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ABSTRACT
Despite the recent security improvements in Adobe’s PDF viewer,
its underlying code base remains vulnerable to novel exploits. A
steady flow of rapidly evolving PDF malware observed in the wild
substantiates the need for novel protection instruments beyond the
classical signature-based scanners. In this contribution we present
a technique for detection of JavaScript-bearing malicious PDF doc-
uments based on static analysis of extracted JavaScript code. Com-
pared to previous work, mostly based on dynamic analysis, our
method incurs an order of magnitude lower run-time overhead and
does not require special instrumentation. Due to its efficiency we
were able to evaluate it on an extremely large real-life dataset ob-
tained from the VT malware upload portal. Our method
has proved to be effective against both known and unknown mal-
ware and suitable for large-scale batch processing.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Protection;
I.2.6 [Computing Methodologies]: Artificial Intelligence—Learn-
ing

Keywords
Malware detection, malicious JavaScript, PDF documents, machine
learning

1. INTRODUCTION
Since the discovery of the first critical vulnerability in Adobe

Reader in 20081 the Portable Document Format (PDF) has become
one of the main attack vectors used by miscreants. PDF-based at-
tacks were the most frequently used remote exploitation technique
in 2009 with a proud share of 49%. Two specific PDF-based vul-
nerabilities were ranked second and fifth among all vulnerabilities
discovered in 2009 [1]. Overall, more than 50 vulnerabilities were

1collab.CollectEmailInfo (CVE-2007-5659): known, as usual, well
ahead of an exploit.
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discovered in Adobe Reader in 2008–2010, which has led to nu-
merous security-related updates. The severity of security prob-
lems has somewhat abated with the introduction of the sandboxing
technology—which has not been compromised to date—in Adobe
Reader X (version 10). The underlying code base, however, still
remains vulnerable, and some critical patches were issued earlier
this year [2, 3].

The vulnerabilities of Adobe Reader can be classified into three
categories. The earliest—and the largest—class of vulnerabilities
arises from bugs in the implementation of the Adobe JavaScript
API. This API significantly extends the JavaScript functionality in
the specific context of PDF documents. The second class of vul-
nerabilities is rooted in non-JavaScript features of Adobe Reader
but typically requires JavaScript for exploitation, e.g. using heap
spraying. Examples of such vulnerabilities are the JBIG2 filter (e.g.
CVE-2009-0658) and the heap overflow (e.g. CVE-2009-1862) ex-
ploits. Finally, the smallest class of vulnerabilities, e.g. the flawed
embedded TrueType font handling (CVE-2010-0195), does not in-
volve JavaScript functionality.

Unlike other modern exploitation techniques such as drive-by-
downloads, SQL injection or cross-site scripting, the PDF-based
attacks have not received significant attention in the research com-
munity so far. Previous work in this field has mostly focused on
dynamic analysis techniques. For example, well-known sandboxes
JS [7] and CWS [26] have been adapted to the analysis
of malicious PDF documents. Due to their heavy instrumentation
and security risks associated with dynamic analysis, the practical
applicability of such approaches is limited to malware research sys-
tems. For the end-user systems, some early work on the detection
of potential exploits in PDF documents [13, 21] has gone largely
unnoticed, and in practice the detection of malicious PDF docu-
ments still hinges upon signatures provided by security vendors.

In this paper, we explore static analysis techniques for detection
of JavaScript-based PDF exploits. Our aim is to develop efficient
detection methods suitable for deployment on end-user systems as
well as in the networking infrastructure, e.g. email gateways and
HTTP proxies. We present the tool PJS2 that is capable of re-
liably detecting PDF attacks with operational false positive rates
in the promille range. The low computational overhead of PJS
makes it very attractive for large-scale analysis of PDF data.

Conceptually, PJS is closely related to static analysis tech-
niques for detection of browser-based JavaScript attacks. Similarly
to the recent work of Rieck et al. [19], our methodology is based
on lexical analysis of JavaScript code and uses machine learning to
automatically construct models from available data for subsequent
classification of new data. The crucial difference from browser-

2The source code of PJS and its underlying library libPDFJS
can be found at http://sf.net/p/{pjscan|libpdfjs}.



based JavaScript attacks is that reliable ground truth information
is hardly available for PDF documents. It is especially difficult to
identify benign JavaScript-bearing PDF documents. First, as our
study will show, such examples are indeed much more rare than
malicious ones. Second, while it is relatively easy to verify that web
content at a certain URL is benign by using Google Safe Brows-
ing3, it is much more difficult to extract and analyze JavaScript code
in PDF documents. These implications necessitate a conceptual re-
design of the detection methods. In PJS, we have to resort to
anomaly detection to learn only from malicious examples.

Reliable extraction of JavaScript code from PDF documents is it-
self a major challenge. Not only is PDF very complex, it is also rich
with features that can be used for hiding the presence of JavaScript
code. It supports compression of arbitrary objects as well as var-
ious encodings for the JavaScript content. Such features are rou-
tinely used by attackers to avoid detection by signature-based meth-
ods. In our experience, none of the previous tools for static anal-
ysis of PDF documents, e.g. PDFID4, JSUNPACK5, PDF D-
6, were able to provide full coverage of the possible locations
of JavaScript code in PDF documents. In the preprocessing com-
ponent of the PJS, we have developed an interface to a popular
PDF rendering library P7. Using this interface, our system
is able to handle all potential locations of JavaScript known to us
from the PDF Reference.

We have evaluated the effectiveness of PJS on a large real-
world dataset comprising 3 months of data uploaded by users to
the malware analysis portal VT8. This is the first study of
malicious PDF documents carried out at such scale. Our results
confirm that there still exist malicious PDF documents that are not
recognized by any antivirus system, although the share of novel
malicious PDF documents is no longer significant (we have found
52 such documents among more than 40,000 documents classified
by VT as benign). In our experiments, PJS has attained
average detection rates of 85% for known and 71% for previously
unknown PDF attacks with the average operational false positive
rate of about 0.37%. Due to the difference in the nature of benign
data a direct comparison of PJS with methods for detection of
browser-based JavaScript attacks is not possible. W9 was the
only previous detection method suitable for PDF-based JavaScript
attacks. Much to our surprise, while being perfect in terms of false
positives and very good in detection of novel PDF attacks (90%),
W has shown poor performance on known PDF attacks, for
which it only reached the detection accuracy of 63.6%. As a dy-
namic analysis tool, W has been conceived for offline anal-
ysis and incurs a significant overhead.

