
Comparison of Genetic Algorithms for Trading
Strategies

Petr Kroha1 and Matthias Friedrich2

1 Czech Technical University in Prague,
Faculty of Information Technology, Department of Software Engineering,

Thakurova 9, 160 00 Praha 6, Czech Republic
kroha@informatik.tu-chemnitz.de

2 Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany
matthias_friedrich@ymail.com

Abstract. In this contribution, we describe and compare two genetic systems
which create trading strategies. The first system is based on the idea that the
connection weight matrix of a neural network represents the genotype of an indi-
vidual and can be changed by genetic algorithm. The second system uses genetic
programming to derive trading strategies. As input data in our experiments, we
used technical indicators of NASDAQ stocks. As output, the algorithms generate
trading strategies, i.e. buy, hold, and sell signals. Our hypothesis that strategies
obtained by genetic programming bring better results than buy-and-hold strategy
has been proven as statistically significant. We discuss our results and compare
them to our previous experiments with fuzzy technology, fractal approach, and
with simple technical indicator strategy.

Keywords: Genetic algorithms, neurogenetic approach, neuroevolutionary sys-
tem, genetic programming, neural network, investment, forecast, trading, finan-
cial modeling, technical analysis.

1 Introduction

Analyzing financial markets is a very interesting and popular field. Especially, fore-
casting is a hot topic. However, the question is how successfully and reliable a market
behavior can be predicted. There is no consensus in the expert community because two
main, contradictory, competing hypotheses on market processes have been formulated.

Efficient market hypothesis [6], [11] states that markets are efficient in the sense
that current stock prices reflect completely all currently known information that could
anticipate future market, i.e. there is no information hidden that could be used to predict
future market development.

Later, inefficient market hypothesis [15] was formulated because some anomalies
in market development have been found that cannot be explained as being caused by
efficient markets. More or less, market trading need buyers and sellers at the same time.
So, a consensus would stop trading.

Compared to systems in physics, reflexivity of markets and investors is a very impor-
tant factor. It states that investors influence the market by changing their biases, mind,

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 383–394, 2014.
c© Springer International Publishing Switzerland 2014



384 P. Kroha and M. Friedrich

interest, and trading rules. Similarly, market changes influence behavior of investors. It
will be investigated by crowd psychology.

Market processes are driven by events and by trends. Events happen and are repre-
sented by news. Predictable events have usually no influence on stock prices because
investors presume them and prices adapt to them before. Unpredictable events cause
big changes in stock prices but they are unpredictable like earthquake. Trends are given
by investor’s behavior. The chance to predict trends seems to be slightly better than to
predict earthquake. So, the effort to forecast markets is more or less the effort to predict
investors’ behavior. It can bring good results in time periods when trends are dominating
and only expected events happen. We did not investigate possibilities of short term pre-
diction, e.g. for day trading, because the influence of noise is stronger than in the case
of long term prediction. Because of that we compare the performance of our prototypes
with buy-and-hold method that will be used as a standard in such investigations.

Genetic algorithms can be used in many ways to optimize systems. The important
parts of the algorithms are: how to specify what will be coded as genotype, and how the
fitness will be calculated.

The first possibility of using genetic algorithms is that neural network (Fig. 1) con-
nection weights can be optimized by a genetic algorithm instead of the commonly used
back propagation method. Elements of the weight matrix describing the neural network
topology are coded as real values and mapped into genotype. Such a system will be
called neurogenetic or neuroevolutionary system. We implemented such system as our
prototype A - Section 3.1.

The second possibility how to use genetic algorithms in financial application is that
system parameters (e.g. open and close stock value, technical indicators) are coded
as tree leaves (operands), and operators working with them (e.g. or, and, if, less-or-
equal) are coded as tree nodes (Fig. 2). This method will be called genetic programming
(GP). We start using a random placement of operators and operands into a tree that will
represent the genotype (in our prototype B). As published in [1], we used the swapping
of subtrees from both parents for the crossover. The following mutation selects a subtree
of a parent and replaces it by a randomly created tree - Section 3.2.

All genetic algorithms follow the same procedure. After a initial population of geno-
types is constructed, the fitness of each individual is calculated. For the recombination
operation, two parents are selected according to their fitness (in our prototypes with the
linear ranking method), and their genotypes are crossed. The new created individual
is subsequently modified by the mutation operation. This process will continue until
the new population is created, which is consistently followed by applying the fitness
calculation and the genetic operations.

