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Abstract. Creating gaits for physical robots is a longstanding and open
challenge. Recently, the HyperNEAT generative encoding was shown to
automatically discover a variety of gait regularities, producing fast, coor-
dinated gaits, but only for simulated robots. A follow-up study found that
HyperNEAT did not produce impressive gaits when they were evolved
directly on a physical robot. A simpler encoding hand-tuned to pro-
duce regular gaits was tried on the same robot, and outperformed Hy-
perNEAT, but these gaits were first evolved in simulation before being
transferred to the robot. In this paper, we tested the hypothesis that
the beneficial properties of HyperNEAT would outperform the simpler
encoding if HyperNEAT gaits are first evolved in simulation before be-
ing transferred to reality. That hypothesis was confirmed, resulting in
the fastest gaits yet observed for this robot, including those produced
by nine different algorithms from three previous papers describing gait-
generating techniques for this robot. This result is important because it
confirms that the early promise shown by generative encodings, specifi-
cally HyperNEAT, are not limited to simulation, but work on challenging
real-world engineering challenges such as evolving gaits for real robots.

1 Introduction

Legged robots can operate in a much wider range of environments than their
wheeled counterparts. However, designing gaits for legged robots is a difficult
and time-consuming process for human engineers [1, 2], and must be repeated
every time a robot is created or modified [3]. Scientists thus investigate how to
automatically produce gaits via machine learning and evolutionary algorithms,
and the result is often a better gait than those created by human engineers [3–
7]. While it has been shown that gaits perform better if they are regular—i.e.,
that they have coordinated movements, such as left-right symmetry or front-
back symmetry [4, 8–10]—experimenters usually have to explicitly decide and
specify these regularities [4, 11–13]. Such manual intervention is time consuming,
requires expert knowledge, and adds constraints that may hurt performance.



Fig. 1. The QuadraTot robot platform on which gaits were evolved. Left: The physical
robot, which is composed of 3-D printable and off-the-shelf components. Right: The
representation of the robot in the simulator.

Previous work has shown that the Hypercube-based NeuroEvolution of Aug-
menting Topologies (HyperNEAT) generative encoding [14] can automatically
generate a variety of regular gaits that outperform gaits evolved with direct en-
codings [8, 9]. However, that work only verified these claims in simulation. Yosin-
ski et al. evolved gaits with HyperNEAT directly in hardware on the QuadraTot
robot platform (Figure 1). They found that HyperNEAT’s gaits outperformed
manually designed, parameterized learning algorithms, but still did not produce
impressive, natural gaits [7].4 A follow-up study built a simulator for QuadraTot
to test whether the inclusion of a simulator would improve results and found that
it did: when gaits were evolved in simulation with a simple direct encoding and
then transferred to the QuadraTot robot, the resulting gaits were faster than the
gaits produced by evolving gaits with HyperNEAT directly on the robot [15].
The simulator helped because it afforded much larger population sizes and more
generations than were possible when evolving directly in hardware, resulting in
333 times more evaluations per run (60000 vs. 180) [7, 15].

The work with the simulator [15] evolved gaits with a simple encoding manu-
ally constrained to produce specific regularities. The success of that work raises
the question of whether the performance gains were due to the added benefit
of a simulator or the use of a simple, hand-designed encoding. We hypothesized
that HyperNEAT, which has been previously shown to automatically discover
complex regularities to produce high-performing gaits [7, 8], would outperform
the simpler encoding from Glette et al. if combined with a simulator. Here we
test that hypothesis by evolving gaits with HyperNEAT in the same simulator
from Glette et al. and then transferring those gaits to the QuadraTot robot. Our
experiments confirmed the hypothesis: with the simulator, HyperNEAT evolved
the highest-performing gaits observed to date for the QuadraTot platform.