1.1 Contributions
In summary, this paper provides the following contributions:

1. Robust extraction of JavaScript from PDF documents.
We provide a detailed account of the mechanisms for embed-
ding of JavaScript content in PDF documents and present a
methodology for reliable extraction of JavaScript code using
the open source PDF parser P.

3Google Safe Browsing API: http://code.google.com/apis/
safebrowsing/
4http://blog.didierstevens.com/programs/pdf-tools/#pdfid
5https://code.google.com/p/jsunpack-n/
6http://www.zynamics.com/dissector.html
7http://poppler.freedesktop.org/. Version 0.14.3 was used in
our implementation.
8VT, Free Online Malware Scanner, http://www.
virustotal.com/index.html
9W, http://wepawet.iseclab.org/index.php

2. Fully static detection of malicious JavaScript. We describe
a method for discrimination between malicious and benign
JavaScript instances based on lexical analysis and anomaly
detection. Unlike the previous work, the proposed method
does not require manual labeling of data. This is especially
important for PDF documents for which it is difficult to ver-
ify that a certain document is benign.

3. High performance. The key advantage of static analysis is
that it allows several orders of magnitude higher processing
speed. Our system PJS has attained the average process-
ing time of less than 50ms per file.

4. Comprehensive evaluation. We present the results of a first
large-scale evaluation of malicious PDF detection on a real-
world dataset comprising more than 65,000 PDF documents.
PJS has detected 85% of known malicious PDF docu-
ments compared to all 42 antivirus scanners deployed by
VT and 71% of previously unknown malicious PDF
documents (not detected by any of the VT’s scan-
ners). The promille-range false positive rate of PJSmakes
it suitable for practical deployment.

1.2 Paper Organization
The rest of this article is organized as follows. We begin with

a brief summary of the main features of PDF and its mechanisms
for embedding of JavaScript contents (Section 2). The architecture
of PJS and the methodology used in its specific components is
presented in Section 3. In Section 4, we present the data corpus and
analyze its statistical features at different representational levels.
Our experimental evaluation is presented in Section 5, followed
by the discussion of related work in Section 6. Limitations of our
methods and potential improvements are discussed in Section 7.

2. PDF AND JAVASCRIPT
Before presenting the technical details of our methods, we briefly

summarize the main features of the Portable Document Format and
present its syntactic forms used for embedding of JavaScript. A
significant portion of the following section contains direct citations
from the PDF Reference [15].

2.1 PDF Essentials
A PDF file consists of the following four elements10:

• A header consisting of the characters %PDF- and the version
number of the PDF standard used in the file (e.g. 1.1),

• A body containing PDF objects with the actual content of the
document,

• A cross-reference table listing indirectly referenced objects
and their location in the file,

• A trailer, containing the location of the cross-reference table
and some objects in the file body.

The parsing of a PDF file begins with checking the version number
and looking at the file trailer for information about the location of
the cross-reference table and some special objects in the file body.

10Many parsers do not strictly follow the PDF Standard. Even the
Adobe Reader is notorious for such lack of compliance, e.g. it
ignores arbitrary symbols before the header [12] and can dispense
with the trailer and cross-references [27].



The PDF standard defines eight basic types of objects:

1. Boolean objects take values true and false.

2. Integer and real numbers.

3. Strings may be stored in two ways:

• as a sequence of literal characters enclosed in parenthe-
ses ‘(’ and ‘)’.

• as a sequence of hexadecimal numbers enclosed in an-
gle brackets ‘<’ and ‘>’.

4. Names are sequences of 8-bit characters used as identifiers.

5. Arrays are sequences of PDF objects, potentially of different
type; arrays can be nested.

6. Dictionaries are collections of key-value pairs with keys be-
ing names and values being of any PDF object type. Dictio-
naries are used to describe complex objects such as pages or
actions.

7. Streams are dictionary objects followed by a sequence of
bytes between the words stream and endstream. Streams
can be used to represent large objects, such as images, in
a compact way. The content of the byte sequence may be
stored in an encoded or compressed form. A special type of
streams are object streams containing arbitrary PDF objects.

8. The null object is denoted by the keyword null.

The body of a PDF document is built as a hierarchy of these eight
basic types of objects linked together in a semantically meaning-
ful way to describe pages, multimedia, outlines, annotations, etc.
A central role in the hierarchy belongs to the Catalog dictionary
pointed to by the /Root entry of the cross-reference table. It serves
as the root of a tree-like structure describing the document content.

Objects can be assigned a unique identifier consisting of an ob-
ject number and a generation number (a sort of a version number).
Objects that have a unique identifier can be referenced from other
objects using an indirect reference written as a sequence of the ob-
ject number, the generation number and the capital letter ‘R’. For
example, 23 0 R refers to an object with the object number 23 and
the generation number 0. PDF allows encryption of the contents of
strings and streams.

2.2 JavaScript in PDF
PDF provides several mechanisms for inclusion of JavaScript

code. These mechanisms are important for the realization of in-
teractive features, such as forms, dynamic content or 3D rendering.
Some PDF usage scenarios relying on these features cannot be re-
alized without JavaScript.

The main indicator for JavaScript code is the presence of the
keyword /JS in some dictionary. The JavaScript source is supplied
directly as one of the two possible string types (literal or hexadeci-
mal) or stored in another object pointed to by an indirect reference.
In the latter case, it is usually stored in a compressed or encrypted
form in a stream attached to that object. Examples of typical syntax
for embedding of JavaScript code are shown in Fig. 1.

