speculatively, structural damping may have another more subtle benefit for
RNN learning. It is known [19, 23] that good random initializations give rise to
nontrivial hidden state dynamics that can carry useful information about the

26

past inputs even before any learning has taken place. So if an RNN is initialized
carefully to contain such random dynamics, the inclusion of structural damping
may encourage the updates to preserve them at least until the hidden-to-output
weights have had some time to be adapted to the point where the long-range
information contained in the hidden activities actually gets used to inform future
predictions. After such a point, a locally greedy optimizer like HF will have more
obvious reasons to preserve the dynamics.

To formalize structural damping we first re-express the nonlinear objective
f(θ) as a composition of functions L(z(h(θ), θ)), where h(θ) computes the hidden
states (whose change we wish to penalize), z(h, θ) computes the outputs, and
L(z) computes the loss.

Given the current parameter setting θk−1, the local (undamped) quadratic
approximation is given by M(δ) and its curvature is B. We prevent large changes
in the hidden state by penalizing the distance between h(θk−1 + δ) and h(θk−1)
according to the penalty function

S(δ) = d(h(θk−1 + δ);h(θk−1))

where d is a distance function or loss function such as a squared error or the
cross-entropy5.

Ideally, we would define the damped local objective as:

M̂†(δ) = M(δ) + µS(δ) + λI

where µ is a strength constant similar to λ. But since we cannot minimize
a non-quadratic objective with CG, we must resort to using a local quadratic
approximation to S(δ). This will be given by δ>Dk−1δ/2 where Dk−1 is the
Gauss-Newton matrix of the penalty function S(δ) at δ = 0. Note that the
quadratic approximation to S(δ) does not have a linear term because δ = 0 is a
minimum of S.

Fortunately, it is straightforward to multiply by the generalized Gauss-
Newton matrix of S using the techniques outlined in section 6. Thus we could
compute the products Bv and µDk−1v using two separate Gauss-Newton matrix-
vector products, adding together the results, approximately doubling the com-
putational burden. In order to avoid this, we can instead compute the sum
(Bk−1 + µDk−1)v directly by exploiting the fact that S(δ) can be computed
much more efficiently by reusing the h(θk + δ) which gets computed as an inter-
mediate quantity for f(θk+δ). Indeed, consider a neural network whose output
units include the hidden state as well as the predictions:

c(θ) ≡ [h(θ), z(h(θ), θ)]

and whose loss function is given by Lµ(h, y) = µd(h;h(θk−1) + L(y), so that
we have f(θ) + µS(θ) = Lµ(c(θ)). This “new” neural network includes struc-
tural damping in its loss, and any automatic routines computing the required
Jacobian-vector products for c will be no more expensive than the analogous

5The cross-entropy is suitable when the hidden units use a logistic sigmoid nonlinearity

27

routines in the original network. Multiplication by the Hessian of the loss

L′′µ =

(
L′′(y) 0

0 µd′′(h;h(θk−1))

)
is also easy and can be done block-wise.

8.5 The Levenberg-Marquardt heuristic

For the penalty-based damping methods such as those described above to work
well, λ (and perhaps also µ, as defined in the previous sub-section) must be
constantly adapted to keep up with the changing local curvature properties of
f .

Fortunately, we have found that the well-known Levenberg-Marquardt (LM)
heuristic, which is usually used in the context of the LM method [25] to be
effective at adapting λ in a sensible way even in the context of the truncated
CG runs that are used in HF.

The key quantity behind the LM heuristic is the “reduction ratio”, denoted
by ρ, which is given by

ρ ≡ f(θk−1 + δk)− f(θk−1)

Mk−1(δk)
(10)

The reduction ratio measures the ratio of the reduction in the objective f(θk−1+
δk)− f(θk−1) produced by the update δk, to the amount of reduction predicted
by the quadratic model. When ρ is much smaller than 1, the quadratic model
overestimates the amount of reduction and so λ should be increased, encour-
aging future updates to be more conservative and thus lie somewhere that the
quadratic model more accurately predicts the reduction. In contrast, when ρ
is close to 1, the quadratic approximation is likely to be fairly accurate near
δ∗, and so we can afford to reduce λ, thus relaxing the constraints on δk and
allowing for “larger” and more substantial updates.

The Levenberg-Marquardt heuristic is given by:

1. If ρ > 3/4 then λ← λ2/3

2. If ρ < 1/4 then λ← λ3/2

Although the constants in the above description of the LM are somewhat arbi-
trary, we found them to work well in our experiments.

Note that the above heuristic is valid in the situation where ρ < 0, which can
arise in one of two ways. The first way is where Mk−1 < 0 and f(θk−1 + δk)−
f(θk−1) > 0, which means that the quadratic approximation is very inaccurate
around δ∗ and doesn’t even get the sign of the change right. The other possi-
bility is that Mk−1 > 0 and f(θk−1 + δk) − f(θk−1) < 0, which can only occur
if CG is initialized from a nonzero previous solution and doesn’t make sufficient
progress from that point to obtain a negative value Mk−1 before being termi-
nated/truncated. When this occurs one should either allow CG to use more
iterations or possibly initialize the next run of CG from 0 (as this will guarantee
that Mk−1 < 0, since Mk−1(0) = 0 and CG decreases Mk−1 monotonically).

28

While the definition of ρ in eqn. 10 uses the undamped quadratic in the
denominator, the damped quadratic approximation ˆMk−1 can also be used, and
in our experience will give similar results, favoring only slightly lower values of
λ.

Because of this tendency for M to lose accuracy as CG iterates (see sub-
section 8.7), the value of ρ tends to decrease as well (sometimes after an initial
up-swing caused by using a non-zero initialization as in section 10). If CG were
to run to convergence, the Levenberg-Marquardt heuristic would work just as
it does in the classical Levenberg-Marquardt algorithm, which is to say, very
effectively and giving provable strong local convergence guarantees. But the
situation becomes more complicated when this heuristic is used in conjunction
with updates produced by unconverged runs of CG, because the “optimal” value
of λ, which the LM heuristic is trying to find, will be a function of how much
progress CG tends to make when optimizing M .

Fortunately, as long as the local properties of f change slowly enough, ter-
minating CG according to a fixed maximum number of steps should result in a
relatively stable and well-chosen value of λ.

But unfortunately, well intentioned methods which attempt to be smarter
and terminate CG based on the value of f , for example, can run into problems
caused by this dependency of the optimal λ on the performance of CG. In
particular, this “smart” decision of when to stop CG will have an affect on
ρ, which will affect the choice of λ via the LM heuristic, which will affect the
damping and hence how the value of f evolves as CG iterates (at the next HF
iteration), which will finally affect the decision of when to stop CG, bringing
us full circle. It is this kind of feedback which may result in unexpected and
undesirable behaviors when using the LM heuristic, such as λ and the number of
the length of the CG runs both going to zero as HF iterates, or both quantities
creeping upwards to inappropriately large values.

8.6 Trust-region methods

In contrast to damping methods that are based on penalty terms designed to
encourage updates to be “smaller” according to some measure, trust region
methods impose an explicit constraint on the optimization of the quadratic
model M . Instead of performing unconstrained optimization on the (possibly
damped) quadratic M̂ , a constrained optimization is performed over M . This
is referred to as the trust-region sub-problem, and is defined by:

δ∗R = argminδ:δ∈RM(δ)

where R ⊆ Rn is some region localized around δ = 0 called the “trust-region”.
Ideally, R has the property that M remains a reasonable approximation to f
for any δ ∈ R, without being overly restrictive. Or perhaps more weakly (and
practically), that whatever update δ∗R is produced by solving the trust-region
sub-problem will produce a significant reduction in f . Commonly, R is chosen to
be a ball of radius r centered at 0, although it could just as easily be an ellipsoid

29

or something more exotic, as long as the required constrained optimization can
be performed efficiently enough.

There is a formal connection between trust region methods and penalty-
based damping methods such as Tikhonov damping, which states that when R
is an elliptical ball around 0 of radius r given R = {x : ‖x‖Q ≤ r} for some
positive definite matrix Q, then for each quadratic function M(δ) there exists a
λ such that

argminδ:δ∈RM(δ) = argminδM(δ) +
λ

2
‖δ‖2Q

This result is valid for all quadratic functions M , even when B is indefinite, and
can be proved using Lagrange multipliers.6

Trust-region methods have some appeal over the previously discussed penalty-
based damping methods, because it may be easier to reason intuitively, and
perhaps also mathematically, about the effect of an explicit trust-region (with a
particular radius r) on the update than a quadratic penalty. Indeed, the trust
region R is invariant to changes in the scale of the objective7, which may make
it easier to tune, either manually or by some automatic method.

However, the trust region optimization problem is much more difficult than
the unconstrained quadratic optimization of M̂ . It cannot be directly solved
either by CG or by matrix inversion. Even in the case where a spherical trust-
region with radius r is used, the previously discussed result is non-constructive
and merely guarantees the existence of an appropriate λ that makes the exact
minimizer of the Tikhonov damped M̂ equal to the solution of the trust region
sub-problem. Finding such a λ is a hard problem, and while there are algorithms
that do this [26], they involve expensive operations such as full decompositions
of the B matrix, or finding the solutions of multiple Tikhonov-damped quadrat-
ics of the form M̂ . When CG is used to perform partial optimization of the
quadratic model, there are also good approximation algorithms [12] based on
examining the tridiagonal decomposition of B (restricted to the Krylov sub-
space), but these require either storing a basis for the entire Krylov subspace
(which may be impractical when n is large), or will require a separate run of CG
once λ has been found via the tridiagonal decomposition, effectively doubling
the amount of matrix-vector products that must be computed.

