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Abstract. We consider admissible encodings on an elliptic curve, that is, the
hash functions that map bitstrings to points of the curve. We extend the frame-
work of admissible encodings, known from CRYPTO 2010 paper, to some class
of non-deterministic mapping algorithms. Using Siguna Müller’s probabilistic
square root algorithm we show a mapping that works efficiently for any finite
field Fq of characteristic greater than 3, and that is immune to timing attacks.
Thereby we remove limitations of the mappings analyzed in the CRYPTO 2010
paper. Consequently, we remove limitations of a so called PACE Integrated Map-
ping protocol, which has recently been standardized by ICAO, and is used to
protect contactless identity documents against unauthorized access.
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1 Introduction

Many cryptographic protocols use efficient algebraic structures, such as elliptic curves,
but at the same time operate on ordinary objects such as binary strings. In such a case
we frequently need a mapping that converts the binary strings to points of the algebraic
structure. This problem has profound practical implications, since an inefficient map-
ping may outweigh computational advantages of using the target algebraic structure.

The above issue is very important for smart card protocols, and in particular for
electronic identity documents (e-ID), which are issued on a large scale. In fact, the
problem concerned in this paper emerged while constructing authentication protocols
for e-ID. Note that efficiency and security issues are critical for the issuer of e-IDs –
less efficient protocols require more expensive smart cards on which the e-ID could be
implemented, while a security flaw might cause exchange of identity documents with
enormous organizational costs.

For the rest of the paper we focus on one fundamental issue for contactless e-IDs,
namely preventing activation of an e-ID via the contactless interface without consent
of the document owner. This problem is solved by cryptographic protocols based on a
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secret (password) shared by the document owner and the e-ID card. There are many
password-based authentication protocols, however we focus on a standardized solution
called PACE (Password Authenticated Connection Establishment) introduced by the
German federal authority BSI ([7]). The aim of PACE is to establish a secure channel
between a contactless smart card and a reader based on a password memorized by the
owner or engraved on a surface of the card. Due to PACE, an active but non-invasive
adversary can only guess the password and try it in an interaction with the card. A PACE
execution for a password π consists of three stages:

1. So called domain parameters and the result of encryption of a nonce s are sent from
the smart card to the reader. The domain parameters consist of a definition of an
elliptic curve over a finite field Fq, point G of prime order belonging to the curve,
and the co-factor �, i.e., the integer such that (ordG) · � equals the number of points
on the curve. The encryption of the nonce is performed with a key derived from the
password π stored inside the card. On the other hand, the reader learns the password
π via another channel (e.g., the owner of the card enters it manually) and decrypts
the message s.

2. Secondly, with help of the nonce s (and some other data exchanged between the
reader and the card) a point Ĝ is calculated locally both on the side of the reader
and on the side of the card.

3. Ĝ is used as a base point in the Elliptic Curve Diffie-Hellman key agreement proto-
col (ECDH). The resulting key is used to generate session keys needed to establish
a secure channel between the reader and the card.

The second step is called mapping, since it maps the nonce s to the elliptic curve indi-
cated in the domain parameters of the smart card. The mapping implemented on Ger-
man e-ID documents is called the Generic Mapping. The Generic Mapping includes
a separate execution of ECDH, therefore two ECDH executions are included in this
variant of PACE.

In [11], [9] another mapping for PACE is proposed – the so called Integrated Map-
ping is more efficient than the Generic Mapping both in terms of communication and
computational costs. The resulting variant of PACE is denoted as PACE IM.

The main building block of the Integrated Mapping is an algorithm that encodes a bit
string as a point of the curve. Two encoding algorithms were proposed: the simplified
Shallue-Woestijne-Ulas (SWU) algorithm or Icart’s encoding (see [5]). Both encoding
algorithms work in time O((log2 q)

3), where Fq is the field over which the elliptic curve
has been defined.1

The SWU simplified algorithm works for any field Fq with char(Fq) > 3, however,
it is used by PACE IM only for q ≡ 3 mod 4. The condition q ≡ 3 mod 4 arises from
focusing on deterministic square root algorithms in finite fields. Icart’s encoding method
is also deterministic and works for any field Fq , where char(Fq) > 3 and q ≡ 2 mod 3.