In this paper, we describe the trading system A based on neurogenetic approach and
the genetic programming trading system B. Our original contribution is that we com-
pounded methods of [2], [9], and [14] for the neurogenetic approach in our prototype
A, and also improved the genetic programming method (tree swapping) presented in
[1] in our prototype B. We added technical indicators as tree nodes and we modified
the probability of the creation of tree nodes. We specified our own fitness functions for
both prototypes. Both methods are described in detail in Section 3.



Comparison of Genetic Algorithms for Trading Strategies 385

Additionally, we successfully tested statistical significance of the hypothesis that the
genetic programming prototype B brings better results than buy-and-hold strategy used
in comparisons as a standard. Further, we compared all achieved results, and results
obtained using fuzzy and fractal technology that we used in our previous works [8].

The rest of the paper is organized as follows. In Section 2, we discuss related work.
In Section 3, we introduce the developed prototypes. Fitness function is described in
Section 4. Then, we present data used in Section 5. The following section 6 describes
the implementation, experiments, and results. Statistical significance proving is given
in Section 7. The comparison of genetic with fuzzy and fractal methods is mentioned in
Section 8. In the last section, we conclude our work.

2 Related Work

There are many interesting works investigating similar problems as our research.
In [9], a neural network having one hidden-layer has been used. It was trained using

back propagation to find a local optimum. Compared to this work, we did not use back
propagation in the prototype A.

In [2], a multi-layer network was used. Genetic algorithm mutation changes weights
but also the topology of a cycle-free neural network. It was used for day traders, and
after a planned day profit was reached, the system generated a sell signal. Compared to
this work, we did not optimize the topology, but we used recombination of individuals
and applied the moving window technique in the prototype A. Our output was not day
trader oriented.

The authors of [14] suppose that there is no optimum of buy and sell signals, and
because of that supervised learning (e.g. back propagation) cannot be used. To optimize
weights, only genetic algorithm was applied using the moving window technique.

In [5], back propagation is replaced by simulated annealing, the input vector repre-
sents 5 technical indicators. The output is a stock value predicted for the next day, i.e.
buy-, hold-, and sell signals are not generated.

Fuzzy technology instead of genetic algorithm to optimize network topology is used
in [10].

In [7], authors focus on optimization of technical indicator parameters but differently
to our approach they do not use tree swapping.

A method to evaluate individuals which were proposed to be applied in automated
trading is described in [12]. Instead, we used our own fitness function described below.

It is very difficult to compare the methods mentioned above because of the large va-
riety of approaches, parameters, and used data. So, we compared tests of our prototypes
running on the same data.

3 Our Prototypes

3.1 Our Neurogenetic Prototype A

Our goal was to investigate how a trading strategy in terms of buy, sell, and hold signals
can be represented and generated from output values of a neurogenetic system. Fur-
thermore we wanted to prospect whether using a neurogenetic system can bring better



386 P. Kroha and M. Friedrich

Fig. 1. Instance of a neural network as an individuum of genetic algorithm

results than genetic programming, fuzzy and fractal technology that we investigated in
our previous work [8].

For the basis of our prototype A we used ideas from [2], [9], and [14] in a specific
composition with some additional improvements.

The important aspect of genetic optimization is how to map the problem into the
genotype. In this case, the input vector is represented by system parameters. They are
combined using an activation function and weight parameters which are stored in a
matrix correspondingly to the network topology. The output vector is finally decoded
into buy, hold and sell signals. To recombine genotype of two parents (i.e. their ma-
trices) the 2D-recombination method will be used. For the mutation, we developed the
noise-layer-mutation, which added small randomly created values to each element of
the matrix of a specific layer using the gaussian distribution N (0, 1).

The weight optimization was implemented using a genetic algorithm in periods with
moving window technique. We abstained from the back propagation algorithm because
we agree with the assumption in [14] saying that buy and sell decisions for middle and
long term trading strategy cannot be predicted using supervised learning algorithms.

3.2 Our Prototype B Based on Genetic Programming

Our genetic programming prototype B is an improved algorithm based on the method
published in [1]. As described in Section 1, the trading rule is represented by a tree
using system parameters as leaves and operators as tree nodes Fig. 2.

