
E�cient Compilation of Lazy EvaluationThomas JohnssonAbstractThis paper describes the principles underlying an e�cient implementation of alazy functional language, compiling to code for ordinary computers. It is basedon combinator-like graph reduction: the user de�ned functions are used as rewriterules in the graph. Each function is compiled into an instruction sequence for anabstract graph reduction machine, called the G-machine, the code reduces a functionapplication graph to its value. The G-machine instructions are then translated intotarget code. Speed improvements by almost two orders of magnitude over previouslazy evaluators have been measured; we provide some performance �gures.

C - 0

1 BackgroundFunctional programming is emerging as an alternative to the conventional imperative styleof programming [Lan66], [Bac78]. Lazy evaluation (call by need, normal order evaluation)has been proposed as a method for executing functional programs, the advantages being,among others, that unbound data structures, e.g. in�nite lists, can easily be handled, andfurther that it makes interactive input/output possible in functional programs [Fri76].Though functional programming languages have many pleasing properties, an obstacle totheir wider use has been the lack of e�cient implementations.Our work is based on Turner's combinator approach [Tur79], where programs are trans-formed into expressions containing the combinators S, K, I etc from combinatory logic,thus removing all variables from the program. A combinator expression is evaluated in the`SKI-machine' using normal order graph reduction. A problem with combinators is thateach combinator de�nes rather a small interpretative step, and combinator expressionshave a tendency to become very cumbersome for non-trivial programs.Our lazy evaluation method is similar to the combinator reduction regime, but in-stead of using a standard, �xed set of combinators, each user de�ned function is used asa `combinator', i.e., a rewrite rule for the graph. Functions are compiled into code se-quences for an abstract graph reduction machine, called the G-machine, with instructionsthat explicitly construct and manipulate expression graphs to reduce expressions to theirvalues; both shared and cyclic graphs can be directly constructed. Target code gener-ation for ordinary computers from the G-machine code is rather straight-forward. Onemight say that the compiler constructs a specialised, machine-language coded combinatorinterpreter from each program.2 Graph reductionIn our graph reduction approach a program is an expression whose value will appear as,in general, a stream of basic values (integers, booleans etc) on the output �le. Expres-sions are evaluated using normal order graph reduction, and is carried out by performingtransformations on the graph to reduce it to its canonical form. A canonical form is anexpression which cannot be further reduced on the outermost level (even though subex-pressions may be further reducible). In this paper canonical forms are integer and booleanconstants, list expressions e1:e2 with arbitrary expressions e1 and e2, and function appli-cations f e1 � � � em where f is a function that takes more than m curried arguments; areduction of an application can take place only if all curried arguments to the functions arepresent. Thus in general for an expression to become completely reduced, subexpressionsmust also be reduced to canonical form, for instance the elements of a list. Evaluation ofa function application amounts to using the corresponding function de�nition as a graphrewrite rule, repeatedly rewriting the application graph to an instance of the right handside of the function de�nition, with arguments substituted for formal parameters, untilhaving reached a canonical form.For illustration, consider the following functional program, its value being the in�nitelist of natural numbers.letrec from n = n:from(succ n) in from 0C - 1

)@from 0(a))� @from @succ 0(b))output: 0 @from @succ 0(c))0 � @from @succ @succ 0(d))0 � @from @succ 1(e)) � � �0 1 @from @succ 1(f)Figure 1: Graph reduction of from 0. The output is shown to the left of each graph.succ is the prede�ned successor function, `.' is the in�x list construction operator andjuxtaposition denotes function application. Graph reduction of this program is shown in�gure 1, In the �gures function application is denoted by @.The start expression 1(a) is transformed to 1(b) using the rewrite rule for the functionfrom as de�ned above, with a pointer to the integer 0 substituted for the parameter n. In1(b) the expression is on canonical form, and so is also its head part 0. The head valuecan now be output and dropped from the graph, 1(c). Again the the rewrite rule for fromis applied to the graph, 1(d), and is now on the form e.e0, which is canonical. The nextstep is to reduce the head part succ 0 to its canonical form using the rewrite rule for succ,1(e). The resulting integer 1 is then written on output and dropped from the graph.The execution continues in this way ad in�nitum. Note that the shared expressionsucc 0 has been replaced in 1(e) by its value. In general expression graphs are evaluated,i.e., reduced to their canonical forms, at most once and all expressions that share aparticular subexpression bene�t from the evaluation (call by need).3 An introductory example of G-machine executionIn our graph reduction scheme each function de�nition is compiled into a sequence ofG-machine instructions. Each graph rewrite, according to a function de�nition, is carriedout by executing the code for that function. We here illustrate execution of the G-machinewith the reduction step (c){(d) from �gure 1. The G-machine state transitions are shownin �gure 2.Before the start of the reduction a pointer to the expression graph is at the top of aC - 2

