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This paper addresses the multi-objective portfolio selection model with fuzzy random
returns for investors by studying three criteria: return, risk and liquidity. In addition, secu-
rities historical data, experts’ opinions and judgements and investors’ different attitudes
are considered in the portfolio selection process, such that the investor’s individual prefer-
ence is reflected by an optimistic–pessimistic parameter k. To avoid the difficulty of eval-
uating a large set of efficient solutions and to ensure the selection of the best solution, a
compromise approach-based genetic algorithm has been designed to solve the proposed
model. In addition, a numerical example is presented to illustrate the proposed algorithm.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Modern portfolio selection theory originated from the pioneering research work of Markowitz’s mean–variance model
[35]. Based on the mean–variance model, many scholars proposed model extensions by assuming the securities’ rates of re-
turn were random variables and thus only used historical data to describe the securities future rates of return. However, in
addition to random uncertainty, there are many non-probability factors in the securities market that cannot be resolved
using probability theory. With the introduction of fuzzy set theory [50,51], some authors have developed fuzzy portfolio
selection models (cf. [6,14,17,18,25,28,47,48,52,2] and the references therein). These authors recognized the existence of
fuzziness in the securities market but ignored other categories of uncertainty because only fuzzy uncertainty is reflected
in the research.

In a complicated financial market, some variables can exhibit random uncertainty properties and others can exhibit fuzzy
uncertainty properties. Because random uncertainty and fuzzy uncertainty are often combined in a real-world setting, the
portfolio selection process must simultaneously consider twofold uncertainty. Katagiri and Ishii [19] first assumed securities’
rates of returns were fuzzy random variables and proposed a portfolio selection model based on possibility theory and a
chance-constrained model in stochastic programming. Smimou et al. [41] presented a method for the derivation of the
attainable efficient frontier in the presence of fuzzy information in data. Li and Xu [26] proposed the k-mean variance port-
folio selection model based on fuzzy random theory. Yoshida [49] discussed a value-at-risk portfolio model of randomness
and fuzziness to derive its analytical solution. Lacagnina and Pecorella [24] developed a multistage stochastic soft constraints
fuzzy program with the goal of capturing both uncertainty and imprecision as well as to re-solving a portfolio management
issue.
. All rights reserved.
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Expected return and risk are two fundamental factors in portfolio selection. However, explicit return and risk cannot cap-
ture all relevant information for an investment decision. Therefore, criteria for portfolio selection problems, in addition to the
standard expected return and variance, have become more popular in recent years [14]. Steuer et al. [43] discussed portfolio
selection for investors using a multi-objective stochastic programming problem. Parra et al. [36] proposed a portfolio selec-
tion model with the three criteria (return, risk and liquidity) and resolved the model using a fuzzy goal programming ap-
proach. Fang et al. [11] presented a portfolio rebalancing model with three criteria (return, risk and liquidity) based on
fuzzy decision theory. Gupta et al. [14] studied a semi-absolute deviation portfolio selection model, intended for investors’
that incorporates five criteria (short-term return, long-term return, dividend, risk and liquidity). However, realistic con-
straints are not considered in the above-cited works. Because of the existence of realistic constraints, it is difficult to resolve
constrained multi-objective portfolio selection models using traditional multi-objective programming algorithms. Some
authors use evolutionary algorithms to resolve constrained multi-objective portfolio optimization models. Ehrgott et al.
[10] used a genetic algorithm to optimize a mixed-integer (due to the constraints used) multi-objective portfolio optimiza-
tion problem with objectives aggregated through user-specified utility functions. Subbu et al. [46] presented a hybrid evo-
lutionary algorithm that integrated genetic algorithms with linear programming for a portfolio design issume with multiple
measures for risk and return.

In this paper, we propose a constrained multi-objective portfolio selection model with fuzzy random returns for investors.
This model includes three criteria (return, risk and liquidity) and a compromise approach-based genetic algorithm designed
to obtain a compromised portfolio strategy. The model has the ability to introduce expert opinion and judgment (fuzzy infor-
mation) into the portfolio selection process and to obtain a satisfactory personal portfolio selection in accordance with the
attitudes of the different investors’. The rest of the paper is organized as follows. In Section 2, definitions for fuzzy random
variable, fuzzy expectation and variance of fuzzy random variables are briefly introduced. In Section 3, we use the k-average
value of the fuzzy expectation of portfolio to quantify the return, the variance to quantify risk, and the crisp possibilistic
mean value of the turnover rate portfolio to quantify portfolio liquidity. Then, a constrained multi-objective portfolio selec-
tion model with fuzzy random returns is proposed. In Section 4, to avoid the difficulty of evaluation and the selection of the
best solution from the efficient frontier or its discretized representation, a compromise approach-based genetic algorithm
has been designed to resolve the proposed model and to obtain a compromised portfolio strategy. An example is given in
Section 5 to illustrate the proposed model and algorithm, and concluding remarks are given in Section 6.

2. Preliminaries

A fuzzy number eX is described as any fuzzy subset of the real line R, whose membership function leX : R! ½0;1� satisfies
the following conditions:

(i) eX is normal, i.e., there exists an x 2 R such that leX ðxÞ ¼ 1;
(ii) leX is quasi-concave, i.e., leX ðkxþ ð1� kÞyÞ 6minfleX ðxÞ;leX ðyÞg, for all k 2 [0,1];

(iii) leX is upper semi-continuous, i.e., fx 2 RjleX ðxÞ 6 ag is a closed set, for all a 2 [0,1]; and
(iv) the closure of the set fx 2 RjleX ðxÞ > 0g is a compact set.

An a-level set of eX is defined by eXa ¼ fx 2 RjleX ðxÞP ag if a > 0 and eXa ¼ clfx 2 RjleX ðxÞ > 0g (the closure of the support
of eX) if a = 0. It is well known that if eX is a fuzzy number, then eXa ¼ ½eX�a ; eXþa � is a compact subset of R for all a 2 [0,1].