The choice of deterministic encoding algorithms is a consequence of utilizing the
notion of indifferentiability in the proof of quality of the encoding (cf. [6] and the full
version [5]). Proving the security of hash based cryptosystems in the Random Oracle

1 PACE uses only prime fields Fq . but encoding algorithms work also for extension fields.
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Model (ROM) requires that a hash function is modeled as an ideal functionality acces-
sible by all parties. However real designs impose that hashes do not have a monolithic
construction, but are rather iteratively built from some smaller blocks. Indifferentiabil-
ity property for deterministic algorithms guarantees that such a compound construction
can replace the monolithic ROM model in cryptosystems with security scenarios related
to a single, stateful adversary (for multi-stage protocols and resource-restriction models
see [15], [10]). However, indifferentiability assumes that the algorithm implementing
function f is deterministic. Therefore the security of PACE IM was analyzed only for
deterministic encoding functions.

Our Contribution. We extend the framework of indifferentiable hashing given in [6],
[5] to some class of non-deterministic algorithms. The extended framework justifies the
use of certain probabilistic algorithms in the simplified SWU method. The resulting
encoding protocol works for any field Fq with char(Fq) > 3, has expected running time
O((log2 q)

3) (like the deterministic simplified SWU method and Icart’s encoding) and
enjoys small variance. In particular, our generalization allows to use the NIST P-224
curve in the probabilistic variant of PACE IM (the standardization report [11] excludes
this curve).

Note that removing constraints imposed by the mapping algorithm on the fields Fq

of characteristic greater than 3 gives more flexibility in other applications (an example
could be the signature scheme [4]) and leaves more room for future designs. More-
over, having replaced specialized Integrated Mappings with a single general standard
we could reduce deployment costs.

Timing attacks. Apart from the high quality randomness ensured by the mapping cal-
culated in the second step of PACE, the protocol must protect confidentiality of the
password π. In particular, execution time of the protocol must not depend on the value
of π. This condition is satisfied by both versions of PACE and our extension meets this
condition as well.

Notation. The following notation is used in the rest of the paper.

Definition 1 (parity operator parityV() : Fq → {0, 1}). Let Fq be a finite field
of characteristic p > 2. Let V = {v0, v1, . . . , vd−1} be a base of the vector space Fq

defined over the field Fp. Accordingly, d is the extension degree [Fq : Fp]. Let a ∈ Fq,
and let a =

∑d−1
i=0 aivi be the representation of a in base V with ai ∈ Fp for i =

0, . . . , d− 1. Define parityV(a) as the parity of a0.

Definition 2 (mapping m̃V : Zq → Fq). Let Fq be a finite field of characteristic p > 2,
let V be a base from Def. 1. We define the mapping m̃V as follows: for any t ∈ Zq

represent t as a nonnegative integer written in base p, that is t = (td−1 . . . t1t0)p,
where each ti belongs to the set {0, 1, . . . , p− 1}. Then m̃V(t) =

∑d−1
i=0 tivi.

It is easy to see that m̃V() is a one-to-one mapping.
For a ∈ Fq, let η(a) denote the quadratic character of a, i.e., η(a) = 0 for a = 0,

η(a) = 1 if a = b2 for some b ∈ F
∗
q , and η(a) = −1 otherwise. Recall that η(a) can be
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calculated in time O
(
(log q)2

)
(cf. [2]). By νp(n) we denote the greatest exponent α

such that pα divides n. By ⊕ we denote exclusive or. The expression x ←$ X denotes
the random choice of an element x from the set X with uniform probability distribution.
[k]G denotes the multiplication of an element G of some additive group by the scalar k.

2 Siguna Müller’s Square Root Algorithm

We recall the square root algorithm from [13] constructed for finite fields Fq with odd
characteristic and based on Lucas sequences (cf. [1, Annex I.1.3]). Its expected running
time is O((log2 q)

3). An alternative to [13] may be Peralta’s algorithm (see [2, Sect. 3])
with the same expected running time. However, Peralta’s algorithm works only for q ≡
1 mod 4.