pointer stack, �gure 2(a) (the stack grows downwards). Reduction is started by executionof the G-machine instruction EVAL, in this case by the print mechanism. EVAL causesa new stack frame to be created with the previously topmost pointer as its single entry,saving the old stack on another stack called the dump (not shown in �gure 2), then anunwind state pushes pointers to the application nodes of the left `backbone' until havingreached a function node, (a) { (c). The stack is then rearranged so that the topmostpointer of the stack points to the argument of from, the second pointer from the top isleft untouched and will thus point to the apply node which is to be updated by the codewith the result of the application. The G-machine now starts to execute the code forfrom, which is (see section 4.2 and table 3 how we obtain this)from: PUSH 0; PUSHFUN from;PUSHFUN succ; PUSH 3; MKAP;MKAP; CONS; UPDATE 2; RET 1.Except for the last two instructions, this instruction sequence is essentially a post�xrepresentation of the right hand side of from. The PUSH m instruction pushes the mthpointer of the stack relative to the top and starting with 0; note that di�erent o�setshave to be used to push pointers to the formal parameter m, depending on the currentdepth of the stack (the reason for this is explained in section 5.5). The PUSHFUN succinstruction pushes a pointer to a succ function node. MKAP constructs an applicationnode with the to topmost as subparts; similarly for CONS. After having constructed thegraph for the right hand side of the de�nition of from, �gure 2(k), the cons node is copiedonto the result apply node by the UPDATE 2 instruction, having thereby transformedfrom(succ 0) to (succ 0):from(succ(succ 0)) in the graph, which is a canonical expression.The RET 1 instruction pops one element from the stack, and since the top graph is nowon canonical form, the old stack is restored from the dump and control is returned to theinstruction following EVAL. In general, had the top graph been not on canonical form butan application node or a function node, instead of restoring the old stack and returningthe G-machine would have reentered the unwind state to continue the reduction of thenew expression graph.4 Short-circuiting graph reductionWe have previously indicated that we do graph reduction by repeatedly rewriting thegraph to the right hand sides of functions. Indeed we can use G-machine code that doesprecisely this; in most cases, however, we can take considerable shortcuts an do away withmany intermediate graph rewritings.Consider the function de�nition succ n = n + 1. If we compile it into code thatconstructs the graph for the right hand side, add n 1, then when executed the expressiongraph succ e will be rewritten into add e1, thus leaving over the task of further reduction toadd, which will reduce the expression to its integer value. Much e�ciency can be gainedif we compile succ into code that �rst reduces its parameter n, computes the value ofn + 1, and then remakes the apply node to a integer node with this value. This avoidsthe construction of the intermediate graph add e 1. A code sequence for the function succis accordingly C - 3

� @from @succ 0(a) � @from @succ 0EVAL (b) � @� from @succ 0unwind (c) � @� from @succ 0rearrange (d)� @� from @� succ 0PUSH 0 (e) � @� from @�� succ 0fromPUSHFUN from(f) � @� from @��� succ 0fromsuccPUSHFUN succ(g) � @� from @���� succ 0fromsuccPUSH 3 (h)� @� from @��� succ 0from @succMKAP (i)
� @� from @�� succ 0@from @succMKAP (j)

� @� from @� succ 0� @from @succCONS (k)
� �� @from @succ @succ 0UPDATE 2(l)� � @from @succ @succ 0RET 1 (m) Figure 2: G-machine reduction of from (succ 0).C - 4

S� @� succ ���AAAunwind S� @� succ ���AAA�PUSH 0 S� @� succ 5�EVALV5 S� @� succ 5GET V51 S� @� succ 5PUSHBASIC 1 V6 S� @� succ 5ADDS� @� succ 5� 6MKINT S� 6� 5UPDATE 2 S� 6RET 1Figure 3: Shortcut evaluation of function succ.succ: PUSH 0; EVAL; GET; PUSHBASIC 1; ADD;MKINT; UPDATE 2; RET 1.The execution of this code sequence is shown in �gure 3. The addition is done on a separatestack for basic values, called V, with instructions MKINT and GET for transfering valuesto and from the graph. PUSHBASIC pushes a basic value constant on the V stack.Similar reasoning can be applied to all other prede�ned primitive functions; if the righthand side is an if-expression, for example, then the code would do the following: computethe value of the condition, and if true the proper apply node is to be updated with thevalue of the then-expression, else updated with the value of the else-expression.This line of reasoning is systematized in the next section by having di�erent compila-tion schemes, one giving code that computes the value of an expression, and one givingcode that constructs the graph of an expression. This more direct method is signi�cantlyfaster; in our compiler implementation we have measured a speedup of about a factor often for some typical programs, compared to naive graph reduction.5 Technical details of the abstract machine and com-pilerIn this section we give a complete set of compilation rules for a simple functional language,compiling to G-machine code. We also give an abstract description of the G-machine,C - 5

describing the the e�ects of the G-machine instructions on a machine state.5.1 Source LanguageA program in the language described here consists of a set of recursive functions and anexpression whose value is the value of the program, as summarised in table 1. Normalorder evaluation is assumed. Each function fi takes ni curried arguments and the freevariables of ei are in the set fx1 � � �xnig. Operators +, � etc are viewed as syntactic sugarfor applications to prede�ned functions add, sub etc, of which we deal with the ones givenin table 2. Table 1: Syntax of programsprogram ::= f1x1 � � � xn1 = e1 (function de�nitions)...fmx1 � � �xnm = eme0 (the value of the program)e ::= identi�ers j constants j e ej let x1 = e1 and � � � and xm = em in e(multiple simultaneous local de�nitions)j letrec x1 = e1 and � � � and xm = em in e(multiple simultaneous local recursive de�nitions)Table 2: Prede�ned functionsadd sub mul div (binary arithmetic operators)neg (unary negation)lt le eq ne ge gt (binary relational operators)and or (conditional and, or)not (logical negation)cons (binary list construction)hd tl (unary head and tail of a list)null (unary test on empty list)if (ternary if-then-else)Note that there is no lambda expression in the syntax of expressions, functions arede�ned only globally. Functional programs with local function de�nitions and lambdaexpressions with free variables can be transformed into the form above, using super com-binators [Hug82]; an algorithm to the same e�ect is used in our compiler implementation,however, the program resulting from our transformation does not exhibit `full laziness',as is the main issue in Hughes' work. C - 6

5.2 Compilation rulesThe abstract compiler given in table 3 is subdivided into 4 compilation schemes:F [[f x1 � � � xm = e]] gives the code for a function which reduces the graph of an applica-tion to canonical form.C[[e]] r n gives code that constructs the graph of e and leaves a pointer to the result onthe top of the stack.E[[e]] r n gives code that computes the value, i.e. canonical form, of e and leaves a pointerto the value on the top of the stack. It yields the sames result as C[[e]] r n followedby an EVAL instruction and embodies the short-circuiting described in section 4.B[[e]] r n computes the basic value of e and leaves the result on the basic value stackV, yielding the same result as E[[e]] r n followed by a GET instruction. The ideabehind B is to avoid construction of a new node for each intermediate result in anarithmetic or logical expression. The value is transferred to the graph only whenthe entire expression has been evaluated, by the MKINT or MKBOOL instruction.