The concept of fuzzy random variable, which was first introduced by Kwakernaak [23], applies to a situation when ran-
domness and fuzziness appear simultaneously.

Definition 1. ([37]) Let ðX;A; PÞ be a probability space, where A is a r-field of X and P is a non-atomic probability measure.

A mapping eX : X!FcðRÞ is said to be a fuzzy random variable if the set-valued function eXa : X!KcðRÞ such thateXaðwÞ ¼ ðeXðwÞÞa ¼ fx 2 RjleX ðwÞðxÞP ag for all w 2X is A-measurable for all a 2 [0,1], where FcðRÞ denotes the set of all

fuzzy numbers, and KcðRÞ denotes the class of all non-empty bounded closed intervals.

As shown in [33], if eX is a fuzzy random variable, the left endpoint ðeXðwÞÞ�a and the right endpoint ðeXðwÞÞþa of the a-level
sets of eXðwÞ are real-valued random variables for all a 2 (0,1].

Example 1. Let L, R:[0,1] ? [0,1] be continuous and strictly decreasing functions with R(0) = L(0) = 1 and R(1) = L(1) = 0. A
fuzzy random variable eX characterized by the membership function
le
X ðwÞ
ðxÞ ¼

L aðwÞ�x
a

� �
; if aðwÞ � a 6 x 6 aðwÞ;

R x�aðwÞ
b

� �
; if aðwÞ < x 6 aðwÞ þ b;

8><>: 8w 2 X;
is called an L–R type fuzzy random variable, where random variable a(w) is the center value and positive real numbers a and
b are the left width and right width of the fuzzy number eXðwÞ;w 2 X, respectively. For simplicity, eX is denoted byeXðwÞ ¼ ðaðwÞ;a; bÞLR; w 2 X (see Fig. 1).



Fig. 1. L–R type fuzzy random variable ~�rj .
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Moreover, if L(x) = R(x) = 1 � x, an L–R type fuzzy random variable eX is called a triangular fuzzy random variable, which is

denoted by eXðwÞ ¼ ðaðwÞ � a; aðwÞ; aðwÞ þ bÞ for all w 2X.

For given fuzzy random variables eX ; eY and real number k 2 R, the addition and scalar multiplication on the fuzzy random
variables are defined as
ðeX eþeY ÞðwÞ ¼ eXðwÞ � eY ðwÞ; 8w 2 X; ð2:1Þ

ðkeXÞðwÞ ¼ keXðwÞ; 8w 2 X; ð2:2Þ
where ‘‘ eþ’’ denotes the sum operation between the fuzzy random variables, and ‘‘�’’ denotes the sum operation between the
fuzzy numbers. If the fuzzy random variable eY degenerates into a fuzzy number, denoted by eY , then from (2.1)
ðeX eþeY ÞðwÞ ¼ eXðwÞ � eY for w 2X.

In this paper it is assumed that the fuzzy random variable eX is square integrable, i.e.
EkeXk2
2 ¼ EðkeXðwÞk2

2Þ ¼
Z

X

Z 1

0
jse

X ðwÞ
ða;uÞj2da PðdwÞ <1;
where se
X ðwÞ
ða;uÞ is the unique support function corresponding to the fuzzy set eXðwÞ 2FcðRÞ [21]. This function implies that

expectation and variance of the fuzzy random variables always exist.

Definition 2. [37] Let ðX;A; PÞ be a complete probability space. The expectation EðeXÞ of an integrable bounded fuzzy
random variable eX is defined as a fuzzy number such that
EðeXÞ� �
a
¼
Z

X

eXadP ¼
Z

X
f ðwÞdPðwÞ : f 2 L1ðPÞ; f ðwÞ 2 eXaðwÞ a:s: ½P�

� �
ð2:3Þ
for a 2 (0,1], where L1(P) denotes the set of all functions f : X! R that are integrable with respect to P and
R

X
eXadP is the

Aumann integral of eXa in X.
The a-level sets of EðeXÞ can be rewritten as the following compact convex intervals:
ðEðeXÞÞa ¼ ðEðeXÞÞ�a ; ðEðeXÞÞþah i
¼

Z
X
ðeXðwÞÞ�a dPðwÞ;

Z
X
ðeXðwÞÞþa dPðwÞ

� �
ð2:4Þ
for a 2 (0,1] (see [32]).

Definition 3. [12] Let eX and eY be square integrable fuzzy random variables. Then the covariance CovðeX ; eY Þ and the variance
VarðeXÞ are defined as follows:
CovðeX ; eY Þ ¼ 1
2

Z 1

0
Cov eX�a ; eY�a� �

þ Cov eXþa ; eYþa� �h i
da; ð2:5Þ

VarðeXÞ ¼ CovðeX ; eXÞ ¼ 1
2

Z 1

0
Var eX�a� �

þ Var eXþa� �h i
da; ð2:6Þ
where eX�a and eY�a (resp., eXþa and eYþa ) are the left endpoints (resp., the right endpoints) of the a-level sets of eXðwÞ and eY ðwÞ for
all a 2 (0,1].
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Lemma 1. Let eX and eY be square integrable fuzzy random variables, and k; c 2 R. Then

(i) EðkeX þ ceY Þ ¼ kEðeXÞ þ cEðeY Þ;
(ii) VarðkeX þ uÞ ¼ k2VarðeXÞ;

(iii) VarðeX þ eY Þ ¼ VarðeXÞ þ VarðeY Þ þ 2CovðeX ; eY Þ;
(iv) CovðkeX þ u; ceY þ vÞ ¼ kcCovðeX ; eY Þ, where u, v are fuzzy numbers, kc P 0.

