
Lecture Notes in Computer Science 6307
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Somesh Jha Robin Sommer
Christian Kreibich (Eds.)

Recent Advances
in Intrusion Detection

13th International Symposium, RAID 2010
Ottawa, Ontario, Canada, September 15-17, 2010
Proceedings

13

Volume Editors

Somesh Jha
University of Wisconsin
Computer Sciences Department
Madison, WI 53706, USA
E-mail: jha@cs.wisc.edu

Robin Sommer
Christian Kreibich
International Computer Science Institute
1947 Center Street, Suite 600, Berkeley, CA 94704, USA
E-mail: {robin, christian}@icir.org

Library of Congress Control Number: 2010933245

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, H.4, I.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-15511-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15511-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

On behalf of the Program Committee, it is our pleasure to present the pro-
ceedings of the 13th International Symposium on Recent Advances in Intrusion
Detection Systems (RAID 2010), which took place in Ottawa, Ontario, Canada,
during September 15-17, 2010. As in the past, the symposium brought together
leading researchers and practitioners from academia, government, and industry
to discuss intrusion detection research and practice. There were eight technical
sessions presenting full research papers on network protection, high performance,
malware detection and defense (2 sessions), evaluation, forensics, anomaly detec-
tion and access protection, and Web security. Furthermore, there was a poster
session presenting emerging research areas and case studies.

The RAID 2010 Program Committee received 102 full-paper submissions
from all over the world. All submissions were carefully reviewed by independent
reviewers on the basis of technical quality, topic, space, and overall balance. The
final decision took place at a Program Committee meeting held during May 19-20
in Oakland, California, where 24 papers were eventually selected for presentation
at the conference and publication in the proceedings. As a continued feature,
the symposium later also accepted 15 poster presentations reporting early-stage
research, demonstration of applications, or case studies. The authors of accepted
posters were also offered the opportunity to have an extended abstract of their
work included in the proceedings.

The success of RAID 2010 depended on the joint effort of many people. We
would like to thank all the authors of submitted papers and posters. We would
also like to thank the Program Committee members and additional reviewers,
who volunteered their time to evaluate the numerous submissions. In addition,
we would like to thank the General Chair, Frédéric Massicotte, for handling the
conference arrangements; Christian Kreibich for handling the publication pro-
cess; Thorsten Holz for publicizing the conference; Marc Grégoire for finding
sponsors for the conference; and the Communications Research Centre Canada
for maintaining the conference website. Finally, we would like to thank our spon-
sors for their support.

July 2010 Somesh Jha
Robin Sommer

Organization

Organizing Committee

General Chair Frédéric Massicotte, Communications Research Centre
Canada

General Co-chair Marc Grégoire, Defence Research and Development
Canada

Program Chair Somesh Jha, University of Wisconsin, USA
Program Co-chair Robin Sommer, ICSI / LBNL, USA
Sponsorship Chair Marc Grégoire, Defence Research and Development

Canada
Publication Chair Christian Kreibich, ICSI, USA
Publicity Chair Thorsten Holz, Technical University Vienna,

Austria

Program Committee

Michael Bailey University of Michigan, USA
Davide Balzarotti Eurecom, France
Adam Barth UC Berkeley, USA
David Brumley Carnegie Mellon University, USA
Mihai Christodorescu IBM T.J. Watson Research Center, USA
Manuel Costa Microsoft Research, Cambridge, UK
Jonathan Giffin Georgia Institute of Technology, USA
Guofei Gu Texas A & M University, USA
Thorsten Holz Technical University Vienna, Austria
Jaeyeon Jung Intel Research, USA
Christian Kreibich International Computer Science Institute, USA
Wenke Lee Georgia Institute of Technology, USA
Corrado Leita Symantec Research Europe, France
Gregor Maier TU Berlin / Deutsche Telekom Laboratories,

Germany
Benjamin Morin Central Directorate for Information System Security,

France
Phil Porras SRI International, USA
Anil Somayaji Carleton University, Canada
V.N. Venkatkrishnan University of Illinois (Chicago), USA
Charles Wright MIT Lincoln Laboratory, USA
Vinod Yegnewswaran SRI International, USA

VIII Organization

External Reviewers

Manos Antonakakis
Prithvi Bisht
Kevin Carter
Byung-gon Chun
Chris Connelly
Loic Duflot
Ashish Gehani
Kalpana Gondi
Christian Gorecki
Ralf Hund
Clemens Kolbitsch
Oleg Krogius
Andrea Lanzi

Xiapu Luo
Ludovic Mé
Paolo Milani Comparetti
Andreas Moser
Collin Mulliner
Kaustubh Nyalkalkar
Jon Oberheide
Roberto Perdisci
Fabien Pouget
Konrad Rieck
Hassen Saidi
Monirul Sharif
Seungwon Shin

Kapil Singh
Brad Spengler
Gianluca Stringhini
Mike Ter Louw
Yohann Thomas
Elvis Tombini
Carsten Willems
Yunjing Xu
Chao Yang
Michelle Zhou

Steering Committee

Chair Marc Dacier, Symantec Research Europe
Members Hervé Debar, France Telecom R&D, France

Deborah Frincke, Pacific Northwest National Lab, USA
Ming-Yuh Huang, The Boeing Company, USA
Erland Jonsson, Chalmers University of Technology, Sweden
Engin Kirda, Institute Eurecom, France
Wenke Lee, Georgia Institute of Technology, USA
Ludovic Mé, Supélec, France
Alfonso Valdes, SRI International, USA
Giovanni Vigna, UC Santa Barbara, USA
Andreas Wespi, IBM Research, Switzerland
S. Felix Wu, UC Davis, USA
Diego Zamboni, HP Professional Services, Mexico
Christopher Kruegel, UC Santa Barbara, USA

Table of Contents

Network Protection

What Is the Impact of P2P Traffic on Anomaly Detection? 1
Irfan Ul Haq, Sardar Ali, Hassan Khan, and Syed Ali Khayam

A Centralized Monitoring Infrastructure for Improving DNS Security . . . 18
Manos Antonakakis, David Dagon, Xiapu Luo, Roberto Perdisci,
Wenke Lee, and Justin Bellmor

Behavior-Based Worm Detectors Compared . 38
Shad Stafford and Jun Li

High Performance

Improving NFA-Based Signature Matching Using Ordered Binary
Decision Diagrams . 58

Liu Yang, Rezwana Karim, Vinod Ganapathy, and Randy Smith

GrAVity: A Massively Parallel Antivirus Engine . 79
Giorgos Vasiliadis and Sotiris Ioannidis

Malware Detection and Defence

Automatic Discovery of Parasitic Malware . 97
Abhinav Srivastava and Jonathon Giffin

BotSwindler: Tamper Resistant Injection of Believable Decoys in
VM-Based Hosts for Crimeware Detection . 118

Brian M. Bowen, Pratap Prabhu, Vasileios P. Kemerlis,
Stelios Sidiroglou, Angelos D. Keromytis, and Salvatore J. Stolfo

CANVuS: Context-Aware Network Vulnerability Scanning 138
Yunjing Xu, Michael Bailey, Eric Vander Weele, and
Farnam Jahanian

HyperCheck: A Hardware-Assisted Integrity Monitor 158
Jiang Wang, Angelos Stavrou, and Anup Ghosh

Kernel Malware Analysis with Un-tampered and Temporal Views of
Dynamic Kernel Memory . 178

Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang

Bait Your Hook: A Novel Detection Technique for Keyloggers 198
Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo

X Table of Contents

Evaluation

Generating Client Workloads and High-Fidelity Network Traffic for
Controllable, Repeatable Experiments in Computer Security 218

Charles V. Wright, Christopher Connelly, Timothy Braje,
Jesse C. Rabek, Lee M. Rossey, and Robert K. Cunningham

On Challenges in Evaluating Malware Clustering . 238
Peng Li, Limin Liu, Debin Gao, and Michael K. Reiter

Why Did My Detector Do That?! Predicting Keystroke-Dynamics
Error Rates . 256

Kevin Killourhy and Roy Maxion

Forensics

NetStore: An Efficient Storage Infrastructure for Network Forensics
and Monitoring . 277

