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Abstract

Regime switching models have proven to be well-suited for capturing the time se-
ries behavior of many financial variables. In particular, they have become a popular
framework for pricing equity-linked insurance products. The success of these mod-
els demonstrates that realistic modeling of financial time series must allow for random
changes in volatility. In the context of valuation of contingent claims, however, random
volatility poses additional challenges when compared with the standard Black-Scholes
framework. The main reason is the incompleteness of such models, which implies that
contingent claims cannot be hedged perfectly and that a unique identification of the
correct risk-neutral measure is not possible. The objective of the paper is to provide
tools for managing the volatility risk. First we present a formula for the expected value
of a shortfall caused by misspecification of the realized cumulative variance. This, in
particular, leads to a closed-form expression for the expected shortfall for any strategy
a hedger may use to deal with the stochastic volatility. Next we identify a method
of selection of the initial volatility that minimizes the expected shortfall. This strat-
egy is the same as delta hedging based on the cumulative volatility that matches the
Black-Scholes model with the stochastic volatility model. We also discuss methods of
managing the volatility risk under model uncertainty. In these cases, super-hedging is
a possible strategy but it is expensive. The presented results enable a more accurate
analysis of the trade-off between the initial cost and the risk of a shortfall.

1 Introduction and Motivation

In this paper we are interested in the application of regime switching models to the problem
of pricing and hedging contingent financial instruments. These models have been proposed,
for example, for pricing equity-linked life insurance products, which from the financial eco-
nomic viewpoint can be interpreted as insurance polices with embedded stock market options
(Hardy 2001, 2003). The main underlying assumption for these models is that the process
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that determines the current regime follows a finite-state Markov chain. As demonstrated
in several studies, this specification is flexible enough to offer models capable of explaining
many of the observed features of financial time series, particularly the volatility persistence.
Kim and Nelson (1999) give a comprehensive exposition of statistical methods for regime
switching models as well as many examples of case studies.

Continuous-time versions of such models form a sub-class of stochastic volatility models,
in which instantaneous volatility of the risky asset is allowed to follow its own stochastic
process. These models address one of the known imperfections of the Black-Scholes model,
which manifests itself through the presence of “smiles” and “skews” in implied volatilities.
Reviews of such models can be found, for example, in the work of Taylor (1994) and Shephard
(1996). The price we have to pay for this more realistic modelling is that in the context of
random volatility contingent claims can no longer be perfectly hedged with the underlying
asset and a bond. Although a perfect hedge may be possible by including into the replicating
portfolio another derivative security, such procedures are often unsatisfactory due to the
higher transactions costs and lesser liquidity associated with trading the second derivative.
Therefore, it is important to quantify the volatility risk and determine how to hedge the
contingent claim as best as possible using only the underlying asset and a bond.

These problems become even more significant for long-term contingent instruments, such
as equity-linked life insurance products, for which mis-pricing and/or lack of efficient hedging
strategies may lead to huge losses. It is important to notice that for such contracts the risk
of a large shortfall at maturity can be diversified by partitioning the time to maturity into
shorter terms and adjusting the writer’s position to the market value at the end of each
period. Then the distribution of the total shortfall should be close to the normal distribution.
To explain this, let us denote by St the price of the underlying asset and by C(St, t) the
market value of the contingent claim at time t. Suppose also that the contract is hedged
dynamically with the asset and a bond but, due to the incompleteness of the market, a
perfect hedge is not possible. As we explain later in the paper, the value C(St, t) can be
interpreted as the expected cost of replicating the claim. Therefore, if at the beginning of
each sub-period (ti, ti+1], i = 0, .., N−1, a replicating portfolio is created at the cost C(Sti , ti),
at the end of the same period the expected value of a surplus/shortfall, R(Sti+1

, ti+1), will
be zero. Then the surplus/shortfall for the first l periods of the contract can be represented
by the following sum

l
∑

i=1

R(Sti , ti). (1)

Although the random variables R(Sti , ti) are not independent, they have the property
that for each i the expectation of R(Sti+1

, ti+1) conditional on information at time ti is
zero. Hence, the partial sums (1), l = 1, 2, . . . , form a martingale, and from the martin-
gale central limit theorem (subject to technical conditions) their distributions converge to a
normal with zero mean (e.g., Chow and Teicher 1997). Hence, the variance of the limiting
distribution determines the overall risk and can be mitigated only by reducing the size of
each surplus/shortfall. This justifies the importance of finding accurate predictions of these
values.

In the paper we describe a dynamic hedging strategy that is based on the realized volatil-
ity. This method has been introduced by Mykland (2000) in the context of super-replicating
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strategies, but we propose to use it also for other risk criteria. This is possible because
under some assumptions about the terminal payoff function the distribution of the expected
surplus/shortfall at maturity can be characterized in a form that is convenient for applica-
tions. Consequently, expressions for the probability of a shortfall and the expected shortfall
are also available. The latter can be used as a natural measure of the volatility risk. The
availability of these expressions enabled us to show that delta hedging based on a particular
selection of the initial cumulative variance minimizes the variance of the surplus/shortfall at
maturity as well as the expected shortfall. This optimal initial cumulative variance is the
one that matches the Black-Scholes price of a derivative with the corresponding price under
stochastic volatility.

The main advantage of the method is that it is applicable under quite general conditions
on the dynamics of the volatility process. Furthermore, the only feature of a volatility model
that is relevant for pricing and hedging is the distribution of the cumulative variance. This
quantity is certainly less prone to estimation error than the whole volatility path. In practice,
this distribution can be estimated from historical data and/or from market information. We
discuss this issue in greater detail in Section 3.

Although the importance of the cumulative variance on the price of a derivative is well
known in the literature, this fact is usually discussed under the assumption of independence
between the asset and the volatility processes (e.g., Hull and White 1987; Rebonato 1999).
In addition, most of the existing results focus on the problem of pricing without addressing
the issue of a shortfall risk. One of the exceptions is the paper by El Karoui et al. (1998),
but the authors discuss hedging strategies assuming a particular form of the misspecified
volatility, which excludes regime switching models.