3. Constrained multi-objective portfolio selection model with fuzzy random returns

In additon to return and risk, liquidity is also one of the main concerns for investors when making decisions. In this sec-
tion, de-fuzzification of the expectation of portfolio return, risk and liquidity are discussed. A constrained multi-objective
portfolio selection model with fuzzy random returns for investors is proposed, and this approach considers the aforemen-
tioned three criteria.

It is assumed that investors allocate their wealth among n securities offering fuzzy random rates of return. Let ~�rj be the
future return rates of the jth securities and xj be the proportion of wealth invested in the jth securities, j = 1, 2, . . . , n. Then,
the future return rate of the portfolio is denoted by

Pn
j¼1

~�rjxj. From (2.1) and (2.2) it can be determined that
Pn

j¼1
~�rjxj is a fuzzy

random variable.

3.1. De-fuzzification of the expectation of the portfolio return
Lemma 2. Let the future return rates of the jth securities ~�rj be a L–R type fuzzy random variable, characterized by the membership
function
l~�rjðwÞðxÞ ¼
L ajðwÞ�x

aj

� �
; if ajðwÞ � aj 6 xj 6 ajðwÞ;

R x�ajðwÞ
bj

� �
; if ajðwÞ < xj 6 ajðwÞ þ bj;

8><>: w 2 X; j ¼ 1;2; . . . ;n; ð3:7Þ
where the center value is aj �NðEðajÞ;r2
j Þ, aj and bj are the left width and right width of the fuzzy number aj(w), respectively.

Then, the expectation of
Pn

j¼1
~�rjxj is an L–R type fuzzy number, i.e. !  !
E
Xn

j¼1

~�rjxj ¼
Xn

j¼1

EðajÞxj;
Xn

j¼1

ajxj;
Xn

j¼1

bjxj

LR

: ð3:8Þ
Proof. If L and R are strictly decreasing continuous functions on [0,1], it can be verified that
ð~�rjðwÞÞa ¼ ð~�rjðwÞÞ�a ; ð~�rjðwÞÞþa
� 	

¼ ajðwÞ � L�1ðaÞaj; ajðwÞ þ R�1ðaÞbj

h i
; ð3:9Þ
for each a 2 [0,1], j = 1, 2, . . . , n. From Definition 2 the a-level sets of the expectation of ~�rj are obtained:
Eð~�rjÞ

 �

a ¼ Eðð~�rjðwÞÞ�a Þ; Eðð~�rjðwÞÞþa Þ
� 	

¼ EðajÞ � L�1ðaÞaj; EðajÞ þ R�1ðaÞbj

h i
;

which implies the expectation of ~�rj is an L–R type fuzzy number, i.e.
Eð~�rjÞ ¼ ðEðajÞ;aj; bjÞLR; j ¼ 1;2; . . . ;n: ð3:10Þ
By Lemma 1 (i) and (3.10), we obtain that the expectation of
Pn

j¼1
~�rjxj is
E
Xn

j¼1

~�rjxj

 !
¼
Xn

j¼1

Eð~�rjÞxj ¼
Xn

j¼1

EðajÞxj;
Xn

j¼1

ajxj;
Xn

j¼1

bjxj

 !
LR

:

Then, the result of this Lemma holds and the proof is completed. The homogeneous expectation assumption is one of the
basic assumptions of Markowitz’s mean–variance model. This model assumes that all investors share the same expected
returns, predicted variances, and predicted co-variances regarding securities’ rates of future return. This is clearly not the
case. In fact, it is almost a hallmark of investors to specialize in different prognostications [44]. In [26], it is first proposed
to use a k-average ranking method [4] to convert E

Pn
j¼1

~�rjxj

� �
into a crisp number, then the investors’ different expectations

securities’ rates of future return can be incorporated into a portfolio selection model. Here, the same method is adopted to
convert the fuzzy number E

Pn
j¼1

~�rjxj

� �
into a crisp number to reflect each investor’s attitude regarding securities returns. h

Definition 4. [4] Let eA be a fuzzy number with a-level sets eA�a ; eAþah i
. The k-average value of eA is defined as
Vk
SðeAÞ ¼ Z 1

0
keAþa þ ð1� kÞeA�ah i

dSðaÞ; ð3:11Þ
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where parameter k(2[0,1]) is a decision-maker’s subjective optimism–pessimism degree and S is an additive measure on
(0,1] that determines the weight or importance associated with different a-level sets.

In what follows, it is assumed that all a-level sets have the same importance. Then the integral in (3.11) is calculated with
respect to da in the case of continuous membership functions. In this case VkðeAÞ is used instead of Vk

SðeAÞ, i.e.
VkðeAÞ ¼ Z 1

0
keAþa þ ð1� kÞeA�ah i

da: ð3:12Þ
From (3.12), the k-average value of the portfolio expectation is
Vk E
Xn

j¼1

~�rjxj

 ! !
¼
Z 1

0
k EðajÞ þ R�1ðaÞbj

h i
þ ð1� kÞ EðajÞ � L�1ðaÞaj

h in o
da

¼
Xn

j¼1

EðajÞ þ kjR
0bj � ð1� kjÞL0aj

h i
xj; ð3:13Þ
where R0 ¼
R 1

0 R�1ðaÞda and L0 ¼
R 1

0 L�1ðaÞda. If ~�rj’s are triangular fuzzy random variables, then R0 ¼ L0 ¼
R 1

0 ð1� aÞda ¼ 1=2
and
Vk E
Xn

j¼1

~�rjxj

 ! !
¼
Xn

j¼1

EðajÞ þ kjbj=2� ð1� kjÞaj=2
� 	

xj:
As discussed in [4], parameter kj reflects the investor’s subjective degree of optimism for the future returns of jth securities,
where j = 1, 2, . . . , n. For an aggressive and completely optimistic investor, kj should be set to 1, and for a conservative and
completely pessimistic investor, kj should be set to 0. When kj varies between (0,1), the investor’s optimism–pessimism atti-
tude can be reflected in (3.13). Here the de-fuzzified value of E

Pn
j¼1

~�rjxj

� �
, i.e., Vk E

Pn
j¼1

~�rjxj

� �� �
is used to measure the ex-

pected portfolio rate of return.