The square root algorithm from [13] uses elements of the Lucas sequence Vk(P̃ , 1),
whereV0(P̃ , Q̃) = 2, V1(P̃ , Q̃) = P̃ , V2n(P̃ , Q̃) = (Vn(P̃ , Q̃))2−2Q̃n, V2n+1(P̃ , Q̃) =
Vn+1(P̃ , Q̃) · Vn(P̃ , Q̃) − P̃ · Q̃n. These formulas constitute a base for a left-to-right
binary algorithm [14] and allow to compute Vk(P̃ , 1) at a cost of at most 2 · �log2 k�
multiplications and squarings in Fq.

The base V being the input of Algorithm 1 is usually defined as a polynomial or as
a normal basis. Recall that V and the modular polynomial defining the field Fq both
determine arithmetic in the field.

Algorithm 1. SM_sqrt – Siguna Müller’s square root algorithm from [13]
Input: definition of Fq and basis V , value Q being a square in F

∗
q , parity_bit ∈ {0, 1}

Output: ã ∈ F
∗
q such that ã2 = Q in Fq and that parityV(ã) = parity_bit,

1: δ ← −1 for q ≡ 1 mod 4, and δ ← 1 for q ≡ 3 mod 4
2: repeat
3: r ←$ F

∗
q

4: P ← Q · r2 − 4
5: until η(P ) = δ
6: P ← P + 2
7: a[0] ← V(q+δ)/4(P, 1)
8: a[0] ← a[0] · r−1 {now we have (a[0])2 = Q}
9: a[1] ← −a[0] {only one of the elements a[0], a[1] ∈ F

∗
q has the required parity_bit}

10: return a[parityV(a[0]) ⊕ parity_bit]

With help of the reasoning from Sect. 2 of [3] one may show that both for q ≡
1 mod 4 and q ≡ 3 mod 4, the probability that for a single choice of r ∈ F

∗
q (i.e., for

a single iteration of the loop) the condition in line 5 of Algorithm 1 is not satisfied is
equal to 1

2 + 1
q−1 .

Note that randomization by r completely equalizes the chances of all squares Q to
reach line 6 of the algorithm in some given number of iterations of the repeat. . . until
loop. Timing attacks at this place are therefore mitigated.

Since complexity of the computation of the quadratic character η(P ) may be bounded
by O

(
(log2 q)

2
)
, it is easy to see that with an overwhelming probability the algorithm
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will return the required square root in time O
(
(log2 q)

3
)
. Thus we have some level

of uncertainty that the main loop of Algorithm 1 will take no more than log2 q itera-
tions. However, the probability that the loop takes more iterations than log2 q equals
(12 + 1

q−1 )
log2 q . Note that some small level of uncertainty turned out to be acceptable

in the case of the Miller-Rabin primality test deployed on smart cards.
To summarize, the number of iterations of the repeat. . . until loop of Algorithm 1

is described by a random variable Xloop having geometric distribution with parameter
p̂ = 1

2 − 1
q−1 . Hence E[Xloop] = 1/p̂ and Var[Xloop] = (1− p̂)/(p̂)2.

3 Probabilistic Variant of the Simplified SWU Method

Let n be a non-square in the field Fq . If the mapping is to be utilized for establishing
a secure channel between two parties, then both parties should use the same n. The
simplest way to achieve this is to define the basepoint G included in the set of domain
parameters in such a way that the x-coordinate of G is a non-square in Fq .

Henceforth we assume that Fq is a field of characteristic greater than 3. Let V be a
base from Def. 1, and let m̃V() be the mapping defined by Def. 2 . By Algorithm 2 –
a probabilistic variant of the simplified SWU algorithm — we define a mapping f :
Z2q → Ea,b(Fq), where Ea,b(Fq) is an elliptic curve defined by equation y2 = x3 +
ax+ b for a, b, x, y ∈ Fq .

