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Abstract

Parametric polymorphism constrains the behavior of pure func-
tional programs in a way that allows the derivation of interesting
theorems about them solely from their types, i.e., virtually for free.
Unfortunately, the standard parametricity theorem fails for nonstrict
languages supporting a polymorphic strict evaluation primitive like
Haskell’s seq. Contrary to the folklore surrounding seq and para-
metricity, we show that not even quantifying only over strict and
bottom-reflecting relations in the ∀-clause of the underlying logical
relation — and thus restricting the choice of functions with which
such relations are instantiated to obtain free theorems to strict and
total ones — is sufficient to recover from this failure. By addressing
the subtle issues that arise when propagating up the type hierarchy
restrictions imposed on a logical relation in order to accommodate
the strictness primitive, we provide a parametricity theorem for the
subset of Haskell corresponding to a Girard-Reynolds-style calcu-
lus with fixpoints, algebraic datatypes, and seq. A crucial ingre-
dient of our approach is the use of an asymmetric logical relation,
which leads to “inequational” versions of free theorems enriched
by preconditions guaranteeing their validity in the described set-
ting. Besides the potential to obtain corresponding preconditions
for standard equational free theorems by combining some new in-
equational ones, the latter also have value in their own right, as is
exemplified with a careful analysis of seq’s impact on familiar pro-
gram transformations.

Categories and Subject Descriptors: D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—
polymorphism; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs—control
primitives, type structure
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1 Introduction

Ever since they were first popularized by Wadler [23], free theorems
have been used to derive program equivalences involving paramet-
ric polymorphic functions in programming languages based on the
Girard-Reynolds lambda calculus [7, 16]. A free theorem is consid-
ered free because it can be derived solely from the type of a func-
tion, with no knowledge at all of the function’s actual definition.
In essence, it records a constraint arising from the fact that a para-
metric polymorphic function must behave uniformly, i.e., must use
the same algorithm to compute its result, regardless of the concrete
type at which it is instantiated.

Free theorems hold unconditionally for polymorphic functions in
the Girard-Reynolds calculus. But for calculi that more closely re-
semble modern functional languages the story is not so simple. It
is well known [11, 23] that adding a fixpoint primitive to a calculus
weakens its free theorems by imposing admissibility conditions on
(some of the) functions appearing in them. How free theorems fare
in the presence of other primitives is less well understood.

We will use the following example to illustrate that new primitives
can break free theorems in dramatic and unexpected ways. A free
theorem given in Figure 1 of [23] states that for any function

filter :: ∀α. (α→ Bool)→ [α]→ [α]

and appropriately typed p, h, and l the following law holds:

filter p (map h l) = map h (filter (p◦h) l) (1)

Here map h applies the function h to every element of a list,
and ◦ is function composition. (See Figure 1.)

While Haskell is a nonstrict language — so that a function argu-
ment is evaluated only when required — it is sometimes desirable
to explicitly force evaluation. This can be done using the polymor-
phic strict evaluation primitive seq, which satisfies the following
specification:1

seq :: ∀α β. α→ β→ β
seq ⊥ b =⊥
seq a b = b , if a 6=⊥

Here ⊥ is the undefined value corresponding to a nonterminating
computation or a runtime error (such as might be obtained as the
result of a failed pattern match). The operational behavior of seq
is to evaluate its first argument to weak head normal form before
returning its second argument. It is usually introduced to improve

1Other means of explicitly introducing strictness in Haskell pro-
grams — e.g., strict datatypes — are all defined in terms of seq.

99



data Bool = False | True
data Maybe α = Nothing | Just α

map :: ∀α β. (α→ β)→ [α]→ [β]
map h = f where f [] = []

f (x : xs) = h x : f xs

(◦) :: ∀α β γ. (β→ γ)→ (α→ β)→ α→ γ
f1 ◦ f2 = (λx→ f1 ( f2 x))

fix :: ∀α. (α→ α)→ α
fix g = g (fix g)

id :: ∀α. α→ α
id x = x

(++) :: ∀α. [α]→ [α]→ [α]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs++ ys)

Figure 1. Some Haskell definitions.

performance by avoiding unnecessary evaluation delay or by se-
quentializing algorithms in parallel implementations [21].

The Haskell 98 report [12] — the language definition — warns that
the provision of polymorphic seq has important semantic conse-
quences. In fact, if we implement a function with filter’s type using
seq and a fixpoint operator fix (defined as in Figure 1) by

filter p = p ‘seq‘ (fix g)
where g f ys = case ys of

[] → []
x : xs→ x ‘seq‘ case p x of

True → (xs ‘seq‘ x) : f xs
False→ f xs

then the following four instantiations break law (1), each for a dif-
ferent reason to be discussed below:

p =⊥ h = id l = [] ( /v)
p = (λx→ True) h =⊥ l = [0] ( /v)
p = id h = (λx→ True) l = [⊥] ( /w)
p = id h = (λx→ True) l = True :⊥ ( /v)

In each of these cases, one of the two sides of the law is less defined
than the other one, so that the equivalence (1) is incorrect. The
direction in which it turns into an inequation with respect to the
semantic approximation order is remarked at the end of each line.

Launchbury and Paterson [11] introduced a type system that makes
explicit which types contain ⊥ — the so-called pointed types —
and therefore support the definition of values by recursion. This
type system allows fine control over where the aforementioned ad-
missibility conditions are required in free theorems and where they
are not. In the above definition of filter, for example, we have used
explicit fixpoint recursion expressed via the operator fix rather than
giving a directly recursive definition. This makes it clear that the
recursion here takes place at type [α]→ [α], which is pointed with-
out any condition on α since [α] is. The definition also makes ap-
parent that the case-expressions — which produce ⊥ on selectors
that are themselves undefined — have the return type [α], which is
again pointed without any condition on α. Thus, Launchbury and
Paterson’s approach to parametricity in the presence of pointed vs.
unpointed types can be used to show that law (1) holds without any
conditions on p, h, or l, provided all invocations of seq are dropped2

2By contrast, if, e.g., recursion were performed at a type whose

(in which case we get precisely the filter function from Haskell’s
standard prelude). This shows that it is not the use of recursion or
pattern matching in our definition of filter that is responsible for the
breakdown of law (1). The evil really does reside in seq.

More precisely, different ways of using seq are responsible for the
failure of law (1) for the four instantiations given above. In the first
case, the use of seq to observe termination at function type makes
the left-hand side ⊥ since p = ⊥, while there is no such impact on
the right-hand side because p◦h =⊥◦ id = (λx→⊥) 6=⊥. In the
second case, the use of seq to observe termination at the type over
which filter is polymorphic finds h 0 = ⊥ 0 = ⊥ in the left-hand
side (since the inner map applies h to every list element before-
hand), while in the right-hand side the corresponding application is
on the list element 0 6= ⊥ itself (to which h is applied only after-
wards by the outer map, returning an undefined list element but not
a completely undefined result list). So here the problem lies with
h returning ⊥ for a non-⊥ argument, which makes an essential dif-
ference for seq. Conversely, an h returning a non-⊥ value for the
argument⊥ lets the law (1) fail the other way round for the third in-
stantiation. Finally, in the fourth instantiation, the use of seq on an
undefined list tail as first argument introduces a ⊥ of the type over
which filter is polymorphic. So, even though — as discussed above
— the given definition of filter does not use recursion or pattern
matching in a way that would require α to be pointed, the associ-
ated strictness condition on h creeps in through the back door here,
carelessly opened by seq.

The failure of free theorems in the presence of seq has been noted
before (see, e.g., Section 6.2 of [12], Section 5.3 of [13], Ap-
pendix B of [22], and discussions on the Haskell mailing list [1]).
But the extent to which Haskell’s parametricity properties are actu-
ally weakened has not been studied thoroughly. Conventional wis-
dom (expressed, e.g., in [13]) has it that a free theorem remains
valid in the presence of seq if all of the functions which are chosen
to instantiate relations in the statements derived from types (where
one is free to make such a choice) are strict and total. For our exam-
ple this means that law (1) should hold for every strict and total h —
a claim which is shown to be incorrect by our first counterexample
above. The need for valid criteria for determining when free theo-
rems hold in the presence of seq is quite dire: seq will not go away
by ignoring it, and neither will the demand for rigorous semantic
arguments about Haskell programs that rely on parametricity. The
major contribution of this paper is to provide precisely such criteria.

Note that our aim here is not to provide a parametric model for
full Haskell. This would be out of reach because there is not even
a formal semantics for Haskell against which to validate a model.
Rather, our aim is to investigate, under the reasonable and widely
held assumption that Haskell without seq is parametric, exactly how
much of the power of free theorems can be retained when seq is
thrown in. The assumption is justified in part by the recent con-
struction of a parametric model for a nonstrict polymorphic lambda
calculus supporting fixpoints and “lazy” algebraic datatypes [14].