4 Videos available at http://creativemachines.cornell.edu/evolved-quadruped-gaits



2 Methods

Robot Hardware: We performed experiments on the QuadraTot quadrupedal
robot platform (Figure 1-Left) [7]. It has 9 degrees of freedom: two joints per leg
and one joint that rotates along the robot’s midline. The QuadraTot hardware
designs and the software for this project are open source5, and all hardware com-
ponents are either off-the-shelf or 3D-printed. There are results on the platform
for nine different learning algorithms from three previous publications [7, 15, 16].

The joints are powered by Robotis Dynamixel servos; five AX-18A servos for
the inner joints of each leg and the single midline joint, and four AX-12A servos
for the the outer joints of each leg, which require less power and can thus have less
expensive motors. Each servo has a built-in safety mechanism that shuts itself
off to prevent damage if the servo’s current, range, temperature, or torque is
too high. This safety mechanism activated frequently and inconsistently, adding
significant noise to the evaluation process. As pointed out in a previous study [7],
evolved gaits on QuadraTot are highly variable and produce many shutdowns
because they force the servos to exert too much torque. To prevent collisions
between different pieces of the robot’s body, we limited the allowable range of
movement for the inner, outer, and hip joints to [-85◦, +60◦], [-113◦, +39◦], and
[-28◦, +28◦], respectively. We also implemented the Smart Cropping System from
Shen et al. [16], which prevents combinations of joint positions for the inner and
outer joint of each leg that generate extreme amounts of torque. A final method
of reducing torque was to reduce the weight of the robot. Yosinski et al. had
the small Linux computer that performed all computation on the robot, but we
removed it and sent commands from it to the robot via a cable. We tracked the
robot’s position using an infrared LED observed by a Wiimote.

Simulator: Gaits evolved in the simulator from Glette et al.5, which represents
QuadraTot in the Nvidia PhysX physics engine, including the mass and size of
the QuadraTot components and its degrees of freedom (Figure 1-Right). In the
simulator, each individual joint range was limit as described above, but Smart
Cropping was not included because we found that it hindered performance by
limiting the types of gaits evolution could explore in early generations.

HyperNEAT: HyperNEAT is an algorithm for evolving artificial neural net-
works (ANNs) [14]. It has been repeatedly described in detail [8, 14, 17], so here
we provide only a summary. Instead of directly encoding each ANN weight indi-
vidually on the genome, in HyperNEAT the genome is a compositional pattern
producing network (CPPN) [18]. The CPPN specifies the weights in a similar
way to how natural organisms develop. In nature, phenotypic attributes are spec-
ified as a function of their geometric location, and such positional information is
conveyed through chemical morphogen gradients [19]. For example, the concen-
tration of one chemical could indicate the position along the head-to-tail axis and

5 A parts list, hardware CAD files, software (including the simulator), and gait videos
are available at http://creativemachines.cornell.edu/evolved-quadruped-gaits



another chemical in bands could indicate if a cell is in an odd- or even-numbered
segment. Based on the relative concentrations of these chemicals, a cell can know
where it is geometrically and, thus, what type of cell to become [19].

With CPPNs this process is abstracted as a network of math functions that
operate in a Cartesian geometric space. The coordinates of phenotypic elements
are provided as inputs to the CPPN and the outputs specify phenotypic traits.
For example, when CPPNs encode 2D pictures, the coordinates of each pixel
are iteratively input into the genome and the output is the grayscale value at
that coordinate [20]. Because a CPPN network is composed of math functions,
these functions can create geometric regularities in the phenotype. For exam-
ple, a Gaussian function of an axis can provide symmetry (e.g. left-right), and
a repeating function (e.g. sine) of an axis could provide repetition (e.g segmen-
tation). Both 2D pictures and 3D objects evolved with CPPNs look like natural
and engineered objects, and contain complex regularities, such as symmetries
and repeated motifs, with and without variation [20, 21].