Paul Giura and Nasir Memon

Live and Trustworthy Forensic Analysis of Commodity Production
Systems . 297

Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and
Lorenzo Cavallaro

Hybrid Analysis and Control of Malware . 317
Kevin A. Roundy and Barton P. Miller

Anomaly Detection

Anomaly Detection and Mitigation for Disaster Area Networks 339
Jordi Cucurull, Mikael Asplund, and Simin Nadjm-Tehrani

Community Epidemic Detection Using Time-Correlated Anomalies 360
Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

A Data-Centric Approach to Insider Attack Detection in Database
Systems . 382

Sunu Mathew, Michalis Petropoulos, Hung Q. Ngo, and
Shambhu Upadhyaya

Privilege States Based Access Control for Fine-Grained Intrusion
Response . 402

Ashish Kamra and Elisa Bertino

Table of Contents XI

Web Security

Abusing Social Networks for Automated User Profiling 422
Marco Balduzzi, Christian Platzer, Thorsten Holz, Engin Kirda,
Davide Balzarotti, and Christopher Kruegel

An Analysis of Rogue AV Campaigns . 442
Marco Cova, Corrado Leita, Olivier Thonnard,
Angelos D. Keromytis, and Marc Dacier

Fast-Flux Bot Detection in Real Time . 464
Ching-Hsiang Hsu, Chun-Ying Huang, and Kuan-Ta Chen

Posters

A Client-Based and Server-Enhanced Defense Mechanism for Cross-Site
Request Forgery . 484

Luyi Xing, Yuqing Zhang, and Shenlong Chen

A Distributed Honeynet at KFUPM: A Case Study 486
Mohammed Sqalli, Raed AlShaikh, and Ezzat Ahmed

Aspect-Based Attack Detection in Large-Scale Networks 488
Martin Drašar, Jan Vykopal, Radek Krejč́ı, and Pavel Čeleda

Detecting Network Anomalies in Backbone Networks 490
Christian Callegari, Loris Gazzarrini, Stefano Giordano,
Michele Pagano, and Teresa Pepe

Detecting the Onset of Infection for Secure Hosts . 492
Kui Xu, Qiang Ma, and Danfeng (Daphne) Yao

Eliminating Human Specification in Static Analysis 494
Ying Kong, Yuqing Zhang, and Qixu Liu

Evaluation of the Common Dataset Used in Anti-Malware Engineering
Workshop 2009 . 496

Hosoi Takurou and Kanta Matsuura

Inferring Protocol State Machine from Real-World Trace 498
Yipeng Wang, Zhibin Zhang, and Li Guo

MEDUSA: Mining Events to Detect Undesirable uSer Actions in
SCADA . 500

Dina Hadžiosmanović, Damiano Bolzoni, and Pieter Hartel

On Estimating Cyber Adversaries’ Capabilities: A Bayesian Model
Approach . 502

Jianchun Jiang, Weifeng Chen, and Liping Ding

XII Table of Contents

Security System for Encrypted Environments (S2E2) 505
Robert Koch and Gabi Dreo Rodosek

Towards Automatic Deduction and Event Reconstruction Using
Forensic Lucid and Probabilities to Encode the IDS Evidence 508

Serguei A. Mokhov, Joey Paquet, and Mourad Debbabi

Toward Specification-Based Intrusion Detection for Web Applications . . . 510
Salman Niksefat, Mohammad Mahdi Ahaniha,
Babak Sadeghiyan, and Mehdi Shajari

Toward Whole-System Dynamic Analysis for ARM-Based Mobile
Devices . 512

Ryan Whelan and David Kaeli

Using IRP for Malware Detection . 514
FuYong Zhang, DeYu Qi, and JingLin Hu

Author Index . 517

What Is the Impact of P2P Traffic on Anomaly

Detection?�

Irfan Ul Haq, Sardar Ali, Hassan Khan, and Syed Ali Khayam

School of Electrical Engineering & Computer Science

National University of Sciences & Technology (NUST)

Islamabad 44000, Pakistan

{irfan.haq,sardar.ali,hassan.khan,ali.khayam}@seecs.nust.edu.pk

Abstract. Recent studies estimate that peer-to-peer (p2p) traffic com-

prises 40-70% of today’s Internet traffic [1]. Surprisingly, the impact of

p2p traffic on anomaly detection has not been investigated. In this paper,

we collect and use a labeled dataset containing diverse network anoma-

lies (portscans, TCP floods, UDP floods, at varying rates) and p2p traffic

(encrypted and unencrypted with BitTorrent, Vuze, Flashget, μTorrent,

Deluge, BitComet, Halite, eDonkey and Kademlia clients) to empirically

quantify the impact of p2p traffic on anomaly detection. Four promi-

nent anomaly detectors (TRW-CB [7], Rate Limiting [8], Maximum En-

tropy [10] and NETAD [11]) are evaluated on this dataset.

Our results reveal that: 1) p2p traffic results in up to 30% decrease

in detection rate and up to 45% increase in false positive rate; 2) due to

a partial overlap of traffic behaviors, p2p traffic inadvertently provides

an effective evasion cover for high- and low-rate attacks; and 3) training

an anomaly detector on p2p traffic, instead of improving accuracy, intro-

duces a significant accuracy degradation for the anomaly detector. Based

on these results, we argue that only p2p traffic filtering can provide a

pragmatic, yet short-term, solution to this problem. We incorporate two

prominent p2p traffic classifiers (OpenDPI [23] and Karagiannis’ Pay-

load Classifier(KPC) [24]) as pre-processors into the anomaly detectors

and show that the existing non-proprietary p2p traffic classifiers do not

have sufficient accuracies to mitigate the negative impacts of p2p traffic

on anomaly detection.

Given the premise that p2p traffic is here to stay, our work demon-

strates the need to rethink the classical anomaly detection design phi-

losophy with a focus on performing anomaly detection in the presence

of p2p traffic. We make our dataset publicly available for evaluation of

future anomaly detectors that are designed to operate with p2p traffic.

1 Introduction

During March of 2009, a record number of 4,543 anomalies was recorded by
an open-source TRW-CB based [7] anomaly detector deployed on our school’s

� This work is supported by Pakistan National ICT R&D Fund.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 1–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 I.U. Haq et al.

network. The network administrators took it as a result of a zero-day attack
and updated the antivirus and antispyware definitions on school hosts. However,
TRW-CB continued reporting anomalies even after the update. An investigation
of this strange behavior by correlating the TRW-CB logs and the network logs
revealed that the culprit was p2p traffic which was being reported as anomalous.1

This strange behavior of TRW-CB was communicated to us which intrigued us
to investigate the impact of p2p traffic on anomaly detection.

Based on the results of our investigation, in this paper we empirically an-
swer the following open question: How much perturbations are introduced in
anomaly detection metrics by p2p traffic2 and how can these perturbations be
mitigated? A general answer to this question can be inferred intuitively because
some features of p2p traffic are quite similar to those of malicious traffic and
quite different from the bulk of benign TCP traffic [5]. Hence, the accuracy of
an anomaly detector, which flags deviations from a model of normal behavior,
is bound to degrade in the presence of p2p traffic. For example, the decentral-
ized and distributed nature of the p2p architecture results in establishment of
a large number of connections to random ports during boot-strap which shares
similarities with portscan attacks; compare a torrent client “scanning” over 50
peers during boot-strapping to MyDoom-A with an average scan rate of 9 scans
per minute. Similarly, high churn rate in p2p networks results in a large number
of failed connections3 which is another commonly-observed phenomenon during
portscan attacks.