The fundamental idea underlying the parametricity properties from
which free theorems are derived is to interpret types as relations
(as opposed to sets). It is standard to interpret the base types in a
language as identity relations and to obtain the interpretations for
non-base types by propagating relations up the type hierarchy in a
straightforward “extensional” manner. This builds a (type-indexed)
logical relation [5, 15, 19], for which a parametricity theorem can

support for it relied on pointedness of α, then even in the absence
of seq we could conclude filter’s free theorem only for strict h.
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be proved. (See Section 4 for details.) A parametricity theorem
asserts that every closed term satisfies the parametricity property
derived from its type, i.e., is related to itself by the interpretation
of its type. Proofs of such theorems proceed by induction on the
syntactic structure of terms, driven by type assignment rules, where
the constants occurring in a language form base cases.

Since, in the relational interpretation of a polymorphic type, bound
type variables can be interpreted by arbitrary relations (or by arbi-
trary strict and continuous relations if the language supports pattern
matching and fixpoints), the parametricity property for each term
of polymorphic type is quite general. This allows a richness of free
theorems to be derived by instantiation. But this generality is also
the potential downfall of free theorems when seq is added to the
language as a constant. The proof of the associated base case fails
because, in the setting of the standard relational interpretations, seq
does not satisfy the parametricity property derived from its type:
the encountered relations are too unconstrained since they allow ⊥
and non-⊥ values to be related arbitrarily. (See Section 5 for why
exactly this is problematic.)

This observation motivates us to adapt the standard construction
of a logical relation. As expected, bound type variables are only
allowed to be interpreted by relations that validate the property de-
rived from the polymorphic type which seq claims for itself. But
the relational interpretation of function types must also be modi-
fied. Indeed, it must conform to a notion of extensionality which
acknowledges that, in the presence of seq, two functions can no
longer be considered semantically equivalent simply because they
map the same arguments to the same results. The need to alter the
construction of the logical relation at function types is perhaps sur-
prising, given that the conventional wisdom has not anticipated it.

Of the different options for restricting relations to ensure the adher-
ence of seq to its parametricity property, we choose one that intro-
duces a certain asymmetry into the logical relation. Since equations
proved as free theorems in the absence of seq are frequently dis-
proved in its presence by instantiations that make one of their two
sides less defined than (but not completely unrelated to) the other,
we define our new logical relation in such a way that one of the
two argument positions of a relational interpretation is “favored”
with respect to definedness. This leads us to interpret base types as
semantic approximation relations rather than as identity relations.
Further, we modify the relational interpretations of non-base types
by adopting a propagation technique which is more complex than
the standard one, but which preserves the chosen set of restrictions.

We sketch the proof of the fundamental property of the new logi-
cal relation, establishing that it does indeed relate every closed term
(potentially built using seq) to itself. We use the fundamental prop-
erty to prove free theorems in which the modifications to the logical
relation mandated by seq generate preconditions that must be satis-
fied by the values over which the theorems are parametrized. This
approach allows us, for example, to provide criteria on p and h un-
der which the law (1) holds for every l, even in the presence of seq.
Moreover, assuming a weaker precondition on h — and placing no
restrictions whatsoever on p or l — it yields an inequational ver-
sion of law (1) in which the right-hand side is at least as defined
as the left-hand side. Such inequations are provable for other func-
tions as well, and are often sufficient when applying free theorems
to transform or reason about programs.

The remainder of this paper is organized as follows. Section 2
briefly considers the functional language we use. Section 3 intro-
duces auxiliary notions and definitions. Section 4 recalls how free

theorems are obtained in the absence of seq. Sections 5 and 6 mo-
tivate and develop our approach to parametricity in the presence of
seq. Section 7 applies it to derive two free theorems about functions
with filter’s type. Section 8 investigates how some program trans-
formations based on free theorems [6, 20, 22] fare in the presence
of seq. Section 9 concludes by proposing future research directions.

2 Functional Language

We use a subset of the pure nonstrict functional programming lan-
guage Haskell [12] that corresponds to a Girard-Reynolds-style cal-
culus with fixpoints, algebraic datatypes, and seq. Definitions of
Haskell types and functions that are used throughout the paper are
given in Figure 1. As shown there, parametric polymorphism3 is
made explicit with a ∀-type constructor quantifying over types.
Type instantiation, on the other hand, is most often left implicit.
When instantiation of a polymorphic term t to a closed type (one
without free variables) τ is made explicit, it is denoted by tτ.

Unfortunately, there is not yet a formal semantics for Haskell, inde-
pendent of any concrete implementation. Nevertheless, it is com-
mon practice to use a denotational style [18] for reasoning about
Haskell programs, and we do so as well. In particular, we use the
semantic approximation v— interpreted as “less than or equally as
defined as” — between values of the same type, and the value ⊥—
interpreted as “undefined” — at every type. Types are taken to be
pointed complete partial orders, i.e., sets equipped with the partial
order v, the least element ⊥, and limits of all chains. Programs are
taken to be monotonic and continuous functions between pointed
complete partial orders. The notions of monotonicity and continu-
ity are given in the next section, together with other preliminaries.

3 Preliminaries

For closed types τ1 and τ2 the set of all binary relations between
their value sets is denoted by Rel(τ1,τ2). Functions are special
cases of relations, i.e., a function h :: τ1 → τ2 is interpreted as its
graph {(x,y) | h x = y} ∈ Rel(τ1,τ2).

For every closed type τ the relationsvτ, /vτ ∈Rel(τ,τ) and the value
⊥τ :: τ are the semantic approximation (partial) order, the strict or-
der induced by it, and the least element, respectively, for the inter-
pretation of τ. The subscripts will often be omitted. Nevertheless,
the value ⊥ :: τ at a particular closed type should not be confused
with the polymorphic value ⊥ :: ∀α.α.

Let τ1 be a type with at most one free variable, say α. For every
closed type τ, τ1[τ/α] denotes the result of substituting τ for all
free occurrences of α in τ1. For every value u :: ∀α.τ1 we have:

(∀τ. uτ =⊥τ1[τ/α])⇒ u =⊥∀α.τ1
(2)

A relation is strict if it contains the pair (⊥,⊥). A relation is total if,
for every pair (x,y) contained in it, x 6=⊥ implies y 6=⊥. A relation
is bottom-reflecting if, for every pair (x,y) contained in it, x 6= ⊥
iff y 6= ⊥. A relation is continuous if the limits of two chains of
pairwise related elements are again related. A relation is admissible
if it is strict and continuous. A function h is monotonic if x v y
implies h xv h y.

3 The ad-hoc polymorphism also provided by Haskell in the
form of type classes [24] is not considered here. How to handle type
classes when deriving free theorems is discussed briefly in [23].
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The composition of two relations R ∈ Rel(τ1,τ2) and S ∈
Rel(τ2,τ3) is defined as:

R ;S = {(x,z) | ∃y. (x,y) ∈ R ∧ (y,z) ∈ S} ∈ Rel(τ1,τ3).

A relation R is left-closed if v ;R = R . The inverse of a relation
R ∈ Rel(τ1,τ2) is defined as:

R −1 = {(y,x) | (x,y) ∈ R } ∈ Rel(τ2,τ1).

We denote v−1 and /v
−1 by w and /w, respectively.

The lifting of a relation R ∈ Rel(τ1,τ2) to Maybe types,
liftMaybe(R ) ∈ Rel(Maybe τ1,Maybe τ2), is defined as:

{(⊥,⊥), (Nothing,Nothing)}∪{(Just x,Just y) | (x,y) ∈ R }.

If R is continuous, then so is liftMaybe(R ). If R is left-closed in
addition, then v ; liftMaybe(R ) is also continuous.

The lifting of relations R ∈ Rel(τ1,τ2) and S ∈ Rel(τ′1,τ
′
2) to pairs,

lift(,)(R ,S) ∈ Rel((τ1,τ′1),(τ2,τ′2)), is defined as:

{(⊥,⊥)}∪{((x,x′),(y,y′)) | (x,y) ∈ R ∧ (x′,y′) ∈ S}.

If R and S are continuous, then so is lift(,)(R ,S). If R and S are
left-closed in addition, then v ; lift(,)(R ,S) is also continuous.

The lifting of a relation R ∈ Rel(τ1,τ2) to lists, lift[](R ) ∈

Rel([τ1], [τ2]), is defined as the largest S ∈ Rel([τ1], [τ2]) such that:

S = {(⊥,⊥), ([], [])}∪{(x : xs,y : ys) | (x,y) ∈ R ∧ (xs,ys) ∈ S}.