C - 7

Table 3: Compilation rulesF [[f x1 � � �xm = e]] = E [[e]] r (m + 1); UPDATE (m+ 1); RET m,where r = [x1 = m+ 1; x2 = m; � � � ; xm = 2]Scheme E : Evaluate1. E [[i]] r n = PUSHINT i2. E [[b]] r n = PUSHBOOL b3. E [[nil]] r n = PUSHNIL4. E [[x]] r n = PUSH (n� r(x)); EVAL5. E [[f]] r n = PUSHFUN f6. E [[add e1 e2]] r n = B[[add e1 e2]] r n; MKINT, and similarly for sub, mul, div7. E [[neg e]] r n = B[[neg e]] r n; MKINT8. E [[eq e1 e2]] r n = B[[eq e1 e2]] r n; MKBOOL, and similarly for lt, gt, ne, ge, le9. E [[not e]] r n = B[[not e]] r n; MKBOOL10. E [[and e1 e2]] r n = E [[if e1 e2 false]] r n11. E [[or e1 e2]] r n = E [[if e1 true e2]] r n12. E [[cons e1 e2]] r n = C[[e1]] r n; C[[e2]] r (n+ 1); CONS13. E [[null e]] r n = E [[e]] r n; NULL; MKBOOL14. E [[hd e]] r n = E [[e]] r n; HD; EVAL, similarly for tl15. E [[if e1 e2 e3]] r n = B[[e1]] r n; JFALSE l1; E [[e2]] r n; JMP l2; LABEL l1; E [[e3]] r n; LABEL l2where l1 and l2 are new unique labels16. E [[letd in e]] r n = Clet [[d]] r n; E [[e]] r0 n0; SLIDE (n0 � n), where (r0; n0) =X r [[d]] r n17. E [[letrec d in e]] r n = Cletrec[[d]] r0 n0; E [[e]] r0 n0; SLIDE (n0 � n), where (r0; n0) =X r [[d]] r n18. E [[e]] r n = C[[e]] r n; EVAL otherwiseScheme B: Evaluate basic value1. B[[i]] r n = PUSHBASIC i2. B[[b]] r n = PUSHBASIC b3. B[[add e1 e2]] r n = B[[e1]] r n; B[[e2]] r (n+ 1); ADD, similarly for sub, mul, div, eq, ne, lt, gt, ge, le.4. B[[neg e]] r n = B[[e]] r n; NEG5. B[[not e]] r n = B[[e]] r n; NOT6. B[[null e]] r n = E [[e]] r n; NULL7. B[[if e1 e2 e3]] r n = B[[e1]] r n; FALSE l1; B[[e2]] r n; JMP l2; LABEL l1; B[[e3]] r n; LABEL l2where l1 and l2 are new unique labels8. B[[let d in e]] r n = Clet [[d]] r n; B[[e]] r0 n0; POP (n0 � n) where (r0; n0) =X r [[d]] r n9. B[[letrec d in e]] r n = Cletrec[[d]] r0 n0; B[[e]] r0 n0; POP (n0 � n) where (r0; n0) = X r [[d]] r n10. B[[e]] r n = E [[e]] r n; GET, otherwiseScheme C: Construct graph1. C[[i]] r n = PUSHINT i2. C[[b]] r n = PUSHBOOL b3. C[[nil]] r n = PUSHNIL4. C[[f]] r n = PUSHFUN f5. C[[x]] r n = PUSH (n� r(x))6. C[[cons e1 e2]] r n = C[[e1]] r n; C[[e2]] r (n+ 1); CONS7. C[[e1 e2]] r n = C[[e1]] r n; C[[e2]] r (n+ 1); MKAP, if not matched above8. C[[let d in e]] r n = Clet [[d]] r n; C[[e]] r0 n0; SLIDE (n0 � n) where (r0; n0) =X r [[d]] r n9. C[[letrec d in e]] r n = Cletrec[[d]] r0 n0; C[[e]] r0 n0; SLIDE (n0 � n) where (r0; n0) =X r [[d]] r nMiscellaneous schemes for local de�nitionsX r [[v1 = e1 and � � �vi = ei � � �and vm = em]] r n= (r[vi = n+ 1; � � �vi = n+ i; � � �vm = n+m]; n+m)Clet [[v1 = e1 and � � �vi = ei � � �and vm = em]] r n= C[[e1]] r n;� � � C[[ei]] r (n+ i � 1);� � �C[[em]] r (n+m � 1)Cletrec[[v1 = e1 and � � �vi = ei � � �and vm = em]] r n= ALLOC m; C[[e1]] r (n +m); UPDATE m;� � �C[[ei]] r (n+m); UPDATE (m + 1� i);� � � C[[em]] r (n+m); UPDATE 1C - 8

In addition, there are 3 help-functions used for local de�nitions: X r returns a pair ofthe extended environment and the new stack depth, Clet and Cletrec gives code to extendthe stack with local de�nitions. In the translation schemes r is a mapping from identi�ersof parameters to their location on the stack, and n is the current depth of the stack.Below we show compilation of the function f x = x:f x .F [[f x = cons x (f x)]] =E[[cons x (f x)]] [x = 2] 2; UPDATE 2; RET 1 =C[[x]] [x = 2] 2; C[[f x]] [x = 2] 3; CONS; UPDATE 2; RET 1 =PUSH 0; C[[f]] [x=2] 3; C[[x]] [x = 2] 4; MKAP; CONS; UPDATE 2; RET 1 =PUSH 0; PUSHFUN f; PUSH 2; MKAP; CONS; UPDATE 2; RET 1.5.3 The abstract machineA state in the abstract G-machine is a 7-tuple hO;C; S; V;G;E;Di whereO is the output produced so far, as shown in the example in �gure 1. It consists ofa sequence of integers and booleans. In an actual implementation O is printed onstandard output.C is the G-code sequence currently being executed.S is a stack of node names, i.e., pointers into the graph.V is a stack of basic values, i.e., integers and booleans on which the arithmetic andlogical operations are performed, as shown in section 4.G is the graph: a mapping from node names to nodes. We have nodes of the followingtypes:INT i integer nodes,BOOL b boolean nodes,NIL empty list nodes,CONS n1 n2 list nodes, where n1 is a pointer to the head graph and n2 is a pointerto the tail graph,AP n1 n2 application nodes, where n1 is a pointer to the function graph and n2is a pointer to the argument graph,FUN f a node with a reference to the compiled function f ,HOLE a node which is to be �lled in with another value later; it is used whileconstructing cyclic graphs for letrec expressions.E is a global environment, which is a mapping from function names to pairs consistingof the number of curried arguments of the function, and its code sequence. E cor-responds to the code segment in conventional machines and is constant throughoutthe execution of the program.D is a dump used for recursive calls to EVAL: a stack of pairs consisting of� a stack of node names: S before EVAL,� a G-code sequence: C before EVAL.Table 4 summarises the state transition rules for the G-machine instructions used inthe compilation rules given in table 3. C - 9