In the context of a regime switching model, the proposed volatility risk measure is easy to
implement. It can be employed to determine the expected size of a shortfall when hedging
only with the asset and a bond. In practice, even assuming constant volatility, continu-
ous perfect hedging is not possible. The Black-Scholes framework, however, establishes a
benchmark for hedging costs, with respect to which other more realistic hedging strategies
can be judged. Similarly, in the context of stochastic volatility models the hedging strategy
proposed in the paper represents hedging costs with which other methods can be compared.

Among alternative hedging approaches developed in the literature, the local risk-minimization
and the mean-variance hedging seem to be most popular. Both enjoy certain optimality prop-
erties; the former minimizes the local risk as measured by the conditional second moment
of cost increments while the latter minimizes the global risk over the entire life-time of the
contract, as measured by the variance of the hedger’s future costs2.

An undesirable feature of these approaches is that the hedger is penalized equally for
losses and gains. In addition, they rely on exact specifications of the volatility model and
the correlation between the risky asset and its volatility, which for long-term instruments
may be difficult to obtain. Their implementation is also more cumbersome when compared
with the method based on realized volatility, since typically simulations must be conducted
in order to assess the size of the hedging error. For this problem, the formula that we present

2For applications of these methods in the context of stochastic volatility models see, for example, Di Masi
et al. (1994); Biagini et al. (2000); Heath et al. (2001), and for hedging equity-linked insurance contracts in
discrete-time models, Møller (2001).
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for the variance of future costs can be used as an upper bound for the corresponding one in
the mean-variance hedging. This follows from the facts that hedging based on the realized
volatility and the mean-variance hedging are based on self-financing portfolios and that the
latter minimizes the variance of the terminal costs.

There are also other important applications of the results presented in the paper. For
example, they allow for a formal risk analysis of hedging strategies with different initial costs.
Since there is a trade-off between the required initial cost for setting a replicating portfolio
and the expected shortfall, the availability of both values for different strategies allows a
hedger to find a solution that best reflects his/her risk tolerance.

Another area of applications is related to the problem of model uncertainty. The number
of stochastic volatility models proposed in the literature is large and selection of the one
that is worth the time and the expense for development and implementation is not simple.
Even in the context of discrete-time regime switching models, one may consider several
different specifications of the returns distribution, ranging from a normal distribution with
two parameters to mixture distributions with a large number of parameters. In addition,
a model may be fitted to historical data using different sampling frequencies. As a result,
statistical analysis often may be inconclusive in the identification of a good model.

Another issue is the fact that statistical goodness-of-fit criteria may not be relevant for
the problem of risk management. There are two reasons for this. First, statistical models
are usually fitted to historical returns, which represent the dynamics under the so-called
P -measure. On the other hand, the pricing must be performed under a risk-neutral measure
Q, unique determination of which for stochastic volatility models is a challenging problem.
Typically the correct measure is the one that is dictated by the market, which in the context
of random volatility models can be identified, for example, in terms of the implied volatility
surface (e.g., Rebonato 1999). This approach, however, is much more difficult to implement
for long-term instruments, since currently there exist no reliable descriptions of the dynamics
of such complex objects. Therefore, parsimonious models must be used that would capable
of capturing important for pricing and hedging features of the asset price distributions. In
this aspect, we demonstrate that for a broad class of models this essential quantity is given
by cumulative variation. This suggests, that a correct statistical description of this value
should be used as the primary criterion for model selection.

To explain the second reason, let us suppose that the volatility of daily returns follows
a two-state regime switching model but a model, with two regimes, is fitted to historical
data using monthly returns. For contracts with a lifetime of 20 years, this frequency may
be considered fine enough to meet some risk management criteria. Clearly, results of an
estimation procedure will depend on the capability of the model to describe correctly the real
dynamic. In this case, the cumulative variation follows a multi-state regime switching model,
and hence the fitted model will not provide accurate description. The final result will depend
on the used statistical criterion, which typically will be the maximization of the likelihood
function. However, application of such criteria may not be suitable for identification of
volatility dynamic features that are essential for pricing. It is easy to see that in this case
the fitted model will not represent correctly the true range of monthly cumulative variances,
and this may lead to an underestimation of the total volatility risk. We can gain more insight
into this situation only when we understand better the way this risk depends on different
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elements of statistical models.
The remainder of the paper is organized as follows. The main results, including the

characterization of the distribution of the expected surplus/shortfall and the formula for the
variance of the expected shortfall, are presented in Section 2. In Section 3 we specialize these
results to the case of a regime switching model and discuss some applications. Appendix
provides a proof of the result from Section 2.

2 Expected Shortfall for Stochastic Volatility Models

In this section, we first introduce a method of dynamic hedging based on realized volatil-
ity and then provide a representation for expected shortfalls for a large class of stochastic
volatility models. We also show that dynamic hedging based on implied volatility minimizes
the expected shortfall and that it has some robustness properties.

In the sequel we assume that under the objective measure P the price of the underlying
asset follows

dSt = µtStdt+ σtStdBt, (2)

where Bt, t ≥ 0, is a standard Brownian motion and µt denotes an instantaneous expected
rate of return. The volatility process σt can be deterministic or stochastic. For example,
σt may be a positive function of a single factor that follows another diffusion process, like
in the model considered by Heston (1993) where the variance process vt, equal to σ2t , is the
square root mean-reverting process introduced by Cox, Ingersoll, and Ross (1985):

dvt = k[θ − vt]dt+ σv

√
vtdB

v
t . (3)

Here Bv denotes a standard Brownian motion which can be correlated with B. Such a model
specification has been motivated by some empirical work in the financial literature which
provides evidence of the fact that the volatility is mean reverting (e.g., Scott 1987; Stein and
Stein 1991; among others).