Thus, two lists are related by lift[](R ) if (i) either both are finite
or partial lists of same length, or both are infinite lists, and (ii) el-
ements at corresponding positions are related by R . If R is con-
tinuous, then so is lift[](R ). If R is left-closed in addition, then
v ; lift[](R ) is also continuous. Note that in the special case that R
is the graph of a Haskell function h, the relation lift[](R ) coincides
with the graph of the function map h as defined in Figure 1.

Since v is reflexive, it is not hard to see from the above definitions
that for all appropriately typed functions h and lists l:

(map h l, l) ∈v ; lift[](v ;h−1) (3)

(l,map h l) ∈v ; lift[](h ;v) (4)

Moreover, for all functions h and all appropriately typed lists
l1 and l2 we can conclude from transitivity of v and the obvious
inclusion of lift[](v ;h−1) in v ;(map h)−1 that:

(l1, l2) ∈ v ; lift[](v ;h−1)⇒ l1 v map h l2 (5)

If h is monotonic, then from monotonicity of map h and the
inclusion of lift[](h ;v) in (map h) ;v we similarly obtain:

(l2, l1) ∈v ; lift[](h ;v)⇒ map h l2 v l1 (6)

4 Free Theorems in the Absence of seq

As discussed in the introduction, the key to deriving free theorems
from types is to interpret types as relations. Each type variable is
thus interpreted as a relation, and associated with every type con-
structor of the calculus is a map which produces a new relational
interpretation from an appropriate number of given ones. Such a

map is called a relational action. We first recall the standard re-
lational actions for the type constructors of the Girard-Reynolds
polymorphic lambda calculus.

The relational action corresponding to the function type construc-
tor maps two relations R ∈ Rel(τ1,τ2) and S ∈ Rel(τ′1,τ

′
2) to the

following relation in Rel(τ1→ τ′1,τ2→ τ′2):

R → S = {( f ,g) | ∀(x,y) ∈ R . ( f x,g y) ∈ S}.
In other words, two functions are related if they map related argu-
ments to related results.

Let τ1 and τ2 be types with at most one free variable, say α, and let
F be a function that, for all closed types τ′1 and τ′2 and every relation
R ∈ Rel(τ′1,τ

′
2), gives a relation F (R ) ∈ Rel(τ1[τ′1/α],τ2[τ′2/α]).

The relational action corresponding to the ∀-type constructor maps
F to the following relation in Rel(∀α.τ1,∀α.τ2):

∀R ∈ Rel. F (R )
= {(u,v) | ∀τ′1,τ

′
2,R ∈ Rel(τ′1,τ

′
2). (uτ′1 ,vτ′2) ∈ F (R )}.

According to this definition, two polymorphic values are related if
all their instances respect the operation of F on relations between
the types at which instantiation occurs.

The relational actions introduced above can be used to define a log-
ical relation by induction on the structure of types. Since we will
need to keep track of the interpretations of quantified types, we use
relation environments to map type variables to relations between
closed types. The empty relation environment is denoted by /0 and
the update, or extension, of a relation environment η by mapping α
to R is denoted by η[R /α].

Let τ be a type and η be a relation environment such that η(α) ∈
Rel(τ1α,τ2α) for each free variable α of τ. We write τ←−η and τ−→η
for the closed types obtained by replacing every free occurrence
of each variable α in τ with τ1α and τ2α, respectively. A relation
∆τ,η ∈ Rel(τ←−η ,τ−→η ) is defined as in Figure 2.

∆α,η = η(α)
∆τ→τ′,η = ∆τ,η→ ∆τ′,η
∆∀α.τ,η = ∀R ∈ Rel. ∆τ,η[R /α]

Figure 2. Definition of the standard logical relation.

If τ is a closed type, we obtain a relation ∆τ, /0 ∈ Rel(τ,τ). The
abstraction or parametricity theorem for ∆ [17, 23], from which the
standard free theorems are derived, then states that for every closed
term t :: τ we have (t,t) ∈ ∆τ, /0. This is also called the fundamental
property of the logical relation.

As outlined so far, the standard logical relation is only defined, and
its associated parametricity theorem only holds, for the pure poly-
morphic lambda calculus. To more closely approximate modern
functional languages, we must also take general recursive defini-
tions and suitable datatypes into account. Of course, these features
should be added without breaking the fundamental property.

It is well known that the provision of general fixpoint recursion —
as is captured by the function fix from Figure 1 — requires all rela-
tions used in the definition of the logical relation to be admissible.
In particular, in the inductive case for the ∀-type constructor the
quantification of R must be over admissible relations only. The es-
sential observations are then that admissibility is preserved by the
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given relational actions, and that it ensures the adherence of fix to
the parametricity property derived from its type.

When adding base types such as Int or algebraic datatypes such as
Bool, Maybe, pairs, and standard Haskell lists, we must define for
each new type constructor a corresponding relational action. The
usual approach is to interpret nonparametrized datatypes as identity
relations and parametrized datatypes by structural liftings of rela-
tions. Illustrating examples are given in Figure 3. Further, we must
verify that each new constant used to construct or handle values
of the new types satisfies the parametricity property derived from
its type. For example, we must check that (i, i) ∈ ∆Int, /0 for ev-
ery integer literal i, (+,+) ∈ ∆Int→Int→Int, /0, ([], []) ∈ ∆∀α. [α], /0, and
(Just,Just) ∈ ∆∀α.α→Maybe α, /0 hold. This is indeed the case, and
similarly for other constants.

∆Int,η = idInt

∆Bool,η = idBool

∆Maybe τ,η = liftMaybe(∆τ,η)
∆(τ,τ′),η = lift(,)(∆τ,η,∆τ′,η)
∆[τ],η = lift[](∆τ,η)

Figure 3. Standard relational interpretations for datatypes.

For each algebraic datatype we must also include a means of de-
structing its values via pattern matching. One way to do this is to
introduce, as a new term-forming operation, a case-construct that
can be used at every algebraic datatype.4 Proving that the funda-
mental property of the logical relation remains intact amounts to
simply checking that the relational interpretation of every return
type of a case-expression is strict. That strictness is all that is re-
quired can be argued as follows.

By analogy with Reynolds’ abstraction theorem we must show that
two denotations of a case-expression in related environments are
related by the interpretation of its type whenever it is constructed
from subterms whose denotations are similarly related. To this end,
we first note that the relational interpretation of an algebraic data-
type respects its structure. Thus, if two denotations of the selector
of a case-expression are related by the interpretation of the selec-
tor’s (algebraic) datatype, then the structural nature of this interpre-
tation ensures that pattern matching against either denotation will
select the same branch, if any, of the case-expression. There are
two cases to consider. If pattern matching against one — and hence
both — selector denotations succeeds, then, by hypothesis, the re-
sulting denotations of the case-expression are values that are related
by the interpretation of its return type. If, on the other hand, pattern
matching fails on one of the selector denotations (either because the
value is ⊥ or because the pattern match is not exhaustive), then it
also fails on the other one. What we need to establish then is that the
interpretation determined by the logical relation for the return type
of the case-expression relates the two resulting⊥s. It clearly does if
it is known to be strict. This strictness requirement is also reflected
in the pointedness constraint on the result type of the prototypical
case-constant given in Section 3 of [11].

Like the relational actions for the function and ∀-type constructors,
the relational actions for algebraic datatypes as used in Figure 3
preserve admissibility. In particular, all relational actions preserve

4Other uses of pattern matching in Haskell programs — e.g., on
left-hand sides of function equations — can all be translated into
case-expressions.

strictness, as is required for case-expressions to satisfy their para-
metricity properties. The restricted quantification over admissible
relations in the ∀-case thus ensures that the resulting free theorems
are valid for programs potentially using both general recursion and
the richer type structure. In the next section we turn to the question
of what happens when seq is also added to the language.

5 Free Theorems Fail in the Presence of seq

When adding the constant seq to the language, we must ensure that
it satisfies the parametricity property derived from its type:

(seq,seq) ∈ ∆∀αβ.α→β→β, /0
⇔ (seq,seq) ∈ (∀R ∈Rel.∆∀β.α→β→β,[R /α])
⇔ (seq,seq) ∈ (∀R ∈Rel.∀S ∈Rel.∆α→β→β,[R /α,S/β])
⇔ (seq,seq) ∈ (∀R ∈Rel.∀S ∈Rel.R → (S → S))
⇔∀R ∈Rel(τ1,τ2). (seqτ1

,seqτ2
) ∈ (∀S ∈Rel.R → (S → S))

⇔∀R ∈Rel(τ1,τ2),S ∈Rel(τ′1,τ
′
2).