Even if we can easily solve (or partially optimize) the trust-region sub-
problem, we are still left with the problem of adjusting r. And while it is likely
that the “optimal” r will remain a more stable quantity than the “optimal”
λ over the parameter space, it still needs to be adjusted using some heuristic.
Indeed, one heuristic which is advocated for adjusting r [30] is precisely the
Levenberg-Marquardt heuristic discussed in section 8.5 which is already quite

6For completeness, we present an outline of the proof here: Consider the Lagrangian
L(δ, λ) = M(δ) + (r− 1

2
δ>Qδ)λ. It is known that there exists a λ∗ such that the minimizer of

the trust region problem δ∗ satisfies ∂L(δ∗, λ∗)/∂(δ, λ) = 0. For M(δ) = g>δ−δ>Bδ/2, this is
equivalent to g−Bδ∗−λ∗Qδ∗ = 0, and thus (B+λ∗Q)δ∗ = g. If the matrix B+λ∗Q is positive
definite, then δ∗ can be expressed as the unconstrained minimization of g>δ−δ>(B+λ∗I)δ/2.

7If the objective is multiplied by 2, then λ also needs to be multiplied by 2 to achieve the
same effect when using a penalty method. By contrast, the trust region R is unaffected by
such a scale change.

30

effective (in our experience) at adjusting λ directly. This leaves us with the
question: why not just adjust λ directly and avoid the extra work required to
compute λ by way of r?

One method which is effective at finding reasonable approximate solutions
of the trust-region sub-problem, for the case where R is a ball of radius r, is
to run CG (initialized at zero) until the norm of the solution exceeds r (i.e.
the solution leaves the trust-region) and truncate CG at that iteration, with a
possible modification to the α multiplier for the final conjugate direction to en-
sure a solution of norm exactly r. This is known as the Steihaug-Toint method,
and it can be shown [12] that, provided CG is initialized from a zero starting
solution and no preconditioning is used, the norm of the solution will increase
monotonically and that if CG is truncated in the manner described above, the
resultant solution δ†k will satisfy M(δ†k) ≤ 1

2M(δ∗k) where δ∗k is the optimal solu-
tion to the trust-region sub-problem. This seems like a good compromise, and it
is more economical than approaches that try to solve the trust region problem
exactly (or using better approximations, as discussed above). Unfortunately,
the restriction that CG must be initialized from zero cannot be easily removed,
and in our experience such initializations turn out to be very beneficial, as we
will discuss in section 10.

Another argument against using the Steihaug-Toint method is that if the
trust-region is left after only a few steps of CG, it will likely be the case that
few, if any, of the low-curvature directions have converged to a significant degree
(see section 9). And while we know that this will not affect the optimized value
of M by more than a factor of 2, it will nonetheless produce a qualitatively
different type of update than one produced using a penalty method, which will
have a possibly negative effect on the overall optimization trajectory.

Another possible argument against using the Steihaug-Toint method is that
it cannot used with preconditioned CG. However, as long as we are willing to
enforce an elliptical trust-region of the form {x : ‖x‖P < r} where P is the
preconditioning matrix, instead of a spherical one, the method still works and
its theory remains valid. And depending on the situation, this kind of elliptical
trust-region may actually be a very natural choice.

8.7 CG truncation as damping

Within HF, the main reason for terminating CG before it has converged is one
of a practical nature: the matrix-vector products are expensive and additional
iterations will eventually provide diminishing returns as far as optimizing the
quadratic model M . But there is another more subtle reason we may want to
truncate early: CG truncation may be viewed as special type of damping which
may be used in conjunction with (or as an alternative to) the various other
damping methods discussed in this section.

As CG iterates, the accuracy of M(δ) tends to go down, even while f(θk−1 +
δ) may still be improving. One way to explain this, assuming a zero initializa-
tion, is that the norm of δ will increase monotonically with each step, and thus
be more likely to leave the implicit region around δ = 0 where M is a reasonable

31

0 20 40 60 80 100
CG iteration

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

R
e
d
u
ct

io
n

Objective vs quadratic approximation as CG progresses

Objective function
Quadratic approximation

Figure 4: A plot of the objective function (red) versus the quadratic approximation
(blue) as a function of the number of CG steps. This was selected as a typical example
of a single run of CG performed by HF on a typical deep auto-encoder training task.

approximation of f . There is also theory which suggests that CG will converge
to δ∗ first along directions of mostly higher curvature, and only later along di-
rections of mostly low curvature (see section 9). While pursuing low curvature
directions seems to be important for optimization of deep networks and RNNs,
it also tends to be associated with large changes in θ which can lead to more
serious breakdowns in the accuracy of the local quadratic model.

The Steihaug-Toint method described in section 8.6 already makes use of
this phenomenon and relies exclusively on truncating the solution early to en-
force trust-region constraints. And it is well-known that truncating CG, which
effectively limits the size of the Krylov subspace, has certain regularizing prop-
erties in the context of solving noisy and ill-posed systems of linear equations
[13].

Although it wasn’t emphasize this in the paper, Martens [22] supplemented
the progress-based CG termination criteria with a maximum limit of 250 steps.
In practice, we have found that this maximum is consistently reached after the
first 100 (or so) iterations of HF when the approach is applied to problems like
the “CURVES” auto-encoder from Hinton and Salakhutdinov [16], and that
it plays an important role which is not limited to saving computation time.
Instead, we can observe that the improvement in the value of the objective f is
non-monotonic in the number of CG steps, and may peak long before condition
2 is satisfied (see fig. 4).

Martens [22] proposed “CG-backtracking” as a method to take advantage of
this tendency for earlier iterates to be more favorable as updates, by selecting the

32

“best” iterate among some manageable subset, as measured by the associated
reduction in f . One possible approach which is reasonably efficient is to compute
the objective f only on a small subset of the current minibatch or training set,
and only at every multiple of c steps for some fixed c, or every power of ν steps
(rounding to the nearest integer) for some fixed ν, and then terminate once it
appears that there will be no further possible improvement in the objective.

An important thing to keep in mind is that the damping effect of CG trun-
cation will depend on both the preconditioning scheme used within CG (as
discussed in section 11), and on the particular manner in which CG is initial-
ized (as discussed in sec. 10). In the extreme case where P = B, the eigenvalues
will all be equal and CG will converge in one step, rendering CG truncation
trivial/useless. And for “stronger” preconditioners that let CG converge faster
it can be argued that truncation at a particular iteration i will have a smaller
effect than with “weaker” preconditioners. But this perspective oversimplies a
very complex issue.

Preconditioning is effectively reparameterizing the quadratic optimization
problem, which has the effect of creating new eigenvectors with new eigenvalues
and of changing the Krylov subspace (as discussed further in section 11.1). This
in turn affects the “order” in which CG tends to prioritize convergence along
different directions (see section 9). Thus, when CG is terminated long before
convergence, preconditioning will have an important effect on the nature of the
implicit damping and thus on the quality of the update.

From the perspective of the Steihaug-Toint method and trust-regions, CG
preconditioning can be thought of as determining the shape of the trust-region
that is being implicitly enforced through the use of truncation. In particular,
the trust region will be given by R = {x : ‖x‖P ≤ r}, for some r, where P is the
preconditioning matrix. Similarly, initializing CG from some non-zero point x0
can be thought of as shifting the center of said trust-region away from 0. In both
cases, the guarantee remains true that the solution found by truncated CG will
be at least half as good (in terms of the value of M), subject to the trust-region
radius implied by the current iterate, as long as we the modify definition of the
trust region appropriately.

8.8 Line searching

The most basic form of damping, which is present in almost every 2nd-order
optimization algorithm, is standard line searching applied to the update pro-
posal δk. In particular, we select a scalar αk to multiply the update δk before
adding it to θ so that θk = θk−1 + αδk. Usually α is set to 1 as long as certain
conditions hold (see Nocedal et al. [30]), and decreased only as necessary until
they do. Doing this guarantees that certain local convergence theorems apply.

Provided that δk is a descent direction (δ>k ∇f(θk−1) < 0) we know that for
a sufficiently small (but non-zero) value of α, we will have:

f(θk−1) > f(θk) = f(θk−1 + αδk) (11)

33

δk will be descent direction as long as B̂k−1 is positive definite, ∇f is com-
puted on the entire training set, and M̂ is optimized either exactly, or partially
with CG (provided that we achieve M(δ) < 0). Thus, in many practical scenar-
ios, a line search will ensure that the update results in a decrease in f , although
it may be very small. And if we are content with the weaker condition that only
the terms of f corresponding to the minibatches used to estimate ∇f(θk−1)
must decrease, then we can drop the requirement that ∇f be computed using
the whole training set.

One easy way to implement line searching is via the back-tracking approach,
which starts at α = 1 and repeatedly multiplies this by some constant β ∈ (0, 1)
until the “sufficient-decrease condition” applies. This is given by

f(θk−1 + αδk) ≤ f(θk−1) + cα∇f(θk−1)>δk

where c is some small constant like 10−2. It can be shown that this following
approach will produce an update which has strong convergence guarantees 8.

Unlike 1st-order methods where the total number of updates to θ can often
be on the order of 104 − 106 for a large neural network, powerful approximate
Newton methods like HF may only require on the order of 102 − 103, so the
expense of a line-search is much easier to justify.