Table 4: State transition rules for G-machine instructions1. ho, PRINT.c, n.s, v, G [n = INT i], E, Di) ho;i, c, s, v, G [n = INT i], E, Di2. ho, PRINT.c, n.s, v, G [n = BOOL b], E, Di) ho;b, c, s, v, G [n = BOOL b], E, Di3. ho, PRINT.c, n.s, v, G [n = CONS n1 n2], E, Di)ho, EVAL.PRINT.EVAL.PRINT.c, n1.n2.s, v, G [n = CONS n1 n2], E, Di4. ho, PRINT.c, n.s, v, G [n = NIL], E, Di) ho, c, s, v, G [n = NIL], E, Di5. ho, EVAL.c, n.s, v, G [n = AP n1 n2], E, Di)ho, UNWIND.(), n.(), v, G [n = AP n1 n2], E, (c,s).Di6. ho, EVAL.c, n.s, v, G [n = INT i], E, Di) ho, c, n.s, v, G [n = INT i], E, Di,similarly for nodes BOOL b, NIL, CONS n1 n2 and FUN f .7. ho, UNWIND.(), n.s, v, G [n = AP n1 n2], E, Di) ho, UNWIND.(), n1.n.s, G [n = AP n1 n2], E, Di8. ho, UNWIND.(), n0.n1 � � � nk.s, v, G [n0 = FUN f ,n1 = AP n01 n001 ,� � � nk = AP n0k n00k], E [f = (k,c)], Di)ho, c, n001 � � � n00k.nk.s, v, G [n0 = FUN f , n1 = AP n01 n001 , � � � nk = AP n0k n00k], E [f = (k,c0)], Di9. ho, UNWIND.(), n0.n1 � � � nk.(), v, G [n0 = FUN f], E [f = (a,c0)], (c0,s0).Di and k < a)ho, c0, nk :s0, v, G [n0 = FUN f], E [f = (k,c0)], Di10. ho, RET m.c, v, n1 � � � nm.n.(), G [n = INT i], E, (c0,s0).Di)ho, c0, n.s0, v, G [n = INT i], E, Di, similarly for nodes BOOL b, NIL and CONS n1 n2.11. ho, RET m.c, n1.� � � nm.n.s, v, G [n = AP n1 n2], E, Di)ho, UNWIND.(), n.s, v, G [n = AP n1 n2], E, Di, similarly for n = FUN f .12. ho, PUSHINT i.c, s, v, G, E, Di) ho, c, n0.s, v, G [n0 = INT i], E, Di13. ho, PUSHBOOL b.c, s, v, G, E, Di) ho, c, n0.s, v, G [n0 = BOOL b], E, Di14. ho, PUSHNIL.c, s, v, G, E, Di) ho, c, n0.s, v, G [n0 = NIL], E, Di15. ho, PUSHFUN f .c, s, v, G, E, Di) ho, c, n0.s, v, G [n0 = FUN f], E, Di16. ho, PUSH m.c, n0.� � �.nm.s, v, G, E, Di) ho, c, nm.n0.� � � nm.s, v, G, E, Di17. ho, MKINT.c, s, i.v, G, E, Di) ho, c, n0.s, v, G [n0 = INT i], E, Di18. ho, MKBOOL.c, s, b.v, G, E, Di) ho, c, n0.s, v, G [n0 = BOOL b], E, Di19. ho, MKAP.c, n1.n2.s, G, E, Di) ho, c, n0.s, v, G [n0 = AP n2 n1], E, Di20. ho, CONS.c, n1.n2.s, G, E, Di) ho, c, n0.s, v, G [n0 = CONS n2 n1], E, Di21. ho, ALLOC m.c, s, v, G, E, Di)ho, c, n01 � � �n0m.s, v, G [n01 = HOLE, � � � n0m = HOLE], E, Di22. ho, UPDATE m.c, n0.� � � nm.s, v, G [n0 = N0 , nm = Nm], E, Di)ho, c, n1.� � � nm.s, v, G [n0 = N0 , nm = N0], E, Di23. ho, SLIDE m.c, n0.� � �.nm.s, v, G, E, Di) ho, c, n0.s, v, G, E, Di24. ho, GET.c, n.s, v, G [n = INT i], E, Di) ho, c, s, i.v, G [n = INT i], E, Di25. ho, GET.c, n.s, v, G [n = BOOL b], E, Di) ho, c, s, b.v, G [n = BOOL b], E, Di26. ho, PUSHBASIC i.c, s, v, G, E, Di) ho, c, s, i.v, G, E, Di27. ho, ADD.c, s, i2.i1.v, G, E, Di) ho, c, s, (i1 + i2).v, G, E, Di,similarly for SUB, MUL, DIV, EQ, NE, LT, GT, LE and GE,the last six putting boolean values on V.28. ho, NEG.c, s, i.v, G, E, Di) ho, c, s, (�i).v, G, E, Di29. ho, NOT.c, s, b.v, G, E, Di) ho, c, s, (:b).v, G, E, Di30. ho, JFALSE l.c, s, true.v, G, E, Di) ho, c, s, G, E, Di31. ho, JFALSE l.c, s, false.v, G, E, Di) ho, JMP l.c, s, v, G, E, Di32. ho, JMP l.� � � LABEL l.c, s, v, G, E, Di) ho, c, s, v, G, E, Di33. ho, LABEL l.c, s, v, G, E, Di) ho, c, s, v, G, E, Di34. ho, HD.c, n.s, v, G [n = CONS n1 n2], E, Di) ho, c, n1.s, v, G [n = CONS n1 n2], E, Di,similarly for TL35. ho, NULL.c, n.s, v, G [n = CONS n1 n2], E, Di) ho, c, s, false.v, G [n = CONS n1 n2], E, Di36. ho, NULL.c, n.s, v, G [n = NIL], E, Di) ho, c, s, true.v, G [n = NIL], E, Di37. ho, POP m.c, n1.� � �.nm.s, v, G, E, Di) ho, c, s, v, G, E, DiC - 10