Our main improvement is that we used different selection probabilities for different
kinds of nodes. This means, when creating a random tree (e.g. for initial population or
mutation), the selection probability is not uniform distributed over nodes in one cate-
gory, as given in Table 1. The effect is that system values like technical indicators have a
higher probability of occurrence within the tree, and therefore they influence the trading
strategy more than fixed parameters. Furthermore, it reduced the number of combina-
tions that have semantically only very limited or improbable occurrence but cause a tree
explosion. The probabilities we used are our estimations based on our experience with
description of many strategies.



Comparison of Genetic Algorithms for Trading Strategies 387

Fig. 2. An instance of a tree in genetic programming

Table 1. Probabilities of rule application

Parameter Value P

Boolean
Basic functions if-then-else, and, or, not 12.5 % each

Enhanced functions <,> 25.0 % each

Numeric

Basic functions +, -, *, : , norm 2.0 % each
Close value price 30 %

Enhanced function number, average, maximum, minimum, lag 4.0 % each
Indicators ROC, MACD, SO, TCI 10 % each

4 Fitness Function

Fitness function evaluates behavior of phenotype, i.e. behavior of the individual that
was generated from genotype. Next generation individuals will be constructed from two
individuals that have usually a high fitness function value, since all common selection
methods (i.e. linear ranking) are fitness-oriented.

In our applications, individuals represent trading strategies. An important factor of
the fitness function is the money earned by each strategy mstrat. An individual obtains
a start money amount minit and uses it following its strategy st during n days. The
money mstrat of an individual, i.e. of each strategy, achieved in a period is calculated
using close stock value xt and the market position post of day t corresponding to the
trading strategy:

mstrat = minit ·
i∏

t=i−n+1

(
xt

xt−1

)post

, post =

⎧
⎨

⎩

1 , if st−1 ⇔ buy
0 , if st−1 ⇔ sell

post−1 , if st−1 ⇔ hold
(1)

The calculation of the fitness function in our neurogenetic system contained several
components as described below:

– profit of each strategy fstrat is calculated in relation to the profit of the buy-and-
hold strategy (mbah denotes money obtained by the buy-and-hold strategy)

fstrat = mstrat −mbah = mstrat −
(
minit · xi

xi−n+1

)
(2)



388 P. Kroha and M. Friedrich

– absolute value of profit - fstrat−abs - indicates the profit or loss of money caused
by the strategy, i.e. it represents the rule that we want not only to be better as the
buy-and-hold strategy, but we do not want to loose money

fstrat−abs = mstrat −minit (3)

– penalty function - fstrat−pen - penalizes individuals that do not change position and
simply follow buy-and-hold strategy during ñ coherent days, using an adjustment
factor α

fstrat−pen = α ·minit ·
(
ñ

n

)3

(4)

– absolute relation between profit and loss - fstrat−pl - respects the risk β resulted
from the using of the trading strategy

fstrat−pl = β · p + (1− β) · l (5)

The average profit p is given by positive return during a period of days running
consecutively

p =
1

i∑
t=i−n+1

pt

·
i∑

t=i−n+1

(
xt

xt−1
·mt−1

)
· pt, pt =

{
1 , if xt > xt−1

0 , otherwise
(6)

The average loss l is calculated similarly:

l =
1
i∑

t=i−n+1

lt

·
i∑

t=i−n+1

(
xt

xt−1
·mt−1

)
· lt, lt =

{
1 , if xt < xt−1

0 , otherwise
(7)

The components described above are combined in the fitness value F :

Fstrat = (1− γ) · fstrat−bah + γ · fstrat−abs + fstrat−pen + fstrat−pl (8)

The parameter γ represents the weight of fbah and fabs. In our preliminary study,
we found that γ = 0.6 was the most suitable value. Other authors construct different
fitness functions.

5 Data Used

In the first part of our experiments called preliminary study, we tried to specify suitable
parameters and their values that could be used as fixed during the optimization problem.
Since we used connection weights to be optimized in our neurogenetic prototype A,



Comparison of Genetic Algorithms for Trading Strategies 389

there are many methods which could be applied for the genetic algorithm. Because of
the complexity, it is practically impossible to optimize all the parameters.

During the preliminary study we evaluated different parameter combinations for the
neurogenetic system, i.e. we altered the topology, recombination and mutation methods.
Starting with the configuration given in Table 3, we picked the parameters in succession
and evaluated different values and methods. The description of all experiments and
evaluations of our preliminary study is out of scope of this paper. Of course, we know
that the parameter combination we fixed does not guarantee the global optimum but
computational complexity of other approach were immense. The final configuration
used for the test is given in Table 4.