Algorithm 2. Encoding f : Z2q → Ea,b(Fq)

Input: a, b, n,Fq,V , and argument t ∈ Z2q to be mapped on Ea,b(Fq)
Output: deterministic result of the mapping in non-deterministic time
1: parity ← t mod 2
2: t′ ← t mod q {from the Chinese Remainder Theorem (CRT) the pair (parity, t′)

uniquely represents t ∈ Z2q}
3: S ← n · (m̃V(t′))2

4: X2 ← −b
a
(1 + 1

S2+S
)

5: X3 ← S ·X2

6: rndbit ←$ {0, 1} {we shall save some computations from time to time}
7: h ← (

(X2+rndbit)
2 + a

) ·X2+rndbit + b
8: if η(h) = 1 then
9: return (X2+rndbit, SM_sqrt(Fq,V, h, parity))

10: else
11: h ← (

(X3−rndbit)
2 + a

) ·X3−rndbit + b
12: return (X3−rndbit, SM_sqrt(Fq,V, h, parity))
13: end if

Note that the random choice made in line 6 of Algorithm 2 is independent of the in-
put. Moreover, the execution time of the main loop of Algorithm 1 is independent from
that choice (recall the randomization by r in the main loop of Algorithm 1). Conse-
quently, for fixed parameters a, b, n,Fq,V the execution time of the whole Algorithm 2
is described by a random variable Y1 + Y2 that is independent of Algorithm’s 2 input
argument t: the random variable Y1 describes the execution time of the code included in
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the listing of Algorithm 2, excluding SM_sqrt subroutine, whereas the random variable
Y2 describes the execution time of the SM_sqrt subroutine. Y1 is independent from Y2.

Tests. Our tests confirm that Algorithm 2 is pretty efficient. E.g., for the NIST P-224
curve, during 105 calls of Algorithm 2, we measured that for the number of multipli-
cations, squaring and Jacobi symbol computations: a sample mean equals ≈135.503,
≈226.503, ≈3.002 correspondingly, square root of a sample variance equals ≈1.506,
≈1.506, ≈1.424 respectively, The worst case measured during these 105 calls equals
155, 246, 22 correspondingly. There are exactly 3 inversions computed during each call
of the Algorithm 2.

4 Indifferentiability for a Non-deterministic Case

The “indifferentiability” notion was introduced in [12] and used also in [8]. In both
papers only deterministic algorithms are concerned.

To formally justify Algorithm 2 we introduce the following notion of a Time-oblivious
Turing machine:

Definition 3 (Time-oblivious Turing machine). Let C be a non-deterministic Turing
machine that computes a function. For each input Q, belonging to the domain DC of
allowable arguments, the time when C delivers the result is unknown a priori, but is
described by the random variable XQ. Let FXQ denote the probability distribution
of XQ.

The machine C is called a time-oblivious if for any Q,Q′ ∈ DC the probability
distributions FXQ , FXQ′ are exactly the same, (thus we have a single distribution FX ),
and the expected value E[XQ] is finite for each Q.

Note that XQ takes only non-negative values, so E[XQ] < ∞ implies that the prob-
ability of the event that C will not deliver the result in finite time for an argument from
DC equals 0. We denote the event by C =⊥.

An example of a time-oblivious Turing machine is a Turing machine implement-
ing directly the simplified SWU method. More generally, we may consider a Turing
machine C′ implementing a function, and possessing a single, distinguished state S
such that starting in S the machine might take one of two sequences of actions: the first
sequence is deterministic and terminates the execution, the second one is also determin-
istic but terminates in the state S (hence we have a loop). The choice of the sequence
is made by tossing a coin that might be asymmetric but the same coin is used for all
arguments and all iterations of the loop. We assume that state S is the only possibil-
ity allowing the machine C′ to enter the infinite loop. However, we do not exclude the
possibility that before the state S is reached for the first time machine C′ makes some
other random choices independent of the input. However, since C′ implements a func-
tion none of the random choices (including those made at state S) influences the final
output.