3.2. Variance of the portfolio return

The variance of the portfolio return Var
Pn

j¼1
~�rjxj

� �
is discussed in this subsection to characterize investment risk.

Lemma 3. The variance of the portfolio return Var
Pn

j¼1
~�rjxj

� �
is equal to the variance of random variable

Pn
j¼1ajxj, i.e.
Var
Xn

j¼1

~�rjxj

 !
¼ Var

Xn

j¼1

ajxj

 !
:

Proof. From (3.9), it can be verified that
Var ð~�rjðwÞÞ�a

 �

¼ Var ajðwÞ � L�1ðaÞaj

� �
¼ VarðajÞ;

Var ð~�rjðwÞÞþa

 �

¼ Var ajðwÞ þ R�1ðaÞbj

� �
¼ VarðajÞ:
It follows from (2.5) and (2.6) that
Varð~�rjÞ ¼
1
2

Z 1

0
Var ð~�rjðwÞÞ�a


 �
þ Varðð~�rjðwÞÞþa Þ

� 	
da ¼ VarðajÞ;

Covð~�ri;~�rjÞ ¼
1
2

Z 1

0
Cov ai � L�1ðaÞai; aj � L�1ðaÞaj

� �h
þCov ai þ R�1ðaÞbi; aj þ R�1ðaÞbj

� �i
da

¼ Covðai; ajÞ:
By Lemma 1 (iii) the following result is obtained:
Var
Xn

j¼1

~�rjxj

 !
¼
Xn

j¼1

Varð~�rjxjÞ þ
Xn

i¼1

Xn

j¼1;j–i

Covð~�rixi;~�rjxjÞ

¼
Xn

j¼1

VarðajÞx2
j þ

Xn

i¼1

Xn

j¼1;j–i

Covðai; ajÞxixj

¼ Var
Xn

j¼1

ajxj

 !
:

Thus, the proof is completed. h
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3.3. Characterization of portfolio liquidity and its de-fuzzification

Liquidity has been measured as the possibility of converting an investment into cash without any significant loss in
value. In the stock market, many stocks have poor liquidity, and agents often cannot sell or purchase them quickly. Gen-
erally, investors prefer to choose securities with better liquidity. Here, the measurement of liquidity is based on a secu-
rity’s turnover rate. It is known that a security’s turnover rate cannot accurately be predicted in the stock market;
therefore, fuzzy set theory can play a very significant role in studying this imprecision. In this paper, trapezoidal fuzzy
numbers are used to denote the turnover rates of securities. The historical turnover rates of a security over a long period
of time were collected, and it was found that most of the data were concentrated around an interval, denoted by [a%, b%],
from the historical security turnover rates histogram. Ignoring the historical turnover rates located in [0, a%) and (b%, +1],
a simple method can be used to determine a rough estimation for the security’s turnover rate by assuming it is a trape-
zoidal fuzzy number.

The crisp possibilistic mean value of a fuzzy number eA is defined as [5]
MðeAÞ ¼ Z 1

0
a eA�a þ eAþa� �

da; ð3:14Þ
where eA�a and eAþa are the left width and the right width of the a-level sets, respectively. Because the crisp possibilistic mean
value of the continuous possibility distribution is consistent with the extension principle, the crisp possibilistic mean value
of the turnover rate is adopted to measure portfolio liquidity.

Lemma 4. Let the trapezoidal fuzzy number ~lj ¼ ðbj; cj; dj; cjÞ be the turnover rate of the jth securities with the following
membership function:
l~lj
ðtÞ ¼

1� bj�t
dj
; if bj � dj 6 t < bj;

1; if bj 6 t < cj;

1� t�cj

cj
; if cj 6 t < cj þ cj;

0 otherwise;

8>>>>>>>><>>>>>>>>:
j ¼ 1;2; � � � ;n; ð3:15Þ
where bj is the lower modal value, cj is the upper modal value, dj is the left width and cj is the right width of ~lj (see Fig. 2). Then the
possibilistic mean value of the turnover rate associated with portfolio x is
Mð~lðxÞÞ ¼
Xn

j¼1

ðbj þ cjÞ
2

þ
ðcj � djÞ

6

� �
xj:
Proof. It follows from (3.14) that the possibilistic mean value of ~lj, denoted by Mð~ljÞ, is
Mð~ljÞ ¼
Z 1

0
a ð~ljÞ�a þ ð~ljÞ

þ
a

h i
da ¼

Z 1

0
a½ðbj � ð1� aÞdjÞ þ ðcj þ ð1� aÞcjÞ�da

¼
Z 1

0
aðbj þ cjÞdaþ

Z 1

0
að1� aÞðcj � djÞda ¼

bj þ cj

2
þ

cj � dj

6
:

Fig. 2. Fuzzy liquidity ~lj .
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Then the possibilistic mean value of the turnover rate associated with portfolio x is
Mð~lðxÞÞ ¼
Xn

j¼1

ðbj þ cjÞ
2

þ
ðcj � djÞ

6

� �
xj:
Thus, this calculation completes the proof. h
3.4. Proposed model

Based on the above discussion, if an investor wants to maximize the investment’s expected return rate, minimize the risk,
and maximize the portfolio liquidity, the selection scenario can be modeled as follows:
max Vk E
Xn

j¼1

~�rjxj

 ! !

min Var
Xn

j¼1

~�rjxj

 !
max Mð~lðxÞÞ

s:t:

Xn

j¼1

signðxjÞ 6 K;

xj P dj; ifxj > 0;
xj ¼ yj � ej; yj 2 N;Xn

j¼1

xj ¼ 1; xj P 0; j ¼ 1;2; . . . ;n:

8>>>>>>>>>><>>>>>>>>>>:

ð3:16Þ
According to Lemmas 2–4, model (3.16) can be rewritten as
max
Xn

j¼1

EðajÞ þ kjbj=2� ð1� kjÞaj=2
� 	

xj

min Var
Xn

j¼1

ajxj

 !

max
Xn

j¼1

ðbj þ cjÞ=2þ ðcj � djÞ=6
h i

xj

s:t:

Xn

j¼1

signðxjÞ 6 K;

xj P dj; ifxj > 0;
xj ¼ yj � ej; yj 2 N;Xn

j¼1

xj ¼ 1; xj P 0; j ¼ 1;2; � � � ; n:

8>>>>>>>>>><>>>>>>>>>>:

ð3:17Þ
For simplicity, the feasible region of model (3.16) and (3.17) is denoted as X. In addition, a capital budget constraint, a no
short-selling constraint, and three realistic constraints (i.e., cardinality, buy-in threshold and round-lots constraints), are also
considered in the proposed model (3.16).

(i) The cardinality constraint
Pn

j¼1signðxjÞ 6 K restricts the maximum number of securities included in the portfolio,
where sign (�) is the sign function defined as
signðxÞ ¼
1; if x > 0;
0; if x ¼ 0;
�1; if x < 0;

8><>:
and K denotes the maximum allowable number of securities in the portfolio.
(ii) The buy-in threshold constraint, xj P dj, if xj > 0, restricts the minimum amounts dj that are to be purchased in the
portfolio, j = 1, 2, . . . , n.

(iii) The round-lots constraint, xj = yj � ej, yj 2 N, restricts the smallest volume ej that can be purchased of each security,
where N denotes the set of all nonnegative integers, j = 1, 2, . . . , n.
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In this paper, it is assumed the future rates of return of the securities are the L–R type of fuzzy random variables, which
assist in obtaining the crisp equivalent for the objective functions of model (3.16) and avoid complicated computations. Due
to the difficulties in obtaining the crisp equivalent for the objective functions with general fuzzy random variables, it is pos-
sible to use fuzzy random simulation techniques proposed in [30] to evaluate the objective function values of the model
(3.16).

4. Compromise approach-based genetic algorithm

Genetic algorithms (GAs), a type of stochastic algorithm that was inspired by natural evolution, can perform well in dif-
ferent types of optimization problems because they do not require the extra properties that are often associated with opti-
mization problems, such as differentiability and continuity of the objective functions. GAs were proposed by Holland [16] in
1975, and since then, GAs have been well developed by authors such as Koza [22], Liu [31], Gen and Cheng [13]. In recent
years, multi-objective evolutionary algorithms have played an important role in solving multi-objective optimization. Sev-
eral multi-objective optimization algorithms, as given in various studies [42,9,54,53,20,8,27,1,38,40,55], have been proposed
and successfully applied to a number of real-world, multi-objective optimization problems.

For the multi-objective portfolio optimization model, researchers plan to generate an efficient frontier [15] or its discret-
ized representation [3,7,29,34,39,45]. However, generating an efficient frontier or its discretized representation for a con-
strained multi-objective portfolio selection model with more than three criteria is not an easy task. Furthermore,
evaluating and selecting the best puts a considerable cognitive burden on investors. To avoid the above difficulties, a com-
promise approach-based genetic algorithm has been designed to resolve the proposed model (3.16) and to obtain a compro-
mised portfolio strategy.

4.1. Compromise approach

To construct a regret function for the compromise approach, the ideal point and the anti-ideal point of model (3.16) are
first computed. Consider the following two mathematical programming problems:
max
x2X

Vk E
Xn

j¼1

~�rjxj

 ! !
; ð4:18Þ

min
x2X

Vk E
Xn

j¼1

~�rjxj

 ! !
; ð4:19Þ
where X is the feasible region for the models. Furthermore, the following four mathematical programming problems are also
considered.
min
x2X

Var
Xn

j¼1

~�rjxj

 !
; ð4:20Þ

max
x2X

Var
Xn

j¼1

~�rjxj

 !
; ð4:21Þ

max
x2X

Mð~lðxÞÞ; ð4:22Þ

min
x2X

Mð~lðxÞÞ: ð4:23Þ
Here R⁄ (resp. R⁄, V⁄, V⁄, L⁄ and L⁄) is used to denote the optimal values for problem (4.18) (resp. (4.19)–(4.22) and (4.23)).
Then, the ideal point of model (3.16) is denoted by Z⁄ = (R⁄, V⁄, L⁄) and the anti-ideal point Z⁄ = (R⁄, V⁄, L⁄).

For each feasible solution x 2 X, the regret function r(x,p) (p P 1) is defined by the weighted Lp-norm,
rðx;pÞ :¼ wp
1