Note also that it is also possible to view line searching as a special type of a
penalty based damping method, where we use a penalty term of the form 1

2αB.
In other words, we simply increase the scale of curvature matrix B by 1/α. This
interpretation is valid as long as we solve M̂ exactly, or partially by CG as long
as it is initialized from ~0.

The line search is best thought of as a last line of defense to compensate for
occasional and temporary maladjustment of the various non-static parameters
of the other damping methods, such as λ or r, and not as a replacement for
these methods. If the line search becomes very active (i.e., very often chooses
an α strictly less than 1) there are two probable causes, which should be ad-
dressed directly instead of by relying on the line-search. The first is poorly
designed/inappropriate damping methods and/or poor heuristics for adjusting
their non-static meta-parameters. The second probable cause is that the data
used to estimate the curvature and/or gradient is insufficient and the update
has effectively “overfitted” the current minibatch.

The argument for not relying on line searches to fix whatever problems
might exist with the updates produced by optimizing M is that they work by
rescaling each eigen-component (or conjugate direction) of the update equally
by the multiplicative factor α, which is a very limited and inflexible approach.
It turns out that in many practical situations, the type of scaling modification
performed by a penalty method like Tikhonov damping is highly preferable,
such as when B is very ill-conditioned. In such a situation, minimizing M
results in an update proposal δk which is scaled much too strongly in certain,
possibly spurious, low-curvature eigen-directions, by a factor of possibly 103

8But note that other possible ways of choosing an α that satisfies this condition may make
α too small.

34

or more, and a line-search will have to divide all components by this factor in
order to make the update viable, which results in an extremely small update.
Meanwhile, a Tikhonov approach, because it effectively modifies the curvatures
by the additive constant λ (as discussed in section 8.1) can easily suppress
these very low-curvature directions while leaving the higher curvature directions
relatively untouched, which makes the update much bigger and more useful as
a result.

9 Convergence of CG

In this section we will examine the theoretical convergence properties of CG
and provide justifications for various statements regarding its convergence made
throughout this report, such as how δ converges along different “directions” in
parameter space, and how CG prioritizes these directions according to their
“associated curvature”. This analysis has particularly important implications
for preconditioning (see section 11) and CG truncation damping (see section
8.7).

Before we begin it should be noted that due to inexact computer arithmetic,
in practice the conclusions of this analysis (which implicitly assume exact arith-
metic) will only hold approximately. Indeed, CG, unlike many other numerical
algorithms, is highly sensitive to numerical issues and after only 5−10 iterations
on a high-precision machine will produce iterates that can differ significantly
from those which would be produced by a hypothetical exact implementation.

We will analyze CG applied to a general quadratic objective of the form
q(x) = 1

2x
>Ax−b>x for a symmetric positive definite matrix A ∈ Rn×n, b ∈ Rn.

This can be related by to HF by taking A = B (or A = B̂ in the case of a damped
quadratic approximation) and b = −∇f .

Note that x as defined here is an n-dimensional vector and should not be
confused with its use elsewhere in this chapter as the input to a neuron.

Let {λj}nj=1 be the eigenvalues of A and {vj}nj=1 the corresponding (unit)
eigenvectors, x0 be the initialization of CG, and x∗ the minimizer of q. Since the
vj ’s are an orthonormal basis for Rn (because A is symmetric and invertible) for
any x we can express x0 − x∗ in terms of the vj ’s, giving x0 − x∗ =

∑n
j=1 ξjvj

for ξj = v>j (x0 − x∗).
It can be shown [30, 33] that:

‖xi − x∗‖2A = min
p

n∑
j=1

λjp(λj)
2ξ2j (12)

where ‖z‖2A ≡ 1
2z
>Az and where the minimum is taken over all polynomials

of degree i with constant term 1. This result can be used to prove various
convergence theorems for CG [30]. For example, CG will always converge to
x∗ after a number of iterations less than or equal to the number m of distinct
eigenvalues of A, since it is easy to design a polynomial of degreem with constant
term 1 that satisfies p(λj) = 0 for all j.

35

To gain more insight into eqn. 12 we will re-derive and re-express it in a way
that implies an intuitive interpretation for each term. It is easy to show that:

q(z + x0)− q(x0) =
1

2
z>Az + r>0 z

where r0 = Ax0 − b (i.e. the initial residual). And so q(z + x0) − q(x0) is a
quadratic in z with constant term equal to 0, and linear term r0.

Defining ηj = r>0 vj to be the size of eigenvector vj in direction r0 = Ax0− b
(which is the initial residual), and observing that v>j Avj = λjv

>
j vj = λj , we

have for any α ∈ R:

q(αvj + x0)− q(x0) =
1

2
α2v>j Avj + αr>0 vj =

1

2
α2λj + αηj

Since the vj ’s are an orthonormal basis for Rn (because A is symmetric
and invertible), we can express x − x0 (for any x) in terms of the vj ’s, giving
x = x0 +

∑
j βjvj where βj = v>j (x− x0). Note that the vj ’s are also mutually

conjugate (which follows from them being both orthonormal and eigenvectors)
and that since q(z+ x0)− q(x0) is quadratic in z with constant term 0 we have
that for any two conjugate vectors u and w:

q(u+ w + x0)− q(x0) = (q(u+ x0)− q(x0)) + (q(w + x0)− q(x0))

which is straightforward to show. Thus we have:

q(x)− q(x0) = q((x− x0) + x0)− q(x0) =

n∑
j=1

(q(βjvj + x0)− q(x0))

=

n∑
j=1

(
1

2
β2
jλj + βjηj

)
What this says is that the size βj of the contribution of each eigenvector/eigen-
direction to x, have an independent influence on the value of q(x) − q(x0),
and so we can meaningfully talk about how each one of them independently
“converges” as CG iterates.

In a sense, each βj is being optimized by CG, with the ultimate goal of min-
imizing the corresponding 1-D quadratic q(βjvj + x0)− q(x0), whose minimizer

is β∗j = − ηj
λj

= v>j (x∗ − x0) with associated minimum value:

q(β∗j vj + x0)− q(x0) = −1

2

η2j
λj

= −ωj

where we define ωj ≡
η2j
λj

. The difference between the current value of q(βjvj +

x0) and its minimum has a particularly nice form:

q(βjvj + x0)− q(β∗j vj + x0) =
1

2
β2
jλj + βjηj + ωj = ωj

(
λj
ηj
βj + 1

)2

36

Figure 5: This figure demonstrates geometrically how the contribution to the poly-
nomial p(z) of an additional root ν or ν′ in the vicinity of a small eigenvalue λ1 or a
large eigenvalue λ2 (resp.) affects the loss term associated with the other eigenvalue.
In particular, the distance of the lines above or below the horizontal axis is equal to
the factor whose square effectively multiplies the loss term associated with the given
eigenvalue.

Now suppose that x−x0 ∈ Ki(A, r0) so that there exists some (i−1)-degree
polynomial s s.t. x− x0 = s(A)r0 and note that s(A)vj = s(λj)vj . Then,

βj = v>j (x− x0) = v>j s(A)r0 = (s(A)vj)
>r0 = (s(λj)vj)

>r0 = s(λj)ηj

so that:

q(βjvj + x0)− q(β∗j vj + x0) = ωj

(
λj
ηj
s(λj)ηj + 1

)2

= ωj(λjs(λj) + 1)2 = ωjp(λj)
2

where we define p(z) = zs(z)+1 (which is a general polynomial of degree i with
constant coefficient 1).

Summarizing, we have:

q(x)− q(x∗) = (q(x)− q(x0))− (q(x∗)− q(x0)) =
n∑
j=1

(q(βjvj + x0)− q(β∗j vj + x0))

=

n∑
j=1

ωjp(λj)
2 (13)

We now apply this results to CG. We know that after i steps, CG applied
to q with initialization x0, finds the iterate xi which minimizes q(xi) subject
to restriction xi − x0 ∈ Ki(A, r0). This is equivalent to minimizing over all
possible p with the requirement that p has degree i with constant coefficient 1,
or in other words:

q(xi)− q(x∗) = min
p

n∑
j=1

ωjp(λj)
2 (14)

37

Thus we see that CG is effectively picking a polynomial p to minimize the
weighted sum of p2 evaluated at the different eigenvalues.

As mentioned before, there are various results that make use of expressions
similar to this one in order to prove results about how the distribution of the
eigenvalues of A determine how quickly CG can make progress optimizing q.
One particularly interesting result states that if the eigenvalues cluster into
m groups, then since we can easily design a degree-m polynomial p which is
relatively small in the vicinity of each cluster by placing a root of p at each
cluster center, the error will be quite low by the m-th iteration [30].

However, the particular form of eqn. 14 and its derivation allow us to paint
a more intuitive picture of how CG operates. Each of the terms in the sum
13 correspond to a direction-restricted objective q(βjvj + x0)− q(β∗j vj + x0) =

ωjp(λj)
2 which are indirectly optimized by CG w.r.t. the βj ’s. The size each of

these “loss” terms negatively correlates with how much progress CG has made
in optimizing x along the corresponding eigen-directions, and by examining the
form of these terms, we can talk about how CG will “prioritize” these different
terms (and hence the optimization of their associated eigen-directions) through
its choice of an optimal polynomial p.