While a general sense can be determined intuitively, our empirical study gives
deeper insights by breaking the above question into the following set of impor-
tant sub-questions: 1) How much degradation does p2p traffic induce in anomaly
detection accuracy (detection and false positive rates)? 2) Which anomaly de-
tection metrics/principles are more sensitive to p2p traffic and why? 3) Does
the aggressive nature of p2p traffic dominate some/all attack classes and high-
/low-rate attacks? 4) Can an anomaly detector handle p2p traffic if it is trained
on a dataset containing p2p traffic? 5) Can a pragmatic solution be designed to
make an anomaly detector insensitive to the p2p traffic? 6) Can existing public
p2p traffic classifiers mitigate the degradation in anomaly detection accuracy?
7) What are the open problems in designing anomaly detectors which operate
effectively in today’s Internet traffic?

To empirically answer the above questions, we collect a labeled dataset con-
taining diverse network anomalies (portscans, TCP floods, UDP floods, at vary-
ing rates) and p2p traffic (encrypted and unencrypted with BitTorrent, Vuze,
Flashget, μTorrent, Deluge, BitComet, Halite, eDonkey and KAD clients). Since
it is not possible to evaluate all existing anomaly detectors, ROC-based

1 This sudden spike was caused by recent relocation of students’ dormitories inside our

newly-built campus and the students’ usage of p2p applications in their dormitories.
2 While our evaluations focus on p2p file sharing traffic, p2p VOIP and p2p streaming

video traffic also exhibit similar traffic behaviors.
3 Failed connections is a feature which is employed to detect malicious hosts [6]-[9] as

well as p2p file sharing hosts [20],[21].

What Is the Impact of P2P Traffic on Anomaly Detection? 3

accuracies of four prominent anomaly detectors (TRW-CB [7], Rate Limiting [8],
Maximum Entropy [10] and NETAD [11]) are evaluated on this dataset.

Our results reveal that all the anomaly detectors experience an unacceptable
(up to 30%) drop in detection rates and a significant (up to 45%) increase in
false alarm rates when operating with p2p traffic. Henceforth in the paper, we
refer to this accuracy degradation as the torrent effect on anomaly detection.
We evaluate the torrent effect by evaluating the anomaly detectors on different
attack rates and classes. We show that anomaly detectors deliver varying accu-
racies on different attack classes and this varying performance is a function of
the design principle of a given anomaly detectors. Similarly, we show that p2p
traffic inadvertently acts as a very effective evasion cover for low-rate attacks as
detection of such attacks is seriously affected by p2p traffic.

Based on the significant and consistent accuracy degradations observed in
our study, we argue that a p2p traffic classifier based pre-processor can offer
the anomaly detectors a pragmatic, albeit short-term, relief from the torrent
effect.4 By incorporating OpenDPI [23] into the IDSs we see 12% improvement
in detection accuracy with 4% reduction in false positive rate. Similarly, incor-
porating KPC [24] results in 18% improvement in detection accuracy and a 48%
reduction in false positive rate. However, even with these improvements, existing
non-proprietary p2p traffic classifiers do not have sufficient traffic classification
accuracies to eliminate the torrent effect.

Recent trends indicate that the volume of p2p traffic is reducing as service
providers are now deploying commercial p2p traffic classifiers to throttle p2p
traffic in real-time [1]-[4]. Nevertheless, due to the ubiquity and popularity of
p2p networks and software, even with reduced-volumes, p2p traffic is antici-
pated to continue comprising a significant percentage of the Internet’s traffic in
the coming years [34]. We therefore advocate a fundamental rethinking of the
anomaly detection design philosophy with future anomaly detectors catering for
p2p traffic in their inherent design. We make our dataset publicly available for
evaluation of such future anomaly detectors.

2 Related Work and Background

While significant research has recently been focused towards evaluating and un-
derstanding trends in anomaly detection [16], to the best of our knowledge, the
impact of p2p traffic on intrusion detection has not been explored. Therefore, in
this section we only provide a brief overview of the anomaly detectors evaluated
in this work; interested readers are referred to the original papers [7],[8],[10] and
[11] for detailed descriptions of the anomaly detectors.

The Rate Limiting approach [8], detects anomalous connection behavior by
putting new connections exceeding a certain threshold in a queue. An alarm is
raised when the queue length exceeds a threshold. TRW-CB [7] limits the rate
at which new connections are initiated by applying the sequential hypothesis
4 Commercial IDSs are already incorporating p2p traffic classifiers (DPI engines) into

their products [31]-[33].

4 I.U. Haq et al.

testing and by using a credit increase/decrease algorithm to slow down hosts
that are experiencing unsuccessful connections. The Maximum Entropy based
detector [10] estimates the benign traffic’s baseline distribution using Maxi-
mum Entropy method by dividing the traffic into 2,348 packet classes. These
packet classes are defined based on destination ports and the transport proto-
cols. Kullback-Leibler (K-L) divergence measure is then used to flag anomalies if
divergence from the baseline distribution exceeds a threshold from the baseline
distribution. NETAD [11] operates on rule-based filtered traffic in a modeled
subset of common protocols. It computes a packet score depending on the time
and frequency of each byte of packet, and rare/novel header values are assigned
high scores. A threshold is applied on a packet’s score to find anomalous packets.
For performance evaluations, parameter tuning for these anomaly detectors is
performed in the same fashion as in a recent evaluation study [35].

We chose these anomaly detectors to ensure diversity because these detec-
tors have very different detection principles and features, and operate at dif-
ferent traffic granularities. On the one hand, we use Rate Limiting [8] which is
a connection-based programmed system using a thresholding approach, while,
on the other hand, we use a statistical programmed system, TRW-CB [7]. Sim-
ilarly, we employ an information-theoretic self-learning system like Maximum
Entropy [10] as opposed to NETAD [11] which is a packet-based rule-modeling
system.

3 Dataset Description

For the present problem, we wanted to use real, labeled and public background
and attack datasets to measure the accuracy. Furthermore, for comprehensive
evaluation, we needed attacks of different types (DoS, portscan, etc.) and dif-
ferent rates for each attack type. Finally, we needed labeled p2p traffic from
various clients and p2p protocols in our dataset. While some old attack datasets
are available [17]-[19], they do not contain p2p traffic and do not contain at-
tacks of different types. Therefore, we collect our own network traffic dataset
and make it publicly available for repeatable performance evaluations.5 The rest
of this section describes our data collection methodology.

We collect dataset in our campus network. The research labs in our campus are
located in research wing and traffic from each research lab is relayed through a
3COM4500G switch to research wing’s Cisco 3750 router using fiber connections,
as shown in Figure 1. The wing router is connected to the distribution router
which handles traffic of the entire campus. The research wing router routes traffic
for over 50 computers. Three computers in our research lab were used to generate
attack traffic. P2P traffic was generated by hosting p2p file sharing applications
on twelve computers in different labs. Due to privacy constraints, we were only
allowed to collect traces at the research wing router. We now provide the details
for normal, p2p and attack traffic in our dataset.
5 The dataset collected for this work is available at

http://wisnet.seecs.nust.edu.pk/projects/ENS/DataSets.html

http://wisnet.seecs.nust.edu.pk/projects/ENS/DataSets.html

What Is the Impact of P2P Traffic on Anomaly Detection? 5

Fig. 1. Dataset collection setup

Table 1. P2P File Sharing Application Traffic Statistics

Client Name & Version Sessions Estb. Traffic Vol. Throughput(Mbps)

Vuze 4.0 20 685 MB 0.8

Flashget 1.9.6 62 60.7 MB 1.2

UTorrent 1.8.1 30 1.08 GB 1.7

BitTorrent 6.1.2 134 1.59 GB 2.62

Deluge 1.0.7 30 171 MB 0.72

BitComet 1.07 20 57.4 MB 0.6

Halite 0.3.1 9 413 MB 0.94

eMule v0.49b 203 2.67 GB 1.2

3.1 Normal Traffic

We captured the normal traffic in six periods, each one of over three hours. Dur-
ing traffic capturing, different applications were hosted on the machines including
file transfer, web browsing, instant messaging, real-time video streaming, etc. It
was ensured that during normal traffic capturing, no p2p application was hosted
on any of the client machines. The mean packet rate recorded for the background
traffic was about 3168 pkts/sec and the standard deviation was 1683 pkts/sec.