(seqτ1 τ′1 ,seqτ2 τ′2) ∈ R → (S → S)

⇔∀R ∈Rel(τ1,τ2),S ∈Rel(τ′1,τ
′
2),(a1,a2)∈R .

(seqτ1 τ′1 a1,seqτ2 τ′2 a2) ∈ S → S
⇔∀R ∈Rel(τ1,τ2),S ∈Rel(τ′1,τ

′
2),(a1,a2)∈R ,(b1,b2)∈S .

(seqτ1 τ′1 a1 b1,seqτ2 τ′2 a2 b2) ∈ S .

But even if we restrict ourselves to admissible relations, the result-
ing statement is not true. As a counterexample, consider the fol-
lowing instantiation:

R =⊥Bool→Bool ∈ Rel(Bool,Bool)
S = idBool ∈ Rel(Bool,Bool)
(a1,a2) = (False,⊥Bool) ∈ R
(b1,b2) = (False,False) ∈ S .

Although R and S are admissible, the claimed membership
(seq False False,seq ⊥Bool False) ∈ S does not hold.

Since seq violates the parametricity property dictated by its type,
other terms that are built using seq might do so as well. The prob-
lem lies with relations, such as R above, that relate ⊥ to non-⊥
values. It has therefore been proposed (e.g., in [11]) that quan-
tified relations should be further restricted by requiring bottom-
reflectingness. But the first counterexample in the introduction
shows that, contrary to conventional wisdom, this is not quite
enough to recover valid free theorems in the presence of seq. (The
requirement that relations be admissible and bottom-reflecting be-
comes a strictness and totality requirement on Haskell functions
which instantiate those relations.) The catch is that we must not
only impose appropriate restrictions on the quantified relations, but
must also ensure that these restrictions are preserved by all rela-
tional actions. This is crucial because during the proof of the para-
metricity theorem, in the inductive case for type instantiation, a uni-
versally quantified relation that is subject to the imposed restrictions
is instantiated with the relational interpretation of an arbitrary type
to establish the induction conclusion. If that interpretation is not
guaranteed to fulfill the necessary restrictions, then this use of the
induction hypothesis is impossible, and the entire proof breaks. The
proof of the parametricity theorem breaks in precisely this way if
one subjects quantified relations to bottom-reflectingness but sticks
to the standard relational action for the function type constructor.
To see why, consider that for every relation R and every strict re-
lation S , the relation R → S contains the pair (⊥,(λx→⊥)) and
consequently — since (λx→⊥) is different from⊥ in the presence
of seq — is not bottom-reflecting as would be required.

In the next section we solve this problem by modifying the action
of → on relations to take into account the difference between an
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undefined function and a defined function that always returns an
undefined value. This is done by explicitly adding a condition on
the definedness of related functions similar to that in the lazy logical
relation (in the absence of polymorphism and algebraic datatypes)
of [4]. But rather than requiring bottom-reflectingness, we impose
other restrictions on relational interpretations. In contrast to only
recovering the usual equational free theorems under quite severe
preconditions, these restrictions additionally allow us to derive in-
equational versions of these theorems under weaker preconditions.

6 Recovering Free Theorems in the Presence
of seq

As demonstrated in the previous section, the presence of seq causes
problems if relational interpretations of types are allowed to relate
⊥ and non-⊥ values. One way to accomodate seq would thus be
to require all encountered relations (those used to interpret bound
type variables and those obtained via the relational actions) to be
bottom-reflecting in addition to being admissible. This is a dras-
tic restriction, however, because it entails that the statements that
are finally obtained as free theorems will only capture situations in
which either both of the sides of a law are undefined or neither is.
But as we have seen in the introduction, the very nature of seq’s
impact on free theorems provable in its absence is to potentially
make one of the two sides of a law less defined (indeed, potentially
⊥), while the other one remains unchanged. To derive interesting
statements for such situations, we should therefore be more liberal.

We introduce an asymmetry into relational interpretations by allow-
ing relations R surfacing in the new logical relation to contain pairs
(⊥,y) with y 6=⊥, but forbidding pairs (x,⊥) with x 6=⊥. Thus, in-
stead of requiring totality of both R and R −1 — which amounts
to bottom-reflectingness — we require only totality of R . One set
of restrictions that encompasses this asymmetry idea and ensures
the adherence of seq to the parametricity property derived from its
type was proposed in Appendix B of [22]. However, the same lapse
occurred there as in the “conventional wisdom” mentioned in the
previous section: that those restrictions are preserved by all rela-
tional actions was never verified. Unfortunately, they are not so
preserved, and their ad-hoc nature makes it uncertain whether they
would provide a good starting point for putting things right by ad-
justing the relational actions.

It is our desire to account for the fact that one of the two terms re-
lated by a free theorem can become strictly less defined than the
other in the presence of seq. This motivates turning our attention
to relations which are left-closed in addition to being admissible
and total. The need to ensure that all relational actions preserve
these restrictions forces us to adjust their definitions. But preserv-
ing admissibility, totality, and left-closedness is not the only con-
cern when adjusting the definitions of the relational actions. The
new relational actions must also lend themselves to proving a para-
metricity theorem, and must therefore have an “extensional flavor”
which ties them to the semantics of the language.5 Extensional-
ity here is with respect to semantic approximation. For example,
the new relational action for the function type constructor applied
to relations vτ and vτ′ will capture exactly the conditions under
which a function f :: τ→ τ′ approximates a function g :: τ→ τ′ in
the presence of seq.

5In the absence of this consideration, every relational action
could simply return the trivial relation {(⊥,⊥)}. But this is clearly
not what we want.

In the remainder of this paper the set of all admissible, total,
and left-closed relations between values of closed types τ1 and
τ2 is denoted by Relseq(τ1,τ2). The relational action correspond-
ing to the function type constructor is adapted to map relations
R ∈ Relseq(τ1,τ2) and S ∈ Relseq(τ′1,τ

′
2) to the following relation

in Relseq(τ1→ τ′1,τ2→ τ′2):

R →seq S = {( f ,g) | ( f 6=⊥⇒ g 6=⊥)
∧ ∀(x,y) ∈ R . ( f x,g y) ∈ S} ,

i.e., we explicitly add the totality restriction. That the resulting re-
lation is admissible follows from monotonicity and continuity of
function application in Haskell and from admissibility of S . To
show that it is also left-closed, we need to establish that from f ′ v f
and ( f ,g) ∈ R →seq S it follows that ( f ′,g) ∈ R →seq S , i.e.,

( f ′ 6=⊥⇒ g 6=⊥) ∧ ∀(x,y) ∈ R . ( f ′ x,g y) ∈ S .

The first conjunct follows from f ′ v f and f 6= ⊥⇒ g 6= ⊥. The
second conjunct follows by left-closedness of S from the facts that,
for every (x,y)∈R , we have f ′ xv f x by monotonicity of function
application in Haskell, as well as ( f x,g y) ∈ S .

The relational action corresponding to the ∀-type constructor is
adapted by quantifying only over admissible, total, and left-closed
relations as follows. Let τ1 and τ2 be types with at most one free
variable, say α. In addition, let F be a function that, for all closed
types τ′1 and τ′2 and every relation R ∈ Relseq(τ′1,τ

′
2), gives a rela-

tion F (R ) ∈ Relseq(τ1[τ′1/α],τ2[τ′2/α]). The new relational action
maps F to the following relation in Relseq(∀α.τ1,∀α.τ2):

∀R ∈ Relseq. F (R )
= {(u,v) | ∀τ′1,τ

′
2,R ∈ Relseq(τ′1,τ

′
2). (uτ′1 ,vτ′2) ∈ F (R )}.

That the resulting relation is admissible follows from monotonic-
ity and continuity of type instantiation in Haskell and from ad-
missibility of all the F (R ). That it is total can be shown
by indirect reasoning as follows. Assume (u,⊥∀α.τ2

) ∈ (∀R ∈
Relseq. F (R )) for some u 6=⊥∀α.τ1

. Since for every closed type τ
we have vτ∈ Relseq(τ,τ), this means that for every such τ we have
(uτ,(⊥∀α.τ2

)τ) ∈ F (vτ), i.e., (uτ,⊥τ2[τ/α]) ∈ F (vτ). By totality
of F (vτ) it follows that for every such τ we have uτ = ⊥τ1[τ/α],
and thus by law (2) we derive the contradiction that u =⊥∀α.τ1

. To
show left-closedness of ∀R ∈ Relseq. F (R ), we need to establish
that from u′ v u and (u,v) ∈ (∀R ∈ Relseq. F (R )) it follows that
(u′,v) ∈ (∀R ∈ Relseq. F (R )), i.e.,

∀τ′1,τ
′
2,R ∈ Relseq(τ′1,τ

′
2). (u′τ′1 ,vτ′2) ∈ F (R ).