A simple search for /JS patterns in PDF files – as it was realized
in some tools for the analysis of PDF documents, e.g. PDFID –
does not suffice for identification of JavaScript locations. It can be
easily evaded by placing objects containing dictionaries with the
keyword /JS into object streams. Due to stream compression the
keyword /JS is not visible in plain text. The simple search may also

1 0 obj <<
/Type /Catalog
/Pages 2 0 R
/OpenAction <<
/S /Rendition
/JS 23 0 R

>>
>>
endobj

1 0 obj <<
/Type /Catalog
/Pages 2 0 R
/OpenAction <<
/S /JavaScript
/JS (alert(’Hello World!’);)

>>
>>
endobj

Figure 1: Exemplary syntactic constructs for embedding of
JavaScript in PDF documents. Left: code is placed in another ob-
ject pointed to by an indirect reference (not shown). Right: code is
supplied as a literal string.

yield multiple references to identical code if different revisions of
the same content are present.

In order to reliably extract JavaScript code, the documents must
be processed at the semantic level, i.e. considering potential uses of
JavaScript in the context of other objects in a document. In general,
the use of JavaScript code in PDF documents is bound to the so-
called action dictionaries. Such dictionaries may be tagged by a
keyword/value pair /Type/Action, but unfortunately such explicit
qualification is optional and cannot be relied upon. A mandatory
feature of all action dictionaries is the keyword /S which may take
on 18 different name values. Two of such values, /JavaScript
and /Rendition, are important for the search for JavaScript code.
The former must, and the latter may have a keyword /JS [15], as
shown in Fig. 1. The content associated with the keyword /JSmust
use the PDFDocEncoding (as defined in [15]) or the UTF-16BE
(big-endian) Unicode encoding. In the rest of this article we denote
JavaScript source code located in or referred to by one JavaScript
or Rendition action dictionary as a JavaScript entity.

JavaScript or Rendition action dictionaries can be found at the
following locations of the PDF object hierarchy:

• The Catalog dictionary’s /AA entry may define an additional
action specified by a JavaScript action dictionary.

• The Catalog dictionary’s /OpenAction entry may define an
action to be run when the document is opened.

• The document’s name tree may contain an entry ‘JavaScript’
that maps name strings to document-level JavaScript action
dictionaries executed when the document is opened.

• The document’s Outline hierarchy, referenced by means of
the ‘Outlines’ entry of the Catalog dictionary, may contain
references to JavaScript action dictionaries.

• Pages, file attachments and forms may also contain refer-
ences to JavaScript action dictionaries.

Besides being directly embedded in a PDF file, JavaScript code
may also reside in a different file on a local machine or even be re-
trieved from a remote location using the directives /URI or /GoTo.
JavaScript also supports dynamic code execution using the eval()
function or its equivalent, setTimeOut(). Such mechanisms are
difficult for static analysis; however, they are launched from an ex-
isting entry point code inside a document.

3. SYSTEM ARCHITECTURE
The architecture of our PDF scanner PJS is shown in Fig. 2.

Conceptually, our system consists of the feature extraction and the
learning components. The feature extraction component searches
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Figure 2: Architecture of PJS

for JavaScript code embedded in a document and performs lexical
analysis on it. The resulting token sequence is used as an input to
the learning component. The learning component is first trained
on examples of malicious documents. It produces a model for the
JavaScript content in a malicious PDF document. Classification of
new documents is performed using this model. A detector mea-
sures the deviation of a new document from a learned model and
compares it against a predefined threshold (the threshold can also
be automatically determined at the training stage). Documents that
are close to a learned model are classified as malicious and other-
wise as benign. The functionality of specific components depicted
in Fig. 2 is described below.

3.1 Extraction of JavaScript Content
The main challenge of the extraction of JavaScript content lies

in the decoding of object streams and the handling of the encoding
used for JavaScript content. Furthermore, a parser must be robust
against potential incompatibilities with the PDF Standard. For this
reason, contrary to the approach taken in [24], we have decided
against the parsing of PDF files “by hand” and tailored a popular
open source PDF parser P to the needs of our analysis.

Our JavaScript extractor begins with opening the PDF file and
initializing P and its internal data structures. Next, the Cata-
log dictionary is retrieved which serves as the starting point in the
search for action dictionaries. All candidate locations listed in Sec-
tion 2.2 are checked, and the found action dictionaries are queried
for their type. If the type is Rendition or JavaScript and a dictio-
nary contains the /JS key, the value of this key (or the referenced
object in case of an indirect reference) is retrieved. The JavaScript
entity is then decompressed and decoded if necessary.

The peculiarity of our approach is that we fully process only
those objects in which JavaScript and Rendition action dictionaries
can potentially occur. This strongly reduces the computational ef-
fort for extraction of JavaScript content and is crucial for batch pro-
cessing of large datasets. Files that do not contain any JavaScript
are not processed beyond the extraction stage.

3.2 Lexical Analysis
Two factors motivate the use of lexical analysis for the detection

of malicious JavaScript code. First, we believe that at the text level,
accurate discrimination between malicious and benign programs is
not possible. Second, malicious JavaScript code is usually – some-
times insanely – obfuscated. We have also observed obfuscation in
benign JavaScript entities extracted from PDF documents. Hence
we have decided to use an intermediate representation – the set of
lexical tokens – to capture the salient properties of code in subse-
quent analysis.

The lexical analysis can be efficiently carried out by the state-of-
the-art open source JavaScript interpreter SM11 devel-
oped by the Mozilla Foundation. To use it as a token extractor, we

11http://www.mozilla.org/js/spidermonkey/

have patched SM to stop short of byte-code generation.
Our extractor queries SM for tokens until an end-of-file
or an error is encountered. Tokens representing various syntac-
tic elements of the JavaScript language, e.g. identifiers, operators,
etc., are represented as symbolic names with integer values ranging
from -1 (TOK_ERR) to 85.

Some semantics of the code is lost during lexical analysis. For
example, all identifiers get assigned the same token TOK_NAME (re-
gardless of their names), calls to different functions with identical
signatures are translated into the same token sequences, and so on.
As a result, JavaScript entities that are distinct at the source code
level may be non-distinct at the token sequence level.