Another class of specifications of σt is provided by regime switching models in which it is
typically assumed that the volatility process is driven by a finite-state Markov process; i.e.,

σt = σρt
,

where ρt is a continuous-time Markov chain taking values in the set {1, ...,M} and σ1, ..., σM

represent M different values of instantaneous volatility of the asset process. A present state
of the latent process ρt determines the current “regime”.

Our objective is to price and hedge a European type contract whose value at maturity T
is given by a nonnegative function g. For this we introduce the following function:

W (S, t,Σ) := e−r(T−t)E[g(Ser(T−t)− 1

2
Σ+
√
ΣZ)],
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where Z is a standard normal random variable and r is the risk-free interest rate. In the
rest of the paper we assume that g is such that W (S, t,Σ) is an increasing function of Σ for
each S and t. This is true, in particular, when g is a convex function (Hobson 1998).

Function W can be easily interpreted if we assumed that in (2) the volatility was constant,
since in this case W (S0, 0, σ

2T ) would give us the Black-Scholes price of the option at time
0. This result can be generalized to the case when the volatility σt is deterministic. Then
the risk-neutral price of the option would be

W (S0, 0,
∫ T

0
σ2sds),

which follows from the Ito’s lemma and the log-normality of ST . In addition, for deterministic
σt we would be able to hedge the contract perfectly by taking positions in the underlying
asset St and the money market account, whose value Bt at time t is given by ert.

Surprisingly, to hedge the contract perfectly it is not necessary to know exactly the volatil-
ity path but only the realized cumulative variation

∫ T
0 σ2sds. We will be able to justify this

result by providing an interpretation of W (St, t,Σ) as time-t value of a certain instrument.
For a positive constant Σ0, let us define a stochastic process

Σt := Σ0 −
∫ t

0
σ2sds (4)

and a stopping time

τ = inf{s : Σs = 0}.

It follows from the definition that the process Σt is adapted to the filtration generated
by σt, which means that at any time t the value of Σt can be determined from the actual
volatility path. Observe that in a diffusion model with continuous observations of the asset
price the current volatility level can be approximated with arbitrary precision by the sum of
squared increments.

Consider now another stochastic process whose value at time t, t ∈ [0, τ ], is

Vt := W (St, t,Σt).

This process takes only nonnegative values and one may ask whether Vt represents a price
of any traded or synthetically created security. The affirmative answer to this question has
been provided by Mykland (2000), who studied this process in the context of super-replicating
hedging strategies. The author demonstrates that there is a self-financing strategy based on
hedging in the underlying asset and the money market account that replicates exactly Vt,
t ∈ [0, τ ], and that the delta, which determines the number of shares held at time t, is equal
to W ′

S(St, t,Σt). This result may be found surprising as it does not rely on any particular
dynamic of the process that governs the behavior of σt; to use this hedging method we only
need to select an initial value Σ0, create a portfolio that consists of a pre-specified number
of shares of the risky asset and the risk-free asset, and then observe the volatility trajectory.

Let us denote the realized cumulative variation for the time period [0, T ] by ΣR. This
value is obviously unknown to a hedger at time 0. Suppose now that the hedger chooses a
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number, say ΣH , that is at least equal to ΣR. This number is used to create a portfolio with
the initial value equal to W (S0, 0,Σ

H). By using dynamic hedging with the delta at time t
given by W ′

S(St, t,Σt), the hedger can guarantee that the value of this portfolio will be equal
to Vt at any time t. For such a selection of the initial cumulative variance ΣH , we have the
following relation at maturity

VT = W (ST , T,ΣT ) ≥ W (ST , T, 0) = g(ST ),

which becomes equality when ΣH = ΣR since in this case ΣT = 0. Consequently, the
difference

W (ST , T,ΣT )− g(ST ) (5)

represents a surplus at time T , as the value of replicating portfolio based on ΣH dominates
the value of the option regardless of the terminal price of the underlying asset ST . The
present expected value of (5) is equal to

W (S0, 0,Σ
H)−W (S0, 0,Σ

R), (6)

and hence this number represents the expected surplus. Note that in the case when the
hedger guesses correctly the cumulative variance ΣR, the option will be replicated exactly
(with probability one).

Suppose now that the hedger chooses at time 0 a positive number ΣH that is smaller
than ΣR, and as before he uses delta hedging to replicate the instrument Vt. In this case
τ < T , and at this time we have

Vτ = W (Sτ , τ, 0)

≤ W (Sτ , τ,Σ
R −

∫ τ

0
σ2sds).

Now the difference
W (Sτ , τ,Σ

R −
∫ τ

0
σ2sds)−W (Sτ , τ, 0) (7)

represents a shortfall since the values of both portfolios at time τ , given by Vτ andW (Sτ , τ,Σ
R−

∫ τ
0 σ2sds), were obtained through self-financing trading strategies. Hence in the case when
ΣH < ΣR, the expected value of a shortfall is equal to the discounted expectation of (7),
which is

W (S0, 0,Σ
R)−W (S0, 0,Σ

H). (8)

In the case when τ < T , an external funding is necessary to continue the dynamic hedging.
The amount that will be added at time τ , say Eτ , will be related to a new selection of the
cumulative variance made by the hedger, ΣH

τ , through the formula

W (Sτ , τ,Σ
H
τ ) = Eτ +W (Sτ , τ, 0).

If
W (Sτ , τ,Σ

H
τ ) ≥ W (Sτ , τ,Σ

R −
∫ τ

0
σ2sds), (9)
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then there will be a surplus at maturity whose expected value at time τ is given by

W (Sτ , τ,Σ
H
τ )−W (Sτ , τ,Σ

R −
∫ τ

0
σ2sds).

If (9) is not satisfied, then the process of adding external funds will have to be repeated,
as then the value of the replicating portfolio at τ is not sufficient to hedge dynamically
until maturity. Regardless how often this procedure will have to be repeated, however, the
difference (8) represents the expected shortfall corresponding to the initial choice of the
cumulative variance ΣH .