Firstly, consider the “weights” ωj = −(q(β∗j vj + x0)− q(x0)) =
1

2

η2j
λj

, which

measure the total decrease in q that can be obtained by fully optimizing along
the associated direction vj . Their effect is thus to shift the focus of CG towards
those eigen-directions which will give the most reduction. They are inversely
proportional to the curvature λj , and proportional to η2j = (v>j r0)2, which is
the square of the size of the contribution of the eigen-direction within the initial
residual (which in HF will be the gradient of f when x0 = 0), and this makes
the ωj ’s “scale-invariant”, in the sense that any linear reparameterization which
preserves the eigenvectors of A, while possibly rescaling the eigenvalues, will
have no effect on the ωj ’s.

Secondly, we note the effect of the size of the λj ’s, or in other words, the
curvatures associated with vj ’s. If it weren’t for the requirement that p must
have a constant term of 1, the λj ’s probably wouldn’t have any influence on
CG’s prioritizing of directions (beyond for how they modulate the weights ωj).
But note that general polynomials of degree i with constant coefficient 1 must
have the form:

p(z) =

i∏
k=1

(
1− z

νk

)
for νk ∈ C. We will argue by illustrative example that this fact implies that
CG will favor high-curvature directions, everything else being equal. Suppose
there are two tight clusters of eigenvalues of A, a low-magnitude one located
close to zero and a large-magnitude one located further away. Suppose also that
they have equal total loss as measured by the sum of the associated ωjp(λj)

2’s
(for the current p). Placing an additional root νk close to the large-magnitude
cluster will greatly reduce the associated ωjp(λj)

2 loss terms in that cluster,

38

by effectively multiplying each by
(

1− λj

νk

)2
which will be small due to the

closeness of νk to each λj . Meanwhile, for the λj ’s in the small-magnitude

cluster, the associated loss terms will be multiplied by
(

1− λj

νk

)2
which won’t

be greater than 1 since 0 < λj < νk, implying that these loss terms will not
increase (in fact, they will very slightly decrease).

Now contrast this with what would happen if we placed a root νk close to
the small magnitude cluster. As before, the loss terms associated with that
cluster will be greatly reduced. However, because λj � νk for λj ’s in the

large-magnitude cluster, we will have
(

1− λj

νk

)2
� 1 for such λj ’s, and so

the associated loss terms will greatly increase, possibly even resulting in a net
increase in q. Thus CG, being optimal, will place the root near to the large-
magnitude cluster in this situation, versus the small magnitude-one, despite
convergence of either one yielding the same improvement in q.

10 Initializing CG

As in the previous section we will use the generic notation q(x) = 1
2x
>Ax− b>x

to refer to the quadratic objective being optimized by CG.
A useful property of CG is that it is able to make use of arbitrary initial

guesses x0 for x. This choice can have a strong effect on the performance of
CG, which is not surprising since xi depends strongly on the Krylov subspace
Ki(A, r0) (where r0 = Ax0 − b), which in turn depends strongly on x0. From
the perspective of the previous section, an initial x0 may be “more converged”
than x = 0 along some eigen-directions and less converged along others, thus
affecting the corresponding weights ωj , which measure the total reduction that
can be obtained by fully optimizing eigen-direction vj (versus leaving it as it
is in x0). This “redistribution” of weights caused by taking a different x0 may
make the quadratic optimization easier or harder for CG to optimize, depending
on how the eigenvalues and associated weights are distributed.

Since the local geometry of the error surface of f (and hence the local damped
quadratic model q = M̂) changes relatively slowly between updates (at least
along some eigen-directions), this suggests using the previous update δk−1 as
the starting solution x0 for CG, as was done by Martens [22].

In practice, this choice can result in an initial value of q which is higher than
zero, and thus seemingly worse than just using x0 = 0, which satisfies q(x0) = 0.
x0 may not even be a descent direction, implying that q(εx0) > 0 for all ε > 0.
But these objections are based on the naive notion that the value of q tells us
everything there is to know about the quality of potential initialization. What
we observe in practice is that while CG runs initialized with x0 = δk−1 “start
slow” (as measured by the value of q(x)), they eventually catch up and then
surpass runs started from x0 = 0.

To make sense of this finding, we first note it is easy to design initializations
which will have arbitrarily high values of q, but which require only one CG step

39

to reach the minimum. To do this, we simply take the minimizer of q and add
a large multiple of one of the eigenvectors of A to it. This corresponds to the
situation where only one eigenvalue λj has non-zero weight ωj , so that to make
q(x)− q(x∗) = 0 CG can simply select the degree-1 polynomial which places a
root at λj .

More generally, x0 may be more converged than 0 along eigen-directions
which are more numerous, or which have have small and spread-out eigenvalues
(i.e. curvatures), and meanwhile less converged than 0 (perhaps severely so) only
along eigen-directions which are fewer in number, or have larger or more tightly
clustered eigenvalues. If the later group has a larger total weight (given by the
sum of the ωj ’s as defined in the previous section) this will cause q(x0) > 0.
But since the former directions will be easier for CG to optimize than the latter,
this implies that the given x0 will still be a highly preferable initialization over
“safer” choice of 0, as long as CG is given enough iterations to properly optimize
the later group of badly initialized but “easy-to-fix” eigen-directions.

We surmise that the choice x0 = δk−1 fits into the situation described above,
where the later group of eigen-directions correspond to the slowly optimized
low-curvature directions that tend to remain descent-directions across many
HF iterations. Consistent with this theory, is our observation that the number
of CG steps required to achieve q(x) < 0 from the initialization x0 = δk−1
tends to grow linearly with the number of CG steps used at the previous HF
iteration9.

Analogously to how the current update vector is “decayed” by a scalar con-
stant when using gradient descent with momentum, we have found that it is
helpful to slightly decay the initialization, taking x0 = ζδk−1 for some constant
0 ≤ ζ ≤ 1, such as 0.95.

Choosing this decay factor for HF carefully is not nearly as important as
it can be for momentum methods. This is because while momentum methods
modify their current update vectors by a single gradient-descent step, HF uses
an entire run of CG, which can make much more significant changes. This
allows HF to more easily scale back x0 along eigen-directions, which while they
may have been helpful at the previous θ, are no longer appropriate to follow
from the current θ. In particular, x0 will be quickly “corrected” along turbulent
directions of high-curvature, reducing (but not completely eliminating) the need
for a decay to help “clean up” these directions.

Our experience suggests that properly tuning the decay constant becomes
more important as aggressive CG truncation, or other factors like weak precon-
ditioning, limit CG’s ability either to modify the update from its initial value
x0, or to make good progress along important low-curvature directions. While
the former problem calls for lowering ζ, the later calls for raising it. The optimal
value will likely depend on the amount of truncation, the type of precondition-
ing, and the local geometry of the objective being optimized. ζ = 0.95 seems to
be a good default value, but it may help to reduce it when using an approach

9This is, incidentally, one reason why it is good to use a fixed maximum number of CG
iterations at each HF step

40

which truncates CG very early. It may also be beneficial to increase it in the
later stages of optimization where CG struggles much harder to optimize q along
low curvature directions.

11 Preconditioning

As powerful as CG is, there are quadratics optimization problems which can be
easily solved using more direct methods, that CG will struggle with. For exam-
ple, if the curvature matrix is diagonal, CG will in general require i iterations
to converge (where i is the number of distinct values on the diagonal) using
a total of O(in) time. Meanwhile, we could easily solve the entire system by
straightforward inversion of the diagonal curvature matrix in time O(n). CG is,
in a sense, unaware of this special structure and unable to exploit it.

While the curvature matrix will in general not be diagonal or have any other
special form that makes it easy to invert, there may nevertheless be cheap oper-
ations which can exploit information about the course structure of the curvature
matrix to do some of the work in optimizing q, reducing the burden on CG.

In the context of HF, preconditioning refers to the reparameterization of
M̂10 according to some linear transformation relatively easy to invert, with the
idea that CG will make more rapid progress per iteration optimizing w.r.t. the
new parameterization.

Formally, given some invertible transformation defined by a matrix C, we
transform the quadratic objective M̂(δ) by a change of coordinates δ = C−1γ
and optimize w.r.t. γ instead of δ.

M̂(C−1γ) =
1

2
γ>C−>B̂C−1γ +∇f>C−1γ

Applying preconditioning to CG is very easy and amounts to computing trans-
formed residual vectors yi at each iteration, by solving Pyi = ri, where P =
C>C (see alg. 2). This can be accomplished, say, by multiplication of ri by
P−1, which for many common choices of P (such as diagonal approximations of
B̂) is a cheap operation.

Preconditioning can be applied to other optimization methods, such as gra-
dient descent, where it corresponds to a non-static linear reparameterization of
the objective f that typically varies with each iteration, and amounts simply to
multiplication of the gradient update by P−1. In fact, one way to view 2nd-order
optimization is as a particular non-static preconditioning approach for gradient
descent, where P is given by the curvature matrix B (or some approximation or
Krylov subspace restriction of it).

11.1 The effects of preconditioning

In section 9, we saw how the eigenvalues of the curvature matrix and the corre-
sponding sizes of the contributions to the initial residual of each eigen-direction

10We will use the .̂ notation for the damped quadratic and associated damped curvature
matrix B̂ since this is what CG will actually optimize when used within HF.

41

effectively determine the convergence characteristics of CG, in terms of the “or-
der” in which the eigen-directions tend to converge, and how quickly. It was
found that each eigen-direction has an effective “weight” ωj (corresponding to
the total decrease in q which can be obtained by completely optimizing it), and
that CG prioritizes convergence along the eigen-directions both according to
their weights and their associated curvature/eigenvalue, preferring larger values
of both. Because CG is optimal, it will tend to make faster progress along di-
rections whose the eigenvalues are close proximity to many other ones that are
associated with directions of high-weight (due to its ability to make progress on
many such directions at once when their eigenvalues are closely packed).