The following example illustrates the tokenization process. The
malicious JavaScript entity
bvb(’var lBvXSUfYYL7RK = ev’ + ’al;’); // a real example
lBvXSUfYYL7RK(’var uzWPsX8 = this.info’ +
z("%2e%46%61%6b") + ’erss;’);

is transformed into the following sequence of tokens, shown in their
order from top to bottom:

Value Symbolic name Description

29 TOK_NAME identifier
27 TOK_LP left parenthesis
31 TOK_STRING string constant
15 TOK_PLUS plus
31 TOK_STRING string constant
28 TOK_RP right parenthesis

2 TOK_SEMI semicolon
29 TOK_NAME identifier
27 TOK_LP left parenthesis
31 TOK_STRING string constant
15 TOK_PLUS plus
29 TOK_NAME identifier
27 TOK_LP left parenthesis
31 TOK_STRING string constant
28 TOK_RP right parenthesis
15 TOK_PLUS plus
31 TOK_STRING string constant
28 TOK_RP right parenthesis

2 TOK_SEMI semicolon
0 TOK_EOF end of file

Besides the tokens recognized by SM, we have de-
fined extra tokens that are indicative of malicious JavaScript enti-
ties. The newly-introduced tokens are listed in the following table.
The impact of these tokens on the classification performance of
PJS is evaluated in Section 5.4.

Value Symbolic name Description

101 TOK_STR_10 a string literal of length < 10
102 TOK_STR_100 a string literal of length < 100
103 TOK_STR_1000 a string literal of length < 1,000
104 TOK_STR_10000 a string literal of length < 10,000
105 TOK_STR_UNBOUND a string literal of length > 10,000
120 TOK_UNESCAPE a call to unescape()
121 TOK_SETTIMEOUT a call to setTimeOut()12

122 TOK_FROMCHARCODE a call to fromCharCode()13

123 TOK_EVAL a call to eval()

12In PDF, the function setTimeOut() of the app object can be used
as a replacement for eval() to execute arbitrary JavaScript code
after the specified timeout.

13fromCharCode() is a static method of the String object that con-
verts Unicode values to characters. In malicious documents, it is
used to decode encoded strings for execution using eval().
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Figure 3: OCSVM operation

3.3 Learning and Classification
In the last step in our processing chain, the learning component

of PJS determines whether a PDF file is benign or malicious.
Prior to deployment, it must be trained on a representative set of
malicious PDF files. The training results in a model of malicious
JavaScript entities in a PDF document. At the deployment stage,
classification of new PDF documents is carried out with the help of
the learned model. After the feature extraction steps described in
Sections 3.1 and 3.2 are completed, the set of tokens from a new
document is tested for proximity to the model.

In our system, we use the One-Class Support Vector Machine
(OCSVM) [23] as the learning method14. Its main advantage is that
it only needs examples of one class to build a model. This is nec-
essary since examples of benign PDF documents with JavaScript
content are quite rare, and it takes a lot of manual effort to verify
that they are benign. On the other hand, examples of malicious
PDF documents abound on malware collection systems, and their
maliciousness can be ascertained with high confidence if they are
detected by antivirus systems.

The learning stage of OCSVM (cf. Fig. 3(a)) amounts to finding
the center c and the radius R of a high-dimensional hypersphere
such that the total percentage of all data points lying outside of the
hypersphere is at most ν. A hypersphere may be extended to ar-
bitrary surfaces by a non-linear transformation to a special feature
space equipped with the so-called “kernel function”. The kernel
function type and the training rejection rate ν are the only param-
eters to be specified for training of OCSVM. The learned model
comprises the center of the sphere c and the radius R.

The classification stage of OCSVM involves the calculation of
the distance between the data point to be classified and the center
of the hypersphere. If the distance is greater than R (the data point
lies outside of the hypersphere), then it is considered an anomaly
and is treated as benign. The radius thus serves as a threshold that
is automatically determined at the training stage. The classification
stage of OCSVM is illustrated in Fig. 3(b).

OCSVM cannot be directly applied to token sequences emitted
by PJS’s feature extraction component. The reason for this is
that OCSVM expects the data points to be numeric values lying in
a high-dimensional space equipped with typical mathematical oper-
ations such as addition, multiplication with a constant and an inner
product. Sequential data does not form such a space: it is not im-
mediately clear how to add or multiply two strings. A solution to
this problem involves a well-established technique of embedding
sequences in metric spaces [20]. By counting the occurrences of
substrings in data points and assigning the resulting numeric val-
ues to coordinate axes, the required mathematical properties can be
enforced.

14The popular open source SVM implementation LSVM [6], ver-
sion 2.86, patched to support one-class SVM, was used in our ex-
periments.

The embedding of sequences provides an elegant way for han-
dling multiple JavaScript entities in the same file. To obtain an ag-
gregated representation of all JavaScript entities, it suffices to add
them using the addition operation provided by the embedding. To
avoid the dependence on sequence length, the values in individual
dimensions are binarized (by setting any positive values to 1) and
normalized so that the Euclidean norm of the resulting vectors is
equal to 1.

4. DATA COLLECTION AND ANALYSIS
The success of any learning-based approach crucially depends

on the quality of data available for training. Likewise, the viabil-
ity of a learned model can only be demonstrated on up-to-date real
data. The evaluation of our method rests on an extensive dataset
collected from the research interface to the popular malicious soft-
ware portal VT. VT is a web service that enables
ordinary users to upload suspicious files for a scan by 42 antivirus
engines. Our dataset comprises 65,942 PDF documents with the
total size of nearly 59GB. This data has revealed some interesting
features, and is worth looking at in some detail.

We downloaded three batches of data on November 3, 2010, Jan-
uary 19, 2011 and February 17, 2011 each containing all PDF files
available on VT at a given time. The data is kept only for
30 days, and there is surprisingly little overlap between subsequent
months15. We have observed at most 200 identical files across dif-
ferent snapshots. We have split our corpora into two parts, the “de-
tected” sub-corpus in which documents were flagged as malicious
by at least one scanner, and the “undetected” sub-corpus containing
supposedly benign data.

It is instructive to look at the statistical properties of our data pre-
sented in Table 1. One can notice interesting effects in the collected
data. The average file size in the “detected” corpora (0.106MB) is
about 13 times smaller than in the “undetected” ones (1.390MB).
This shows that malicious PDF files do not contain a lot of mean-
ingful content, which is confirmed by a manual investigation of
some of these files. The percentage of files with JavaScript in
the “detected” corpora (59.5%) is about 25 times higher than in
the “undetected” corpora (2.4%). This is a strong indicator that
JavaScript plays a crucial role in PDF-related exploits.