In HyperNEAT, CPPNs encode the weights of the connections between neu-
rons as a function of the geometric locations of those neurons (Figure 2). The
Cartesian coordinates of the two neurons at the end of each connection are input
into the CPPN, and the output is the weight of that connection. If the output
is smaller than a threshold, the weight is set to zero, functionally removing the
connection. The process is repeated for each possible connection. Just as in 2D
pictures and 3D objects, the CPPN can create complex, regular, geometric pat-
terns (e.g. left-right symmetry or repeated modules), but in this case the patterns
are in the weights of a neural network [8]. The neural regularities produced by
HyperNEAT enable significantly improved performance on problems that are
regular [8, 14], including evolving quadruped gaits in simulation [8–10].

In HyperNEAT, the CPPN genomes evolve via the NeuroEvolution of Aug-
menting Topologies (NEAT) algorithm [22], which has three major components.
First, NEAT starts with small genomes that encode simple networks and com-
plexifies them via mutations that add nodes and links to the networks. Second,
NEAT has a fitness-sharing system that preserves diversity and allows for new in-
novations to be tuned by evolution before competing them against more adapted
rivals. Third, historical information is recorded that facilitates crossover in a way
that is effective, yet avoids the need for expensive topological analysis. A full
explanation of NEAT can be found in Stanley and Miikkulainen 2002 [22].

In this study, the ANN inputs, outputs, activation functions, and the size
of the hidden layer are the same as in Yosinski et al. [7]. The ANN had a
fixed topology of three 3 × 4 Cartesian grids of nodes for the input, hidden,
and output layers. The inputs to the substrate were the angles requested in the
previous time step for each of the 9 joints of the robot and a sine and cosine
wave to facilitate periodic motion. The outputs of the substrate at each time
step were nine numbers (for each joint) in the range [-1, 1] which were scaled
to the allowable ranges for the servos. As in Yosinski et al. [7], we generated
pseudo-positions at 160Hz and then downsampled over consecutive blocks of four
time steps to obtain the actual commanded positions at 40Hz; this reduced the



number of gaits which commanded switches from extreme negative to extreme
positive numbers at 40Hz, which overly taxed the servos.

Fig. 2. A CPPN specifying a neural network. In HyperNEAT, weights are a function
of the Cartesian coordinates of the source and target node for each connection. All
pairwise combinations of source and target node coordinates are iteratively passed into
a CPPN to determine the weight of each ANN link. Figure from Clune et al. [8].

Evolutionary Process and Parameters: Each run had a population size of
200 and lasted 200 generations. We performed 20 HyperNEAT runs that dif-
fered only in the seed provided to the random number generator, which affected
stochastic events such as mutation. To make a statistical comparison to the
encoding from Glette et al., we conducted 19 runs using the original code to
supplement the one run performed for that paper. Each gait was evaluated for
fourteen seconds in reality, with interpolation from and to a stationary position
in the first and last two seconds, respectively, as in Yosinski et al., effectively re-
sulting in 12 seconds of full-speed motion. In simulation gaits were evaluated for
12 seconds. All HyperNEAT parameters were identical to those in Yosinski et al.
except for the frequency of the sine wave input to the ANN, which was lowered
from 4.2Hz to 0.64Hz to reduce servo shutdowns. To further reduce servo shut-
downs, we punished high-frequency gaits during evolution. We calculated the
frequency of a gait as the average number of servo direction changes per leg per
second. If this frequency was higher than the experimentally-selected threshold
of 1.67 Hz, the measure of distance traveled by the center of mass during the gait
was reduced exponentially by multiplying it by a discount factor of e(1.67−freq).
Following Clune et al. [9], the fitness equation was 2distance

2

. After evolving the



gaits in simulation, the champion gait of the last generation of each of the 20
runs was transferred onto the real robot and the distance traveled was measured.