Vk E
Pn

j¼1
~�rjxj

� �� �
� R�

R� � R�

������
������
p

þwp
2

Var
Pn

j¼1
~�rjxj

� �
� V�

V� � V�

������
������

p

þwp
3

Mð~lðxÞÞ � L�

L� � L�

�����
�����

p
0B@

1CA
1=p

; ð4:24Þ
where p > 0, w1, w2, w3 P 0 and w1 + w2 + w3 = 1. It is assumed that decision-makers can provide the values for the weights
w1, w2 and w3 using their experience to assign different degrees of importance to the three objective functions in (4.24).
Then, model (3.16) is converted into a single objective programming problem
min
x2X

rðx; pÞ: ð4:25Þ
However, it is often difficult to obtain optimal solutions for the above linear or nonlinear mixed integer programming models
(4.18)–(4.23) with complicated constraints. Therefore, proxy ideal points and proxy anti-ideal points are used to replace the
actual ideal points Z⁄ = (R⁄, V⁄, L⁄) and the actual anti-ideal points Z⁄ = (R⁄, V⁄, L⁄)) appearing in (4.24), respectively. The proxy
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ideal point and proxy anti-ideal point are the ideal point and anti-ideal point not corresponding to a problem but corre-
sponding to a generation. Take problem (4.18) and (4.19) as examples. Let P denote the set of the current population. Sup-
pose that the largest objective function value of problem (4.18) in the current generation P is RP⁄, and the smallest objective
function value of problem (4.19) in the current generation P is RP⁄, i.e.
RP� ¼max
x2P

Vk E
Xn

j¼1

~�rjxj

 ! !
; RP� ¼min

x2P
Vk E

Xn

j¼1

~�rjxj

 ! !
:

Then, the proxy ideal point RP⁄ is used to replace the actual ideal point R⁄, and the proxy anti-ideal point RP⁄ is used to
replace the actual anti-ideal point R⁄. Similarly, VP⁄, VP⁄, LP⁄ and LP⁄ are used to replace V⁄, V⁄, L⁄ and L⁄, respectively, such that
VP� ¼min
x2P

Var
Xn

j¼1

~�rjxj

 !
; VP� ¼max

x2P
Var

Xn

j¼1

~�rjxj

 !
;

LP� ¼max
x2P

Mð~lðxÞÞ; LP� ¼min
x2P

Mð~lðxÞÞ:
Let ZP⁄ = (RP⁄,VP⁄,LP⁄) and ZP⁄ = (RP⁄,VP⁄,LP⁄) be the proxy ideal point and the proxy anti-ideal point, respectively, of model
(3.16) in the current generation P.

4.2. Genetic algorithm

The steps for the proposed compromise approach-based genetic algorithm are listed as follows:

(1) Representation structure: Model (3.16) is a multi-objective programming problem pertaining to the continuous deci-
sion vector x. Thus, a vector x = (x1,x2, . . . ,xn) satisfying the constraint condition is randomly chosen as a chromosome
V = (v1,v2, . . . ,vn) to represent a solution to the optimization problem, such that the genes v1, v2, . . . , vn are restricted in
the interval [0,1].

(2) Handling the constraints: Randomly generate a point from the hypercube [0,1]n and test its feasibility. If the point sat-
isfies the constraints of problem (3.16), i.e., V 2 X, it is accepted as a chromosome. Otherwise, the repair mechanisms
are used to guarantee that the point satisfies the constraints of (3.16):
(i) Keep the K largest values of xj and set all other xj to zero.

(ii) Perform the following normalization technique x0j ¼ xj=
Pn

j¼1xj to ensure that the random points satisfy the con-
straint

Pn
j¼1xj ¼ 1.

(iii) To satisfy buy-in constraints, set all xj below their given buy-in thresholds dj to zero after applying the maximum
number of asset repair mechanisms and normalization techniques. The normalization technique is performed
again.

(iv) To meet the round-lot constraints the algorithm rounds xj to the next round-lot level, x0j = xj � (xj mod ej), after car-
dinality repair, buy-in repair and normalization are applied. The remainder of the rounding process,Pn

j¼1ðxj mod ejÞ, is expended in quantities of ej for those xj that had the largest values for xj mod ej until all of
the remainder is disbursed.

(3) Initializing process: Initially, the feasible chromosomes V1; V2; � � � ;VNpop are determined by repeating the above pro-
cess Npop times, given Npop is the number of chromosomes.

(4) Evaluation function: The regret value of each chromosome V is calculated by
rPðx;pÞ ¼ wp
1

VkðEð
Pn

j¼1
~�rjxjÞÞ � RP�

RP� � RP�

�����
�����
p

þwp
2

Var
Pn

j¼1
~�rjxj

� �
� VP�

VP� � VP�

������
������
p

þwp
3

Mð~lðxÞÞ � LP�

LP� � LP�

�����
�����
p

0B@
1CA

1=p

;

where the weights w1, w2 and w3 are provided by decision-makers using their experience to assign different degrees of
importance to the three above objective functions. Then the fitness function for each chromosome is computed by

evalðxÞ ¼ rmax � rPðx;pÞ þ e
rmax � rmin þ e

; ð4:26Þ

where e is a random number in (0,1), rmax and rmin are the maximum and minimum regret values, respectively, in the
current generation P.
(5) Selection process: The selection process is based on spinning the roulette wheel Npop times. Each time a single chromo-
some for a new population is selected as follows. First, calculate the cumulative probability qi for each chromosome xi
q0 ¼ 0; qi ¼
Xi

j¼1

evalðxjÞ; i ¼ 1;2; � � � ;Npop:
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Generate a random number r in ½0; qNpop
�, and select the ith chromosome xi such that qi�1 < r 6 qi and 1 6 i 6 Npop. Repeat the

above process Npop times until Npop copies of chromosomes are obtained.
(6) Crossover operation: Generate a random number c from the open interval (0,1). The chromosome xi is selected as a

parent, provided that c < Pc, where parameter Pc is the probability of the crossover operation. Repeat this process Npop

times. Pc � Npop chromosomes are expected to be selected to undergo the crossover operation. Applying the crossover
operator to the two parents x1 and x2 will produce two children y1 and y2 as follows:
Table 1
The exp

Stoc

E(aj)
aj

bj

Stoc
E(aj)
aj

bj
y1 ¼ cx1 þ ð1� cÞx2; y2 ¼ cx2 þ ð1� cÞx1:
Repair strategies are used to guarantee the feasibility of the two children.
(7) Mutation operation: Similar to the crossover process, chromosome xi is selected as a parent to undergo the mutation

operation, provided that random number m < Pm, where parameter Pm is the probability of the mutation operation.
Pm � Npop chromosomes are expected to be selected after repeating the mutation process Npop times. Suppose that x
is chosen as a parent. Then, a mutation direction d 2 Rn is chosen randomly, and a random positive number M is gen-
erated as a step. Therefore, the repair strategies are used to guarantee the feasibility of x + Md.