This follows by left-closedness of all the F (R ) from the facts that,
for every τ′1, τ′2, and R ∈Relseq(τ′1,τ

′
2), we have u′τ′1

v uτ′1 by mono-

tonicity of type instantiation in Haskell, and (uτ′1 ,vτ′2) ∈ F (R ).

The relational interpretations of datatypes are left-composed with
v. It is not hard to see (from the facts that v ;R is always strict,
total, and left-closed for a strict and total R and that the standard re-
lational interpretations for datatypes are strict and total by construc-
tion) that this gives strict, total, and left-closed relations only. Fur-
ther, v is a continuous relation, and for continuous and left-closed
relations R and S the relations v ; liftMaybe(R ), v ; lift(,)(R ,S),
and v ; lift[](R ) are also continuous.

Hence, all relations that turn up in the definition of the new logical
relation as given in Figure 4 will in fact be admissible, total, and
left-closed. In particular, ∆seq

τ, /0 ∈ Relseq(τ,τ) for every closed type τ.
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∆seq
α,η = η(α)

∆seq
τ→τ′,η = ∆seq

τ,η→
seq ∆seq

τ′,η
∆seq
∀α.τ,η = ∀R ∈ Relseq. ∆seq

τ,η[R /α]

∆seq
Int,η =vInt

∆seq
Bool,η =vBool

∆seq
Maybe τ,η =v ; liftMaybe(∆

seq
τ,η)

∆seq
(τ,τ′),η =v ; lift(,)(∆

seq
τ,η,∆seq

τ′,η)

∆seq
[τ],η =v ; lift[](∆

seq
τ,η)

Figure 4. Definition of the logical relation in the presence of seq.

We claim that our changed logical relation still has the following
fundamental property (from which the new free theorems will be
derived):

if τ is a closed type and t :: τ is a closed term, then:
(t,t) ∈ ∆seq

τ, /0 (7)

The first thing to check is that this is true for seq:

(seq,seq) ∈ ∆seq
∀αβ.α→β→β, /0

⇔∀R ∈Relseq(τ1,τ2),S ∈Relseq(τ′1,τ
′
2).

(seqτ1 τ′1 ,seqτ2 τ′2) ∈ R →seq (S →seq S)

⇔∀R ∈Relseq(τ1,τ2),S ∈Relseq(τ′1,τ
′
2).

(seqτ1 τ′1 6=⊥⇒ seqτ2 τ′2 6=⊥)
∧ ∀(a1,a2)∈R . (seqτ1 τ′1 a1,seqτ2 τ′2 a2) ∈ S →seq S

⇔∀R ∈Relseq(τ1,τ2),S ∈Relseq(τ′1,τ
′
2).

(seqτ1 τ′1 6=⊥⇒ seqτ2 τ′2 6=⊥)
∧ ∀(a1,a2)∈R .

(seqτ1 τ′1 a1 6=⊥⇒ seqτ2 τ′2 a2 6=⊥)

∧ ∀(b1,b2)∈S .(seqτ1 τ′1 a1 b1,seqτ2 τ′2 a2 b2) ∈ S .

The two implications arising from totality can be discharged be-
cause both seqτ2 τ′2 and seqτ2 τ′2 a2 are only partially applied and
hence are weak head normal forms different from ⊥. The state-
ment (seq a1 b1,seq a2 b2) ∈ S under the assumptions (a1,a2) ∈R
and (b1,b2) ∈ S is verified by case distinction on a1 and a2:

a1 6=⊥ ∧ a2 6=⊥ ⇒ (seq a1 b1,seq a2 b2) = (b1,b2)
a1 =⊥ ∧ a2 6=⊥ ⇒ (seq a1 b1,seq a2 b2) = (⊥,b2)
a1 =⊥ ∧ a2 =⊥ ⇒ (seq a1 b1,seq a2 b2) = (⊥,⊥)

The case a1 6= ⊥ and a2 =⊥ cannot occur due to totality of R . In
the other cases, (seq a1 b1,seq a2 b2)∈ S follows from (b1,b2) ∈ S
and left-closedness and strictness of S .

We also need to establish that each constant associated with a data-
type fulfills the parametricity property derived from its type. For
a nonparametrized datatype such as Int this means we must con-
firm that for every literal i :: Int, (i, i) ∈ ∆seq

Int, /0 = vInt holds. This
is obviously true, and so are the parametricity properties derived
for integer operations such as +. For lists, we must confirm that
([], []) ∈ ∆seq

∀α. [α], /0 and ((:),(:)) ∈ ∆seq
∀α.α→[α]→[α], /0. The latter re-

quires us to establish that certain definedness conditions which arise
on partial applications of (:) are satisfied and that for every admissi-
ble, total, and left-closed relation R it follows from (x,y) ∈ R and
(xs,ys)∈v ; lift[](R ) that (x : xs,y : ys)∈v ; lift[](R ). The former is
obvious; to prove the latter is an easy exercise using the monotonic-
ity of (:). Similar arguments work for the other data constructors.

What remains to be done is to mirror Wadler’s sketched proof [23]
that the term-forming operations of the polymorphic lambda cal-
culus — i.e., λ-abstraction, function application, type abstraction,
type instantiation — as well as the case-construct behave accord-
ing to the (new) logical relation. As usual, this proof requires a
generalization from the statement about closed types τ and closed
terms t :: τ to types and terms potentially containing free variables.
It proceeds by induction over the structure of typing derivations.

For the new logical relation, we changed the standard relational ac-
tion corresponding to the ∀-type constructor by imposing admissi-
bility, totality, and left-closedness on the relations over which quan-
tification takes place. This means that, in comparison to the stan-
dard proof, the hypothesis in the induction step for the typing rule
in whose premise a ∀-type appears — i.e., the induction hypoth-
esis for the rule for type instantiation — now provides a weaker
statement concerning restricted relations only. But since the new
relational actions are constructed precisely so that the relational in-
terpretations of all types satisfy the required restrictions, this is just
enough to prove the induction conclusion. For the other induction
step involving a ∀-type — i.e., for the step corresponding to type
abstraction — no additional arguments are necessary.

The only change to the relational action corresponding to the func-
tion type constructor is a strengthening due to the added totality re-
striction. Thus, of the two type inference rules involving a function
type, only the induction step for the rule in whose conclusion the
function type appears differs from that for the standard logical rela-
tion. For an abstraction of the form (λx→ t) appearing in the con-
clusion of that rule we must show in addition that (λx→ [[t]]ρ1) 6=⊥
implies (λx→ [[t]]ρ2) 6=⊥ for every pair of type-respecting environ-
ments ρ1 and ρ2 mapping the free type variables of t to types and
the free object variables of t other than x to values. Here [[t]]ρ1 and
[[t]]ρ2 denote the values of t in the environments ρ1 and ρ2, respec-
tively, where the value of a term in an environment is defined in
the usual way. The implication in question obviously holds because
λ-abstractions are weak head normal forms distinct from ⊥.

The induction step for case-expressions amounts to considering the
different ways in which the denotation, in one environment, of the
selector of such an expression can be related to its denotation in a
related environment. We must show that for each such possibility
the denotations of the whole case-expression in the two environ-
ments are correspondingly related by the interpretation of its return
type. The argument proceeds along the same lines as the corre-
sponding one for the standard logical relation in Section 4. Since
each new interpretation of an algebraic datatype is the composition
of the semantic approximation ordering and its standard structural
interpretation, the argument additionally uses the fact that the rela-
tional interpretations of all types are left-closed.

Finally, since admissibility is included among the restrictions we
impose on all relations, the arguments from Section 7 of [23] en-
sure that ⊥ and fix also fulfill their parametricity properties with
respect to the new logical relation. Putting everything together, we
conclude that (7) holds in the presence of both seq and general fix-
point recursion.

6.1 Manufacturing Permissible Relations

An oft-followed strategy when deriving free theorems is to special-
ize quantified relations to functions. Since the only functions that
are strict and left-closed are constant functions mapping to ⊥, and
since such a function is total only when its domain consists solely
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of ⊥, this is not very useful in the presence of seq and its attendant
restrictions on relations. There are, however, two canonical ways
to manufacture admissible, total, and left-closed relations out of a
function. These are considered now and put to good use in the next
two sections.

On the one hand, for every monotonic and admissible function h
the relation

v ;h−1 = {(x,y) | xv h y}

is admissible, total, and left-closed. On the other, for every mono-
tonic, admissible, and total function h the relation

h ;v = {(x,y) | h xv y}

is admissible, total, and left-closed. Note that the monotonicity and
admissibility requirements on h above are essential. But since we
will only consider functions definable in Haskell below, and these
are always assumed to be monotonic and continuous, we will only
explicitly record the strictness precondition in the following.