Observe that the described hedging strategy will adjust the replicating portfolio to the
market value only at times when external funding is necessary. However, a hedger that
calculates the delta according to the realized volatility (4) can as well mark the portfolio to
the market at other times. It is easy to see that this will not change the above interpretation
of expressions (6) and (8). For example, if we set our model under a minimal martingale
measure Q then the replicating portfolio can be adjusted, at selected discrete time points,
to the values that correspond to a locally risk-minimizing hedging strategy. For regime
switching models, this method of hedging has been discussed by Di Masi et al. (1994).

To summarize, expressions (6) and (8) represent an expected surplus and an expected
shortfall for selections of the initial cumulative variance being respectively larger and smaller
than the realized one. If we can identify the random mechanisms that generate the values
of ΣH and ΣR, this interpretation of the differences can be employed to quantify the overall
expected shortfall.

Let us denote by V R a random variable that describes the occurrences of the realized
cumulative variance. Observe that this variable is completely specified at the time we pos-
tulate a dynamic of the volatility paths under a Q-measure. For example, we can adopt
model (2) with µt = r and the volatility that either follows (3) or a regime switching model.
We shall denote the probability distribution of V R by πR. This distribution depends on the
current states of the asset and the volatility processes, but to simplify the notation we do
not write this explicitly.

Suppose for a moment that the hedger can predict without any error the realized value
ΣR. From the previous analysis it follows that for each ΣR the initial cost of setting a
replicating portfolio will be W (S0, 0,Σ

R), and there will be no shortfalls at maturity. Hence,
the average initial cost of hedging with respect to the distribution of ΣR is

P0 := E[W (S0, 0, V
R)]. (10)

It is easy to verify that this number is the same as the risk-neutral price of the option
based on the model (2) under the assumption that the stock price and the volatility σt are
independent. Here, however, we can interpret it as the cost of hedging when the volatility
risk has been eliminated by guessing perfectly the cumulative variance.

Let us denote a random variable that describes the hedger’s selection strategy by V H

and the corresponding probability distribution by πH . This distribution will represent the
complete knowledge the hedger has about ΣR given present values of the asset and volatility
processes and hence we may assume that V R and V H are independent. The overall cost
of hedging using a strategy V H includes the initial cost plus a shortfall. In the case when
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ΣR could be predicted without any error the average cost would be P0. This establishes a
benchmark for the initial cost of hedging, if the process was repeated and the cumulative
variance followed V R. This suggests that in the case when V R and V H are independent, a
class of reasonable strategies πH may be represented by the following set

HP0
:= {πH : EπH

[W (S0, 0, V
H)] = P0}.

For each distribution from this class the average initial cost will be the same but possible
shortfalls will follow different distributions. In order to compare different selection strategies,
we need methods of assessing the probability of a possible shortfall as well as its magnitude.
The next proposition provides the necessary formulae, justification of which follows directly
from the above discussion.

Proposition 2.1 Suppose that the realized cumulative variance follows a random variable
V R with a probability distribution πR. Assume also that to hedge dynamically a European
option with the terminal payoff g(ST ), an initial replicating portfolio is created at the cost
W (S0, 0,Σ

H), where ΣH is selected according to a random variable V H whose probability
distribution is πH . The random variables V R and V H are assumed to be independent. Then,

(a) the probability of a shortfall is equal to

P (V R > V H),

(b) the time-zero value of the expected shortfall can be represented as

ES(πH , πR) := EπR

EπH

[(W (S0, 0, V
R)−W (S0, 0, V

H))1{V R>V H}], (11)

where 1A is an indicator function of an event A.

It is easy to provide some examples of possible selection strategies from HP0
. One such

a strategy is to select ΣH according to the true distribution of ΣR. It can be described as a
strategy that mimics the real mechanism that generates ΣR.

Another strategy is to select always the same value. In this case, the corresponding
probability distribution, denoted by πBS, will put the whole probability mass at a single
point, say ΣBS, which by the definition of HP0

must satisfy the equation

W (S0, 0,ΣBS) = P0. (12)

Let us observe that ΣBS chosen according to this method is the same as the volatility
that calibrates the Black-Scholes model to model (2) under a Q measure. This however,
does not mean that the dynamic hedging strategy described above and the delta hedging
based on the Black-Scholes model are equivalent. Firstly, if a hedger decides to use the
Black-Scholes model while (2) describes the true dynamic of the asset then although ΣBS

leads to the correct cost of setting a replicating portfolio, hedging with this portfolio is
consistent with the model only at time 0. Secondly, the two methods handle differently
the available information about volatility. While the former keeps track of the value of
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the realized volatility and uses it to determine the number of shares of the risky asset in
the replicating portfolio, the latter ignores this information and calculates the cumulative
variance as a proportion of the remaining time to maturity.

The above examples show that we have a non-empty set of hedging strategies with the
same initial costs. Therefore a natural question arises as to whether it is possible to identify
an optimal, in some sense, strategy πopt. Our discussion in the last section suggests selecting
a strategy that minimizes the variability of the surplus/shortfall at the end of each hedging
period. In other words, using variance as a criterion the optimal strategy should minimize

EπEπR

[W (S0, 0, V
R)−W (S0, 0, V

H)]2, (13)

with respect to π ∈ HP0
, which follows from the fact that all distributions in this class

have the same expectations. This approach is valid if we assume that the distribution πR is
known. A more robust approach to this problem would be to search for an optimal selection
strategy assuming only that an initial cost P0 is known. Under such a form of uncertainty
of the distribution πR, an optimal selection strategy should minimize the function

π → sup
πR∈HP0

EπEπR

[W (S0, 0, V
R)−W (S0, 0, V

H)]2. (14)

From a hedger’s viewpoint, the criterion based on variance is not totally satisfactory as
it treats surpluses and shortfalls in a symmetric way. To address this, one may search for
a strategy from HP0

that minimizes the expected surplus. As before two versions of the
problem can be considered: the first would assume that πR is known completely and the
second would be based on a weaker assumption that the only available information about
πR is that it belongs to HP0

.
Below we show that for all four criteria the optimal strategy is the one that puts the

whole probability mass at a single point ΣBS that solves (12). A proof of this result is
presented in the appendix.