h(); c0; (); (); fg; E0; ()iwhere c0 = E[[e0]] r0 0; PRINTand E0 = f f0 : (n1, F [[f0 x1 � � � xn1 = e0]]) ,...fm : (nm, F [[fm x1 � � �xnm = em]]),add : (2, F [[p x y = add x y]]),sub : (2, F [[p x y = sub x y]]),...gFigure 4: Initial state of the G-machine.In a G-machine state, () denotes an empty stack or an empty code sequence. Thesemicolon appends values onto an output sequence. Period is used as in�x cons forinstruction sequences and push for stacks. Updating of the graph is written as e.g. G[n =INTi]. If there is a node named n previously in G, then the node n is updated with a newvalue, otherwise a new node is created. This notation is also used in pattern matchingsituations, for instance state transition rule 1 is applicable if the top of the stack points toan integer node. For instructions with parameters, e.g. PUSH m.c binds as (PUSH m).c.A node name that occurs only in the right hand side of a transition rule is considered tobe new and unique, e.g. n0 in transition rule 12. G-machine states that do not match anyrule are considered to be run time errors.The de�nition of the G-machine has certain similarities with the de�nition of theSECD machine [Lan64], new in our model is that we describe how we do lazy output, andhandle updating and sharing in a graph, in the framework of the abstract machine.5.4 Initial and �nal state of the machineThe initial con�guration of the machine for a given program is shown in �gure 4. Themachine starts with an empty output, a code sequence c0 for evaluating and printing thestart expression e0, an empty pointer stack and an empty basic value stack, an emptygraph, an environment E0 containing the compiled code for the functions together withtheir arity, and an empty dump. Since the operators +, � etc are represented withapplications to prede�ned functions add, sub etc in unevaluated expression graphs, thecode for these functions must also be present in E0. The machine stops when the stateho; (); (); (); G;E; ()i has been reached.5.5 The evaluation mechanismThe evaluation of the program is driven by PRINT, which in case of a list starts the eval-uation of the head and the tail part of the list, see transition rules 1{4. Only the leaves ofthe printed data structure appears on the output, for instance the list (2:3:nil):(5:nil):nilgives the output sequence 2 3 5.The EVAL instruction reduces the graph pointed to by the pointer at the top of theC - 11

� @� @ emem�1� @� f e1) � @� @ emem�1� @� f e1Figure 5: Rearrangement of the stack after unwind.stack to canonical form. If the top of stack is an apply node, transition rule 5, the restof the code sequence and the stack except for the top element is pushed onto the dump,and the unwind state is entered, following the function parts of apply nodes, pushing thefunction pointers on the way (transition rule 7). When a function node has been reached,and the stack is deep enough to contain all curried arguments to the function, rule 8, thestack is arranged according to �gure 5. The top m elements of the stack now points tothe m curried arguments of the function, and below them there is a pointer to the applynode which is to be updated with the value of the application. The reason for remakingthe stack in this manner is �rstly to make the function arguments easily accessible, andsecondly to access function arguments and local variables introduced by let and letrecexpressions uniformly.After the stack rearrangement the function code is executed; see also compilation ruleF . If there were too few curried arguments in the application then a premature return isperformed, rule 9.The RET instruction performs a return from EVAL if the function code has updatedthe apply node for the return value with an integer, boolean, nil or cons node, rule 10. Ifthe updated node is an apply node or function node then the UNWIND state is reentered,to continue the reduction of the new graph; an example when this happens is shown in�gure 6 which illustrates reduction of the expression f (g:nil) 3 , where f l = hd l andg x = 2 � x. The value of f (g:nil) is the function g, and f has one 'extra' argumentsupplied. After EVAL and two unwind transitions we have the con�guration shown in6(b), the top of the stack is then made to point ot the argument of f , �gure 6(c). Thecode for f then computes the value of hd l, which is the function g, and updates the applynode of the application f : (g:nil) with the function node g, �gure 6(d). Since the entiregraph for which EVAL was called for is not yet fully reduced, the RET 1 instruction of thecode for f makes the machine reenter the unwind state, �gure 6(e), and the top of of thestack is made to point to the argument of g, �gure 6(f). The code for g then computes thevalue of 2 + x and updates the top apply node with the integer 6. The RET 1 instructionof the function g �nally performs a proper return from EVAL, �gure 6(h).The fact that `extra' curried arguments can be applied to function in this manner,and in general we cannot know in advance how many extra, is the reason for accessingparameters and variables relative to the top of the stack (instead of relative to the bottomwhich perhaps at �rst sight would seem more natural).C - 12