3 Results and Discussion

The simulator enabled HyperNEAT to evolve fast, natural gaits. In simulation,
HyperNEAT gaits were faster than those from Glette et al. (Figure 3-Top, p <

6.8× 10−8 when comparing the best gaits in the final generation of each run via
Matlab’s Wilcoxon rank sum test). Specifically, HyperNEAT gaits were 52.1%
faster in simulation (25.4 cm/s± 3.4 SD versus 16.7 cm/s± 1.9 SD). To facilitate
comparisons to earlier works [7, 15] we report mean ± SD, but our qualitative
conclusions are the same when using medians. Plots of servo positions over time
reveal that the evolved HyperNEAT gaits are regular and coordinated (Figure 3-
Left), confirming previous results with HyperNEAT in simulation [8, 9].

On the physical robot, HyperNEAT gaits from this study outperformed gaits
from all previous QuadraTot studies (Table 1) [7, 15, 16], including those of
Glette et al. However, comparing performance in hardware between studies per-
formed in different laboratories is difficult, not only because reality is inherently
noisy, but because even two copies of the same robot are not identical and may
produce different speeds for the same input gait. Gaits for this study and two
previous studies [7, 16] were evaluated on a copy of the QuadraTot robot in the
Cornell Creative Machines Lab (CCML), while the gaits in Glette et al. were
evaluated on a different copy of the same robot in the Robotics and Intelligent
Systems (ROBIN) lab at the University of Oslo. The two robots were evalu-
ated on two different surfaces, and had different material enveloping their feet
to increase friction (compare Figure 1-Left to Figure 2 of Glette et al).

The previous fastest gait on any copy of a QuadraTot was from Glette et al.,
and traveled 17.8 cm/s on the ROBIN QuadraTot. The fastest gait produced
by HyperNEAT with a simulator in the experiments for this paper traveled 14.5
cm/s on the CCML QuadraTot. It was unclear whether this difference in per-
formance was due to the differences in the gaits themselves or dissimilarities
between hardware. To control for this possibility, we ran the fastest gait from
Glette et al. 10 times on CCML and measured a mean speed of only 12.95 cm/s
±0.93 SD (vs. 17.8 cm/s measured on ROBIN) and a maximum of 13.8 cm/s
(Table 1). It thus appears that the CCML version of the robot is slower. More-
over, the HyperNEAT gait (14.5 cm/s) is faster than the best gait of Glette et al.
on the CCML QuadraTot. Unfortunately, it was not possible to test the best Hy-
perNEAT gait on the ROBIN QuadraTot. Because HyperNEAT outperformed
the simple encoding from Glette et al. on the same robotic hardware, we tenta-
tively conclude that HyperNEAT produces faster gaits for the QuadraTot robot.
This conclusion is supported by the fact that HyperNEAT also outperformed
the encoding from Glette et al. in simulation.

We now discuss the differences between the gaits evolved by HyperNEAT
directly on the physical robot [7], and those first evolved in a simulator and then
transferred to the robot (this study). On the physical robot, the gaits produced
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Fig. 3. Top: HyperNEAT outperforms a genetic algorithm with a simple encoding
[15] when both algorithms are combined with a simulator. Plotted are means over 20
runs in simulation (solid lines) ± SD (dashed lines). HyperNEAT gaits are 52.1% faster
in simulation and 5.1% faster in reality than those from a previous study [15] (details in
Table 1). Left: Servo positions over time (for nine servos) for a representative simulated
HyperNEAT gait. HyperNEAT produced smooth and symmetrical gaits that contained
complex regularities. Right: Mean gait frequency averaged over 20 runs. Gaits with
frequencies above a threshold (horizontal line) receive a fitness penalty. HyperNEAT
quickly learned to produce gaits with frequencies low enough to avoid this penalty.

by HyperNEAT with a simulator were faster, more natural, and more repeatable
than those evolved directly on the QuadraTot robot [7]. The gaits were also more
regular, as they were in simulation (Figure 3-Left). This result is important
because it confirms that HyperNEAT can produce the important property of
regularity in a challenging, real-world domain, which was not previously observed
when evolving directly on the hardware [7]. Producing regular solutions is a key
to exploiting regularity in difficult engineering problems [8].