Now we recall the definition of a random oracle and indifferentiability from Sect. 2.2
of [5]. According to [5], an ideal primitive is an algorithmic entity which receives in-
puts from one of the parties and delivers its output immediately to the querrying party.
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A random oracle into a finite set S is an ideal primitive which provides a random output
in S for each new querry; identical input queries are given the same answer.

Let DR1,R2 denote a Turing machine D that uses two different oracles R1 and R2.
During its execution DR1,R2 can state queries to R1 and R2 and get immediately an
answer.

Definition 4 (indifferentiability [12], [8], [5]). A Turing machine C with oracle ac-
cess to an ideal primitive h is said to be (tD, tS , qD, ε)-indifferentiable from an ideal
primitive H if there exists a simulator S with oracle access to H and running in time
at most tS , such that for any distinguisher D running in time at most tD and making at
most qD queries, it holds that:

∣
∣
∣Pr

[
DCh,h = 1

]
− Pr

[
DH,SH

= 1
]∣
∣
∣ < ε.

Ch is said to be indifferentiable from H , if ε is a negligible function of the security
parameter k, for polynomially bounded qD, tD and tS .

Let us explain the above definition. One can try to emulate the primitive H with a
Turing machine C using another primitive h as a subroutine. Intuitively, the machine C
transforms the results of primitive h so that the final results mimic the primitive H . If
we try to distinguish the results of H and Ch, then we not only have to show that the
results of Ch are as good as the results of H (i.e., might have been obtained by H). A
more difficult part is to convince an observer that a result given by H might have been
obtained by Ch. For this purpose we need a simulator S: it provides “an output of h”
that would be used by C to provide the same result as obtained by H . The machine
DR1,R2 is supposed to output 1 if (R1, R2) = (Ch, h) and 0 if (R1, R2) = (H,SH),
hence Def. 4 means that D is unable to distinguish between these two cases.

Note that if the construction Ch is indifferentiable from an ideal primitive H , then
Ch can replace H in a cryptosystem with security scenarios related to a single stateful
adversary, and the resulting cryptosystem is almost as secure as before.

Recall that the ideal primitive is an algorithmic entity which receives inputs from one
of the parties and delivers its output immediately to the querying party. Moreover, the
simulator S might include some probabilistic algorithm, like e.g., the sampling algo-
rithm from the proof of Theorem 3 in [5], yielding non-constant execution time. These
remarks suggest that time does not matter for the distinguisher D, otherwise D could
distinguish SH from h simply by time measurements. Indeed, it is not necessary that
an observer cannot say whether he is observing H or Ch (in the real world we will
always observe Ch). The point is that the set of results should have essentially the same
properties no matter where it comes from and that the execution time for Ch must not
leak any additional side channel information. However, the last condition is satisfied
automatically if Ch is a deterministic or a time-oblivious Turing machine. Therefore
we generalize Def. 4 in the following way:

Definition 5 (indifferentiability for a non-deterministic case). A non-deterministic
Turing machine C̃ with oracle access to an ideal primitive h is (tC̃ , tD, tS , qD, ε, εC̃)-
indifferentiable from an ideal primitive H , if there exists a simulator S with oracle
access to H and running in time at most tS , such that for any distinguisher D running
in time at most tD and making at most qD queries, the following conditions hold:
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– C̃h is a time-oblivious Turing machine,
– the probability that in time tC̃ the machine C̃h will not return an answer to the

query is less than εC̃ ,
– for all events C̃h �=⊥

∣
∣
∣Pr

[
DC̃h,h = 1

]
− Pr

[
DH,SH

= 1
]∣
∣
∣ < ε ,

C̃h is said to be indifferentiable from H , if C̃h is (tC̃ , tD, tS , qD, ε, εC̃)-indifferentiable
from an ideal primitive H , for ε, εC̃ being negligible functions of the security parameter
k, and polynomially bounded tC̃ , tD, tS , qD .