f l = hd l f: PUSH 0; EVAL; HD; EVAL; UPDATE 2; RET 1.g x = 2� x g: PUSHBASIC 1; PUSH 0; EVAL;GET; MUL; MKINT; UPDATE 2; RET 1� @@ 3f �) � � �g nilEVAL(a) ��� @@ 3f �)g nil(b) ��� @@ 3f �) � � �g nilUPDATE 2(c) ��� @g 3�)g nilRET 1(d)�� @g 3)(e) �� @g 3) � � �UPDATE 2(f) �� 6 3)RET 1(g) � 6 3(h)Figure 6: Graph reduction when a function returns a function.5.6 Let and letrec expressionsThe code for a let or letrec expression constructs the graphs for the locally de�nedexpressions and puts pointers to these graphs onto the stack. When leaving the code forthe let or letrec expression these stack elements are removed by the SLIDE instruction; seecompilation rules E16, E17 etc. The recursive local de�nitions in letrec expressions areimplemented by constructing cyclic graphs, see scheme Cletrec in table 3 As an exampleconsider the code sequenceC[[letrecx = f x in x x]] r n=Cletrec[[x = f x]] r[x = n+ 1] (n+ 1); C[[x x]] r[x = n+ 1] (n+ 1); SLIDE 1 =ALLOC 1; PUSHFUN f; PUSH 1; MKAP; UPDATE 1;PUSH 0; PUSH 1; MKAP; SLIDE 1.Figure 7 shows some of the intermediate machine states when executing this code se-quence. To construct the graph for x we must have a pointer to x, for this purpose aHOLE node is allocated by the ALLOC 1 instruction; when f x has been constructed theHOLE node is updated with this graph.6 Further improvements of the G-machine codeThis section discusses two kinds of improvements of the G-machine code, which is notembodied in the compiler given in the previous section: improved tail recursive behaviourand exploiting the knowledge that a variable has been previously evaluated. Both kindsof improvements are included in our compiler implementation.C - 13

��)e@f UPDATE 1(a) �) � � �@f(b) ��)@f@ SLIDE 1(c) �) � � �@@f(d)Figure 7: Construction of a cyclic graph.6.1 Tail recursionGraph reduction by succesive rewritings to right hand sides gives us a loop-like behavior fortail recursive calls. However, this desirable property is not preserved by the compilationscheme given in table 3, because compilation scheme F emits code for computing thevalue of the right hand side, before updating with the result. Thus using scheme E in Fis advantageous if the right hand side is an application to a primitive prede�ned functionsuch as add, sub etc, but does not bring out the proper tail recursive behaviour if the righthand side is an application to a user de�ned function. For instance, using the compilationrules in table 3, we haveF [[g x = f 5]] = E[[f 5]] [x = 2] 2; UPDATE 2; RET 1 =PUSHFUN f; PUSHINT 5; MKAP; EVAL; UPDATE 2; RET 1.Here the EVAL instruction is unnecessary, and in fact harmful, in that it will createanother stack frame for the evaluation of f5. If the EVAL instruction is removed from thecode above the UPDATE instruction will update with the apply node of f5, and the RETinstruction will make the machine reenter the unwind state; no additional stack frame iscreated.Proper tail recursive behaviour can be reinstated into our compilation schemes byintroducing yet another compilation scheme, R for return value, which preserves thecontext that the result is to be returned as the value of the current function evaluation.Starting with the compilation function F , we then haveF [[fx1 � � �xm = e]] = R[[e]] [x1 = m+ 1; � � �xm = 2] (m+ 1)where the code emitted by R also performs the updating and returning. To return thevalue of an application to a user de�ned function we can do a simplistic graph rewite, byR[[fe1 � � � em]] r n= C[[fe1 � � � em]] r n; UPDATE n; RET (n� 1).R can also be made to propagate down the branches of an if expression, byR[[if e1 e2 e3]] r n= B[[e1]] r n; JFALSE l1; R[[e2]] r n; LABEL l1; R[[e3]] r nand down into the in-expression in let and letrec expressions, byC - 14

1 � @2 �...n �) 1 � @2 �... ���AAAem��������AAAe1m+ 1 �Figure 8: Rearranging the stack for tail calls.R[[let d in e]] r n = Clet [[d]] r n; R[[e]] r0 n0R[[letrec d in e]] r n = Cletrec[[d]] r0 n0; R[[e]] r0 n0where (r0; n0) = X r [[d]] r n.The default case for R isR[[e]] r n = E[[e]] r n; UPDATE n; RET (n� 1).To return the value of the application fe1 � � � em, we can do even better by shortcircuitingthe unwind action which in this case follows the RET instruction. Provided the arity off is m, which is a condition for that the same apply node will be updated both by thecalling function and f , we can useR[[f e1 � � � em]] r n= S[[e1 � � � em]] r n; JFUN f .The new scheme S emits a code sequence to rearrange the stack in the manner shown in�gure 8, and then a direct jump is performed to the �rst instruction of f , thus turningtail recursion into loops in the G-machine code. Using this method on our little exampleabove, assuming f only takes one argument, we would getF [[g x = f 5]] = PUSHINT 5; MOVE 1; JFUN f.The new instructions MOVE and JFUN are de�ned byho; MOVEm:c; n0 � � � nm�1:nm:s; v; G; E; Di) ho; c; n1 � � � nm�1:n0:s; v; G; E; Diho; JFUN f:c; s; (); G; E[f = (a; c0)]; Di) ho; c0; G; E[f = (a; c0)]; Di.6.2 On evaluated variablesThe �rst time EVAL is executed for a particular variable, that graph is reduced to canon-ical form, and subsequent EVALs on the same variable has no e�ect. By keeping count ofwhen variables are being evaluated in each function we can avoid emitting EVAL instruc-tions more than once for each variable. For example, to compute the basic value of theexpression x� x, table 3 gives us the code sequenceB[[mul x x]] [x = 1] 1 =B[[x]] [x = 1] 1; B[[x]] [x = 1] 1; MUL =PUSH 0; EVAL; GET; PUSH 0; EVAL; GET; MUL.C - 15