Considering only the files containing JavaScript one can see that
the average number of JavaScript entities per file in the “detected”
datasets (7.2) is around 33 times smaller than in the “undetected”
datasets (241.1). This observation seems counter-intuitive but it
turns out that “undetected” data usually contains hundreds of very
simple JavaScript entities like this.zoom=100;this.pagenum=39.
Similarly, distinctness of JavaScript entities at the code level is 3.2
times higher in “detected” corpora than in “undetected” (16.9%
vs. 5.2%). These findings suggest that non-malicious usage of
JavaScript in PDF documents essentially boils down to boring and
redundant code!

Similar effects take place at the token level (the second row from
the bottom in Table 1). One can observe a further decrease of dis-
tinctness (6,419 vs. 35,990, or 17.8%) due to lexical analysis. The
“detected” sub-corpora are 7.5 times more distinct than the “unde-
tected” sub-corpora. Finally, the last row in Table 1 reveals that
many files contain identical sets of token sequences, which can be
explained by common code reuse in both types of files.

To enable the quantitative evaluation of detection accuracy in
the forthcoming experiments, we have manually labeled the “unde-
tected” part of our data. Among 960 benign files with JavaScript,

15In fact, we were originally unaware of the 30 day lifespan and
started a periodic collection of snapshots only in January.



03. Nov. 2010 19. Jan. 2011 17. Feb. 2011 Total
detected undet. detected undet. detected undet.

Dataset size 873MB 13GB 429MB 13GB 1.5GB 29GB 59GB
Files in the dataset 7,592 7,768 6,465 9,993 11,634 22,490 65,942
Files containing JavaScript 6,626 272 1,127 196 7,526 492 16,239
JavaScript entities 26,372 75,199 33,418 42,265 50,269 113,994 341,517
Distinct JavaScript entities 8,597 5,178 2,376 3,774 9,238 6,827 35,990
Distinct token sequences 1,108 429 815 356 2,947 764 N/A
Distinct files on the token sequence level 538 115 358 95 1,900 237 N/A

Table 1: Statistics of PDF documents collected from VT

we found 52 PDF documents that we believe to have been falsely
classified as benign by all antivirus engines at VT. No
cases were found where PDF files belonging to the same group
of distinct files at the token level were assigned different labels.

5. EXPERIMENTAL EVALUATION
The real-world nature and the sheer size of the VT data

make our evaluation especially challenging. First, the distinction
between “detected” and “undetected” corpora is somewhat vague,
as classifications by antivirus engines cannot be fully trusted. Sec-
ond, the huge size of the “detected” corpus makes its manual anal-
ysis infeasible. On the other hand, the small size of the labeled
JavaScript-bearing part of the “undetected” corpus is too small to
be used for training purposes.

As the baseline for comparison we consider W, a web-
based service based on JS [7]. W performs both static
and dynamic analysis of PDF files based on their JavaScript con-
tent and can detect malware that it has a signature for (labeled as
malicious), as well as unknown malware (labeled as suspicious) us-
ing statistical features. In the evaluation, we treat both categories as
detections. Similar to our system, W generally does not rec-
ognize PDF malware that does not use JavaScript. Table 2 shows
W’s classification on the “detected” and “undetected” parts
of all three corpora at our disposal. In some cases file uploads were
rejected by W, referred to as fail, or resulted in internal er-
rors despite multiple submissions, referred to as error. We treat
such cases (about 1.7% of the total data) as benign.

03. Nov. 2010 19. Jan. 2011 17. Feb. 2011
det. undet. det. undet. det. undet.

Fail 12 38 9 25 19 73
Error 15 1 5 0 83 0
Benign 3,860 212 502 167 1,050 397
Suspicious 1,474 11 149 0 257 0
Malicious 1,265 10 462 4 6,117 22

Table 2: W classification results

5.1 Objectives and Evaluation Criteria
Our experiments address the following questions:

1. How well do PJS and W detect known malicious
documents? This question may appear meaningless: why
bother detecting something that is already detected? In prac-
tice, however, it is impossible to deploy all 42 antivirus en-
gines from VT. For a single method, attaining the
detection accuracy close to that of 42 established antivirus

products is still a very challenging goal16. The correspond-
ing quality measure is the true positive rate on known attacks
T PN defined as the ratio of the number of files in the “de-
tected” corpus classified as malicious to the total number of
JavaScript-bearing files in that corpus.

2. How well do both methods detect attacks that were missed
by all 42 VT engines? We consider documents in
the “undetected” corpus as novel attacks if they are classified
as malicious during manual analysis. The true positive rate
on unknown attacks T PU is defined as the ratio of the number
of files in the “undetected” corpus classified as malicious to
the total number of malicious JavaScript-bearing files in that
corpus.

3. How many normal documents are classified as malicious by
the methods in questions? The laboratory false positive rate
FPL is defined as the ratio of the number of files in the “unde-
tected” corpus classified as malicious to the total number of
benign JavaScript-bearing files in the “undetected” corpus.
The operational false positive rate FPOP is the ratio of the
number of files in the “undetected” corpus classified as mali-
cious to the total number of benign files in the “undetected”
corpus.

The distinction between the laboratory and the operational false
positive rates is essential for estimation of the expected impact of
false positives in practical deployment.

5.2 Experimental Protocol
Our experiments were carried out using the following procedure.

We merged all 3 corpora from different dates keeping only the dis-
tinction between “detected” and “undetected” parts. We then ran-
domly split the full “detected” corpus in two non-overlapping parts
such that the corresponding sets of token sequences are of the same
size. Due to a significant redundancy of token sequences this re-
sults in two sets of files that are different in size. One of these
half-corpora is used to train PJS, the other half is used to eval-
uate T PK . To decrease the impact of non-determinism via random
splitting, we repeat the experiment the second time by swapping
the training and the evaluation datasets and averaging the detection
accuracy. This process is known as 2-fold cross-validation.