3.2 P2P Traffic

The p2p traffic in our traces belongs to the BitTorrent, eDonkey and Kademlia
protocols. These protocols were chosen as representative traffic from p2p traffic

6 I.U. Haq et al.

Table 2. Attack Characteristics & Background Traffic Information During Attacks

Attack Name

Background Traffic

Attack Attack Rate Statistics at attack

Characteristics (pkts/sec) time (pkts/sec)

μ σ

0.1 2462.9 474.4

TCP-SYN Fixed src IP addr 1 3002.6 398.0

portscans Two distinct attacks: 10 3325.2 397.7

First scan on port 80, 100 6100.0 2492.4

Second scan on port 135 1000 3084.7 247.4

0.1 2240.1 216.7

TCP-SYN Two remote servers attacked 1 2699.1 328.8

flood Attacked ports: 10 4409.8 1666.2

(DoS) 143, 22, 138, 137, 21 100 3964.1 1670.4

1000 3000.9 238.0

0.1 2025.8 506.4

UDP flood Two remote servers attacked 1 2479.1 291.0

fraggle Attacked ports: 10 4028.4 1893.1

22, 80, 135, 143 100 6565.7 3006.9

1000 2883.7 260.8

class because these protocols generate the largest volumes of p2p traffic on Inter-
net [1].During our trace collection forBitTorrentprotocol,weusedmultiple torrent
files for transferring data from/to multiple geographical locations for each torrent
session. Multiple clients including Vuze, Flashget, μTorrent, BitTorrent, Deluge,
BitComet and Halite were used to introduce real-world diversity in the dataset
as different clients might had different behavior. For eMule sessions two options
related to protocol obfuscation and communication with obfuscated connections
only (“Allow obfuscated connections only”), were enabled in the client to ensure
logging of encrypted traffic. Similarly, encryption was enabled for the torrent ses-
sions. Statistics for the p2p file sharing applications’ traffic are given in Table 1.

3.3 Attack Traffic

For attack traffic, we launch port scans (TCP SYN), DoS (TCP SYN) and
fraggle (UDP flood) simultaneously from three end hosts in our research lab.
The DoS attacks was launched on two servers under our administration with
public IP addresses. Each attack was launched for a period of five minutes with
spoofed IP address. For every attack type, three low-rate ({0.1, 1, 10} pkts/sec)
and two high-rate ({100, 1000} pkts/sec) instances were launched. The attack
characteristics for each attack are shown in Table 2.

4 Investigating the Torrent Effect

We now embark on finding answers to the questions that were raised in the
introduction. To this end, we evaluate the anomaly detectors on datasets with

What Is the Impact of P2P Traffic on Anomaly Detection? 7

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False Positives (%)

A
ve

ra
ge

 D
et

ec
tio

n
R

at
e

(%
)

Rate Limiting (without p2p)
Rate Limiting (with p2p)
TRW−CB (without p2p)
TRW−CB (with p2p)
MaxEnt (without p2p)
MaxEnt (with p2p)
NETAD (without p2p)
NETAD (with p2p)

Fig. 2. ROC results to quantify the impact of p2p traffic on anomaly detec-

tion accuracy; each ROC point is averaged over 3(attacks) × 3(instances/attack) ×
5(rates/instance) = 45 attack windows of 5 minutes each.

varying proportions of attack and p2p traffic. In this section, we perform the
evaluations to find out the impact of p2p traffic on anomaly detection accuracy;
its correlation with high- and low-rate attacks; its affect on different attack
classes and whether p2p traffic should be used to train an anomaly detector. We
defer the solution to the torrent effect to Section 5.

4.1 How Much Degradation Does p2p Traffic Induce in Anomaly
Detection Accuracy?

We first investigate the impact of p2p traffic on the anomaly detectors’ detec-
tion and false alarm rates. Figure 2 plots the Receiver Operating Characteristic
(ROC) curves of the anomaly detectors on the dataset with p2p traffic and on
the same dataset with p2p traffic removed from it. The anomaly detectors in
this case were trained only on non-p2p traffic. With the introduction of p2p
traffic, the detection rates of all anomaly detectors drop and the false positive
rates increase. This behavior is observed because of the similarities between p2p
and malicious traffic features, such as a large number of connection attempts,
a large number of failed connections, and the use of unprivileged ports. Fig-
ure 2 shows that Maximum Entropy and TRW-CB fail miserably (up to 30%
reduction in detection rate and up to 40% increase in false positives) when they
operate on the dataset with p2p traffic. On the other hand, the detection rates of
Rate Limiting and NETAD never degrade by more than 20% and 10%, respec-
tively. Similarly, for Rate Limiting and NETAD, the average false positive rate
increase remains around 10%. Deferring further discussion on relative degrada-
tion for each anomaly detector to the next section, we deduce from Figure 2
that the accuracies of all anomaly detectors degrade considerably due to p2p
traffic.

8 I.U. Haq et al.

4.2 Which Anomaly Detection Metrics/Principles Are More
Sensitive to p2p Traffic and Why?

As we discussed in Section 2, we chose a diverse set of anomaly detectors which
employ varying traffic features and operate on assorted detection principles. We
now analyze the sensitivity of each detector to p2p traffic with a motivation
to identify design guidelines to make these detectors insensitive to background
traffic.

Figure 2 shows that NETAD provides the best overall accuracy and sustains
it under p2p traffic. This is surprising because NETAD is in essence a rule-
based detector and previous studies have shown that such algorithms fail in
many attack scenarios [35,36]. Further investigation revealed that the graceful
accuracy degradation of NETAD is mainly because of two rules that it uses to
classify normal traffic: 1) All UDP traffic on higher ports (> 1023); 2) TCP
data starting after 100 bytes. Both of these rules are satisfied by most of the
p2p clients because the communication with trackers and peers takes place on
higher ports, and TCP connections with each peer requires a sequence of TCP
control packet exchanges to establish the number and sizes of file chunks to be
downloaded. Due to these rules, NETAD continued to detect most of the p2p
traffic as non-malicious.

While both Rate Limiting and TRW-CB use outgoing connections as the key
detection feature, Figure 2 shows that Rate Limiting is less sensitive to p2p
traffic as compared to TRW-CB. We noticed that the low sensitivity of Rate
Limiting is because it operates on a long-term profile of traffic by keeping new
connections in a queue. P2P applications establish a large number of connections,
but in a short span of time during bootstrap. Therefore, Rate Limiting’s queue
threshold was not exceeded during this short-term connection activity period.
On the other hand, the affect of p2p bootstrapping becomes very pronounced
for TRW-CB which keeps changing its score with each individual connection
attempt. Despite the low degradation observed in Rate Limiting, we note that
the Rate Limiting detector generally provides the worst accuracy among all the
evaluated detectors. Therefore, while its relative accuracy degradation in the
presence of p2p traffic is low, its overall accuracy is considerably lower than
TRW-CB; at 20% false positive rate, TRW-CB gives approximately 26% better
detection rate than Rate Limiting. Hence, TRW-CB, despite having a larger
accuracy degradation, should still be the preferred choice of portscan anomaly
detector.

The accuracy degradation observed for Maximum Entropy is due to its re-
liance on a baseline distribution of destination port numbers. P2P peers generally
use random port numbers which result in a distribution approaching uniformity
which is incorrectly classified as malicious by the Maximum Entropy detector.