Proposition 2.2 Assume that the random variables V R and V H are independent.

(i) Suppose that the probability distribution πR is known. Then a strategy that selects the
cumulative variance equal to ΣBS with probability one minimizes the variance of a
surplus/shortfall (13) and the expected shortfall.

(ii) The same strategy minimizes over HP0
the following robust versions of the above criteria

sup
πR∈HP0

EπEπR

[W (S0, 0, V
R)−W (S0, 0, V

H)]2

and
sup

πR∈HP0

ES(π, πR),

provided that these values are finite.
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The above result suggests that to minimize the size of a shortfall it suffices to focus on the
simple strategy πBS. It is worth emphasizing, however, that the assumption of independence
of V H and V R is crucial for the optimality of πBS. If not all information relevant for the
prediction of ΣR is reflected in the distribution of V R, the variables V H and V R may be
correlated. In that case it is easy to see that to take an advantage of the correlation the
support of the distribution πH must consist of at least two points.

The derived formula for the expected shortfall can be used in practice to quantify and
formally manage the volatility risk. The essential ingredient of the analysis is the distribution
of the cumulative variance for the time horizon corresponding to the life time of the hedged
instrument. For a given model of volatility, this distribution can always be obtained through
simulations, but in some cases, for example when σt follows of a finite state Markov chain,
easier recursive methods are also available.

The presence of an uncertain liability in the future has been studied in many different
settings and several strategies have been proposed. In the context of a regime switching model
one can easily identify the most conservative approach, which corresponds to the worst case
scenario for the cumulative variance. For such models the largest values of the cumulative
variance, say ΣMAX , exists. If this value is chosen with probability one to determine the
cumulative variance, then it follows from (11) that the expected shortfall is zero and there
is no risk of future liability. Such a strategy is called super-replicating, as the terminal value
of the replicating portfolio is always at least equal to the hedged instrument.

This result has been proven before and studied by many authors (e.g., El Karoui et
al. 1998), but from an economic viewpoint this strategy is not fully satisfactory as it ig-
nores any additional information about particular dynamics of volatility paths. Our results
demonstrate that the distribution of the expected shortfall may be available for some models.
Therefore, it should be used to balance the trade-off between the initial cost and a shortfall
at maturity. This is possible because a large number of new strategies of selecting the initial
cumulative variance can be created by assigning probability one to a value of the cumulative
variance that is between ΣBS and ΣMAX . For each strategy, both the initial cost and the
expected shortfall can be determined. As we reduce the initial cost from the maximal value,
which corresponds to ΣMAX , the expected shortfall and the probability of the shortfall will
increase. By finding this relationship, a hedger can select a strategy that is optimal according
to his/her risk preference.

The explicit formula for the expected shortfall is also helpful in the presence of several
candidates for the distribution of ΣR. Here we briefly outline some of the possible approaches:

1. For hedging volatility risk the essential information is provided by the initial cost P0
and the expected shortfall. It is possible that some of the candidate models will be
quite similar in view of these values. This information may be used to eliminate, for
example, models that are more prone to estimation or implementation errors.

2. Suppose that we have several models, each one described by the initial cost and the
expected shortfall: (PM1

0 , ESM1), ..., (PMJ

0 , ESMJ ). If the initial costs were close to
each other then a conservative strategy would be to select the model with the highest
expected shortfall. The problem becomes more difficult when the initial costs are
different, as then a comparison of the models must reflect the risk tolerance of the
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hedger. For this purpose one may use, for example, the total expected costs, given by
PMi

0 +ESMi , i = 1, . . . , J . Then all the models can be ordered, and the preferable one
(e.g., the most conservative) selected. Alternatively, one may set an upper bound for
the expected shortfall and then choose the smallest initial cost that would guarantee
that regardless of the model the expected shortfall will not exceed this level.

3. In the context of volatility risk management, the existence of different models suggests
uncertainty in the identification of the probability distribution of the cumulative vari-
ance. Let us denote the candidates by πM1 , .., πMJ . Suppose also that plausibility of
each model can be quantified by attaching a number, say αi, i = 1, .., J, between 0 an
1 such that α1 + · · · + αJ = 1. Then this information about the volatility dynamic
can be easily incorporated into a single model by introducing a new distribution of the
total cumulative variance in terms of a finite mixture of all distributions:

J
∑

i=1

πMiαi.

The resulting distribution summarizes the overall initial knowledge about the random
variable V R, and as such it may be used to price and hedge a contingent claim. Let
us observe that the price P0 obtained from (10) for this distribution will be consistent
with the no-arbitrage assumption, as under this combined measure the discounted price
processes of traded securities remain martingales.

3 Volatility risk for regime switching models

In this section, we consider a regime switching model as a special application of the general
results obtained in the last section. First we discuss briefly results of statistical analysis
related to fitting different specifications of such a model to real time series and present
corresponding distributions of cumulative variances over time period of 1 month (or 25 days,
assuming 252 trading days per year). Later we employ some of the methods from Section 2
to deal with the trade-off between initial costs and the expected shortfall as well as the
problem of model uncertainty.

For the statistical analysis we used daily closing prices of S&P/TSX Composite Index
for the time period starting in January 1981 and ending in December 1999. Two models
were fitted to the daily log-returns yt = log(St+1/St), to which we will refer to as high-
frequency data. For simplicity of the exposition, we allowed the regime process to take only
two values, which we denote by 1 and 2. In addition, we assumed that in Model 1 the
conditional distribution of log-returns was normal

yt|ρt = i ∼ N(µi, σ
2
i ),

while in Model 2 it was a Student t-distribution

yt|ρt = i ∼ t(µi, ci, di),
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where µi, ci and di denote respectively the mean, the scale and the number of degrees of
freedom of the distribution in regime i, i = 1, 2. By using the second model we were able to
judge the extent to which a regime switching model with normal distribution was capable
of explaining daily returns, distribution of which is known to have heavy tails. We should
observe that the second model is not inconsistent with the continuous-time specification (2)
from Section 2. It is known that Student t-distribution can be characterized as a mixture
of normal distribution, when the variance follows a certain continuous distribution. Hence
Model 2 can provide a description of situations where the mean variance is switching between
two regimes but in each regime the variance is not constant but it fluctuates around its mean.
Such a behavior is consistent with the stylized facts observed in the markets.