Here the second EVAL instruction is clearly useless and can be eliminated. Apart fromhaving removed a useless EVAL instruction, conditions also become better for target codegeneration from the G-code, since we get longer code sequences unbroken by calls to EVALand may thus keep things in machine registers a bit longer.Because of the cost involved in construction and reduction of expression graphs, itis cheaper to evaluate some expressions directly than to construct their graphs, even ifthe value is not going to be used. This is the case for expressions involving constants,variables which has been evaluated previously, and arithmetic and logical primitive func-tions (we ignore the problem of overow and other exceptions). As an example, considerconstruction of the expression 2� x+ y. The compilation rules in table 3 gives usC[[add(mul 2 x) y]] [x = 2; y = 1] 2 =PUSHFUN add; PUSHFUN mul; PUSHINT 2;MKAP; PUSH 2; MKAP; PUSH 3; MKAP.If the variable x has been previously evaluated, it is safe to compute the value of 2 � x,and instead we can use the code sequencePUSHFUN add; PUSHBASIC 2; PUSH 1; GET; MUL; MKINT PUSH 3; MKAP.and if both x and y have been previously evaluated, we can use the code sequencePUSHBASIC 2; PUSH 0; GET; MUL; PUSH 1; GET; ADD; MKINT.When dealing with expressions with list values the situation is similar. For instance,consider construction of the expression tl l, as in the function de�nitionf l = if null l then � � � else g (tl l)Because of the test in the condition part of the if-expression, not only can we know forsure that l has been evaluated, in the else part of the if-expression we can also assert thatl is on cons form. To construct the expression tl l, instead of usingPUSHFUN tl; PUSH 2; MKAPwe can use the code sequence PUSH 1; TL.Not only does this avoid allocation of an apply node, it also removes the overhead ofexecuting the code for the tl function when function g calls for evaluation of its argument.When a variable with a list value cannot be determined statically to be on cons-form,we can test for this dynamically, with instructionsMKHD andMKTL, used in the followingcompilation rules. C[[hd e]] r n = C[[e]] r n; MKHDC[[tl e]] r n = C[[e]] r n; MKTLMKHD and MKTL test whether the top of stack is on cons-form, and if this is the casethen behaves as the HD and TL instructions respectively, otherwise constructs the graphs.These instruction are de�ned by C - 16

ho; MKHD:c; n:s; v; G[n = CONS n1 n2]; E; Di)ho; c; n1:s; v; G[n = CONS n1 n2]; E; Diotherwise: ho; MKHD:c; n:s; v; G; E; Di)ho; c; n1:s; v; G[n1 = AP n2 n; n2 = FUN hd]; E; Diand similarly for MKTL.The analysis shown above can detect call-by-name to call-by-value transformationsonly locally within a function. A more general method would be to use a global analysismethod, as described in [Myc80]. A future version of our compiler may include such ananalysis phase.7 ImplementationThis section discusses some features of our compiler implementation of the G-machineconcept. The source language is a completely function variant of ML [GMW79], withcall-by-name semantics. The last phase of the compiler translates the G-machine codeinto target code for the VAX-11 computer.7.1 Compiler organisationThe compiler is organised into the following parts:Syntax analysis: Builds an abstract syntax tree of the program.Type checking: Checks that the program is well-typed, using a polymorphic type check-ing algorithm [Mil78].Program transformation: Transforms the program into a set of functions, possiblymutually recursive, as described in section 5.1. Also, the user de�ned data typesand pattern matching is transformed into simpler constructs.Value analysis: Performs the analysis on evaluated variables as discussed in section 6.2.G-code generation: Translates the functions into G-machine code.Target code generation: Translates the G-machine code into assembly code for theVAX-11 computer.The entire compiler, except for the syntax analysis, has been written in fc [Aug82],a functional language with lazy evaluation, a forerunner to the present implementationbased on our earlier ideas of compiled graph reduction [Joh81]. We are currently in theprocess of rewriting the compiler into its own language.C - 17

7.2 Target code generationFor target code generation, the components of the G-machine state is mapped onto thetarget computer in the following way:O is printed on standard output.C is the target code of the currently executed function, and the program counter.S is a data area for the pointer stack, and a stack pointer register (called ep).V is the system stack and stack pointer (sp).G is a large heap area divided into two equally sized halves, and a register (called hp)as heap pointer, pointing to the next free location (see below).E is the target code for the functions, with code that performs nr-of-arguments-check.D is the system stack and stack pointer (sp). Only pointers into the S stack and into thesystem stack are pushed, not entire stacks and dumps as description of the abstractmachine suggests.Both the V stack and the dump D is mapped onto the same stack in the targetmachine, which is possible because things pushed onto the V stack are only used locallyin functions which pushed the value.The garbage collector is a variant of Fenichel-Yochelson's copying garbage collector[FY69], but for vary-sized cells, and works as follows. The heap is divided into two equallysized areas. Memory is allocated from one area at a time by simply incrementing the heappointer hp, and when running out of memory in one area the entire graph is copied intothe other heap area, leaving the garbage behind, also updating the pointers on the pointerstack S. In the target code, before an instruction sequence that allocates a certain amountof memory, a check is made if that amount of memory is available on the heap, if not thegarbage collector is invoked. A disadvantage of this method of memory management isthat only half of the total available memory can be utilised; however on computers withlarge virtual address spaces this is not a serious problem. To its advantage, the time usedfor garbage collection is proportional to the size of the graph, (not the size of the heaparea, as it is for mark-scan methods) thus taking little time for small graphs.The target code generation is done by deferring some operations on the pointer stackS and basic value stack V , and instead simulate the contents of the topmost elements.Thus instructions PUSHINT, PUSHFUN, PUSHBASIC, etc, which pushes constants, willin the code generator push these constants on the simulated stacks. The instructionMKAP, for instance, will thus take two arguments from the simulated stack if nonempty,otherwise from the real stack. To bring out the main idea, a simple example of targetcode generation is shown in �gure 9, which constructs the graph for the expression 3:f 5.In the simulated stack fun f refers to a pointer to a function node f, int i refers to aninteger node with value i, and heap n refers to a pointers into the heap at location n.In the code, newly created nodes on the heap are referred to relative to the hp register,and since node allocation changes the value of hp, we also need to carry along a currentrelative value of hp, called HP. Function nodes, integer nodes, boolean nodes and the nilnode are not allocated each time on the heap; instead pointers to nodes in a constant areaare used. (The simulated V stack is irrelevant for this example and is not shown.)A further possibility which is not shown in this example is to allocate machine registersfor entries into the simulated stacks, particularly the for V stack entries for the result ofthe usual arithmetic operations. C - 18