Thus to understand how a potential preconditioning scheme affects the con-
vergence of CG we can look at the eigen-distribution of the transformed cur-
vature matrix C−>B̂C−1, and the associated weights, which depend on the
transformed initial residual C−>(B̂x0−∇f). Choices for C (or equivalently P)
which yield tight clusters of eigenvalues should lead to overall faster convergence,
at least along the directions which are contained in such clusters.

But as discussed in section 8.7, the eigenvectors and corresponding eigen-
value distribution will affect the order in which various directions converge, and
this will interact in a non-trivial way with CG truncation damping. In partic-
ular, certain directions which would otherwise never be touched by CG in the
original parameterization, either because their eigenvalues are located far away
from any high-weight eigenvalue clusters, or because they have very low curva-
ture (i.e., low eigenvalue), could, within the reparameterization, become part of
eigen-directions with the opposite properties, and thus be partially optimized
by CG even when it is aggressively truncated.

This is a potential problem, since it is our experience that certain very low
curvature directions tend to be highly non-trustworthy for neural network train-
ing objectives (in the default parameterization). In particular, they often tend
to correspond to degeneracies in the quadratic model, such as those introduced
by using different sets of data to compute the gradient and curvature-matrix
vector products (see section 12.1), or to directions which yield small reductions
in q for the current minibatch but large increases on other training data (an
issue called “minibatch overfitting”, which is discussed in section 12.2).

11.2 Designing a good preconditioner

Designing a good preconditioner is an application specific art, especially for HF,
and it is unlikely that any one preconditioning scheme will be the best in all
situations. There will often be a trade-off between the computational efficiency
of implementing the preconditioner and its effectiveness, both in terms of how
it speeds of convergence of CG, and how it may reduce the effectiveness of CG
truncation damping.

While the previous section describes how a preconditioner can help in theory,
in practice it is not obvious how to design one based directly on insights about
eigen-directions and their prioritization.

An approach which is popular and often very effective in various domains

42

where CG is used is to design P to be some kind of easily inverted approxima-
tion of the curvature matrix (in our case, B̂). While the ultimate purpose of
preconditioning is to help CG optimize more effectively, which may conceivably
be accomplished by less obvious choices for P , approximating B̂ may be an eas-
ier goal to approach directly. Justifying this idea is the fact that when P = B̂,
the preconditioned matrix is I, so CG will converge in one step.

Adopting the perspective that P should approximate B̂, the task of designing
a good preconditioner becomes one of balancing approximation quality with
practical concerns, such as the cost of multiplying by P−1.

Of course, “approximation quality” is a problematic concept, since the vari-
ous ways we might want to define it precisely, such as via various matrix norms,
may not correlate well with the effectiveness of P as a preconditioner. Indeed,
CG is invariant to the overall scale of the preconditioner, and so while βB̂ would
be an optimal preconditioner for any β > 0, it could be considered an arbitrarily
poor approximation to B̂ as β grows, depending on how we measure this.

Diagonal P ’s are a very convenient choice due to the many nice properties
they naturally possess, such as being full rank, easy to invert, and easy to store.
They also tend to be quite effective for optimizing deep feedforward neural net-
works, due to how the scale of the gradient and curvature w.r.t. the hidden
activities grows or shrinks exponentially as we proceed backwards through the
layers [4, 17], and how each parameter is associated with a single layer. Without
compensating for this with diagonal preconditioning, the eigenvalues of the ef-
fective curvature matrix will likely be much more “spread out” and thus harder
for CG to deal with. By contrast, RNN optimization does not seem to benefit
as much from diagonal preconditioning, as reported by Martens and Sutskever
[23]. Despite how RNNs can possess per-timestep scale variations analogous to
the per-layer scale variations sometimes seen with feedforward nets, these won’t
manifest as differences in scales between any particular parameters (i.e. diagonal
scale differences), due to the way each parameter is used at every time-step.

Many obvious ways of constructing non-diagonal preconditioners end up
resulting in P ’s which are expensive and cumbersome to use when n is large.
For example, if P or P−1 is the sum of a k-rank matrix and a diagonal, it will
require O((k + 1)n) storage, which for very large n will be a problem (unless k
is very small).

A well-designed diagonal preconditioner P should represent a conservative
estimate of the overall scale of each parameter, and while the diagonal of the
curvature matrix is a natural choice in many situations, such as when the curva-
ture matrix is diagonally dominant, it is seriously flawed for curvature matrices
with a strong non-diagonal component. Nonetheless, building a diagonal pre-
conditioner based on d = diag(B̂) (or an approximation of this) is a sensible
idea, and forms the basis of the approaches taken by Martens [22] and Chapelle
and Erhan [10]. However, it may be beneficial, as Martens [22] found, not to
use d directly, but to choose P to be somewhere between diag(d) and a scalar
multiple of the identity matrix. This has the effect of making it more gentle and
conservative, and it works considerably better in practice. One way to accom-
plish this is by raising each entry of d (or equivalently, the whole matrix P) to

43

some power 0 < ξ < 1, which will make P tend to the identity as ξ approaches
0.

In situations where diagonal damping penalty terms like the Tikhonov term
are weak or absent, it may also be beneficial to include an additional additive
constant κ, which also has the effective of making P tend to a scalar multiple
of the identity as κ grows so that we have:

P = (diag(d) + κI)ξ

If there is information available about the coarse relative scale of the parameters,
in the form of some vector s ∈ Rn, such as the reparameterized neural network
example discussed in sec. 8.2, it may better to use κdiag(s) instead of κI.

It is important to emphasize that d should approximate diag(B̂) and not
diag(B), since it is the former curvature matrix which is used in the quadratic
which CG actually optimizes. When D is a diagonal matrix, one should take

d = diag(B) + λD

where the latter contribution can be computed independently and exactly (and
not via the methods for approximating diag(B) which we will discuss next).
Meanwhile, if the damping matrix D is non-diagonal, then one should take

d = diag(B + λD)

where we might in fact use the aforementioned methods in order to approximate
the diagonal of B + λD together.

So far the discussion ignored the cost of obtaining the diagonal of a curvature
matrix. Although it is easy to compute Hessian-vector products of arbitrary
functions, there exists no efficient exact algorithm for computing the diagonal
of the Hessian of a general nonlinear function (Martens et al. [24, sec. 4]), so
approximations must be used. Lecun et al. [2] report an efficient method for
computing the diagonal of the Gauss-Newton matrix, but close examination
reveals that it is mathematically unsound (although it can still be viewed as a
heuristic approximation).

In case of the Gauss-Newton matrix, it is possible to obtain the exact diag-
onal at the cost of k runs of backpropagation, where k is the number of output
units [6]. This approach can be generalized in the obvious way to compute the
diagonal of the generalized Gauss-Newton matrix, and is feasible for classifica-
tion problems with small numbers of classes, although not feasible for problems
such as deep autoencoders or RNNs which have high-dimensional outputs. In
the next sections, we describe two practical methods for approximating the
diagonal of the GGN matrix regardless of the dimension of the output.

11.3 The Empirical Fisher Diagonal

One approach to approximating the diagonal of the GGN matrix G is to instead
compute the diagonal of a related matrix for which exact computation of the

44

diagonal is easier. For this purpose Martens [22] selected the Empirical Fisher
Information matrix F , which is an approximation to the well-known Fisher
information matrix [1] (which is itself related to the generalized Gauss-Newton
matrix). The empirical Fisher Information matrix is given by

F ≡
∑
i

∇fi∇f>i

where ∇fi is the gradient on case i. However, because of its special low-rank
form, its diagonal is readily computable as:

diag(F) =
∑
i

sq(∇fi)

where sq(x) denotes coordinate-wise square.
Because the∇fi’s are available from the gradient computation∇f =

∑
i∇fi

over the minibatch, additionally computing diag(F) over the same minibatch in
parallel incurs no extra cost, save for the possible requirement of storing the
∇fi’s, which can be avoided for feedforward networks but not RNNs. Algorithm
11.3 computes the diagonal of the Empirical Fisher Information matrix without
the extra storage. In the algorithm, each yi is a matrix with B columns which
represent the activations of a minibatch with B cases, and sq(·) is the coordinate-
wise square. It differs from algorithm 2 only in lines 9 and 10.

Algorithm 6 An algorithm for computing the diagonal diag(F) of the Empir-
ical Fisher Information matrix of a feedforward neural network (includes the
standard forward pass)

1: input: y0, θ mapped to (W1, . . . ,W`−1, b1, . . . , b`−1)
2: for all i from 1 to `− 1 do
3: xi+1 ←Wiyi + bi
4: yi+1 ← si+1(xi+1)
5: end for
6: dy` ← ∂L(y`; t`)/∂y` (t` is the target)
7: for i from `− 1 downto 1 do
8: dxi+1 ← dyi+1s

′
i+1(xi+1)

9: Set entries of diag([F]) corresponding to Wi to be sq(dxi+1)sq(yi)
>

10: Set entries of diag([F]) corresponding to bi to be sq(dxi+1)1>B
11: dyi ←W>i dxi+1

12: end for
13: output: diag(F)

In general, it is possible to compute the sum of squares of gradients in a
minibatch in parallel without storing the squares of the individual gradients
(which is often prohibitively expensive) whenever the computational graph of
the gradient makes precisely one additive contribution to every parameter for
each case. In this case, it possible to add [∇fi]2j to the appropriate entry of

45

diag(F) as soon as it is computed, so we need not allocate temporary storage
for [∇fi]j for each i and j (rather, only each j).