Table 2. Input vector variables of our neural network

Position Variable Position Variable Position Variable

1 closet 14 MACDt(20, 40) 27 SOt(40)
2 SMAt(5) 15 ROCt(20) 28 TCIt(40, 80)
3 EMAt(5) 16 SOt(20) 29 BBt(40, 2.0)
4 MACDt(10, 20) 17 TCIt(20, 40) 30 RAV It(10, 100)
5 ROCt(10) 18 BBt(20, 2.0) 31 RSIt(14)
6 SOt(10) 19 RAV It(6, 60) 32 SMAt(50)
7 TCIt(10, 20) 20 RSIt(9) 33 EMAt(50)
8 BBt(10, 2.0) 21 hight 34 SMAt(100)
9 RAV It(3, 30) 22 lowt 35 EMAt(100)

10 RSIt(3) 23 SMAt(20) 36 SMAt(200)
11 opent 24 EMAt(20) 37 EMAt(200)
12 SMAt(10) 25 MACDt(40, 80)
13 EMAt(10) 26 ROCt(40)

As 37 input values, we used technical indicators (SMA means Simple Moving Av-
erage, EMA means Exponential Moving Average etc. - all acronyms are given in [13])
and stock values (open, high, low, close) as given in Table 2.

Both prototypes have been tested at stocks of companies listed in NASDAQ-100 in
June 2009. As time period for the evaluation we considered the 01.01.2003 start and
the 01.10.2009 as end point. A test case is represented by the values of a time series
of a stock in one year, which we used as test period. The training and selection period
contained the values of 12 respectively 6 months directly before start of the test period.
Since some companies do not have stock values in the whole periods, there were 621
test cases.

6 Experiments and Results

To run our experiments with prototype A, we used an Apple Mac Pro 4,1 with two Intel
Xeon E5520 processors, 4 cores / 8 threads each, clock rate 2,26 GHz. The experiments
of our prototype B have been executed on a computer with processor Intel Core 2 Duo
E6300, clock rate 1,86 GHz.



390 P. Kroha and M. Friedrich

Table 3. The configuration of the neurogenetic system in the preliminary study

Category Parameter Value

Topology

Input-layer 37
Hidden-layer 1 20
Hidden-layer 2 8
Output-layer 1

Activation function

Function type Logistic Function
Parameter α 2
Parameter β 3
Parameter γ 3

Threshold parameters
Activation potential θ 1.0

Buy signal tbuy 0.66
Sell signal tsell −0.66

Population
Initialization Gaussian distribution

Number of generations 100

Selection

Selection method Linear ranking
Elitism 0

Minimum 0.5
Maximum 1.5

Crossover
Recombination method Layer-crossover

Probability pc 0.8

Mutation
Mutation method Noise-layer
Probability pm 0.2

Distance 0.1

Capital
Seed money 10000 $

Transaction costs Relative: 0.25 %
Fitness measurement Computation strategy of fitness See section 4

Moving windows
Number of windows 6

Number of overlapping days 30

Population size
Training period 1000
Selection period 50

Test period 1

Experiments were very time consuming. Each algorithm execution took about 27
minutes and 18 seconds, i.e. the tests would need altogether approximately 282 hours
and 38 minutes. Since we could parallelize our prototype A, we only needed 156 hours
49 minutes for the evaluation.

Both methods achieved better results than the strategy buy-and-hold. In the case of
genetic programming, the prototype B makes 2.72 % a higher profit towards the buy-
and-hold strategy.

Compared to buy-and-hold strategy, the strategies of the neurogenetic prototype A
earned in average 91.82 % more during the training period, but only 0.65 % more during
the test period. It achieved in 99.19 % better results as buy-and-hold strategy during the
training period, but only 44.28 % during the test period. It seems to be overfitted.