Note that the constraints on tS , tD are exactly the same in Def. 4 and 5 . As we shall
see imposing additional constraints on tS is unnecessary when extending the notion of
admissible encoding to the case we investigate (in fact, almost the same simulator as the
one defined in [5] could be used – the only difference lies in inversion of the mapping
f , which must now take parity into account). On the other hand, imposing additional
constraints on tD would weaken the property defined by Def. 5 .

5 Probabilistic Admissible and Weak Encodings

Below we extend the notions of admissible encoding and weak encoding to some non-
deterministic cases. Both notions are known from [6], [5] and we recall them below.
But first we recall definition of statistically indistinguishable distributions.

Definition 6 (statistically indistinguishable distributions). Let X and Y be two ran-
dom variables over a set S. The distributions of X and Y are ε-statistically indis-
tinguishable if:

∑
s∈S |Pr[X = s]− Pr[Y = s]| ≤ ε. The distributions X and Y are

statistically indistinguishable, if ε is a negligible function of the security parameter.

Definition 7 (admissible encoding from [5]). A function F : S → R between finite
sets is an ε-admissible encoding if it satisfies the following properties:

1. Computable: F is computable in deterministic polynomial time.
2. Regular: for s uniformly distributed in S, the distribution of F (s) is ε-statistically

indistinguishable from the uniform distribution in R.
3. samplable: There is an efficient randomized algorithm I such that for any r ∈ R,

I(r) induces a distribution that is ε-statistically indistinguishable from the uniform
distribution in F−1(r).

F is an admissible encoding if ε is a negligible function of the security parameter.

Definition 8 (admissible probabilistic encoding). A function F : S → R between
finite sets is an (ε, tF , εF )-admissible probabilistic encoding, if

1. F can be implemented on some time-oblivious Turing machine C such that proba-
bility that C will not return the result in time tF is smaller than εF ;

2. properties 2. and 3. from Def. 7 hold for F .
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F is an admissible encoding if ε, εF are negligible functions of the security parameter
k, for polynomially bounded tF .

By analogy to [6], [5], we define the function H̃ : {0, 1}∗ → R as H̃(m) :=
F (h(m)), whereF : S → R is an admissible probabilistic encoding, and h : {0, 1}∗ →
S is a function whose output is seen as an output of a random oracle. To justify the latter
condition consider the following thought experiment: we have two black-boxes, each
containing the same implementation of hash function h. That is, each box include the
same code for h and is built from the same hardware components. For each argumentm
each black-box actually calculates the value h(m), but in one of the black-boxes at the
very end of the computations the value h(m) is replaced by a value returned by some
random oracle assigned to the given black-box. If after a series of queries an external
observer not knowing the code for h cannot indicate the black-box returning the values
of h, then we say that the output of h might be seen as the output of a random oracle.

Theorem 1 (Theorem 1 from [5]). Let F : S → R be an ε-admissible encoding.
The construction H(m) := F (h(m)) is (tD, tS , qD, ε′)-indifferentiable from a random
oracle, in the random oracle model for h : {0, 1}∗ → S, with ε′ = 4qD · ε and
tS = 2qD · tI , where tI is the maximum running time of F ’s sampling algorithm.

Theorem 2 (analogous to Theorem 1 from [5]). Let F : S → R be an (ε, tF , εF )-
admissible probabilistic encoding, let maximum running time of h : {0, 1}∗ → S be
th, where th is bounded by a polynomial in the security parameter. The construction
H̃(m) := F (h(m)) is (tF + th, tD, tS , qD, ε′, εF )-indifferentiable from a random or-
acle, in the random oracle model for the output of h : {0, 1}∗ → S, with ε′ = 4qD · ε
and tS = 2qD · tI , where tI is the maximum running time of F ’s sampling algorithm.