7 Two Free Theorems about filter

In this section we show how the fundamental property of our modi-
fied logical relation can be used to derive free theorems in the pres-
ence of seq.

THEOREM 1. For every function

filter :: ∀α. (α→ Bool)→ [α]→ [α]

and appropriately typed p, h, and l the following hold:

if h is strict, then:
filter p (map h l)vmap h (filter (p◦h) l) (8)

if p 6=⊥ and h is strict and total, then:
filter p (map h l) = map h (filter (p◦h) l) (9)

PROOF. The parametricity property for filter’s type is the following
instance of law (7):

(filter, filter) ∈ ∆seq
∀α.(α→Bool)→[α]→[α], /0.

Expanding this statement following the definition from Figure 4
yields that for every choice of closed types τ1 and τ2, an admis-
sible, total, and left-closed relation R ∈ Relseq(τ1,τ2), functions
p1 :: τ1→Bool and p2 :: τ2→Bool, and lists l1 :: [τ1] and l2 :: [τ2]
the following holds:

(filterτ1
6=⊥⇒ filterτ2

6=⊥)
∧ ((p1 6=⊥⇒ p2 6=⊥)∧ (∀(x1,x2) ∈ R . p1 x1 v p2 x2)
⇒ (filterτ1

p1 6=⊥⇒ filterτ2
p2 6=⊥)

∧ ((l1, l2) ∈v ; lift[](R )
⇒ (filterτ1

p1 l1, filterτ2
p2 l2) ∈v ; lift[](R ))).

Dropping two conjuncts from the above and strengthening one pre-
condition, we obtain the following weaker statement:

p2 6=⊥∧ (∀(x1,x2) ∈ R . p1 x1 v p2 x2)
⇒ ((l1, l2) ∈v ; lift[](R )
⇒ (filterτ1

p1 l1, filterτ2
p2 l2) ∈ v ; lift[](R )).

We consider two instantiations of this.

First, we instantiate

R =v ;h−1, p1 = p, p2 = p◦h, l1 = map h l, l2 = l

for a strict function h :: τ2→ τ1, giving:

p◦h 6=⊥∧ (∀x1 :: τ1,x2 :: τ2. x1 v h x2⇒ p x1 v p (h x2))
⇒ ((map h l, l) ∈v ; lift[](v ;h−1)

⇒ (filterτ1
p (map h l), filterτ2

(p◦h) l) ∈ v ; lift[](v ;h−1)).

Since p ◦ h has a weak head normal form and hence is not ⊥, and
since the second conjunct of the precondition follows from mono-
tonicity of p, applications of laws (3) and (5) yield (8).

Second, we instantiate

R = h ;v , p1 = p◦h, p2 = p, l1 = l, l2 = map h l

for a strict and total function h :: τ1→ τ2, giving:

p 6=⊥∧ (∀x1 :: τ1,x2 :: τ2. h x1 v x2⇒ p (h x1)v p x2)
⇒ ((l,map h l) ∈v ; lift[](h ;v)
⇒ (filterτ1

(p◦h) l, filterτ2
p (map h l)) ∈ v ; lift[](h ;v)).

Since the second conjunct of the precondition follows from mono-
tonicity of p, applications of laws (4) and (6) yield

p 6=⊥⇒ map h (filter (p◦h) l)v filter p (map h l) ,

which together with the previously proven (8) gives (9).

To illustrate the roles of the restrictions on p and h required in the
previous theorem, we consider the instantiations for p, h, and l that
were used in the introduction — together with the particular func-
tion definition for filter presented there — as counterexamples for
the unrestricted equational law (1). While the first two of these
instantiations satisfy law (8), which states that strictness of h is suf-
ficient to guarantee that the right-hand side is at least as defined as
the left-hand side, the fourth instantiation demonstrates that strict-
ness of h is not a necessary condition for this. On the other hand, the
third instantiation shows that a proof of law (8) without the strict-
ness of h cannot exist. Further, the first two instantiations show that
neither the restriction that p 6= ⊥ nor totality of h can be omitted
when recovering the equality in law (9).

Another illustrative take on laws (8) and (9) is to argue on an in-
tuitive level why they hold for the particular function definition of
filter from the introduction. We consider only the impact of seq, as
opposed to why law (1) would hold in the first place, i.e., assuming
all invocations of seq were dropped. First, for law (8), we need to
establish that rhs = map h (filter (p◦h) l) is always at least as de-
fined as lhs = filter p (map h l) for strict h. To do so, we consider
all uses of seq in the definition of filter. The one on filter’s first
argument turns lhs into ⊥ if p =⊥, but never has an impact on rhs
because p◦h is always different from ⊥. If the application of seq
on some list element x of l finds a ⊥ in rhs, then by strictness of
h the corresponding element in map h l is also ⊥, and hence the
corresponding application of seq in lhs has the same outcome. A
similar observation holds for the application of seq on some tail xs
of l because map h ⊥=⊥.

Turning to law (9), we must argue that under the additional restric-
tions p 6= ⊥ and totality of h, lhs is also at least as defined as rhs.
This argument breaks naturally into three parts. First note that the
new condition on p guarantees that the application of seq on p does
not result in lhs being ⊥. Second, totality of h guarantees that the
application of seq to some list element of map h l in lhs only en-
counters ⊥ if the corresponding list element of l in rhs is itself ⊥.
Strictness of map h thus ensures that rhs is never any more defined
than lhs as a result of an application of seq to an element of map h l.
Finally, the application of seq on xs leads to no difference between
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lhs and rhs because map h is total in addition to being strict, and be-
cause applying the strict function h to all list elements necessarily
preserves any resulting undefined list element.

Note that Theorem 1 is really much more general than described in
the above discussions because it holds for every function filter of
appropriate type and does not require any knowledge of the con-
crete function definition. This wide applicability is what has earned
free theorems their name. They are now restored to their former
glory, even in the presence of seq. The proof of the inequational
free theorem (8) was made possible by the asymmetry built into
the new logical relation. In particular, if we were to replace the
totality and left-closedness requirements on relational interpretata-
tions with bottom-reflectingness, and if we were to properly con-
struct a logical relation that preserves these restrictions (which can
be done), then we would only be able to obtain law (9).

8 Program Transformations

Free theorems have found an important application as justifications
for various kinds of program transformations for nonstrict func-
tional languages [3, 6, 9, 20, 22]. The presence of seq, however,
threatens the claimed semantics-preserving character of such trans-
formations. Fortunately, one often needs to know only that a pro-
gram resulting from a transformation is at least as defined as the
program from which it was obtained. In such situations the inequa-
tional free theorems derived from our new asymmetric logical rela-
tion and its associated parametricity theorem come to the rescue. In
this section we apply them to evaluate the effect of seq on program
transformations founded on the polymorphic types of arguments to
the functions destroy, build, and vanish++ given in Figure 5.

unfoldr :: ∀α β. (β→Maybe (α,β))→ β→ [α]
unfoldr f b = case f b of Nothing → []

Just (a,b′)→ a : unfoldr f b′

destroy :: ∀α γ. (∀β. (β→Maybe (α,β))→ β→ γ)
→ [α]→ γ

destroy g = g listpsi where listpsi [] = Nothing
listpsi (a : as) = Just (a,as)

foldr :: ∀α β. (α→ β→ β)→ β→ [α]→ β
foldr c n [] = n
foldr c n (a : as) = c a (foldr c n as)

build :: ∀α. (∀β. (α→ β→ β)→ β→ β)→ [α]
build g = g (:) []

vanish++ :: ∀α. (∀β. β→ (α→ β→ β)
→ (β→ β→ β)→ β)→ [α]

vanish++ g = g id (λx h ys→ x : h ys) (◦) []

Figure 5. Functions for program transformations.

8.1 The Dual of Short Cut Fusion

Svenningsson [20] considered the destroy/unfoldr rule as a dual
to the foldr/build rule used in short cut fusion [6] (considered in
the next subsection). It solves some problems that short cut fusion
has with list consumption by zip-like functions and by functions
defined using accumulating parameters. The destroy/unfoldr rule
can be used to eliminate intermediate lists in compositions of list
producers written with unfoldr and list consumers written with
destroy. Svenningsson describes the rule as an oriented replace-
ment transformation, but makes no precise statement about its

semantics. He only suggests that correctness of the transformation
might be provable using a free theorem. In order for the rule to be
safely applicable — i.e., to produce a program that is at least as
defined as the original one — we must at least have the following
for appropriately typed g, psi, and e:6

destroy g (unfoldr psi e)v g psi e (10)

While [20] proposes the destroy/unfoldr rule for the lan-
guage Haskell and even contains an example involving seq, the
possible impact of seq on the correctness of the transformation
is ignored. But the following two instantiations using seq break
conjecture (10), making the right-hand side less defined than the
left-hand side:

g = (λx y→ seq x []) psi =⊥ e = []
g = (λx y→ seq y []) psi = (λx→Nothing) e =⊥

Thus, in the presence of seq the transformation is unsafe.