4.3 Does the Aggressive Nature of p2p Traffic Dominate Some/All
Attack Classes and High-/Low-Rate Attacks?

We now move to the question about whether or not p2p traffic has the same
impact on different attack classes and rates. To address this question, Figure 3

What Is the Impact of P2P Traffic on Anomaly Detection? 9

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Rate Limiting (without p2p)
Rate Limiting (with p2p)
TRW−CB (without p2p)
TRW−CB (with p2p)
MaxEnt (without p2p)
MaxEnt (with p2p)
NETAD (without p2p)
NETAD (with p2p)

(a) Portscans (high-rate)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Rate Limiting (without p2p)
Rate Limiting (with p2p)
TRW−CB (without p2p)
TRW−CB (with p2p)
MaxEnt (without p2p)
MaxEnt (with p2p)
NETAD (without p2p)
NETAD (with p2p)

(b) Portscans (low-rate)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Rate Limiting (without p2p)
Rate Limiting (with p2p)
MaxEnt (without p2p)
MaxEnt (with p2p)
NETAD (without p2p)
NETAD (with p2p)

(c) TCP Flood (high-rate)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Rate Limiting (without p2p)
Rate Limiting (with p2p)
MaxEnt (without p2p)
MaxEnt (with p2p)
NETAD (without p2p)
NETAD (with p2p)

(d) TCP Flood (low-rate)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Rate Limiting (without p2p)
Rate Limiting (with p2p)
MaxEnt (without p2p)
MaxEnt (with p2p)
NETAD (without p2p)
NETAD (with p2p)

(e) UDP Flood (high-rate)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Rate Limiting (without p2p)
Rate Limiting (with p2p)
MaxEnt (without p2p)
MaxEnt (with p2p)
NETAD (without p2p)
NETAD (with p2p)

(f) UDP Flood (low-rate)

Fig. 3. ROCs for different attack classes/rates; results of TRW-CB for flooding attacks

are omitted as it had 0% detection rate due to random source IP address spoofing used

by flooding attacks.

plots separate ROCs for each attack class and rate. We note that the perfor-
mance of NETAD does not degrade for flooding attacks when p2p traffic is
introduced, but its accuracy degrades for portscans. On the other hand, perfor-
mance penalty for Maximum Entropy in case of flooding attacks is much more
than that for portscans. This is mainly because of the differing design principles
of these anomaly detectors. Flooding attacks are detected by NETAD because
the floods were launched on lower ports [Table 2], whereas p2p communication

10 I.U. Haq et al.

80 70 60 50 40
20

30

40

50

60

70

80

90

100
A

ve
ra

ge
 D

et
ec

tio
n

R
at

e(
%

)

Ratio of p2p Traffic (%)

MaxEnt on high−rate attacks
MaxEnt on low−rate attacks
NETAD on high−rate attacks
NETAD on low−rate attacks

(a) Dataset with p2p traffic

80 70 60 50 40
30

40

50

60

70

80

90

100

A
ve

ra
ge

 D
et

ec
tio

n
R

at
e(

%
)

Ratio of p2p Traffic (%)

MaxEnt on high−rate attacks
MaxEnt on low−rate attacks
NETAD on high−rate attacks
NETAD on low−rate attacks

(b) Dataset without p2p traffic

80 70 60 50 40
0

10

20

30

40

50

60

70

80

F
al

se
 P

os
iti

ve
s

(%
)

Ratio of p2p Traffic (%)

MaxEnt on high−rate attacks
MaxEnt on low−rate attacks
NETAD on high−rate attacks
NETAD on low−rate attacks

(c) Dataset with p2p traffic

80 70 60 50 40
0

10

20

30

40

50

60

F
al

se
 P

os
iti

ve
s

(%
)

Ratio of p2p Traffic (%)

MaxEnt on high−rate attacks
MaxEnt on low−rate attacks
NETAD on high−rate attacks
NETAD on low−rate attacks

(d) Dataset without p2p traffic

Fig. 4. Results of training IDSs on p2p traffic

was using higher ports for communication. The same attacks degrade Maxi-
mum Entropy detector’s accuracy because p2p traffic on higher ports increases
the variance and entropy of the port distribution, thereby resulting in a large
number of false positives from windows containing p2p activity. These results
indicate that depending on the detection principles and features employed by
an anomaly detector, the affect of p2p traffic can be much more pronounced for
some attack classes.

We are also interested in determining how p2p traffic affects low- and high-
rate attacks. From Figure 3, we observe that detection of low-rate attacks is
much more seriously affected than that of high-rate attacks. Thus p2p traffic
inadvertently acts as a very effective evasion cover for low-rate attacks. This
evasion cover is also provided for high-rate attacks, but the cover is blown for
the scenarios where the sustained attack connection rate overwhelms the short-
term p2p connection burst.

4.4 Can an Anomaly Detector Handle p2p Traffic if It Is Trained
on a Dataset Containing p2p Traffic?

Our performance evaluations thus far have indicated that the p2p traffic ad-
versely affects the accuracies of all anomaly detectors evaluated in this work.

What Is the Impact of P2P Traffic on Anomaly Detection? 11

We now investigate whether training a detector on p2p traffic can mitigate this
torrent effect. To this end, we develop training sets with a proportion of p2p traf-
fic which has been reported in Internet study reports [1]. We vary the proportion
of p2p traffic in the training set from 40-80% and train NETAD and Maximum
Entropy on this training set; TRW-CB and Rate Limiting do not require training
and therefore we do not need to evaluate them in the present context. We then
evaluate accuracies of the anomaly detectors on the entire dataset (containing
all the p2p, malicious and background traffic).

Figure 4 shows the results for training NETAD and Maximum Entropy on
different proportions of p2p traffic. It can be clearly seen from Figure 4 that
training Maximum Entropy on p2p traffic not only degrades its accuracy but
also increases its false positives rate. In case of NETAD, although we observe
an increase in detection rate, a 30% increase in false positive rate is induced as
we increase the amount of p2p traffic in the training set. This is mainly because
p2p clients communicate with each peer on different ports and therefore it is
not possible to define an effective filtering rule for NETAD or derive a robust
baseline distribution for Maximum Entropy. Hence we conclude that training
these anomaly detectors on p2p traffic does not mitigate the torrent effect mainly
because contemporary detectors are not designed to filter or incorporate the
peculiarities of p2p protocols and clients.

5 Mitigating the Torrent Effect

Based on the empirical accuracy results of the last section, in this section we
discuss how can we make an anomaly detector resilient to p2p traffic. While
the right method to make an anomaly detector resilient to p2p traffic is to avoid
detection features which overlap between malicious and p2p traffic, in this section
we only discuss an ad hoc method that can be used to make existing IDSs work
with p2p traffic. In the following section, we will discuss how future anomaly
detectors can inherently cater for p2p traffic in their design philosophy.

5.1 Can a Pragmatic Solution Be Designed to Make an Anomaly
Detector Insensitive to p2p Traffic?

Our evaluations in Section 4 show that the torrent effect is mainly caused by
initiation of a large number of connections by p2p applications and failed con-
nection attempts in those connections. This behavior of p2p applications is a
result of: 1) lack of a central repository in p2p networks to maintain up-to-date
information of available peers; and 2) ensuring robustness in p2p networks even
with high churn rates. While these key design features of p2p networks can be
achieved in a less aggressive manner, p2p applications perform unrelenting at-
tempts to establish connections to thwart techniques to curb p2p connections.
The means used to achieve these design goals of p2p networks result in an overlap
with malicious behavior.

Since p2p protocols are unlikely to change their behavior in the near-term, and
as an IDS designer cannot assume any control over these applications’ behaviors,

12 I.U. Haq et al.

Fig. 5. Mitigating the torrent effect: An IDS with a p2p traffic classification based

pre-processor

a simple solution to mitigate the torrent effect is to filter p2p traffic at the input
of an anomaly detector using a p2p traffic classifier. Filtering of p2p traffic will
result in segregation of non-p2p and p2p traffic as shown in Figure 5. Such a pre-
processing filter can be followed by the IDS logic which, in the present context,
will only operate on the non-p2p traffic; anomaly detection on the segregated
p2p traffic will be discussed in the following section. Since contemporary IDSs
are designed to work with non-p2p traffic, detection in the segregated non-p2p
traffic will be performed on the unique and non-overlapping characteristics of
malicious traffic, thereby yielding good accuracies. This p2p traffic classification
based solution has an additional advantage that it requires no changes to be made
to existing IDSs. Consequently, at the cost of higher complexity, this generic
p2p traffic classification based pre-processor can be integrated into any anomaly
detector.