To determine the detection accuracy on unknown data, we ap-
ply the trained model on the full “undetected” corpus. We use the
ground truth information to compute T PU , FPL and FPOP. The re-
ported results are also averaged over the two partitions of the train-
ing data.

16Unfortunately we cannot compare any method against the best
detector at VT’s. The labels in batch data from VT
reflect only the number of detections but not the specific engines
that classified a document as malicious.



Since the models used in W do not depend on our training
data (but rather on the data its statistical part was trained on), the
results presented for this method reflect the accuracy of scanning a
complete respective dataset (“detected” or “undetected”).

Some preliminary experimentation was needed to choose the pa-
rameters of OCSVM used in our method. We chose the training
rejection rate ν = 0.15 and the n-gram length of 4, which seem to
provide the best trade-off between the true positive and false posi-
tive rates. The full results of our preliminary screening for optimal
parameters cannot be presented due to space constraints.

5.3 Experimental Results
The results of a comparative evaluation of PJS and W

according to the criteria specified in Section 5.1 are presented in
Table 3. Two configurations of PJS were considered: using
only native JavaScript tokens and using a set of additional heuristic
tokens introduced in Section 3.2. It can be seen that PJS sig-
nificantly outperforms W on the known malicious data but
performs less accurately on previously unknown attacks. Most of
failed detections were caused by 11 files which are redundant at the
token level and contain the following code17:

app.setTimeOut(this.info.dgu,1)

In this example, the attack code resides not in a JavaScript en-
tity but in the Info dictionary18. It can be still accessed by a very
short entry-point JavaScript code above as text and gets interpreted
as JavaScript by calling the function setTimeOut() which is equiv-
alent to eval(). With an exception of this kind of attack, the detec-
tion rate of PJS would have also reached the 90% mark.

It is not clear to us why W has performed relatively poorly
on known malicious data. In a related comparative evaluation against
C [19] in the context of web-based JavaScript attacks (drive-by-
downloads), W was a clear winner with a detection rate of
99.8% compared to 94.4%. Most likely, the reason for worse per-
formance of W in our experiments lies in technical problems
with the extraction of JavaScript code from PDF documents.

Detection method T PK T PU FPL FPOP

PJS (native tokens only) 84.80 71.15 16.35 0.3694
PJS (with extra tokens) 85.17 71.15 17.35 0.3918
W 63.60 90.38 0.0 0.0

Table 3: Detection performance overview

A relative disadvantage of PJS is the high false-positive rate.
Measured against only the JavaScript-bearing benign documents it
reaches the painful 16-17%; however, due to the rare presence of
JavaScript code in benign documents, its operational false-positive
rate remains acceptable and corresponds, for our data, to 1.7 false
alarms per day.

One can also see that heuristic tokens do not improve the per-
formance of PJS and even lead to a slight degradation of the
false-positive rate. The causes for this effect as well as for the false
positives are elucidated in the following section.

5.4 Significant Features
As noted by Sommer and Paxson [22], a security practitioner

would always be interested to know what a learning method has
17All examples differ in the name for the member of the this.info
dictionary (in this case, dgu).

18An Info dictionary is used to store meta-data about the PDF file,
such as author name, the software used to create it, etc.

actually learned. The model created by the OCSVM (the center
c of the sphere) produces a numeric ranking of essential features
encountered in malicious JavaScript code. Since no benign data
is used for training, this ranking does not reflect the differences
between two classes but rather describes only one class known to
it. Examples of the 5 most important and the 5 least important
features in one of the models learned by PJS (created for one
half of the data) are shown in Table 4.

Although these features do not look particularly malicious, the
top 5 features clearly correspond to typical lexical patterns of pro-
gramming languages: member function dereferencing (Feature 1),
string variable assignment (Feature 2), function calls (Features 3
and 4) and variable declarations (Feature 5). On the other end of
the spectrum are the features that are obviously very atypical for
programming languages.

The scoring of a new data point in the detection phase involves
the identification of an overlapping subset of features between this
data point and the learned model. The smaller the “weighted over-
lap” between the new point and the center (i.e. the sum of the
weights in the model corresponding to the common features), the
larger the distance from the center. This property is confirmed by
the examples of accepted and rejected points presented below.

For the accepted points (Table 5, one true positive and one false
positive), the main contributions are made by the top features of
the trained model. Such points are virtually indistinguishable in
our model, and this explains a high “laboratory” false positive rate
observed in our experiments. It turns out, however, that very few be-
nign examples share the “normal” programming language features
captured by the learned model. For the two examples of rejected
points (Table 6, one true negative and one false negative) the top
features have much lower ranks in the learned models. The major-
ity of benign examples have a small “weighted overlap” with the
model and hence are rejected.

The investigation of significant features in our models suggests
that the key property that enables effective discrimination between
malicious and benign code in PDF documents is the fact that be-
nign usage of JavaScript is very rudimentary from the programming
point of view. Anecdotally, the benign example with the highest re-
jection score corresponds to the code print(true).

5.5 Throughput
The throughput of PJS was tested on a commodity PC with

a quad-core Intel Core i7 860 CPU, 8 GB of RAM and a 7,200rpm
SATA hard disk drive. Eight processes were run concurrently for
performance measurement.

Each phase of PJS was run on a respective data partition
(training on one half of “detected” corpus, evaluation on the other
half and on the full “undetected” corpus). Unlike the accuracy mea-
surement, we learned and classified using all files ignoring their
redundancy. Learning with thousands of files instead of a few hun-
dred distinct token sequences reduces performance, but due to the
fast learning and classification algorithms the difference is negli-
gible. Processing times for all stages of our method are shown
in Table 7. In total, parsing of 65,942 PDF files, tokenization
of 341,517 JavaScript entities, learning on 15,279 “detected” files
with JavaScript and classification of 960 “undetected” files with
JavaScript took 1,547 seconds (about 25 minutes). All measure-
ments are expressed in wall clock time19.

19Wall clock time measures real time that elapses between the be-
ginning and the end of a task. It includes CPU time, I/O time and
any overhead such as the time process spends waiting for execu-
tion. It is a good indicator of real performance but is affected by
system load.