However, when the computational graph of the derivative (for a given case i)
makes multiple additive contributions to each [∇fi]j , it is necessary to allocate
temporary storage for this quantity since we must square its total contribution
before summing over the cases. Interestingly, this issue does not occur for the
RNN’s gradient computation, since without the per-i squaring, each contribu-
tion to [∇fi]j can be stored in a single vector for all the i’s.

11.4 An unbiased estimator for the diagonal of G

Chapelle and Erhan [10] give a randomized algorithm for computing an unbiased
estimate of the diagonal of the generalized Gauss-Newton matrix, which requires
the same amount of work as computing the gradient. And just as with any
unbiased estimate, this approach can be repeatedly applied, and the results
averaged, to achieve more precise estimates.

The method of Chapelle and Erhan is described in algorithm 7 below:

Algorithm 7 Computing an unbiased estimate of the diagonal of the GGN
matrix

1: Sample v ∈ Rm from a distribution satisfying E[vv>] = I

2: output sq
(
J>L′′

1/2
v
)

As discussed in section 6, multiplication of an arbitrary v ∈ Rm by the
Jacobian J of F can be performed efficiently by the usual back-propagation
algorithm. The correctness of algorithm 7 is easy to prove:

E
[
sq

(
J>L′′

1/2>
v

)]
= E

[
diag

(
(J>L′′

1/2>
v)(J>L′′

1/2>
v)>

)]
= diag

(
J>L′′

1/2>E[vv>]L′′
1/2
J

)
= diag

(
J>L′′

1/2>
L′′

1/2
J

)
(as E[vv>] = I)

= diag(J>L′′J)

= diag(G)

where we have used the identity sq(x) = diag(xx>).
Martens et al. [24], following the work of Chapelle and Erhan [10], introduced

an efficient unbiased approximation method for estimating the entire Hessian
or GGN matrix of a given function (or just their diagonals, if this is desired)
with a cost also comparable to computing the gradient. In the special case of
estimating the diagonal of the GGN matrix, the two methods are equivalent. Of
practical import, Martens et el. [24] also proved that sampling the components
of v uniformly from −1, 1 will produce lower variance estimates than will be
obtained by sampling them from N(0, 1).

46

Computationally, the method of Chapelle and Erhan is very similar to the
method for computing the diagonal of the Empirical Fisher Information that was
described in the previous section. Indeed, while the latter compute sq

(
J>∇L

)
,

this method computes sq
(
J>L′′

1/2
v
)

for random v’s, and so the methods have

similar implementations. In particular, both estimates can be computed in par-
allel over cases in the minibatch, and they share the issue with temporary stored
discussed in the previous section, which can be overcome in for feedforward net-
works but not RNNs.

In our experience, both methods tend to produce preconditioners with sim-
ilar properties and performance characteristics, although Chapelle and Erhan
[10] found that in certain situations this unbiased estimate gave better results.
One clear advantage of this method is that it can correctly account for structural
damping, which is not done by using the empirical Fisher matrix, as the gra-
dients of the structural damping objective are equal to zero. The disadvantage
of this method is that due to the stochastic nature of the curvature estimates,
there could be parameters with non-zero gradients whose diagonal estimates
could nonetheless be very small or even zero (which will never happen with the
diagonal of the Fisher matrix). The diagonal of the Fisher matrix also has the
additional advantage that it can be computed in tandem with the gradient at
virtually no extra cost.

12 Minibatching

In modern machine learning applications, training sets can be very large, and
a learning algorithm which processes all the examples in the training set to
compute each parameter update (called “batch processing”) will likely be very
slow or even totally impractical [7]. Some training datasets may even be infinite
and so it may not even make any sense to talk about an algorithm operating in
batch-mode at all.

“Online” or “stochastic” gradient algorithms like stochastic gradient descent
(SGD) can theoretically use gradient information computed on arbitrarily small
subsets of the training set, called “minibatches”, as long as the learning rate
is sufficiently small. HF, on the other hand, uses minibatches to estimate the
curvature matrix, which is used in a very strong way to produce large and
sometimes aggressive parameter updates. These curvature matrix estimates
may become increasingly low-rank and degenerate as the minibatch size shrinks
(assuming no contribution from damping or weight-decay), which in some cases
(see subsection 12.1) may lead to unbounded and nonsensical updates, although
the damping mechanisms discussed in sec. 8 can compensate for this to some
extent.

But even without these more obvious degeneracy issues, it can be argued
that, intuitively, the matrix B captures “soft-constraints” about how far we
can go in any one direction before making things worse, and if the constraints
relevant to a particular training case are not well approximated in the curvature

47

estimated from the minibatch, the update δ obtained from optimizing M could
easily make the objective f worse on such a case, perhaps severely so.

Thus 2nd-order methods like HF which must estimate the curvature only
from the current minibatch, may not work nearly as well with very small mini-
batches. And while there are several strategies to deal with minibatches that
are “too small”, (as we will discuss in subsection 12.2), the benefits of using a
2nd-order method like HF may be diminished by their use.

Fortunately, in the case of neural networks, there are elegant and natural
implementations which exploit data-parallelism and vectorization to efficiently
compute gradients and curvature matrix-vector products over minibatches (see
section 7). For highly parallel architectures like GPUs, these tend to give an in-
crease in computational cost which remains sublinear (as a function of minibatch
size) up to and beyond minibatch sizes which are useful in HF.

12.1 Higher quality gradient estimates

Unlike 1st order optimization schemes like SGD where the number of iterations
required to approach a good solution can reach as high as 105−107, the number
of iterations required by a strong 2nd-order optimizer like HF is in our experi-
ence orders of magnitude smaller, and usually around 102−103. While the linear
term b = −∇f(θk−1) passed to CG needs to be computed only once for each
update, CG may require on the order of 102 − 103 matrix-vector products with
the curvature matrix A = B to produce each update. These matrix-vector prod-
ucts are by far the most computationally costly part of any truncated Newton
approach.

It may therefore be cost-effective to compute the gradient on a much larger
minibatch than is used to compute the matrix-vector products. Martens [22] rec-
ommended using this technique (as does Byrd et al. [8]), and in our experience
it can often improve optimization speed if used carefully and in the right con-
texts. But despite this, there are several good theoretical reasons why it might
be better, at least in some situations, to use the same minibatch to compute
gradient and curvature matrix-vector products. These have been corroborated
by our practical experience.

We will refer to the minibatches used to compute the gradient and curvature
matrix-vector products as the “gradient minibatch” and “curvature minibatch”,
respectively.

When the gradient and curvature minibatches are equal, and the GGN cur-
vature matrix is used, the quadratic model M maintains its interpretation as
the local Taylor series approximation of a convex function, which will simply
be the approximation of f obtained by linearizing F (see eqn. 9), but restricted
to the data in the current minibatch. In such a situation, with some additional
reasonable assumptions about the convex function L (strong convexity would
be sufficient, but is more than what is needed), the quadratic model M can be

48

written as:

M(δ) =
1

2
δ>Bδ +∇f>k−1δ + f(θk−1) =

1

2
δ>J>L′′Jδ + δ>(J>∇L) + f(θk−1)

=
1

2
(Jδ)>L′′(Jδ) + (Jδ)>L′′L′′

−1∇L+∇L>L′′−1L′′L′′−1∇L

−∇L>L′′−1L′′L′′−1∇L+ f(θk−1)

=
1

2
(Jδ +∇L)>L′′(Jδ +∇L)> + c

=
1

2
‖Jδ + L′′

−1∇L‖2L′′ + c

where c = f(θk−1) − ∇L>L′′−1∇L and all quantities are computed only on
the current minibatch. Here we have used the fact that L′′ is invertible, which
follows from the fact that L is strongly convex.

This result is interesting because it applies only when B is the generalized
Gauss-Newton matrix (instead of the Hessian), and it establishes a bound on
the maximum improvement in f that the quadratic model M can ever pre-
dict: ∇L>L′′−1∇L, a quantity which does not depend on the properties of the
network, only on its current predictions and the associated convex loss function.

Such a boundedness result does not exist whenever M is estimated using
different minibatches for the gradient and curvature. In this case, the estimated
gradient may easily lie outside the column space of the estimated curvature
matrix in the sense that there may exist directions d s.t. g>d < 0, ‖d‖ = 1, but
d>Bd = 0. In such a case it is easy to see that the quadratic model is unbounded
and M(αd)→ −∞ as α→∞. While boundedness can be guaranteed with the
inclusion of damping penalty terms which ensure that the damped curvature
matrix B̂k is positive definite, and will also be guaranteed when the curvature
matrix B is full rank, it may be the case that the boundedness is “weak” in
the sense that d>Bd may be non-zero but extremely small, leading to a nearly
degenerate update δ. For example, when using Tikhonov damping then we know
that d>B̂kd ≥ λ, but in order for this to sufficiently constrain the update along
direction d, λ may have to be large enough that it would impose unreasonably
high constraints on optimization in all directions.

More intuitively, the gradient represents a linear reward for movement in
certain directions d (the strength of which is given by g>d) while the curvature
matrix represents a quadratic penalty. If we include the linear rewards associ-
ated with a subset of cases without also including the corresponding quadratic
penalties, then there is a chance that this will lead to a degenerate situation
where some directions will have lots of reward (predicted linear reduction) with-
out any corresponding penalty (curvature). This can result in an update which
makes f worse even on cases contained in both the gradient and curvature
minibatches, for reasons that have nothing directly to do with a breakdown in
the reliability of the quadratic approximation to f . On the other hand, if the
curvature and gradient minibatches are equal and the quadratic approximation
to f is otherwise reliable (or properly damped), then using equal gradient and

49

curvature minibatches provides a minimal guarantee that f will improve on the
current minibatch after the proposed update is applied.