There are two problems with this p2p traffic filtering solution: 1) An IDS’
accuracy in this design is closely tied to the accuracy of the p2p traffic classifier,
i.e., if the p2p traffic classifier can classify p2p traffic accurately, then anomaly
detection accuracy will improve, and vice versa; 2) Attacks embedded within p2p
traffic will not be detected. The rest of this section address the first point, while
the second point is deferred to the next section. In particular, the next subsec-
tion answers the following question: Can existing public p2p traffic classification
solutions mitigate the torrent effect?

What Is the Impact of P2P Traffic on Anomaly Detection? 13

Table 3. Mitigating P2P Effect Using P2P Traffic Classifiers Based Traffic Filtering

(DR= Detection Rate; FP= False Positive; KPC= Karagiannis’ Payload Classifier)

Rate Limiting TRW-CB MaxEnt NETAD
DR% FP% DR% FP% DR% FP% DR% FP%

No filtering 50 45 60 22 62 48 65 25

OpenDPI[23] 56 43 64 12 63 32 70 17

KPC[24] 60 40 70 6 66 17 77 13

Table 4. Evaluation of OpenDPI and KPC on Encrypted P2P Traffic

Classified as p2p Classified as unknown Classified as non-p2p

OpenDPI 3.8% 96.2% 0%

KPC 64.7% 35.2% 0%

5.2 Can Existing Public p2p Traffic Classifiers Mitigate the Torrent
Effect?

The p2p traffic classification problem has been well investigated and signature-
and heuristic-based solutions exist. We, however, argue that many existing
heuristic-based solutions will also be subject to the overlapping feature limita-
tion.6 Therefore, it is important to choose approaches which use non-overlapping
heuristics. We now evaluate our proposed design on a popular DPI-based tech-
nology and on a hybrid scheme (signatures + heuristics).

We perform traffic filtering using OpenDPI [23] (a signature based solution
with over 90 signatures) and Karagiannis’ Payload Classifier(KPC) [24] (a hy-
brid solution with over 59 signatures); we refer interested readers to the orig-
inal papers for the details of OpenDPI and KPC. The results of evaluation of
the four anomaly detectors on filtered traffic are shown in Table 3. Table 3
shows that KPC (unknown: 35.2%) provides remarkably better accuracy than
OpenDPI (unknown: 96.2%), mainly because OpenDPI is unable to detect any
encrypted p2p traffic. It can be clearly seen by comparing Table 3 and Table 4
that the improvements in anomaly detectors’ accuracies are dependent on the
traffic classifier’s accuracy. One of the limiting factors in the accuracy of the
traffic classifiers is encrypted traffic.

We note from Table 3 that the current traffic classification accuracies of the
DPI solutions are inadequate to induce a significant improvement in anomaly
detection accuracy; detection rates after p2p traffic classification range from 40-
70%, while false positives are between 6-40% for different anomaly detectors.
Since the accuracies reported in Table 3 are impractical for commercial deploy-
ments, we conclude that public p2p traffic classification solutions at present
cannot provide acceptable accuracies to induce an effective accuracy improve-
ment in anomaly detection. While many commercial p2p traffic classification

6 For example, the method in [20] uses failed connections as a feature and should not

be used in the present context.

14 I.U. Haq et al.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

Elapsed time (seconds)

N
um

be
r

of
 C

on
ne

ct
io

ns

malicious−failure
malicious−successful
p2p−failure
p2p−successful

Fig. 6. Connection timeline for p2p and malicious (portscan attack) traffic

solutions are available, to the best of our knowledge, none of the p2p traffic clas-
sifiers proposed by the research community have acceptable detection accuracies
for encrypted p2p traffic. Therefore, efficient p2p traffic classification remains an
open problem and a solution to this problem will benefit the IDS community as
well as the traffic engineering community.

Until such a solution is developed, we need to identify non-overlapping (be-
tween malicious and p2p) traffic features that an anomaly detector can rely on.
As a preliminary, result, Figure 6 shows the connection timeline for the p2p and
malicious traffic. It can be seen that the sustained activity of maliciousness is
very different from the sporadic p2p traffic activity. Therefore, p2p and mali-
cious traffic can be isolated if a notion of long-term statistics can be introduced
during anomaly detection. This is part of our ongoing research.

6 What Are the Open Problems in Designing Future
Anomaly Detectors?

The tremendous growth in p2p-based file sharing, VOIP and video streaming
traffic has revolutionized the Internet traffic characteristics. Our evaluations
showed that this change in traffic characteristics cannot be characterized by
existing anomaly detectors which rely on traffic features (e.g., rate, connection
failures, ports, etc.) that largely overlap with p2p traffic behavior. While we
proposed an adhoc solution which allows existing IDSs to work effectively, a
question remains open regarding the scalability of this solution to future Inter-
net traffic. Recent projections of future attacks show that some of the greatest
threats in the future will be originating from file sharing networks [28]. In such

What Is the Impact of P2P Traffic on Anomaly Detection? 15

a threat landscape, a p2p traffic classification based solution will simply allow
all malicious activities embedded within p2p traffic to go undetected.

While detection of malware delivered using p2p applications does not fall un-
der the scope of traffic anomaly detection, attacks originating from p2p networks
should be detected using these IDSs. One such attacks has already been proposed
in [27] where Naoumov and Ross designed a DDoS engine for flooding a target
using the indexing and routing layers in a p2p systems. Similarly, IDSs should
be able to detect the exploits targeted at vulnerabilities which are a product of
the change to firewall rules for p2p traffic [29]. Finally, it is highly desirable to
detect the C&C channels of bots which also use p2p communication [30].

Given the premise that p2p traffic is here to stay, our work demonstrates
the need to rethink the classical anomaly detection design philosophy with a
focus on performing anomaly detection in the presence p2p traffic. We argue
that p2p traffic classification will play a fundamental role in future IDSs as it
will facilitate detection of both the p2p and the non-p2p traffic anomalies, as
shown in Figure 5. In our proposed design, traditional non-p2p network attacks
will be detected using existing anomaly detectors, while an additional IDS that
specializes at detecting attacks within p2p traffic will also be deployed.

Design of a p2p-specialized IDS is still an open research problem that is part
of our ongoing research and that we also expect our peers to follow-up on. We
have made our dataset publicly available for performance benchmarking of such
future IDSs and p2p traffic classifiers.

Acknowledgments. We thank Dr. Hyun-chul Kim for providing Karagiannis’
Payload Classifier.

References

1. Ipoque Internet Study Report 2008/2009,

http://www.ipoque.com/resources/internet-studies/

internet-study-2008 2009

2. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On Dominant Characteristics

of Residential Broadband Internet Traffic. In: IMC (2009)

3. Erman, J., Gerber, A., Hajiaghayi, M.T., Pei, D., Spatscheck, O.: Network-Aware

Forward Caching. In: WWW (2009)

4. Labovitz, C., McPherson, D., Iekel-Johnson, S.: 2009 Internet Observatory Report.

In: NANGO: NANGO47 (2009)

5. Li, Z., Goyal, A., Chen, Y., Kuzmanovic, A.: Measurement and Diagnosis of Ad-

dress Misconfigured P2P Traffic. In: IEEE INFOCOM (2010)

6. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast Portscan Detection

Using Sequential Hypothesis Testing. In: IEEE Symposium on Security and Privacy

(2004)

7. Schechter, S.E., Jung, J., Berger, W.: Fast Detection of Scanning Worm Infections.

In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.