In the estimation of each model, we allowed the expected returns to depend on the
current regime. This additional flexibility enabled us to estimate the variance of returns in
the presence of volatility risk premia. For illustration of different applications of the results
from Section 2, we have selected a Q measure that has the same variance of log-returns as
the one estimated from historical data (see also Hardy 2001). In practice, observations that
correspond to P -measure and/or Q-measure may be used to select the martingale component
of the model. For a comparison of the behavior of volatilities implicit in option prices and
those estimated from stock prices see, for example, Lamoureux and Lastrapes (1993) and
Christensen and Hansen (2002).

An analysis of goodness of fit of the two models based on the likelihood ratio test and the
Akaike information criterion strongly suggested superiority of the model with t-distribution
over the one with the normal distribution (Monroy, 2000). In this case the formal identifi-
cation of the better model was a straightforward task as the models were embedded. This,
however, is not always the case since many of the suggested models for high-frequency data,
like the one based on α-stable distributions, hyperbolic distributions or mixture distribu-
tions, may not have this property. Thus statistical tools may not provide enough evidence to
indicate a model that will be most successful in describing future behavior. From the view-
point of valuation and hedging of contingent claims, however, we should also use criteria
that quantify the involved risk, such as the one discussed in the present paper.

To provide additional examples of plausible distributions of the cumulative variance,
we also fitted Models 1 and 2 to logarithms of monthly returns. Since we found little
statistical evidence in favor of the t-distribution, we decided to use only the model with
normal distribution, which we call Model 3. The fact that monthly log-returns are well
described by normal distribution can be attributed to the effect of the central limit theorem.
This behavior certainly simplifies the search for models that would describe well statistical
properties of low-frequency data. It is not obvious, however, whether models based on such
data will also be satisfactory for the purpose of pricing and hedging of contingent claims in
continuous time. We can look at this aspect of modeling by comparing the volatility risks of
different models.

In Section 2 we demonstrated that for the valuation of contingent claims and an assess-
ment of volatility risk associated with their hedging, we only need to know the distribution of
the cumulative variance over a time period that corresponds to the lifetime of the contract.
For regime switching models these distributions can be completely determined if we know
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the transition probabilities

pij = P (ρt+1 = j|ρt = i), i, j ∈ {1, 2}.

and the variances σ2i , i = 1, 2, of log-returns of daily data in each regime. The estimated
values of these parameters for all three models are summarized below:

p12 p21 σ21 σ22
Model 1

(daily data, normal distribution) 0.02 0.10 0.000028 0.000234
Model 2

(daily data, Student t-distribution) 0.01 0.03 0.000034 0.000167
Model 3

(monthly data, normal distribution) 0.03 0.19 0.001163 0.005271

As each model specifies uniquely the dynamic of the volatility process σt, the same is true
about the distribution of the random variable VK that describes values of the cumulative
variance over a time period of length K (in days). For the first two models, this variable
takes values in the set

WK := {v2l : (K − l)σ21 + lσ22, l ∈ 0, ..., K},

with the corresponding conditional probabilities given by

pK,ρ0
(v2l ) := P (VK = v2l |ρ0) = P ( ρt visits regime 2 l times|ρ0), ρ0 ∈ {1, 2},

for v2l ∈ WK , and zero otherwise. By defining VK and RK as the cumulative variance and
total sojourn in regime 2, respectively, over [0, K], the variable VK can be related to RK

through the following simple formula

VK = (K −RK)σ
2
1 +RKσ22, (15)

which implies

pK,ρ0
(v2l ) = P (VK = v2l |ρ0) = P (RK = l|ρ0), ρ0 ∈ {1, 2}.

Since the probability function of RK can be easily calculated using a recursive method (e.g.,
Hardy 2003), the same is true about the distribution of cumulative variance.

The described method furnishes the probability distributions of VK for the first two
models and any integer number K. For Model 3 this distribution is directly estimated
from monthly data using the maximum likelihood method. Assuming that K = 21 days,
histograms of these distributions for Models 1 and 2 are presented in Figure 1. The two
graphs in the upper panel are the respective probabilities for regimes 1 and 2 under Model
1 while the two graphs in the lower panel are for regimes 1 and 2 under Model 2. A typical
pattern for these distributions is that there is a relatively large probability mass in one value
with the remaining probabilities being small. For instance, if the current regime ρ0 is 1,
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then there is a spike at v20. This is due to the persistence of the volatility process since
pK,1(v

2
0) refers to the probability that regime 1 will be visited K times and this occurs with

high probability given the current regime is 1. Similarly, if the current regime is 2 then the
probability of visiting the higher volatility regime K times (given by pK,2(v

2
K)) tends to be

high (but lower than pK,1(v
2
0)). Such phenomenon is less pronounced for regime 2 in Model 1

due to the higher estimated transition probability from regime 2 to regime 1. The estimated
distribution for Model 3 is similar in characteristics but concentrated at two points only.
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Figure 1: Distribution of Cumulative Volatilities for Models 1 and 2

We now consider the pricing of a European contract under a regime switching model. For
this we assume that the current state of the volatility process is known, but in practice ρt

must be treated as a latent variable and therefore estimated from observable variables. Due
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to the independence assumption, the distribution of ST , conditionally on the volatility path,
is lognormal with the variance equal to the cumulative variance over the time period [0, T ].
A discrete-time approximation to this variance is provided by the random variable VK with
values in the set WK , as defined in (15). Let BS(g, T, r, σ) denote the Black-Scholes value
of a European contingent claim with payoff function g at maturity T , volatility σ, and the
risk-free rate of return r. Then under the regime switching model with initial stock price S0
and current regime ρ0, the risk-neutral value of this contract is given by

PRS(g;T, S0, ρ0) :=
K

∑

l=0

BS(g, T, r, vl)pK,ρ0
(v2l ). (16)

When the cumulative variance is known, possible changes in the value of the underlying
asset can be hedged by using dynamic hedging. The incompleteness of the assumed model,
however, implies that perfect hedging is not possible. It is therefore important to quantify
the volatility risk as well as the potential shortfall for a given hedging strategy.