Top 5 Bottom 5
Rank Weight Feature Rank Weight Feature

1 0.05285 NAME . NAME ( 4051 2.285e-05 ) NAME ( THIS

2 0.05106 NAME ASSIGN STR ; 4052 2.285e-05 +- NAME !== NAME

3 0.05092 NAME ( NAME ) 4053 2.285e-05 ] ) - NAME

4 0.04574 ( NAME ) ; 4054 2.285e-05 NAME ] ) -

5 0.04314 ; VAR NAME ASSIGN 4055 1.865e-05 TRUE } ; IF

Table 4: Features of the center point

True positive top 5 False positive top 5
Rank Weight Feature Rank Weight Feature

1 0.00456 NAME . NAME ( 1 0.00554 NAME . NAME (

2 0.00441 NAME ASSIGN STR ; 2 0.00535 NAME ASSIGN STR ;

3 0.00439 NAME ( NAME ) 5 0.00452 ; VAR NAME ASSIGN

4 0.00395 ( NAME ) ; 6 0.00413 ; NAME ( NAME

5 0.00372 ; VAR NAME ASSIGN 7 0.00386 NAME ( STR )

Table 5: Features of TPs and FPs

True negative top 5 False negative top 5
Rank Weight Feature Rank Weight Feature

7 0.00390 NAME ( STR ) 1 0.01593 NAME . NAME (

8 0.00390 VAR NAME ASSIGN NAME 98 0.00490 . NAME . NAME

10 0.00359 ) ; NAME ASSIGN 141 0.00394 ( THIS . NAME

14 0.00338 THIS . NAME ( 154 0.00372 THIS . NAME .

15 0.00338 ASSIGN NAME . NAME 355 0.00177 NAME ( THIS .

Table 6: Features of TNs and FNs

One can see that JavaScript extraction is the most time-consuming
part of PJS. It has been observed that this operation takes only
2,041 seconds using a single process, with an average process-
ing time of 31 milliseconds per file. The overall CPU usage was
very low (up to 40%, with I/O waiting of up to 30%), while at the
same time disk utilization remained above 95% during the extrac-
tion phase. One can conclude that disk throughput represents the
main performance bottleneck for this application. Using a faster
storage device or reading files through a fast network is likely to
improve the performance of PJS.

The throughput calculation for different stages of PJS is pre-
sented in Table 8. It shows that the throughput varies strongly
between the “detected” and “undetected” files since they vary in
file size and the number and size of JavaScript entities. The aver-
age throughput of 303.5Mbps is suitable for batch processing tasks
even for organizations that have a very high volume of PDF traf-
fic. The average processing time per file is 23 milliseconds. To the
best of our knowledge, no other software package achieves lower
processing times.

Time Extractor Tokenizer Learner Classifier

Total 1,356s 180s 10.19 0.014s
Average 0.0205s 0.0032s N/A 0.000015s
Std. dev. 0.0015s 0.0392s N/A 0.000009s
Percentage 87.65% 11.63% 0.66% 0.0009%

Table 7: Processing time for different stages of PJS in batch
execution mode

Detected Undetected All files

Total time 339s 1208s 1547s
Average file size 0.106MB 1.39MB 0.89MB
Files per second 75.8 33.3 42.6
Data throughput 64.3Mbps 370.5Mbps 303.5Mbps
Seconds per file 0.013s 0.030s 0.023s

Table 8: Throughput characteristics of PJS

6. RELATED WORK
As it was already mentioned in the introduction, detection of

malware in PDF documents has not been extensively studied in
the research literature before. The early approaches to identifica-
tion of malware in PDF documents [13, 21] were based on n-gram
analysis of raw document content. The scope of experimental eval-
uation in this work was rather limited. It included self-generated
malicious PDF documents as well as a relatively small number of
examples (less than 300) from the outdated VXH malware
repository. Due to the wide-spread use of evasion techniques in
modern PDF malware, especially object compression and code-
level obfuscation, we believe that the analysis of raw content of
PDF documents is no longer adequate. Hence the approach taken in
PJS is fundamentally different from the above mentioned work
in that our methods spend a lot of effort in discovering and utilizing
the appropriate lexical features of PDF.

The recent work on analysis of PDF documents has emerged
from existing tools for static and dynamic analysis. Besides the
malware analysis portal W considered in our experiments,



some other tools use a combination of static and dynamic analysis
tools. MO [10] uses static and dynamic techniques as well
as some heuristics. Its static analysis is based on the utility pdftk20,
and the dynamic analysis builds on CWS [26]. Detections
are made by combining scores from various heuristics and policies
attached to the analysis tools. Another combination of static and
dynamic analysis was used in MD recently proposed in [24].
From the architectural point of view, MD is similar to our ap-
proach. It also uses static analysis to extract JavaScript content (us-
ing a self-made parser) and a heuristic approach for the extraction
of JavaScript code. The extracted code is interpreted using S-
M. Detection is carried out at the dynamic stage by using the
shellcode detection tool Nemu [16]. The method was evaluated on
a set of 197 malicious PDF documents artificially generated using
the Metasploit framework and 2000 benign documents. Compared
to MD, we only use SM for token extraction and
perform detection statically, which brings a performance improve-
ment of two orders of magnitude.

A significant body of prior work has addressed the detection of
malicious JavaScript in web content, especially in the context of
drive-by-downloads. One cannot directly compare the accuracy of
such methods with PJS due to the fact that the data corpora
used for the experimental evaluation of respective methods are very
different. We will hence focus on methodical comparison of our
approach with such methods.

Similar to PDF malware, the methods for detection of malicious
JavaScript in web content can be classified into static, dynamic
and hybrid. Purely dynamic methods deploy various techniques for
monitoring the run-time execution of processes accessing web con-
tent, e.g.: full-fledged host virtualization [25], client virtualization
[14], instrumentation of a JavaScript engine [11] or heap monitor-
ing [18]. Dynamic methods have high detection accuracy and are
hardly prone to false positives. Due to their performance overhead
they are usually limited to “post-mortem” analysis.