Another more subtle way in which using a smaller-sized curvature minibatch
than gradient minibatch could be counterproductive, is that in addition to caus-
ing a dangerous underestimation of the curvature associated with the left-out
cases, it may also lead to an overestimation of the curvature for the cases ac-
tually in the curvature-minibatch. This is because when we compute estimates
of the curvature by averaging, we must divide by the number of cases in the
minibatch, and since this number will be smaller for the curvature estimate than
for the gradient, the gradient contributions from these cases will be smaller in
proportion to the corresponding curvature terms.

Byrd et al. [8] showed that if the eigenvalues of the curvature matrices (esti-
mated using any method) are uniformly bounded from below in the sense that
there exists µ > 0 s.t. B̂ − µI is PSD for all possible B̂’s which we might pro-
duce, then assuming the use of a basic line-search and other mild conditions, an
truncated Newton algorithm like HF which estimates the gradient on the full
training set will converge in the sense that the gradients will go to zero. But
this result makes no use of the particular form of B and is as a result very weak,
saying nothing about the rate of convergence, or how small the updates will
have to be. As far as theorem is concerned, B can be any λ dependent matrix
with the required boundedness property, and need not have anything to do with
local quadratic models of f at all.

Despite all of these objections, the higher quality estimates of the gradient
may nonetheless provide superior convergence properties in some situations.
The best trade-off between these various factors is likely to be highly dependent
on the particular problem, the stage of the optimization (early versus late), and
the damping mechanisms being used. Our experience is that penalty and CG-
truncation damping become more active when there is a significant qualitative
mismatch between the gradient and curvature estimates, which is more likely to
happen when the training dataset, or the network’s responses to it, are particular
“diverse”.

12.2 Minibatch overfitting and methods to combat it

As mentioned in the previous section, the updates produced by HF may be
effectively “overfit” to the current minibatch of training data. While a single
update of SGD has the same problem, this is less of an issue because the updates
are extremely cheap and numerous. HF, by contrast, performs a run of CG with
anywhere between 10 to 300+ iterations, which is a long and expensive process,
and must be performed using the same fixed estimates of the gradient and
curvature from a single minibatch. Ideally, we could use a stochastic algorithm
when optimizing the local quadratic models which would be able to see much
more data at no extra cost. Unfortunately we are not aware of any batch
methods which possess the same strongly optimal performance for optimizing
quadratics as CG does, while also working well as a stochastic method.

The simplest solution to dealing with the minibatch overfitting problem is

50

to increase the size of the minibatches, thus providing CG with more accurate
estimates of the gradient and curvature. When optimizing neural networks, we
have observed that the minibatch overfitting problem becomes gradually worse
as optimization proceeds, and so implementing this solution will require contin-
ually growing the minibatches, possibly without bound. Fortunately, there are
other ways of dealing with this problem.

The damping methods discussed in section 8 were developed to compensate
for untrustworthiness of the local quadratic approximations M being made to
f , which exists due to the simple fact that f is not actually a convex quadratic,
and so M may fail to be a sensible approximation to f at its minimum δ∗. These
methods work by imposing various soft or hard constraints on the update δ in
order to keep it “closer” to 0 (where M trustworthy by construction), according
to some metric.

Using minibatches to compute the gradient and curvature imposes a different
kind of untrustworthiness on the quadratic model, arising from the fact that the
function being approximated is not actually the true objective but rather just an
unbiased sample-based approximation of it. But despite the differing nature of
the source of this untrustworthiness, the previously developed damping methods
turn out to be well suited to the task of compensating for it, in our experience.

Of these, decreasing the maximum number of CG steps, using larger min-
batches for the gradient, and decreasing the default learning rate (which is
equivalent to damping by adding multiples of B, as discussed in section 8.3) ac-
cording to some SGD-like schedule, seem to be the most effective approaches in
practice. If standard Tikhonov damping is used and its strength λ is increased to
compensate for minibatch overfitting, this will make HF behave asymptotically
like SGD with a dynamically adjusted learning rate.

There is a compelling analogy between the minibatch overfitting which oc-
curs when optimizing δ with CG, and the general overfitting of a non-linear op-
timizer applied to a conventional learning problem. And some of the potential
solutions to both of these problems turn out to be analogous as well. Tikhonov
damping, for example, is analogous to an L2 prior or “weight-decay” penalty
(but centered at δ = 0), and CG truncation is analogous to “early-stopping”.

Recall that damping approaches are justified as a method for dealing with
quadratic approximation error because as the “size” of the update shrinks (ac-
cording to any reasonable metric), it will eventually lie inside a region where this
source of error must necessarily be negligible. This is due to the simple fact that
any super-linear terms in the Taylor series expansion of f , which are unmodeled
by M , will approach zero much more rapidly than the size of the update. It
is important to keep in mind that a similar justification does not apply to the
handling of minibatch-related estimation errors with update damping methods.
Indeed, the negative gradient computed on a given minibatch may not even be a
descent direction for the total objective (as computed on the complete training
set), and even an infinitesimally small update computed from a given minibatch
may actually make the total objective worse.

Thus, when tuning damping mechanisms to handle minibatch overfitting
(either by hand, or dynamically using an automatic heuristic), one shouldn’t

51

aim for obtaining a reduction in the total f that is a fixed multiple of that
which is predicted by the minibatch-computed M (as is done in section 8.5),
but rather to simply obtain a more modest reduction which is proportional to
the relative contribution of the current minibatch to the entire training dataset.

It is also worthwhile noting that the practice of initializing CG from the
update computed at the previous iteration of HF (as discussed in section 10)
seems to bias CG towards finding solutions that generalize better to data out-
side of the current minibatch. We don’t have a good understanding for why this
happens, but one possible explanation is that by carrying δ over to each new
run of CG and performing an incomplete optimization on it using new data, δ
is allowed to slowly grow (as HF iterates) along low-curvature directions11 that
by necessity, must generalize across lots of training data. The reasoning is that
if such slowly optimized directions didn’t generalize well, then they would in-
evitably be detected as high-curvature ascent directions for some new minibatch
and quickly zeroed out by CG before ever having a chance grow large in δ.

Finally, Byrd et al. [9] has developed methods to deal with the minibatch
overfitting problem, which are based on heuristics that increase the minibatch
size and also terminate CG early, according to estimates of the variance of
the gradient and curvature-matrix vector products. While this is a potentially
effective approach (which we don’t have experience with), there are several
problems with it, in theory. First, variance is measured according to highly
parameterization-dependent metrics which are not particularly meaningful. Sec-
ond, increasing the size of the minibatch, which is only one method to deal with
minibatch overfitting, is not a strategy which will remain practical for very long.
Thirdly, aggressive early termination heuristics for CG, similar to this one, tend
to interact badly with non-zero CG initializations12 and other forms of damping.
And finally, there are other more direct ways of measuring how well updates
will generalize, such as simply monitoring f on some training data outside of
the current minibatch.

13 Tricks and Recipes

There are many things to keep in mind when designing an HF-style optimization
algorithm for a particular application and it can be somewhat daunting even to
those of us that have lots of experience with the method. So in order to make
things easier in this regard, in this section we relate some of our experience in
designing effective methods, and describe several particular setups that seem
to work particularly well for certain deep neural network learning problems,
assuming the use of a standard parameterization.

Common elements to all successful approaches we have tried are:

• use of the GGN matrix instead of the Hessian

11which get optimized much more slowly by CG than high-curvature directions, as shown
in section 9

12because termination of CG may be forced before M̂(δ) < 0 is achieved

52

• the CG initialization technique described in section 10

• a well-designed preconditioner. When using Tikhonov damping, a reason-
able choice is an estimate of the diagonal of the GGN matrix, modified
using the technique described in section 11.2 with κ = 0 and ψ = 0.75.
When using one of the scale-sensitive methods described in section 8.3, it
may be necessary to increase κ to something like 10−2 times the mean of
the diagonal entries of D

• the use of one of diagonal damping methods, possibly in conjunction with
structure damping for certain RNN learning problems. For feedforward
network learning problems under the default parameterization, Tikhonov
damping often works well, and usually so does using a modified estimate
of the diagonal of the GGN matrix, provided that κ is large enough (as in
the previous point)

• the use of the progress-based termination criterion for CG described in
section 4 in addition to some other condition which may stop CG sooner,
such as a fixed iteration limit

• dynamic adjustment of damping constants (e.g. λ) according to the LM
heuristic or a similar method

Now, we describe the particulars of each of these successful methods.
First, there is the original algorithm described in [22], which works pretty

well. Here, the “CG-backtracking” approach is used to select an iterate based
on the objective function value (see section 8.7), the gradient is computed on
a larger subset of the training data than the curvature, and CG is always ter-
minated before reaching a fixed maximum number of steps (around 50 − 250,
depending on the problem).