The strategies generated by the genetic programming system (prototype B) earned in
average only 55.20 % more than buy-and-hold strategy in training period, but 2.72 %



Comparison of Genetic Algorithms for Trading Strategies 391

Table 4. The configuration of the final tests

Parameter Neurogenetic system Genetic programming

Attributes of
Individuals

Input-layer: 37
Hidden-layer: 19 Non-uniform distribution,

see Table 1Output-layer: 1
Tangens hyperbolicus Maximum tree depth: 7

tbuy = 0.5; tsell = −0.33; θ = 0.0

Population
Initialization: Gaussian distribution

Generations: 75
Generations: 150

Selection

Linear ranking
Minimum: 0.5
Maximum: 1.5

Individuals for elitism: 0

Crossover
2D-recombination Tree swapping

pc = 0.9 pc = 0.7

Mutation
Noise-layer Tree switching
pm = 0.7 pm = 0.7

Distance: 0.1 (Gaussian distribution)

Capital
Seed money: 10.000 $

Transaction costs: 10 $ for each transaction
Fitness measurement See section 4

Moving windows
Number of windows: 2

–
Number of overlapping days: 75

Population size
Training period: 100 Training period: 50
Selection period: 50 Selection period: 20

Test period: 1 Test period: 1

more during the test period. During the training period, it was better in 90.82 % of
cases; during the test period, it was better in 44.61 % of cases.

If we consider only stocks that provide a better performance using the generated
strategies compared to buy-and-hold strategy then strategies generated by prototype A
(neurogenetic) give 26.98 % and strategies generated by prototype B (genetic program-
ming) give 28.73 % more earning during the test period. The results are summarized in
Table 5.

7 Statistical Hypothesis Testing

Because of the results described above, we used statistical hypothesis testing (Z-test
because the sample size is large and the population variance known) and proved both
prototypes using the following hypotheses with the parameters α = 5 % and μ0 = 1.0
which leads to the parameter Φ(z1−α) = 1.6449.

H0 = the expected earning of the generated strategy is equal or less compared to the earning
of the buy-and-hold strategy

H1 = the expected earning of the generated strategy is greater compared to the earning of
the buy-and-hold strategy



392 P. Kroha and M. Friedrich

Table 5. Results of neurogenetic and genetic programming system compared to buy-and-hold
strategy

Neurogenetic system Genetic programming

Average (Training) 1.9182 1.5520
Average (Test) 1.0065 1.0272

Number of better cases (Training) 616 564
Number of worse cases (Training) 5 57

Number of better cases (Test) 275 277
Number of worse cases (Test) 346 344

Average of better cases(Training) 1.9392 1.6160
Average of better cases (Test) 1.2698 1.2873

For the neurogenetic system we obtained z = 0.4728 < Φ(z1−α). It means that the
hypothesis H0 can neither be rejected nor accepted.

In contrast, we obtained z = 1.9910 > Φ(z1−α) for the genetic programming. This
means that the hypothesis H0 can be rejected. Therefore we can state that the strategies
generated by genetic programming method earns more than the strategy buy-and-hold.

8 Comparison to Fuzzy and Fractal Technology

In our previous work [8], we investigated how fuzzy technology, fractal technology,
and using of technical indicators can be used to generate trading strategies. Now, we
used the same time series to prove the generated strategies as in [8], which allows the
comparison of all five methods. The results obtained are shown sorted in Table 6. We
can see that the system based on genetic programming implemented in prototype B
brings the best results.

Table 6. Comparison of neurogenetic and genetic programming systems to results of fuzzy tech-
nology, fractal technology, and simple application of technical indicators

Average Standard deviation

Genetic programming 1.1149 0.8872
Neurogenetic system 0.9851 0.6954

Fractal analysis 0.9664 0.7247
Fuzzy control 0.8392 0.3566

Technical indicators 0.6473 0.3118

The small difference between Table 5 and Table 6 occurred because we investigated
only 82 stocks of NASDAQ-100 in our previous work but all 100 stocks in this work.

There is a question concerning the size of data necessary for the training and selec-
tion process. To use our results in practice with several stocks, the time consumed by
the execution must be reduced. A modest trader in Middle Europe respects the stock
exchange in New York closing at 22:30 (CET) and Frankfurt stock exchange opening at



Comparison of Genetic Algorithms for Trading Strategies 393

Fig. 3. Buy and Sell Signals for the DAX generated by genetic programming, separated in train-
ing, selection and test periods

9:00 (CET) the next day. There are 10.5 hours available to compute the most promising
trading strategy for the next day influenced by the last data.

In subsequent experiments, we investigated a time series of one stock only and re-
duced the training, selection, and test to 1 month each and used 150 generations. The
process running in 2 threads took 2 minutes only and gave signals shown in Fig. 3.

9 Conclusion

We implemented, improved, and tested two prototypes of methods based on genetic
algorithms that generate trading strategies. In difference to other works, we took trans-
action costs into account (Table 4).