59–81. Springer, Heidelberg (2004)

8. Williamson, M.M.: Throttling Viruses: Restricting Propagation to Defeat Malicious

Mobile Code. In: ACSAC (2002)

http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009

16 I.U. Haq et al.

9. Twycross, J., Williamson, M.M.: Implementing and Testing a Virus Throttle. In:

Usenix Security (2003)

10. Gu, Y., McCullum, A., Towsley, D.: Detecting Anomalies in Network Traffic Using

Maximum Entropy Estimation. In: ACM IMC (2005)

11. Mahoney, M.V.: Network Traffic Anomaly Detection Based on Packet Bytes. In:

ACM Symposium on Applied Computing (2003)

12. Next-Generation Intrusion Detection Expert System (NIDES),

http://www.csl.sri.com/projects/nides/

13. Weaver, N., Staniford, S., Paxson, V.: Very Fast Containment of Scanning Worms.

In: Usenix Security (2004)

14. Lakhina, A., Crovella, M., Diot, C.: Diagnosing Network-wide Traffic Anomalies.

In: ACM SIGCOMM (2004)

15. Lakhina, A., Crovella, M., Diot, C.: Mining Anomalies Using Traffic Feature Dis-

tributions. In: ACM SIGCOMM (2005)

16. Patcha, A., Park, J.: An Overview of Anomaly Detection Techniques: Existing

Solutions and Latest Technological Trends. Elsevier Computer Networks (2007)

17. DARPA Intrusion Detection Data Sets,

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/

data/index.html

18. LBNL/ICSI Enterprise Tracing Project,

http://www.icir.org/enterprise-tracing/download.html

19. Endpoint Dataset, http://wisnet.seecs.edu.pk/projects/ENS/DataSets.html

20. Collins, M., Reiter, M.: Finding Peer-to-Peer File-Sharing Using Coarse Network

Behaviors. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,

vol. 4189, pp. 1–17. Springer, Heidelberg (2006)

21. Bartlett, G., Heidemann, J., Papadopoulos, C.: Inherent Behaviors for On-line

Detection of Peer-to-Peer File Sharing. In: Proceedings of the 10th IEEE Global

Internet (2007)

22. Liu, Y., Guo, Y., Liang, C.: A Survey on Peer-to-Peer Video Streaming Systems.

In: Peer-to-peer Networking and Applications (2008)

23. OpenDPI, Ipoque’s DPI software’s Open Source Version,

http://www.opendpi.org/

24. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K.C., Faloutsos, M.: Is P2P

Dying or Just Hiding? In: IEEE Globecom (2004)

25. Sun, X., Torres, R., Rao, S.: DDoS Attacks by Subverting Membership Manage-

ment in P2P Systems. In: 3rd IEEE Workshop on Secure Network Protocols (2007)

26. Athanasopoulos, E., Anagnostakis, K.G., Markatos, E.P.: Misusing Unstructured

P2P Systems to Perform DoS Attacks: The Network That Never Forgets. In: Zhou,

J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 130–145. Springer,

Heidelberg (2006)

27. Naoumov, N., Ross, K.: Exploiting P2P Systems for DDoS Attacks. In: INFOS-

CALE (2006)

28. 2010 Cyberthreat Forecast from Kaspersky Lab,

http://usa.kaspersky.com/about-us/

news-press-releases.php?smnr id=900000322

29. Chien, E.: Malicious Threats of Peer-to-Peer Networking. Whitepaper, Symantec

Security Response (2008)

30. McAfee Labs, Threat Predictions (2010),

http://www.mcafee.com/us/local content/white papers/

7985rpt labs threat predict 1209 v2.pdf

http://www.csl.sri.com/projects/nides/
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://www.icir.org/enterprise-tracing/download.html
http://wisnet.seecs.edu.pk/projects/ENS/DataSets.html
http://www.opendpi.org/
http://usa.kaspersky.com/about-us/news-press-releases.php?smnr_id=900000322
http://usa.kaspersky.com/about-us/news-press-releases.php?smnr_id=900000322
http://www.mcafee.com/us/local_content/white_papers/7985rpt_labs_threat_predict_1209_v2.pdf
http://www.mcafee.com/us/local_content/white_papers/7985rpt_labs_threat_predict_1209_v2.pdf

What Is the Impact of P2P Traffic on Anomaly Detection? 17

31. Arbor Peakflow: IP Traffic Flow Monitoring System,

http://www.arbornetworks.com/

index.php?option=com content&task=view&id=1465&Itemid=692

32. Allot Service Protector, DDoS Protection,

http://www.allot.com/Service_Protector.html#products

33. Sandvine: Network Protection,

http://www.sandvine.com/products/network_protection.asp

34. Ipoque Press Release: P2P Raid in Germany Shows Little Effect,

http://www.ipoque.com/news-and-events/news/

pressemitteilung-ipoque-210606.html

35. Ashfaq, A.B., Robert, M.J., Mumtaz, A., Ali, M.Q., Sajjad, A., Khayam, S.A.:

A Comparative Analysis of Anomaly Detectors under Portscan Attacks. In: Lipp-

mann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp.

351–371. Springer, Heidelberg (2008)

36. Javed, M., Ashfaq, A.B., Shafiq, M.Z., Khayam, S.A.: On the Inefficient Use of

Entropy for Anomaly Detection. In: RAID (2009)

http://www.arbornetworks.com/index.php?option=com_content&task=view&id=1465&Itemid=692
http://www.arbornetworks.com/index.php?option=com_content&task=view&id=1465&Itemid=692
http://www.allot.com/Service_Protector.html#products
http://www.sandvine.com/products/network_protection.asp
http://www.ipoque.com/news-and-events/news/pressemitteilung-ipoque-210606.html
http://www.ipoque.com/news-and-events/news/pressemitteilung-ipoque-210606.html

A Centralized Monitoring Infrastructure for
Improving DNS Security

Manos Antonakakis, David Dagon, Xiapu Luo, Roberto Perdisci, Wenke Lee,
and Justin Bellmor

Georgia Institute of Technology, College of Computing,
Atlanta, GA 30332, USA

{manos,dagon,csxpluo,perdisci,wenke}@cc.gatech.edu,
justin@gtisc.gatech.edu

Abstract. Researchers have recently noted (14; 27) the potential of fast poi-
soning attacks against DNS servers, which allows attackers to easily manipulate
records in open recursive DNS resolvers. A vendor-wide upgrade mitigated but
did not eliminate this attack. Further, existing DNS protection systems, includ-
ing bailiwick-checking (12) and IDS-style filtration, do not stop this type of DNS
poisoning. We therefore propose Anax, a DNS protection system that detects poi-
soned records in cache.

Our system can observe changes in cached DNS records, and applies machine
learning to classify these updates as malicious or benign. We describe our classi-
fication features and machine learning model selection process while noting that
the proposed approach is easily integrated into existing local network protection
systems. To evaluate Anax, we studied cache changes in a geographically diverse
set of 300,000 open recursive DNS servers (ORDNSs) over an eight month pe-
riod. Using hand-verified data as ground truth, evaluation of Anax showed a very
low false positive rate (0.6% of all new resource records) and a high detection
rate (91.9%).

Keywords: DNS Poisoning, Attack Detection, Local Network Protection.

1 Introduction

The Domain Name System, or DNS, maps domain names to IP addresses and other
records essential for email, web, and nearly every significant network protocol. DNS se-
curity problems in turn affect numerous other services and critical resources. Recently,
the security community has identified fast poisoning techniques that allow the trivial
corruption of DNS records (23; 14). A poisoning attack allows an adversary to manip-
ulate resolution caches, usually through a “blind” off-path guessing of the transaction
components used for DNS message integrity.

Several secure DNS protocols have been proposed, including DNSSEC (6; 7) and
DNSCurve (9). DNSCurve provide link-level security while DNSSEC provide object-
based security of DNS messages using cryptographic means. However, the deployment
of DNSSEC has proven slow (26), and many hosts have on-path hardware that interferes
with DNSSEC’s larger packet sizes (8).

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 18–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Centralized Monitoring Infrastructure for Improving DNS Security 19

The delay in deploying secure DNS motivates the need for local networks to protect
their recursive DNS resolution infrastructure. Traditional solutions such as IDS and
packet-inspection tools provide limited protections against some classes of attacks, but
do not detect DNS poisonings. Indeed, poisoning attacks generally use valid, “RFC-
compliant” DNS messages that contain misleading answers (e.g., associating a domain
with the wrong IP address or nameserver—one under the control of an attacker).

For this reason, DNS security systems are generally concerned with records in cache
(or in the resolver), as opposed to in flight (or on the wire). In this work, we focus on in
cache detection of DNS poisoning for similar reasons:

1. The in-line inspection of DNS traffic can introduce latency. Some protocols are
tolerant of this delay, but for DNS, even adding a few tens of milliseconds delay
can have detrimental impact on other services (e.g., VoIP, DNSBL validation, etc.).
In extreme cases, adding such delays can result in SERVFAIL responses.