To find conditions under which (10) holds and (potentially differ-
ent) conditions under which the converse inequation holds (which
together would give conditions for semantic equivalence), we de-
rive the parametricity property for terms of g’s type in the defini-
tion of destroy and instantiate it in such a way that the result relates
the two sides of the destroy/unfoldr rule. While doing so, we keep
track of conditions to impose so that the chosen instantiation is per-
missible (cf. Section 6.1). This process does not immediately yield
the inequations we seek, but instead gives free theorems relating
the two sides of the destroy/unfoldr rule by the interpretation of g’s
return type according to our logical relation. The inequations are
then obtained from these theorems under a certain (reasonable) as-
sumption about the interpretations of closed types according to the
logical relation, to be discussed below.

THEOREM 2. For all closed types τ and τ′, every function

g :: ∀β. (β→Maybe (τ′,β))→ β→ τ ,

and appropriately typed psi and e the following hold:

if psi 6=⊥ and psi is strict, then:
(destroy g (unfoldr psi e),g psi e) ∈ ∆seq

τ, /0 (11)

if psi is strict and total and never returns Just ⊥, then:
(destroy g (unfoldr psi e),g psi e) ∈ (∆seq

τ, /0 )−1 (12)

PROOF. The parametricity property associated with g’s type is the
following instance of law (7):

(g,g) ∈ ∆seq
∀β.(β→Maybe (τ′,β))→β→τ, /0.

Expanding this statement according to Figure 4 yields that for
every choice of closed types τ1 and τ2, an admissible, total,
and left-closed relation R ∈ Relseq(τ1,τ2), functions psi1 :: τ1 →
Maybe (τ′,τ1) and psi2 :: τ2→Maybe (τ′,τ2), and values e1 :: τ1

6 The instantiation g = (λx y→ case x y of Just z→ []), psi =
(λx→ case x of []→ Just ⊥), and e = [] demonstrates that (even in
the absence of seq and even for strict psi) semantic equivalence does
not hold in general. Svenningsson’s paper does not mention this.
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and e2 :: τ2 the following holds:

(gτ1 6=⊥⇒ gτ2 6=⊥)
∧ ( (psi1 6=⊥⇒ psi2 6=⊥)

∧ (∀b1 :: τ1,b2 :: τ2.
(b1,b2) ∈ R ⇒ (psi1 b1,psi2 b2)

∈v ; liftMaybe(v ; lift(,)(∆
seq
τ′,[R /β],R )))

⇒ (gτ1 psi1 6=⊥⇒ gτ2 psi2 6=⊥)
∧ ((e1,e2) ∈ R ⇒ (gτ1 psi1 e1,gτ2 psi2 e2) ∈ ∆seq

τ,[R /β]
)).

Using the fact that for the closed types τ and τ′ we have ∆seq
τ,[R /β] =

∆seq
τ, /0 and ∆seq

τ′,[R /β]
= ∆seq

τ′, /0, dropping two conjuncts from the above,
and strengthening one precondition, we obtain the following
weaker statement:

psi2 6=⊥
∧ (∀b1 :: τ1,b2 :: τ2.

(b1,b2) ∈ R
⇒ (psi1 b1,psi2 b2) ∈ v ; liftMaybe(v ; lift(,)(∆

seq
τ′, /0,R )))

∧ (e1,e2) ∈ R
⇒ (gτ1 psi1 e1,gτ2 psi2 e2) ∈ ∆seq

τ, /0 .

We consider two instantiations of this.

First, we instantiate

τ1 = [τ′], psi1 = listpsi, e1 = unfoldr psi e,
R =v ;(unfoldr psi)−1, psi2 = psi, e2 = e

for strict psi :: τ2→Maybe (τ′,τ2). Note that the instantiation for
R is permissible because unfoldr psi is a strict function for strict
psi. We obtain:

psi 6=⊥
∧ (∀b1 :: [τ′],b2 :: τ2.

b1 v unfoldr psi b2
⇒ (listpsi b1,psi b2) ∈v ; liftMaybe(v ; lift(,)(∆

seq
τ′, /0,R )))

∧ unfoldr psi ev unfoldr psi e
⇒ (g[τ′ ] listpsi (unfoldr psi e),gτ2 psi e) ∈ ∆seq

τ, /0 .

Since listpsi is monotonic, so that b1 v unfoldr psi b2 implies
listpsi b1 v listpsi (unfoldr psi b2), and since v is transitive, we
can prove that the second conjunct of the precondition holds by
showing that

(listpsi (unfoldr psi b2),psi b2) ∈v ; liftMaybe(v ; lift(,)(∆
seq
τ′, /0,R ))

for every b2 :: τ2. By the definitions of unfoldr and listpsi the ele-
ment in the left position is equal to:

case psi b2 of Nothing →Nothing
Just (a,b′)→ Just (a,unfoldr psi b′).

By case distinction on the value of psi b2 :: Maybe (τ′,τ2) we can
check that this is indeed always related to psi b2 by v ; liftMaybe(v

; lift(,)(∆
seq
τ′, /0,R )) as follows. The cases ⊥ and Nothing are straight-

forward, using the reflexivity of v and the definition of liftMaybe.
Similarly, the proof obligation in the case psi b2 = Just (a,b′) for
some a :: τ′ and b′ :: τ2 reduces to:

((a,unfoldr psi b′),(a,b′)) ∈v ; lift(,)(∆
seq
τ′, /0,R ).

But this follows from reflexivity of v, the definition of lift(,),
law (7) for the closed type τ′, and the instantiation of R . Finally, in
the case psi b2 = Just ⊥,

(⊥,Just ⊥) ∈v ; liftMaybe(v ; lift(,)(∆
seq
τ′, /0,R ))

follows from ⊥v Just ⊥, the definition of liftMaybe, the reflexivity
of v, and the definition of lift(,). The third conjunct of the precon-
dition in the above implication is trivially true, hence we obtain:

psi 6=⊥⇒ (g[τ′] listpsi (unfoldr psi e),gτ2 psi e) ∈ ∆seq
τ, /0 ,

from which law (11) follows by the definition of destroy.

Second, we instantiate

τ2 = [τ′], psi1 = psi, e1 = e,
R = (unfoldr psi) ;v , psi2 = listpsi, e2 = unfoldr psi e

for strict and total psi :: τ1 → Maybe (τ′,τ1) that never returns
Just ⊥. Note that the instantiation for R is permissible because
the conditions on psi guarantee that unfoldr psi is a strict and total
function. We obtain:

listpsi 6=⊥
∧ (∀b1 :: τ1,b2 :: [τ′].

unfoldr psi b1 v b2
⇒ (psi b1, listpsi b2) ∈v ; liftMaybe(v ; lift(,)(∆

seq
τ′, /0,R )))

∧ unfoldr psi ev unfoldr psi e
⇒ (gτ1 psi e,g[τ′ ] listpsi (unfoldr psi e)) ∈ ∆seq

τ, /0 .

The first and the third conjuncts of the precondition in this impli-
cation obviously hold. To establish the validity of the second con-
junct, we note that for every b1 :: τ1 and b2 :: [τ′], unfoldr psi b1v b2
and monotonicity of listpsi imply the following inequation:

listpsi (unfoldr psi b1)v listpsi b2.

By the definitions of unfoldr and listpsi its left-hand side is equal to:

case psi b1 of Nothing →Nothing
Just (a,b′)→ Just (a,unfoldr psi b′).

Bearing in mind that neither psi nor listpsi ever returns Just ⊥
(the former by assumption, the latter by definition), it is easy to
see from this that the inequation constrains the values of psi b1 ::
Maybe (τ′,τ1) and listpsi b2 :: Maybe (τ′, [τ′]) to one of the follow-
ing combinations:

psi b1 listpsi b2
⊥ ⊥
⊥ Nothing
Nothing Nothing
⊥ Just (a′,as′)
Just (a,b′) Just (a′,as′) | av a′ ∧unfoldr psi b′ v as′

It remains to be checked that in each of these cases the two values
are related by v ; liftMaybe(v ; lift(,)(∆

seq
τ′, /0,R )). This is an easy ex-

ercise using the reflexivity of v, the facts that ⊥ v Nothing and
⊥ v Just (a′,⊥) for every a′ :: τ′, the definitions of liftMaybe and
lift(,), law (7) for the closed type τ′, the instantiation of R , and
strictness of unfoldr psi.