We now illustrate some of the results from Section 2 using a standard European call
option. Let BScall(S0, σ) denote the Black-Scholes value of a European call option when the
initial stock price is S0 and the cumulative volatility, which is defined as the square-root of
the cumulative variance, for the time period [0, T ] is σ. Then

BScall(S0, σ) = S0Φ(d1)−Xe−rTΦ(d1 − σ),

where

d1 =
ln(S0/X) + rT + 1

2
σ2

σ
,

and Φ denotes the cumulative distribution function of a standard normal random variable.
Furthermore, it follows from (16) that the risk-neutral value of the option under the regime
switching model can be expressed as

PRS(S0, ρ0) =
K

∑

l=0

BScall(S0, vl)pK,ρ0
(v2l ), ρ0 ∈ {1, 2}. (17)

The value of the expected shortfall depends both on the market volatility, as described
by the random variable V R, and the strategy a hedger uses to select his/her initial volatility.
This selection will be made according to another random variable, V H . It was shown in
Section 2 that we can compute the expected shortfall and the probability of a shortfall given
the present regime ρ0. Using SF (σ, ρ0) and pSF (σ, ρ0) to denote, respectively, these two
quantities of interest, we have

SF (σ, ρ0) =
K

∑

l=0

[BScall(S0, vl)−BScall(S0, σ)]pK,ρ0
(v2l )1{v2

l
>σ2} (18)

and

pSF (σ, ρ0) =
K

∑

l=0

pK,ρ0
(v2l )1{v2

l
>σ2}. (19)
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We have also established there that regardless of the market mechanism of selecting the
cumulative volatility, the hedger in regime ρ0 should choose with probability 1 the value σ̂
that solves

BScall(S0, σ̂) = PRS(S0, ρ0). (20)

This value can be described as the implied volatility that calibrates the Black-Scholes model
to the regime switching model. For illustration, suppose that both the initial stock price and
strike price are 100, risk-free interest rate is 5%, and the number of days until the maturity
of the option is 21; i.e. K = 21 or T = 1/12 year. Then, for Model 2 we have

PRS(100, 1) = 1.411

PRS(100, 2) = 2.279.

For regime 1, the implied volatility satisfying (20) is 2.99%, which translates to a shortfall
probability of 0.18, expected shortfall of 0.10 and expected shortfall ratio of 7.26%. The
expected shortfall ratio is defined as the ratio of expected shortfall to the initial price of the
option. Similarly for regime 2, implied volatility is 5.19% with a shortfall probability 0.65,
expected shortfall 0.17 and expected shortfall ratio 7.44%.
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Figure 2: Plot of probability of shortfall pSF (σ̂, ρ0) vs moneyness of option S0/X for both
regimes

Figure 2 depicts the impact that the moneyness of the option has on the probability of a
shortfall. The initial stock prices are assumed to lie in the interval [70, 130]. An immediate
conclusion that can be drawn from this graph is that the shortfall probability is higher for
regime 2, indicating that the volatility risk is also considerably higher. Note also that for
both regimes, the shortfall probability reaches its peak when the option is at-the-money.
This pattern can be explained by the volatility smile effect, which corresponds to the well
known fact that the Black-Scholes formula applied to a stochastic volatility model overprices
options that are at the money or close to the money, while it underprices options that are
deep in or out of the money.
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Figure 3: Plot of expected shortfall ratio SF (σ̂, ρ0)/PRS(S0, ρ0) vs moneyness of option S0/X

Figure 3 considers the expected shortfall ratio as a function of moneyness. In terms of the
relative proportion, the graph indicates that for out-of-the-money contract, the proportion
of shortfall is much higher for the low volatility regime than for the high volatility regime.
On the other hand, when the option becomes in-the-money, the high volatility regime has
a greater proportion of expected shortfall. It should be pointed out that in terms of the
dollar amount, the expected shortfall is greater for the high volatility regime despite the
lower proportion for out-of-the money cases.

The preceding analysis has assumed that the hedger selects the initial volatility according
to (20). One may then wonder if other levels of the initial cumulative volatility are chosen,
what would be the impact on the risk of shortfall as well as the initial cost of hedging?
Because of the uncertainty in which the market chooses the volatility path, the most conser-
vative approach is the one where the hedger assumes the worst case scenario. Such approach
always leads to a zero shortfall and is commonly known as the super-replication strategy,
as discussed in the last section. The downside of this strategy is that it can be very costly
which we will illustrate in our examples.

For a regime switching model, the possible values of cumulative volatility are known and
lie in the interval [v0, vK ], regardless of the current state. Hence super-replication strategy
corresponds to selecting the largest cumulative volatility vK when constructing the hedging
portfolio. Alternatively, a hedger can choose any value, which we denote as ṽ, from the
interval [v0, vK ] and create a corresponding hedging portfolio with cost equal to BScall(S0, ṽ).
Consequently for each chosen level of cumulative volatility ṽ, we can study the tradeoff among
(i) the cost of setting up the replicating portfolio, (ii) the probability of a shortfall pSF (ṽ, ρ0),
and (iii) the magnitude of expected shortfall SF (ṽ, ρ0). Note that the shortfall probability
and expected shortfall depend on the current state of regime and moneyness of the contract.