Hybrid methods aim to minimize run-time overhead while re-
taining high detection accuracy. Several such methods have me-
thodical affinity with PJS. JS [7] uses instrumented ver-
sions of the HU21, a Java-based browser simulator, and the
Mozilla’s R22 interpreter to extract heuristic features while mon-
itoring the execution of JavaScript code. These features are used to
train an anomaly detection system by running JS on benign web
pages. C [19] is another interesting combination of static and
dynamic methods. Its static part is similar to PJS (with the ex-
ception of anomaly detection instead of two-class classification in
its learning component); its dynamic component extracts symbolic
features from a light-weight sandbox ADS [9] and deploys
similar n-gram analysis and learning techniques as the static part.
A “mostly static” detection system Z [8] attempts to avoid dy-
namic analysis but still needs it to unravel source-code obfuscation
before using statistical feature extraction and supervised learning
for the classification part. Compared to these hybrid methods, PJS-
 uses “reverse” anomaly detection—since only malicious data
is widely available for PDF documents—and completely dispenses
with run-time analysis. Another hybrid method has been proposed
by Provos et al. [17]; however, the lack of a technical presentation
in this reference prevents us from a detailed comparison.

The only method that can be classified as fully static is P
[5] which deploys techniques similar to JS except that its fea-
tures are extracted from a JavaScript engine at the parsing stage
without running the code. (A similar idea is used in our method

20http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/.
21http://htmlunit.sourceforge.net/
22http://www.mozilla.org/rhino/

but one step earlier, by stopping SM after the lexical
analysis.) However, P has a high false positive rate and is
intended to be used as a filter for a subsequent dynamic analysis.

7. DISCUSSION AND LIMITATIONS
The reported experimental results confirm the practical feasibil-

ity of the static, learning-based approach for detection of malicious
JavaScript-bearing PDF documents. The preprocessing component
of PJS can be very helpful for a security administrator to man-
ually extract and analyze JavaScript code in PDF documents. The
main benefit of the learning component of PJS is the ability to
extract knowledge from large-scale malware corpora. PJS en-
ables one to derive light-weight models from heuristic knowledge
of several dozen antivirus engines and tens of gigabytes of collected
data. Such models can be deployed with no manual interaction and
negligible performance overhead (<50ms per file). The operational
false-positive rate of less than 0.4% is admissible in practice; even
for a highly visible site like VT with a strong bias for sus-
picious data, this corresponds to an average rate of 1.7 false alarms
per day (148 out of ca. 40,000 benign documents over 90 days).

The high “laboratory” false-positive rate of PJS (i.e. the rate
measured only for those benign files that contain JavaScript) indi-
cates that our current learning setup may indeed have difficulty with
accurate discrimination between malicious and benign JavaScript
content. This observation is also indirectly supported by our anal-
ysis of the learned features. Learning from two classes, as it has
been done in the related work on web-based JavaScript content,
e.g. [19, 5, 8], may be the right way to avoid this limitation. How-
ever, benign JavaScript-bearing PDF data is currently not available
in sufficient quantity to evaluate this scenario for PDF documents.

Another limitation of the current version of PJS is its sus-
ceptibility to certain kinds of obfuscation. An exemplary obfusca-
tion technique that is difficult for our method is the use of short
JavaScript entry-point code which fetches further code from docu-
ment locations where JavaScript code cannot be expected (cf. Sec-
tion 5.3). There are two potential ways to address this limitation.
One can use the “mostly static” technique proposed in Z [8] in
which compilation requests to a JavaScript engine are intercepted
to obtain all code sent for execution. While this technique offers
a guaranteed access to unobfuscated code, it may be hampered by
just-in-time compilation used in JavaScript engines and eventually
produce highly fragmented code. It should be also noted that this
idea would be difficult to implement for PDF-based JavaScript code
since Adobe provides an extensive PDF-specific API. Another way
of dealing with obfuscation is to collect syntactic information from
a parser and use compiler optimization to factor out obfuscations.

An attacker may also attempt to use the fact that the models used
for detection are derived from data. A taxonomy of attacks against
learning algorithms has been recently proposed by Barreno et al.
[4]. Following this taxonomy, we remark that causative attacks, i.e.
attacks against the training data, do not constitute a serious threat
to our approach. We use data from an established malware reposi-
tory and assume that integrity of this repository cannot be compro-
mised. Even if an attacker submits own data to this repository, he
will know how this data is classified by antivirus engines but can-
not influence this classification. More realistic are attacks from the
exploratory category, i.e. attacks staged at the detection stage. One
potential attack strategy is to insert some useless code to make a
new JavaScript entity look “anomalous”. This attack may indeed
be quite potent if an attacker knows the true profile of “normal”
malicious data. Since he neither has access to nor can manipulate
the training data, we believe that in practice guessing what kind of
useless code should be added can be a difficult task.



8. CONCLUSIONS
We have proposed a new static approach to detection of mali-

cious JavaScript-bearing PDF documents. The main advantages
of our approach are its high performance and no need for special
instrumentation, such as virtual machines or sandboxing. It can at-
tain about 85% of the detection accuracy of all antivirus engines at
VT with the performance overhead of less than 50ms per
file. It is only marginally affected by text-level obfuscation since
the resulting JavaScript code remains very conspicuous at the lex-
ical level. Due to these advantages our method can be used as a
standalone application on end-user systems or even be integrated
as a filtering tool in email gateways and HTTP proxies.

The computational efficiency of our system PJS has enabled
us to evaluate it on an unprecedentedly large real-life data corpus
(over 65,000 PDF documents) collected from VT. This
evaluation has confirmed a high detection accuracy of our method
for both known and unknown malware. PJS is more prone to
false positives than state-of-the-art dynamic approaches; however,
its operational false positive rate still lies in the promille range,
which is feasible for practical deployment.

Our future work will address a potential interaction of static and
dynamic analysis techniques in order to unravel code-level obfusca-
tion typical for JavaScript attacks. We anticipate that some degree
of dynamic analysis can be carried out prior to actual code execu-
tion without a significant performance overhead. We also intend to
investigate more extensive static analysis techniques, such as syn-
tactic analysis and compiler optimization, to obtain features that
better reflect the true semantics of the JavaScript code. Finally, an
important open issue remains the detection of malicious PDF doc-
uments whose exploitation techniques do not rely on JavaScript.
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