Having established the validity of all three conjuncts of the precon-
dition in the above implication, its conclusion gives law (12) by the
definition of destroy.

The laws (11) and (12) are not yet the desired inequational ver-
sions of the destroy/unfoldr rule. This is because they depend on
the relational interpretation of the closed type τ. In previous proofs
of program transformations based on the fundamental property of
a logical relation (e.g., in [6, 22]), such interpretations of closed
types have silently been assumed to coincide with the relational in-
terpretations of base types, i.e., with identity relations. This cannot
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be justified solely based on Wadler’s parametricity theorem [23],
from which these proofs claim to be derived, but rather requires
Reynolds’ identity extension lemma [17].

Reynolds also considered an “order-relation semantics” in which
the interpretations of base types are semantic approximation
relations, and noted that a corresponding extension lemma holds
for it (prior to the inclusion of polymorphic types). This motivates
the following conjecture:

if τ is a closed type, then:
∆seq

τ, /0 =vτ (13)

Coincidence of ∆seq
τ, /0 and vτ is easily established by induc-

tion for types τ not containing ∀-quantifications. This is be-
cause our logical relation interprets nonparametrized datatypes
as v, and because its relational actions for function types and
parametrized datatypes preserve v (i.e.,vτ→

seq vτ′ =vτ→τ′ and,
e.g., vMaybe τ ; liftMaybe(vτ) =vMaybe τ).

To show that conjecture (13) also holds for types involving poly-
morphism is more complicated. Indeed, we encounter a problem
analogous to that which arises in Section 8 of [17] for the identity
extension lemma. To complete the induction step for ∀-types, one
needs to assume the validity of a statement relating instances of a
polymorphic value by the logical relation, interpreting the quan-
tified type variable by an arbitrary (in our case: admissible, to-
tal, and left-closed) relation between the types at which instanti-
ation occurs. Since in Section 2 we have not been explicit about
which functions from types to values our semantic model contains
at polymorphic types, this statement is not known to hold a pri-
ori. Reynolds solves the problem by incorporating precisely the
required statement into the definition of the set of values a poly-
morphic type contains.7 That no values of terms expressible in the
underlying language are unduly excluded by doing so is then argued
by appealing to the identity extension lemma itself, as well as to the
abstraction theorem. Since the latter corresponds to the general-
ized form of Wadler’s parametricity theorem in Section 6 of [23]
and thus to the generalization of the fundamental property (7) for
types and terms potentially containing free variables mentioned in
our sketched proof in Section 6, the same approach is also expected
to work in our setting.

Another approach would be to mirror Pitts’ operational tech-
niques [14]. He constructed a logical relation for a calculus very
similar to the one without seq handled in Section 4 and proved
that it interprets arbitrary closed types as contextual equivalence
relations. This was used in [8, 9, 10] to give proofs of program
transformations based on free theorems that make explicit the pre-
viously implicit use of the coincidence of relational interpretations
of closed types with identity relations. In a message on the Types
mailing list [2], Pitts suggested that changing the interpretations
of base types to semantic approximations would give an analogue
of (13). However, seq was not considered in that discussion.

Using the plausible assumption (13), the laws (11) and (12) turn
into the following:

if psi 6=⊥ and psi is strict, then:
destroy g (unfoldr psi e)v g psi e (14)

7In fact, Reynolds considers the added condition to draw the
dividing line between parametric and ad-hoc polymorphism.

if psi is strict and total and never returns Just⊥, then:
destroy g (unfoldr psi e)w g psi e (15)

According to law (14), the destroy/unfoldr transformation is
safe in the presence of seq if the first arguments of all occurrences
of unfoldr in the original program are strict functions different
from ⊥. Most of the examples given in [20] satisfy this restriction,
with the notable exceptions of a — rather toy — definition of the
empty list as an unfoldr and the following function definition:

repeat x = unfoldr (λa→ Just (x,a)) ⊥

Fusion with this function as a producer can be problematic.

If psi is strict, total, distinct from ⊥, and never returns Just ⊥,
then laws (14) and (15) together guarantee that the destroy/unfoldr
transformation is a semantic equivalence.

8.2 Short Cut Fusion

The classical program transformation proved with a free theorem
is the foldr/build rule [6]. It states that for appropriately typed g, c,
and n:

foldr c n (build g) = g c n (16)

In the presence of seq this law fails, e.g., for the instantia-
tion g = seq, c = ⊥, and n = []. But under the assumption (13) we
can prove that the following laws hold even when seq is present:

foldr c n (build g)w g c n (17)

if c ⊥ ⊥ 6=⊥ and n 6=⊥, then:
foldr c n (build g) = g c n (18)

Law (17) gives only partial correctness of the foldr/build
rule in general because the transformed program may be less
defined than the original one. To recover total correctness in
law (18), c and n must be restricted so that foldr c n is total (in
addition to being strict). This coincides with what the conventional
wisdom has to say about foldr/build.

8.3 The Concatenate Vanishes For Free

In [22] the function vanish++ was given together with a proof of
the following law for appropriately typed g, in the absence of seq:

g [] (:) (++) = vanish++ g (19)

Read from left to right, this law can be considered as a pro-
gram transformation that eliminates concatenate operations from
uniformly abstracted list producers.

In Appendix B of [22] it was noted that in the presence of seq
the transformation might improve the termination behavior of
programs. The sketched proof that the converse cannot happen
anticipated some of the ideas from the present paper, but did
not correctly handle all the subtleties that the presence of seq
entails for proofs based on free theorems. With the logical relation
constructed in Section 6, the fundamental property (7), and
assumption (13), we now more rigorously obtain:

g [] (:) (++)v vanish++ g (20)

Analogous inequational laws for other vanish-combinators
given in [22] can also be proved in the presence of seq.
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9 Directions for Future Research

In this paper we have investigated the impact that a polymorphic
strict evaluation primitive, such as Haskell’s seq, has on free the-
orems derivable from polymorphic types in a nonstrict functional
language. The lessons learned may aid in determining the effects
that the addition of other primitives, such as the ones used to incor-
porate I/O and stateful references in Haskell, has on free theorems.

To contain the weakening of free theorems due to seq so that it
impacts only those functions that actually use seq, a qualified type
system along the lines of [11] could be devised. The basic challenge
here is to determine when to use the standard relational actions for
interpreting function types or algebraic datatypes and when to use
appropriately adapted relational actions for doing so.

While free theorems derived from our new logical relation also
hold for programs which do not contain seq at all, they may be
overly restrictive in such situations compared with free theorems
obtained from the standard logical relation. On the other hand,
using a (different) asymmetric logical relation could prove worth-
while also in that setting. For example, the strongest justification
for the destroy/unfoldr rule in a nonstrict language without seq that
could be proved in [8] was semantics-preservation for strict psi that
never returns Just ⊥. But by employing the asymmetry idea it
should also be possible to establish the inequational law (10) with-
out preconditions. Similarly, it would be interesting to investigate
what our approach has to contribute to the study of functional lan-
guages where strict rather than lazy evaluation is the default.

An alternative to the denotational approach taken in the current pa-
per is Pitts’ operational semantics-based approach to constructing
parametric models of higher-order lambda calculi [14]. The deli-
cate issue which arises in Pitts’ approach to parametricity is tying
the operational semantics of a calculus supporting new primitives
into the relational interpretations of its types. The present paper can
be seen as providing insight into the issues which are likely to arise
when modifying the operational approach to accommodate seq, but
the precise connections between the denotational style restrictions
on relations reflected in our adapted logical relation and operational
style closure operators as employed by Pitts remain topics for fur-
ther investigation.

10 Acknowledgments

The ideas presented in this paper took shape during a visit of Pa-
tricia Johann to Dresden University of Technology, funded by the
Graduiertenkolleg 334 of the “Deutsche Forschungsgemeinschaft”.

11 References

[1] The Haskell Mailing List Archive
(http://www.mail-archive.com/haskell@haskell.org ).

[2] The Types Forum List Archive
(http://www.cis.upenn.edu/∼bcpierce/types/archives ),
message /current/msg00847.html .

[3] O. Chitil. Type inference builds a short cut to deforestation.
In ICFP’99, Proc., pages 249–260. ACM Press.

[4] S. Cosmadakis, A. Meyer, and J. Riecke. Completeness for
typed lazy inequalities. In LICS’90, Proc., pages 312–320.
IEEE Computer Society Press.

[5] H. Friedman. Equality between functionals. In Logic Collo-
quium ’72–73, Proc., pages 22–37. Springer-Verlag.

[6] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to de-
forestation. In FPCA’93, Proc., pages 223–232. ACM Press.

[7] J.-Y. Girard. Interprétation functionelle et élimination des
coupures dans l’arithmétique d’ordre supérieure. PhD the-
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