The proposed compromise approach-based genetic algorithm process is listed as follows:

Step 0: Input the parameters Npop, Pc, Pm and w1, w2, w3 and p.
Step 1: Initialize Npop chromosomes and convert to feasible equivalents.
Step 2: Compute the fitness of each chromosome according to the regret value.
Step 3: Select the chromosomes by spinning the roulette wheel Npop times.
Step 4: Update the chromosomes using crossover and mutation operations and use the repair mechanism to guarantee the

feasibility of the offspring.
Step 5: Repeat the second to fourth steps for a given number of cycles.
Step 6: Take the best chromosome as the compromise solution for the proposed constrained multi-objective portfolio selec-

tion model (3.16).

5. Numerical example

In this section, a numerical example is given to illustrate the proposed model and show the effectiveness of the proposed
compromise approach-based genetic algorithm.

Assume that an investor chooses 30 stocks from the Shanghai Stock Exchange for his or her investment and that the fu-
ture securities’ return rates are triangular fuzzy random variables ~�rjðwÞ ¼ ðajðwÞ � aj; ajðwÞ; ajðwÞ þ bjÞ, j = 1, 2, . . . , 30, w 2X.
The historical data for the 30 stocks from January 2005 to January 2008, are collected to determine the expectation vector for
the random return vector (a1,a2, . . . ,a30) and its covariance matrix V = (Cov (ai,aj))30�30. Table 1 shows the expected value of
random variables aj, the left width aj and the right width bj of ~�rj, j = 1, 2, . . . , 30. Here, it is assumed that an investment expert
could provide aj and bj based on his or her experience.

The turnover rates for the stocks are assumed to be trapezoidal fuzzy numbers, denoted by~lj ¼ ðbj; cj; dj; cjÞ, j = 1, 2, . . . , 30.
Next, we explain how to set the values for the four parameters of~lj, i.e., bj, cj, dj and cj based on the histograms of the turnover
rates of these stocks. For example, examine the 26th stock. Daily turnover rates are collected from the above-mentioned his-
torical data. Among the 719 daily turnover rates, most are concentrated in the interval [0%, 4%], which is subdivided into
twenty smaller intervals for every 0.2% unit. Fig. 3 shows the histogram for the historical turnover rates of the sample stock.
From Fig. 3 it can be observed that the daily turnover rates located in [0.2%, 0.4%], [0.4%, 0.6%], [0.6%, 0.8%], [0.8%, 1.0%], [1.0%,
1.2%], [1.2%, 1.4%], [1.4%, 1.6%] and [1.6%, 1.8%] clearly reoccur more frequently than those rates in other intervals. Therefore,
the left endpoint of the tolerance interval is set at bj = 0.2% and the right endpoint of the tolerance interval is cj = 1.8%. The left
width is set at dj = 0.1%, and the right width is set at cj = 0.8%. Similarly, the future turnover rates of all 30 stocks are deter-
ectation of aj, the left width aj and the right width bj of ~�rj (%).

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.45 1.42 1.73 0.61 1.39 1.16 1.01 1.87 0.44 2.35 0.45 1.42 1.73 0.61 1.39
0.15 0.22 0.23 0.10 0.19 0.16 0.21 0.17 0.04 0.35 0.08 0.11 0.06 0.18 0.13
0.15 0.08 0.27 0.39 0.71 0.64 0.09 0.53 0.36 0.25 0.22 0.39 0.14 0.12 0.37

k 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1.16 1.01 1.87 0.44 2.35 0.45 1.42 1.73 0.61 1.39 1.16 1.01 1.87 0.44 2.35
0.15 0.11 0.16 0.07 0.10 0.26 0.14 0.39 0.21 0.22 0.51 0.11 0.61 0.42 0.19
0.10 0.19 0.54 0.33 0.30 0.24 0.26 0.11 0.09 0.28 0.09 0.39 0.29 0.58 0.61
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Fig. 3. The histogram of the historical turnover rates of the stock.
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mined to be trapezoidal fuzzy numbers according to the histograms for the historical turnover rates of each stock, which are
presented in Table 2.

In this example, the maximum number of securities is 20, the minimum amount to be purchased of each stock is 0.01, i.e.,
dj = 0.01, and the smallest volume purchased of each stock is 0.0001, i.e., ej = 0.0001. The compromise approach-based genet-
ic algorithm is performed on a personal computer utilizing the following parameters: the population size is 300; the prob-
ability of crossover Pc = 0.9 and the probability of mutation Pm = 0.1; the parameter p = 2 in the regret function r(x,p); and
relatively important parameters of the three criteria (expected return, risk and liquidity), which are w1 = 0.4, w2 = 0.4 and
w3 = 0.2 in the regret function r(x,2), respectively.

For an investor with a completely optimistic attitude toward all future stock returns, the compromised portfolio strategy
is given in Table 3 after performing the proposed algorithm with 200 generations. The corresponding compromised objective
function values are 0.0187, 0.0042 and 0.0072. Fig. 4 shows the regret values for the best chromosome in each generation
when k = 1.

For an investor with a completely pessimistic attitude toward all future stock returns and after performing the proposed
algorithm with 200 generations, the compromised portfolio strategy is given in Table 4. The corresponding objective func-
tion values are 0.0138, 0.0035 and 0.0069. Fig. 5 shows the regret values for the best chromosome in each generation when
k = 0.
Table 2
The trapezoidal fuzzy turnover rates of all stocks (%).