Figure 4 shows the relationship between the initial cost of hedging and the probability
of shortfall for both regimes 1 and 2. For each regime, we consider three levels of initial
stock prices 98, 100 and 102, representing out-of-the-money, at-the-money, and in-the-money
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cases. To standardize the comparison across options, the initial hedging cost is reported
as the ratio of the cost of the hedging portfolio over the market price of the option; i.e.
BScall(S0, ṽ)/PRS(S0, ρ0). The graph indicates that when the initial hedging cost is less than
the market value of the option, the in-the-money case has the highest shortfall probability.
When the hedging cost ratio is greater than one, the situation is reversed and the out-of-
the-money case is then subject to highest shortfall probability. The crossover occurs when
the hedging cost coincides with the initial value of the option.

Figure 5 provides a tradeoff analysis between the hedging cost ratio and the expected
shortfall ratio. For regime 2, the relationship between the hedging cost ratio and the expected
shortfall ratio is close to linear. The reduction of a shortfall can be achieved by adding a
proportional amount at time 0. Regime 1, on the other hand, exhibits a stronger non-
linearity. For example, to achieve an expected shortfall proportion of 10% for the out-of-
the-money case, regime 1 requires 140% of the initial option price while regime 2 only needs
102%. More importantly, if we were to eliminate the risk of shortfall completely, we need to
further increase the initial hedging cost by approximately 150% for regime 1 while a mere
18% for regime 2. Consequently, super-replication may not be acceptable when low volatility
is the current regime.

We now consider Models 1, 2 and 3 and discuss their implications on hedging. Figure 6
compares the prices of call options for regime 1 and S0 ∈ [98, 102] under these models.
Clearly, the prices from Model 3 are the most expensive while the prices from Model 2 are the
least. Suppose now that for each model we hedge the option according to the corresponding
initial cumulative volatility implied from (20). Last section establishes that this strategy is
optimal in that it minimizes the variance of a surplus/shortfall and the expected shortfall.
Over the range S0 ∈ [80, 120], Figure 7 indicates that in general Model 1 subjects the hedger
to the highest expected shortfall while Model 3 to the least. A more appropriate comparison
is to consider the aggregate cost that takes into account both the initial hedging cost and
the expected shortfall. This potentially eliminates the scenario where the small expected
shortfall is attributed to the high initial hedging cost (see for example Model 3). Figure 8
confirms that in terms of the overall costs Model 3 is still most costly while Model 2 is the
least. However, the aggregate costs for Model 1 are now much closer to Model 3.

The analysis presented above not only provides a systematic approach to the problem
of quantifying the volatility risk for each model, but it can also be useful for selecting the
appropriate model under model uncertainty. For instance, suppose that a hedger strongly
believes that the market will follow one of the three models discussed above. Due to the
model uncertainty, a prudent hedging strategy is to select the worst case model, which in
our example is Model 3. This ensures that the aggregate cost (initial hedging cost plus
expected shortfall) is bounded by this quantity. Such a comparison is possible because
the only feature of these models that is relevant for pricing and hedging is the cumulative
variance. Therefore, despite the fact that Model 3 has been estimated at a lower sampling
frequency than Model 1, it can still be used for hedging as it provides an estimate of this
essential quantity. Furthermore, above examples suggest that such a model does not have
to underestimate the overall cost of hedging. This issue is important for risk management
of long-term financial instruments, for which statistical models are typically estimated from
low-frequency data. The above analysis suggest that such an approach does not exclude
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Figure 6: Initial option prices vs moneyness of the options for Models 1, 2 and 3 in regime 1
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Figure 8: Plot of initial option price plus expected shortfall vs moneyness of the options for
Models 1, 2 and 3 in regime 1

hedging strategies based on a more frequent trading.

Appendix

To show that πBS minimizes the variance of the expected surplus/shortfall, first recall that
for any square-integrable random variable X the minimum of

E[(X − a)2]

over all a is attained for a = E[X]. Hence, we have

EπEπR

[W (S0, 0, V
R)−W (S0, 0, V

H)]2 = EπEπR

[[W (S0, 0, V
R)−W (S0, 0, V

H)]2|V H ]

≥ EπEπR

[[W (S0, 0, V
R)− P0)]

2|V H ]

= EπR

[W (S0, 0, V
R)− P0)]

2, (21)

where we also used the independence of V R and V H . Since the minimal value (21) can be
attained by selecting π = πBS, the result follows.

To show that the same strategy minimizes also the expected shortfall, first observe that
by the assumed monotonicity of the function Σ → W (S0, 0,Σ) it suffices to prove that the
probability distribution concentrated at P0 minimizes

EπH

EπR

(R−H)+ (22)
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over all πH such that EπH

[H] = P0, where x+ is equal to x if x ≥ 0 and zero otherwise, and
R and H are random variables with probability distributions πR and πH , respectively.

Observe that for each y the function

x→ (y − x)+

is convex. By linearity of expectation, this implies that the function

x→ EπR

[(R− x)+]

is also convex. Hence, by Jensen’s inequality we have

EπH

EπR

(R−H)+ ≥ EπR

(R− P0)
+.

Since the right hand side of this inequality can be attained for πH concentrated at P0, this
distribution minimizes (22), and consequently this shows that πBS minimizes the expected
shortfall.

In order to avoid technicalities, in the proof of part (ii) we assume that supports of all
distributions in HP0

are jointly bounded. Since these distributions describe changes in the
cumulative variance, we believe that this assumption is reasonable. Let us equip HP0

with
the Lévy metric and consider two mappings

π → Eπ[X2] and π → Eπ[X+], (23)

where π is a probability distribution and X is a random variable that follows this distribution.
It can be shown that under this metric the functions (23) are continuous and the class HP0

is compact. This implies that the suprema

sup
πR∈HP0

EπEπR

[(W (S0, 0, V
R)−W (S0, 0, V

H))2] (24)

and

sup
πR∈HP0

EπEπR

[(W (S0, 0, V
R)−W (S0, 0, V

H)+] (25)

are attained at distributions that must belong to HP0
. Since the optimal solution that we

obtained in part (i) does not depend on πR, it also minimizes (24) and (25).
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