Second, there is a subtle but powerful variation on the above method which
differs only in how CG is terminated, how the iterate used for the update δ is
selected, and how CG is initialized at the next iteration of HF. In particular, CG
is terminated as soon as the objective function, as evaluated on the data in the
“curvature minibatch” (see section 12.1) gets significantly worse than its value
from some number of steps ago (e.g. 10). The iterate used as the parameter
update δ is selected to minimize M (or perhaps f) as evaluated on some data
which is not contained in the curvature minibatch. Lastly, CG is initialized at
the next iteration k+ 1, not from the previous update δk, but instead from the
CG iterate which gave the highest objective function value on the curvature
minibatch (which will be close to the last). In practice, the quantities used to
determine when to terminate CG, and how to select the best iterate, do not
need to be computed at every step of CG, and can also be computed on much
smaller (but representative) subsets of data.

Finally, an approach which has emerged recently as perhaps the most effi-
cient and effective, but also the most difficult to use, involves modifying HF to
behaving more like a tradition momentum method, thus making stronger use
of the CG initializations (see section 10) to better distribute work involved in

53

optimizing the local quadratics across many iterations. To do this, we use a
smaller maximum number of CG steps (around 25 to 50), smaller minibatches
of training-data, and we also pay more attention to the CG initialization decay-
constant ζ, which usually means increasing it towards the end of optimization.
Using shorter runs of CG helps with minibatch overfitting, and makes it feasible
to use smaller minibatches and also compute the gradient and curvature using
the same data. And as discussed in section 12.1, computing the gradient on
the same data as the curvature has numerous theoretical advantages, and in
practice seems to result in a reduced need for extra damping, thus resulting in a
λ that shrinks reliably towards 0 when adjusted by the LM heuristic. However,
this method tends to produce “noisy” updates, which while arguably beneficial
from the standpoint of global optimization, make it more difficult to obtain finer
convergence on some problems. So when nearing the end of optimization, we
adopt some of the methods described in section 12.2, such as lowering the learn-
ing rate, using shorter CG runs, increasing the minibatch size, and/or switching
back to using larger minibatches to compute gradients (making sure to raise the
damping constant λ to compensate for this) in order to achieve fine convergence.

One more piece of general advice we have is that using small amounts of
weight-decay regularization can be highly beneficial from the standpoint of
global optimization. In particular, to get the lowest training error possible,
we have observed that it helps to use such regularization at the beginning of
optimization only to disable it near the end. Also, using a good initialization
is extremely important in regards to global optimization, and methods which
work well for deep networks include the sparse initialization scheme advocated
in [22], and the method of Glorot & Bengio [11], and of course the pre-training
techniques pioneered in [16].

14 Summary

We described various components of the Hessian-free optimization, how they
can interact non-trivially, and how their effectiveness (or possibly harmfulness)
is situation dependent. The main points to keep in mind are:

• for non-convex optimizations it is usually preferable to use the generalized
Gauss-Newton matrix which is guaranteed to be PSD

• updates must be “damped” due to the untrustworthiness of the quadratic
model

• there are various damping techniques that can be used, and their effec-
tiveness depends highly on f and how it is parameterized

• truncating CG before convergence, in addition to making HF practical,
can also provide a beneficial damping effect

• the strategy for terminating CG is usually a combination of progress-based
heuristic and a hard-limit anywhere between 10 and 300+ (which should
be considered an important meta-parameter)

54

• preconditioning can sometimes enable CG to make more rapid progress
per step, but only if used correctly

• simple diagonal preconditioning methods tend to work well for feedforward
nets but not for RNNs

• preconditioning interacts non-trivially with certain forms of damping such
as CG truncation, which must be kept in mind

• initializing CG from the update computed by the previous run of CG can
have a beneficial “momentum-type effect”

• HF tends to require much larger minibatches than are used in SGD

• minibatch-overfitting can cause HF’s update proposals to be poor even for
δ’s where the quadratic model is trustworthy

• using more data to compute the gradients than the curvature matrix-
vector products is a low-cost method of potentially increasing the quality
of the updates, but it can sometimes do more harm than good

• minibatch-overfitting can also be combated using some of the standard
damping methods, along with simply increasing the minibatch size

• structural damping works well for training RNNs, particularly on problems
with pathological long-range dependencies

• exploiting data-parallelism is very important for producing an efficient
implementation

• correctness of curvature matrix-vector products should be checked using
finite difference methods

• the extra memory costs associated with the parallel computation of gra-
dients and curvature matrix-vector products can be mitigated

The difficulty of customizing an HF approach for particular application will
no doubt depend on the specifics of the model and the dataset. While in many
cases a generic approach can be used to good effect, some more difficult problems
like RNNs or feedforward networks with non-standard parameterizations may
require additional care. And even on “easier” problems, a better designed ap-
proach may allow one to surpass performance barriers that may have previously
been mistaken for convergence.

This report has described many of the tricks and ideas, along with their
theoretical justifications, which may useful in this regard. While we can try to
predict what combination of ideas will work best for a given problem, based
on previous experience and/or mathematical/intuitive reasoning, the only way
to be sure is with careful experimentation. Unfortunately, optimization theory
has a long way to go before being able to predict the performance of a method
like HF applied to the highly non-convex objectives functions associated with
neural networks.

55

References

[1] S.I. Amari. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276, 1998.

[2] S. Becker and Y. Le Cun. Improving the convergence of back-propagation learning
with second order methods. In Proceedings of the 1988 connectionist models
summer school, pages 29–37. San Matteo, CA: Morgan Kaufmann, 1988.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19:153,
2007.

[4] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–
166, 1994.

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a cpu and gpu math expres-
sion compiler. In Proceedings of the Python for Scientific Computing Conference
(SciPy), volume 4, 2010.

[6] C. Bishop. Exact calculation of the hessian matrix for the multilayer perceptron.
Neural Computation, 4(4):494–501, 1992.

[7] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. Advances in
neural information processing systems, 20:161–168, 2008.

[8] R.H. Byrd, G.M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic
hessian information in optimization methods for machine learning. SIAM Journal
on Optimization, 21:977, 2011.

[9] R.H. Byrd, G.M. Chin, J. Nocedal, and Y. Wu. Sample size selection in opti-
mization methods for machine learning. Mathematical Programming, pages 1–29,
2012.

[10] O. Chapelle and D. Erhan. Improved preconditioner for hessian free optimization.
In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

[11] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics (AISTATS10). Society for Artificial Intelligence
and Statistics, 2010.

[12] N.I.M. Gould, S. Lucidi, M. Roma, and P.L. Toint. Solving the trust-region
subproblem using the lanczos method. SIAM Journal on Optimization, 9(2):504–
525, 1999.

[13] P.C. Hansen and D.P. OLeary. The use of the l-curve in the regularization of
discrete ill-posed problems. SIAM Journal on Scientific Computing, 14:1487,
1993.

[14] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems, 1952.

56

[15] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

[16] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[17] S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. diploma the-
sis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen.
1991.

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[19] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. Science, 304(5667):78–80, 2004.

[20] Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient backprop. Neural networks:
Tricks of the trade, pages 546–546, 1998.

[21] Y. LeCun, L. Bottou, G.B. Orr, and K.R. Muller. Neural networks-tricks of the
trade. Springer Lecture Notes in Computer Sciences, 1524:5–50, 1998.

[22] J. Martens. Deep learning via hessian-free optimization. In Proceedings of the
27th International Conference on Machine Learning (ICML), volume 951, page
2010, 2010.

[23] J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free
optimization. In Proc. ICML, 2011.

[24] J. Martens, I. Sutskever, and K. Swersky. Estimating the hessian by backpropa-
gating curvature. In Proc. ICML, 2012.

[25] J. More. The levenberg-marquardt algorithm: implementation and theory. Nu-
merical analysis, pages 105–116, 1978.

[26] J.J. Moré and D.C. Sorensen. Computing a trust region step. SIAM Journal on
Scientific and Statistical Computing, 4:553, 1983.

[27] S.G. Nash. Newton-type minimization via the lanczos method. SIAM Journal on
Numerical Analysis, pages 770–788, 1984.

[28] S.G. Nash. A survey of truncated-newton methods. Journal of Computational
and Applied Mathematics, 124(1):45–59, 2000.

[29] Y. Nesterov. A method for unconstrained convex minimization problem with the
rate of convergence o (1/k2). In Doklady AN SSSR, volume 269, pages 543–547,
1983.

[30] J. Nocedal and S.J. Wright. Numerical optimization. Springer verlag, 1999.

[31] B.A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation,
6(1):147–160, 1994.

[32] Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order
gradient descent. Neural Computation, 14:2002, 2002.

57

[33] J.R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain, 1994.

[34] O. Vinyals and D. Povey. Krylov subspace descent for deep learning. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

[35] RE Wengert. A simple automatic derivative evaluation program. Communications
of the ACM, 7(8):463–464, 1964.

58

	Introduction
	Feedforward Neural Networks
	Recurrent Neural Networks
	Hessian-free optimization basics
	Exact Multiplication by the Hessian
	The generalized Gauss-Newton matrix
	Multiplying by the Gauss-Newton matrix
	Typical losses
	Dealing with non-convex losses

	Implementation details
	Efficiency via parallelism
	Verifying the correctness of G products

	Damping
	Tikhonov Damping
	Problems with Tikhonov damping
	Scale-Sensitive damping
	Structural Damping
	The Levenberg-Marquardt heuristic
	Trust-region methods
	CG truncation as damping
	Line searching

	Convergence of CG
	Initializing CG
	Preconditioning
	The effects of preconditioning
	Designing a good preconditioner
	The Empirical Fisher Diagonal
	An unbiased estimator for the diagonal of G

	Minibatching
	Higher quality gradient estimates
	Minibatch overfitting and methods to combat it

	Tricks and Recipes
	Summary