Proof (Sketch). Since h is implemented on some deterministic Turing machine h̃ run-
ning in time th which is not affected even if h̃ includes a call to some random ora-
cle, then this Turing machine may be incorporated into time-oblivious Turing machine
C implementing function F . In this way the time-oblivious Turing machine C̃h from
Def. 5 is constructed, and from assumptions on the function F we get that the proba-
bility that in time tF + th the machine C̃h will not return an answer to the query is less
than εF (note that h̃ is called once and output of h̃ constitutes input to F ). The rest of
the proof follows the proof of Theorem 1 from [5]. ��

5.1 Weak Probabilistic Encoding

Definition 9 (weak encoding from [5]). A function f : S → R between finite sets is
said to be an α-weak encoding if it satisfies the following properties:

1. Computable: f is computable in deterministic polynomial time.
2. α-bounded: for s uniformly distributed in S, the distribution of f(s) is α-bounded

in R, i.e., the inequality Prs[f(s) = r] ≤ α/|R| holds for any r ∈ R.
3. Samplable: there is an efficient randomized algorithm If such that If (r) induces

the uniform distribution in f−1(r) for any r ∈ R. Additionally If (r) returns Nr =
|f−1{r}| for r ∈ R.
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f is a weak encoding if α is a polynomial function of the security parameter.

Definition 10 (weak probabilistic encoding). A function f : S → R between finite
sets is said to be (α, tf , εf)-weak probabilistic encoding if

1. f can be implemented on some time-oblivious Turing machine C such that the
probability that C will not return the result in time tf is smaller than εf .

2. Properties 2. and 3. from Def. 9 hold for f .

The function f is a weak probabilistic encoding if α and tf are polynomial functions of
the security parameter, and εf is a negligible function of the security parameter.

Note that properties 2 and 3 enumerated in Def. 10 concern conditions for the function
f . Therefore they do not refer to the event C =⊥ concerning an implementation of f
(recall that the event C =⊥ is independent from the input of f ). The event C =⊥ is
implicitly served by the first property enumerated in Def. 10.

Proposition 1. f is an (α, c · (log2 q)3, (12 + 1
q−1 )

log2 q)-weak probabilistic encoding
with some constant c and α = 8N/(2q), where N is the elliptic curve order.

Proof (Sketch). It is easy to see that the encoding f defined by Algorithm 2 satisfies
Lemma 6 [5]. Namely, the y-coordinate of the resulting point uniquely determines
t mod 2, and the x-coordinate has preimage size at most 8 elements m̃(t′) from Fq

and all the elements can be found in polynomial time. The proof for the x-coordinate
follows exactly the proof of Lemma 6 [5]. Note that inversion of the mapping m̃() from
Def. 2 is easily computable, hence given an element t̃ from Fq it is easy to find t ∈ Zq

such that m̃(t) = t̃. All in all, from the CRT we conclude that for the mapping f the
pre-image of any point P ∈ Ea,b(Fq) contains at most 8 elements from Z2q , and the
pre-image can be computed in polynomial time. We assume that the constant c is cho-
sen so that probability that the time-oblivious Turing machine C from Def. 10 will not
return the result in time c · (log2 q)3 is strictly smaller than (12 + 1

q−1 )
log2 q, so the first

condition from Def. 10 is also satisfied. ��
Note that by Hasse Theorem α ≤ 8(

√
q+1)2

2q . Hence α < 8 for q ≥ 7. The same
value α = 8N/(2q) applies, if we multiply the result (x, y) of the encoding f by a
co-factor �: let the order N of the group Ea,b(Fq) satisfy the condition N = � · N ′,
where N ′ is prime and gcd(�,N ′) = 1. The integer � is called the co-factor (of N ′).
Hence Ea,b(Fq) has only one cyclic subgroup of order N ′. Let G be a generator of this
subgroup. If we take the result (x, y) of the encoding f and multiply by the co-factor �,
then we obtain an element of group the 〈G〉. Consequently, we have a map f ′ = [�] ◦ f
such that f ′ : Z2q → 〈G〉. Now we will find all pre-images of a given P ∈ 〈G〉 with
respect to the map f ′. For each element P ∈ 〈G〉 it is easy to obtain the unique element
P ′ ∈ 〈G〉 being the inverse of P with respect to the scalar multiplication with [�] in
〈G〉. Namely, to obtain P ′ it suffices to multiply P by the scalar �−1 mod ordG. Since
gcd(�,N ′) = 1, we have Ea,b(Fq) = 〈G〉 ×H where H is the subgroup of Ea,b(Fq)
of order �. To obtain all candidates in Ea,b(Fq) for the pre-image of P with respect to
the scalar multiplication with [�], we must collect all results of point addition P ′ + P ′′,
where P ′′ ∈ H . There are � such results. For each of them there are at most 8 elements
in Z2q being its preimage with respect to f . Altogether, for each of N ′ elements of 〈G〉
we have preimage of size at most 8 · �, hence α = (8 · �) ·N ′/(2q) = 8N/(2q).
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5.2 The Resulting Admissible Probabilistic Encoding