G-code VAX assembler code HP Simulated S stack Remark0 () Start con�gurationPUSHINT 3 0 int 3.() Push pointer to integer constant 3PUSHFUN f 0 fun f.int 3.() Push pointer to function node for fPUSHINT 5 0 int 5.fun f.int 3.() Push pointer to integer constant 5MKAP movl $APPLY,(hp)+ 4 Tag of apply node to heap ...movl $C F,(hp)+ 8 Fun. part = fun f to heap ...movl $I 5,(hp)+ 12 heap 0.int 3.() Arg. part = int 5 to heap.CONS movl $CONS,(hp)+ 16 Tag of cons node to heap ...movl $I 3,(hp)+ 20 Head part = int 3 to heap ...moval -20(hp),(hp)+ 24 heap 12.() Tail part = result of MKAP to heap ...moval -12(hp),-(ep) 24 () Move result to real S stack.Figure 9: Target code generation from graph construction code.The target code is assembled in the usual manner, and loaded together with theruntime system to make an executable �le. The runtime system contains code for PRINT,EVAL, unwind, the garbage collector, and also target code for the primitive prede�nedfunctions add, sub etc.7.3 PerformanceWe have compared our implementation with a couple of other implementations of func-tional languages that have been available to us, both with strict and lazy evaluation. Theimplementations in the table below are the following:1. Our implementation; lazy evaluation, executes VAX-11 code.2. Cardelli's ML system [Car84]; strict evaluation, executes VAX-11 code.3. The Liszt Lisp compiler under UNIX; strict evaluation, executes VAX-11 code.4. The ML implementation in the LCF system; strict evaluation, interprets Lisp.5. SASL, based on the SECD machine [Tur75]; lazy evaluation, interpretative.6. C compiler under UNIX (applies only to the Fibonacci program).The table below shows the execution time in seconds for three programs: �b(20) using�b(n) = if n < 2 then 1 else �b(n � 1) + �b(n � 2), primes up to 300 using sieve ofErathostenes, and insertion sort of 100 random elements.1. 2. 3. 4. 5. 6.Fibonacci 0.92 0.5 1.1 46 31 0.46Primes 0.50 1.2 1.1 29 20 -Insert sort 0.37 1.0 0.8 15 12 -The programs above have been chosen so that the results are the same independent ofwhether lazy or strict evaluation is used, but in general lazy evaluation permits a moredirect programming style. It should be noted that in our Fibonacci program, in therecursive call to �b the arguments are passed by value, due to the analysis on evaluatedvariables described in section 6.2. C - 19

8 Related workJones and Muchnick [JM82] gives an alternative evaluation mechanism for combinatorexpressions, with a compilation algorithm which translates combinators to �xed-programcode for a stack machine.Hudak's combinator based compiler [HK84] resembles our work in many respects.He uses the standard combinators as a convenient intermediate language for performingprogram transformations and optimisations. The program is the converted into one con-taining macro-combinators, which is similar to Hughes' super-combinators [Hug82] andour global function de�nitions. Each macro-combinator is then translated into code for aconventional machine.Dick Kieburtz et. al at Oregon Graduate Center is currently in the process of designingand implementing a VLSI chip for the G-machine.9 AcknowledgementsThis work was supported by the Swedish Board for Technical development (STU). Thecompiler has been implemented together with Lennart Augustsson, and many ideas hasgrown out of this close cooperation. I also wish to thank Alan Mycroft for helpful com-ments on earlier drafts of this paper, and the members of the Programming MethodologyGroup for numerous nice cake parties.References[Aug82] L. Augustsson. FC mamual. Technical Report Memo 13, ProgrammingMethodology Group, Chalmers University of Technology, G�oteborg, Sweden,1982.[Bac78] J. Backus. Can programming be liberated from the von Neumann style? Afunctional style and its algebra of programs. Communications of the ACM,21:280{294, August 1978.[Car84] L. Cardelli. ML under UNIX. Polymorphism: The ML/LCF/Hope Newsletter,1(3), January 1984.[Fri76] D. P. Friedman. Cons should not evaluate its arguments, pages 257{284. Ed-inburgh University Press, 1976. In the book Automata, languages and Pro-gramming.[FY69] R. Fenichel and J. Yochelson. A lisp garbage-collector for virtual memorycomputer systems. Communications of the ACM, 12(11):611{612, November1969.[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Volume 78 ofLecture Notes in Computer Science, Springer-Verlag, 1979.C - 20

[HK84] P. Hudak and D. Kranz. A combinator-based compiler for a functional lan-guage. In Proceedings 11th ACM Symposium on Principles of ProgrammingLanguages, pages 122{132, 1984.[Hug82] J. Hughes. Super combinators - a new implementation method for applicativelanguages. In Proceedings of the 1982 ACM Symposium on Lisp and FunctionalProgramming, pages 1{10, Pittsburgh, 1982.[JM82] N. D. Jones and S. S. Muchnick. A �xed-program machine for combinatorexpression evaluation. In Proceedings of the 1982 ACM Symposium on Lispand Functional Programming, pages 11{20, Pittsburgh, 1982.[Joh81] T. Johnsson. Code Generation for Lazy Evaluation. Technical Report Memo22, Programming Methodology Group, Chalmers University of Technology,G�oteborg, Sweden, 1981.[Lan64] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,(6):308{320, 1964.[Lan66] P. J. Landin. The next 700 programming languages. Communications of theACM, 9(3):157{164, 1966.[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal ofComputer and Systems Sciences, 17:348{375, 1978.[Myc80] A. Mycroft. The theory and practice of transforming call-by-need into call-by-value. In Proceedings 4th International Symposium on Programming, LectureNotes in Computer Science 83, pages 269{281, Springer Verlag, Paris, April1980.[Tur75] D. A. Turner. An implementation of SASL. Technical report 4, University ofSt. Andrews, 1975.[Tur79] D. A. Turner. A new implementation technique for applicative languages.Software - Practice and Experience, 9:31{49, 1979.
C - 21