The simulator likely improved performance because of the number of evalua-
tions it enabled, both in terms of the population size (200 vs. 9) and the number



Simulated Real Vel. Real Vel.
Evaluations Velocity (CCML) (ROBIN)

Parameterized gaits + optimization [7] 153 – 5.8 –

HyperNEAT in hardware [7] 180 – 9.7 –

RL PoWER Spline [16] 300 – 11.1 –

GA + simulator [15] 60000 *16.7 13.8 17.8

HyperNEAT + simulator [this paper] 40000 **25.4 14.5 –

Table 1. Velocities of evolved gaits in simulation and on two different copies of the
QuadraTot robot. Subject to availability, data are reported from the experiments for
this paper and three previous studies. Reported are the total number of evaluations per
run, the mean of the fastest gaits produced in each run in simulation, and the single
fastest gait produced on the CCML and ROBIN copies of the QuadraTot robot (see
text for their differences). *Instead of using the single fitness value reported in [15],
we ran 19 additional runs and used the mean fitness of those 20 runs. Velocities are in
cm/s, and bold indicates the best performance. **The median fitness that corresponds
with this mean is 26.9 cm/s, 95% confidence interval [23.8 cm/s, 26.75 cm/s].

of generations (200 vs. 20), leading to a total difference of 40000 vs. 180 per evolu-
tionary run compared to Yosinski et al. [7]. Another potential cause of improved
performance is the lower noise in the simulator, which could have helped Hyper-
NEAT find coordinated, regular, gaits, which perform better. On the physical
robot, the noise in the evaluation was substantial, preventing effective learn-
ing [7]. To investigate this hypothesis, we performed 20 runs in simulation with
only 180 fitness evaluations, which was the number used in Yosinski et al. [7].
The simulated gaits performed slightly, but not significantly, better than those
evolved in hardware (p = 0.1571, mean fitness 7.9± 2.14 cm/s). Reduced noise
thus may have had a small affect on performance, but the substantial perfor-
mance gains that resulted from using a simulator likely came from the additional
evaluations the simulator afforded. The encouragement of low-frequency gaits in
this study also may have aided performance, especially since in simulation the
gaits were high-frequency in a few early generations before rapidly settling to a
range below the penalized threshold (Figure 3-Right).

While this study was able to produce the fastest QuadraTot gait to date,
most of the gaits in simulation did not transfer well to reality. Many gaits that
were fast in simulation performed poorly on the real robot, largely due to servos
that were too weak and shut down, or because of differences between simulation
and reality. Repeated attempts to minimize these problems were unsuccessful.
In future studies we will use a robot that has more mechanical advantage and
requires less torque from each servo, such as the Aracna platform [23]. That we
did not model the servos in simulation, especially with their frequent failures,
suggests that even better results could be obtained via a simulator that contained
or learned servo models. In future work we will also incorporate techniques to
minimize the gap between the simulator and reality [24–26].



4 Conclusion

With a simulator, HyperNEAT evolved the fasted gait yet recorded for the
QuadraTot robot, outperforming nine machine learning algorithms from three
previous publications [7, 15, 16], including an improvement of 52.1% in simula-
tion and 5.1% in reality over the previous best QuadraTot gait by Glette et al.
These results provide an important demonstration that the HyperNEAT gen-
erative encoding can evolve state-of-the-art results for challenging engineering
problems, in this case evolving gaits for a legged robot. The results further
reaffirm the benefits of using simulators when solving real-world challenges with
evolutionary algorithms. Our results additionally confirm—with a different robot
and simulator—previous work that has shown that HyperNEAT is an effective
encoding for automatically evolving coordinated, regular gaits in simulation [7–
9]. That HyperNEAT outperformed the encoding hand-designed by Glette et al.
shows that HyperNEAT can outperform even evolutionary algorithms manually
designed to incorporate human domain knowledge regarding which regularities
are thought to be beneficial for a problem. The results thus demonstrate that
automatically discovering regularities can be a superior approach to specifying
them, even on problems that are relatively well-understood.
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