Stock Future turnover rate Stock Future turnover rate Stock Future turnover rate

1 (0.2, 1.2, 0.1, 0.6) 11 (0, 0.6, 0, 0.1) 21 (0.2, 1.2, 0.1, 0.4)
2 (0.6, 2, 0.2, 1) 12 (0.2, 0.8, 0.1, 0.4) 22 (0.1, 1, 0.1, 0.3)
3 (0.2, 1, 0.1, 0.2) 13 (0.4, 1, 0.2, 0.4) 23 (0.2, 1.6, 0.1, 0.3)
4 (0.4, 1.4, 0.2, 0.4) 14 (0.2, 0.8, 0.1, 0.3) 24 (0.1, 1.8, 0.1, 0.5)
5 (0.2, 1, 0.1, 0.2) 15 (0.2, 1, 0.1, 0.4) 25 (0.1, 1, 0.1, 0.3)
6 (0.2, 1.2, 0.1, 0.4) 16 (0.2, 1.4, 0.2, 0.4) 26 (0.2, 1.8, 0.1, 0.8)
7 (0.2, 0.8, 0.1, 0.2) 17 (0.2, 1.2, 0.1, 0.2) 27 (0.1, 0.8, 0, 0.3)
8 (0.2, 1.8, 0.1, 0.2) 18 (0.2, 0.8, 0.1, 0.4) 28 (0.1, 1, 0, 0.3)
9 (0.2, 1, 0.1, 0.6) 19 (0.2, 1, 0, 0.2) 29 (0.2, 1.8, 0.1, 0.8)

10 (0, 0.6, 0, 0.2) 20 (0.1, 1, 0, 0.2) 30 (0.2, 1.8, 0.1, 0.8)

Table 3
The compromised portfolio strategy for completely optimistic investor (k = 1).

Stock 1 2 3 4 5 6 7 8 9 10
Proportions 0.0680 0.0561 0.0609 0 0 0 0 0.0342 0.0345 0
Stock 11 12 13 14 15 16 17 18 19 20
Proportions 0.0272 0 0 0.0659 0.0699 0 0.0683 0.0698 0.0543 0.0736
Stock 21 22 23 24 25 26 27 28 29 30
Proportions 0.0527 0.0624 0 0 0 0 0.0557 0.0489 0.0722 0.0254
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Fig. 4. Regret values for the best chromosome in each generation (k = 1).

Table 4
The compromised portfolio strategy for completely pessimistic investor (k = 0).

Stock 1 2 3 4 5 6 7 8 9 10
Proportions 0.0446 0.0277 0 0 0.0595 0.0667 0.0367 0.0325 0 0.0538
Stock 11 12 13 14 15 16 17 18 19 20
Proportions 0.0387 0.0555 0.0517 0.0599 0.0535 0.0434 0.0550 0.0528 0.0758 0.0411
Stock 21 22 23 24 25 26 27 28 29 30
Proportions 0 0 0 0.0595 0 0 0.0401 0 0 0.0515
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For an investor with a neutral attitude toward all future stock returns, the compromised portfolio strategy is given in Ta-
ble 5 after performing the proposed algorithm with 200 generations. The corresponding objective function values are 0.0169,
0.0041 and 0.0075. Fig. 6 shows the regret values for the best chromosome in each generation when k = 0.5.

Also, the histograms for the compromised portfolio strategies when k = 1, k = 0 and k = 0.5 are given in Fig. 7.
The investor can obtain more compromised portfolio strategies by changing the value of the optimistic–pessimistic

parameter k in Vk E
Pn

j¼1
~�rjxj

� �� �
.
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Fig. 5. Regret values for the best chromosome in each generation (k = 0)



Table 5
The compromised portfolio strategy for neutral investor (k = 0.5).

Stock 1 2 3 4 5 6 7 8 9 10
Proportions 0.0794 0.0679 0 0.0604 0.0231 0 0 0.0229 0.0636 0
Stock 11 12 13 14 15 16 17 18 19 20
Proportions 0.0502 0 0 0 0.0786 0.0211 0.0818 0.0413 0.0285 0.0921
Stock 21 22 23 24 25 26 27 28 29 30
Proportions 0.0681 0.0678 0 0 0 0 0 0.0728 0.0804 0
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Fig. 6. Regret values for the best chromosome in each generation (k = 0.5)
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Fig. 7. Comparison between the histograms of the compromised portfolio strategies when k = 1, k = 0 and k = 0.5.
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6. Conclusions

In this paper, a constrained multi-objective portfolio selection model with fuzzy random returns is proposed after quan-
tifying the return, risk and liquidity of a portfolio. To avoid the difficulty of evaluating a large set of efficient solutions and to
ensure that the best solution is selected, a compromise approach-based genetic algorithm was designed to resolve the pro-
posed model and consequently obtain a compromised portfolio strategy. In addition, a numerical example was presented to
illustrate this modeling concept and to demonstrate and the effectiveness of the proposed algorithm.

In comparison to former multi-objective portfolio selection models, the proposed constrained multi-objective portfolio
selection model can capture twofold uncertainty. In addition, the portfolio selection process incorporates historical securities
data, expert judgment and experience, and the investors’ subjective attitudes about securities’ future returns. By varying the
optimistic–pessimistic parameter k, an investor can build his or her multi-objective portfolio selection model to obtain the
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corresponding compromised portfolio strategy. Therefore, the homogeneous expectation assumption is no longer needed in
our proposed portfolio selection model. Moreover, the computational results show that the compromise approach-based ge-
netic algorithm is a feasible and effective means of obtaining a compromised solution. This proposed compromise approach-
based genetic algorithm can be generalized to other multi-objective programming models with non-smooth characteristics.
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