We expected that the neurogenetic prototype A based on genetic optimization of
neural network weights brings the best results. However, we found that the method of
genetic programming generates a better trading strategy, and that it brings more profit
than the buy-and-hold strategy which is usually used for comparison. We proved sta-
tistical significance of this result. As we mentioned above, the optimization process is
very time consuming when large data is used. We recognized that prior behavior of
markets has a limited information content relative to current trading behavior. The dif-
ference between performance of trading decisions during a training period and during
a test period is very big (Table 5).

In common, complex system like markets are influenced by very many parameters
which can be further investigated.



394 P. Kroha and M. Friedrich

Practically, trading practices used by investment banks and funds are secret, of
course. However, they are not always successful. Some of them go bankrupt, e.g. the
largest bankruptcy in U.S. history - Lehman Brothers loss 600 bilions in assets in 2008.

There is never a real consensus in finance - everybody tries to outsmart everybody
else. This is why there are still buyers and sellers - a real consensus would stop trading.
Obviously, markets differ from physical systems. It is known that using insider infor-
mation or pretending investments are commonly used strategies, and we cannot model
them. Because of such practices and because of the chaotic component given by events
our market modeling possibilities remain limited.

References

1. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules. Journal of
Financial Economics 51, 245–271 (1999)

2. Azzini, A., Tettamanzi, A.: Evolving Neural Networks for Static Single-Position Automated
Trading. Journal of Artificial Evolution and Applications, 1–17 (2008)

3. Brabazon, A., O’Neill, M.: Biological Inspired Algorithms for Financial Modelling. Springer
(2006)

4. Brabazon, A., O’Neill, M., Dempsey, I.: An Introduction to Evolutionary Computation in
Finance. IEEE Computational Intelligence Magazine, 42–55 (2008)

5. El-Henawy, I.M., Kamal, A.H., Abdelbary, H.A., Abas, A.R.: Predicting Stock Index Using
Neural Network Combined with Evolutionary Computation Methods. In: The 7th Interna-
tional Conference on Informatics and Systems (INFOS), pp. 1–6 (2010)

6. Fama, E.: Efficient capital markets: A review of theory and empirical work. Journal of Fi-
nance 25, 383–417 (1970)

7. Kapoor, V., Dey, S., Khurana, A.P.: Genetic Algorithm: An Application to Technical Trading
System Design. International Journal of Computer Applications 36(5) (2011)

8. Kroha, P., Lauschke, M.: Using Fuzzy and Fractal Methods for Analyzing Market Time Se-
ries. In: Proceedings of the International Conference on Fuzzy Computation and International
Conference on Neural Computation ICFC 2010 and ICNC 2010, pp. 85–92 (2010)

9. Kwon, Y.-K., Moon, B.-R.: A Hybrid Neurogenetic Approach for Stock Forecasting. IEEE
Transactions on Neural Networks 18, 851–864 (2007)

10. Li, R., Xiong, Z.: A Modified Genetic Fuzzy Neural Network with Application to Financial
Distress Analysis. In: International Conference on Computational Intelligence for Modeling,
Control and Automation and International Conference on Intelligent Agents, Web Technolo-
gies and Internet Commerce (2006)

11. Malkiel, B.: A Random Walk Down Wall Street. W.W. Norton, New York (1996)
12. Matsui, K., Sato, H.: Neighborhood Evaluation in Acquiring Stock Trading Strategy Using

Genetic Algorithms. International Journal of Computer Information Systems and Industrial
Management Applications 4, 366–373 (2012)

13. Murphy, J.J.: Technical Analysis of the Financial Markets. Prentice Hall (1999)
14. Skabar, A., Cloete, I.: Neural networks, Financial Trading and the Efficient Markets Hy-

pothesis. In: Proceedings of the Twenty-Fifth Australasian Conference on Computer Science
ACSC 2002, vol. 4, pp. 241–249 (2002)

15. Shleifer, A.: Inefficient Markets – An Introduction to Behavioral Finance. Oxford University
Press (2000)


	Comparison of Genetic Algorithms for TradingStrategies
	1 Introduction
	2 Related Work
	3 Our Prototypes
	3.1 Our Neurogenetic Prototype A
	3.2 Our Prototype B Based on Genetic Programming

	4 Fitness Function
	5 DataUsed
	6 Experiments and Results
	7 Statistical Hypothesis Testing
	8 Comparison to Fuzzy and Fractal Technology
	9 Conclusion
	References