Theorem 3 (Theorem 3 from [5], weak → admissible encoding). Let G be cyclic
additive group of order N , and let G be a generator of G. Let f : S → G be an α-weak
encoding. Then the function F : S × ZN → G with F (s, x) := f(s) + [x]G is an
ε-admissible encoding into G, with ε = (1− 1/α)t for any t being a polynomial in the
security parameter k, and with ε = 2−k for t = α · k.

The above theorem can be generalized as follows:

Theorem 4 (weak probabilistic → admissible probabilistic encoding). Let G be an
additive cyclic group of order N , and let G be a generator of G. Let f : S → G be
an (α, tf , εf)-weak probabilistic encoding. Then the function F : S × ZN → G with
F (s, x) := f(s)+ [x]G is an (ε, tf + tx, εf)-admissible probabilistic encoding into G,
where tx is the maximum running time of the scalar multiplication [x]G together with
addition of resulting elements (i.e. elements f(s), [x]G), and ε = (1− 1/α)t for any t
polynomially bounded in the security parameter k, and with ε = 2−k for t = α · k.

Proof (Sketch). The deterministic Turing machine implementing the scalar multipli-
cation [x]G and the addition of the resulting elements may be incorporated into the
time-oblivious Turing machine C implementing f . In this way execution time of the
time-oblivious Turing machine grows at most by tx (if G is a subgroup of some elliptic
curve defined over a field Fq, then time tx of scalar multiplication [x]G together with
two points addition f(s) + [x]G can be bounded by c′ · (log2 q)3 for some constant c′).
The rest of the proof follows exactly the proof of Theorem 3 from [5]. ��

Consequently, in order to obtain an Admissible Probabilistic Encoding we should
apply Theorem 4 to the encoding f ′ = [�]◦f , that is, to the composition of the encoding
f defined by Algorithm 2 and the scalar multiplication by the co-factor �.

We also obtain an extension of the result from [5]: Let h1 : {0, 1}∗ → Z2q and
h2 : {0, 1}∗ → ZN be two hash functions of running time bounded by polynomial in
the security parameter. Then the function H : {0, 1}∗ → G defined by:

H(m) := f ′(h1(m)) + [h2(m)]G

is (according to Def. 5) indifferentiable from a random oracle in the random oracle
model for outputs generated by h1 and h2.

6 Conclusions

Security analysis of PACE IM utilizes admissible encodings (cf. [9]). By extending the
framework from [5] we have shown that the Admissible Probabilistic Encoding defined
in Subsect. 5.2 preserves the level of security of its predecessor. Thus Algorithm 1 may
be used in PACE IM in place of the currently used simplified SWU mapping.

Note that complexity of evaluation of V(q+δ)/4(P, 1) in Algorithm 1 is compara-
ble with the cost of the worst case exponentiation in field Fq via square and multiply.
Moreover, the running time of the Algorithm 1 has small variation. Consequently, the
difference between the running time of Algorithm 2 and the simplified SWU mapping
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will be negligible (or even unnoticeable) for the owner of a smart card. At the expense
of a small decrease of efficiency we have gained more flexibility in choice of a field
for a definition of the elliptic curve, hence we have more freedom in other applications
like e.g., BLS signatures [4]. What is more, a standardized, general mapping procedure
decreases deployment costs of the infrastructure supporting the protocols, especially in
reference to the Common Criteria certification process.
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