2. Several tools already detect classes of DNS attacks, such as packet format viola-
tions (e.g., name pointer loops (4)). These attacks are orthogonal to DNS poisoning,
and must be done on the wire data, as opposed to the cached data.

3. Some DNS attacks, such as out-of-bailiwick record injection (35), are already re-
jected by the DNS resolvers themselves. Such attacks are technically DNS poi-
soning, but have been addressed by RFC 2181 (19) (and related policies) and are
routinely dropped by recursive servers. (This is known as “answer validation” in
most DNS resolvers (12).) The DNS poisoning attacks we consider are in the newer
family of fast poisoning or “Kaminsky-class” attacks, which evade these forms of
basic RFC 2181 trustworthiness checks. Note that the answer validation phase is
usually opaque in a DNS resolver, and server logging of rejected records is often
infeasible, mainly due to system performance and volume of the logs.

For these reasons, we focus on the detection of DNS poisoning that is found in cache,
in order to identify attacks that have evaded all existing layers of protection. To detect
DNS poisoning that has evaded all other layers of filtration, we need access to large,
busy recursive servers. In practice, such access is difficult to obtain, because of the op-
erational risk it poses to a critical network component, and because of potential privacy
concerns in witnessing stub traffic. We therefore decided to use data obtained from the
inspection of open recursive caches run by third parties on the Internet. Open recursive
resolvers (16) generally permit the inspection of their caches. Since we can success-
fully detect poisonous Resource Records (RR) in Internet scale measurements, we will
be able to do the same when we inspect a less diverse set of recursive DNS servers, e.g.,
those in a single organization.

We select 300,000 open recursive servers, in order to obtain a diversity of DNS re-
solvers based on geography, network size, and organizational type (e.g., corporate vs
university networks). The network properties of these hosts are discussed in Section 3.
Using this data source, we designed and evaluated a large-scale, centralized poisoning
detection system called Anax. Our implementation of Anax provides a scalable, central-
ized view of DNS poisoning. Further, it works in an automated manner with minimal
human intervention. Anax is able to perform these measurements without being on the
same network path as the attacker and victim. During our experiments, Anax was able to

20 M. Antonakakis et al.

successfully detect 319 unique poisoned resource records (RRs) that were subsequently
manually verified as DNS poisoning attacks. In addition, because Anax works on arbi-
trary DNS caches, it can also protect local networks against poisoning even when the
local resolver is not open recursive.

Anax relies on a fundamental observation about DNS. Despite being dynamic, DNS
records generally direct users to a known, usually stable set of NS records. Poisonings
on the other hand, generally redirect victims to new, different IP addresses often set
up for furtive, short-lived harvesting of information (such as banking credentials, credit
card numbers and email passwords). We therefore created detection heuristics that note
the statistical DNS properties of answers. Our analysis shows that our features are stable
even against significant changes in legitimate DNS hosting.

We operated the Anax poisoning detection system for several months, resulting in
a database of tens of millions of DNS answer records. Using extensive classification
filters and heuristics we can reliably label the majority of the IPs in recorded RRs.
Using manual effort we verified by hand and labeled the remaining 1,264 unique IPs
address record as “legitimate” and “poisonous”. This labeled data set was then used to
train and test our detection module, as described in Section 3. The evaluation of Anax
based upon real world data proved so promising that it makes our system an efficient
real-time poisoning detection system.

The remainder of this paper is organized as follows. Section 2 provides in-depth
technical details of poisoning attacks and related work. Section 3 presents the detection
methodology that Anax utilizes. Section 4 details our experiments with Anax, including
validation and labeling steps of Anax’s dataset. In Section 5 we elaborate on the details
of the detection heuristics that Anax uses and present the detection results based on our
real-world data analysis. Finally, we conclude in Section 6.

2 Background and Related Work

This section offers a brief overview of the Domain Name System (DNS), addressing
aspects relevant to poisoning and detection. Readers familiar with DNS may skip over
this section. Further background on DNS can be found in (37).

2.1 Background on DNS Poisoning

DNS provides a distributed database of domain names organized as a tree structure.
A domain name is a node in the tree and is labeled with the minimum path used to
reach the node from the root. When expressed as a fully qualified domain name, each
node is a label separated by period. A zone is a collection of nodes under a common
parent. Such collections form a subtree, the top of which is called the start of authority.
Authority DNS servers answer queries about nodes in their zones, and generally provide
answers about mappings of leaf nodes (or terminus nodes), or a referral to another
sibling authority when sub-zones have been delegated to another authority server. The
answers from such authority servers are recorded by recursive DNS servers for caching
on local networks.

Although DNS poisoning could occur between the stub and forwarder (step one), or
the forwarder and resolver (step three), we are primarily concerned with attacks on the

A Centralized Monitoring Infrastructure for Improving DNS Security 21

Zone
FileMasterCaching

Forwarder

Resolver
Dynamic
UpdateSecondary

Secondary

Stub
Resolver

Application
Resolver

1
2

3
4

5 6

7

Recursive Iterative

Fig. 1. An overview of DNS resolution, and risks posed at each phase of the resolution path. DNS
poisoning is most commonly concerned only with risks experienced on step four, the communi-
cation between resolvers and authorities.

path between the resolver and authority (step four in Figure 1). This path is by necessity
exposed to the Internet. Since DNS responses are (with noted exceptions (36)) usually
a single UDP packet, attackers can send large numbers of spoofed, malicious answers
that are “off-path”. By “off-path” we mean that an attacker can spoof a UDP packet,
claiming to be the authority for a zone from any point on the Internet. Witnessing such
poisoning attacks requires the observer to be “on-path” (e.g., as a transit provider or
below/above the resolver). If one is not “on-path”, it is often difficult to observe such
DNS attacks (15).

The basic properties of traditional and Kaminsky-class DNS poisoning attacks have
been extensively studied (15; 16; 27). The Kaminsky-class of DNS attack greatly speeds
up traditional DNS poisoning attacks that have historically been done by changing stub
DNS settings (16), shown in step two of Figure 1. This increase in the attack speed
due to Kamisnky class of poisoning can be achieved by repeatedly attempting to poison
“new” nonce names in a zone of interest. Even a bandwidth limited attacker will eventu-
ally win the packet race for one of the nonce child names (14), allowing for replacement
of the NS-type of record in cache. Recent industry studies have noted that DNS ma-
nipulations are not only used for phishing, but commonly used for “click-fraud” and by
spammers to drive traffic to malicious sites (32), as well.

2.2 Related Work

Our work combines ideas from two areas of literature: DNS cache poisoning detection
and Internet-wide DNS-based measurement. While Anax is the first system to detect
Kaminsky-style DNS cache poisoning, it owes much to previous related research.

DNS cache poisoning is not a new phenomenon. Cache poisoning has been a known
vulnerability in DNS since at least 1993 (33), and has seen a resurgence issue in 1997 (35),
2002 (10), 2007 (25), and 2008 (23). Despite many years of research in eliminating cache
poisoning, the latest attack was judged serious enough to warrant multi-vendor coordi-
nated patching (3).

Several vulnerability assessment tools and technologies allow the discovery of DNS
vulnerabilities often caused by misconfiguration. Nessus (1) and specific DNS related
tools such as DNSStuff (17) and PorkBind (11), detect DNS servers vulnerable to spe-
cific cache poisoning attacks. In contrast, Anax detects actual cache poisoning instead
of vulnerabilities.

22 M. Antonakakis et al.

No available tool exists to detect actual in-cache poisoning. DoX (41) would use a
peer-to-peer network to detect cache poisoning, but it has never been tested in practice
nor deployed on the Internet, and this system would require a significant infrastructure
and the cooperation of other DoX nodes to be effective. In contrast to DoX, Anax is a
centralized system, does not require any external cooperation, and has been tested on
real world network scenarios.

Several solutions, such as DNSSEC (6; 7), DNSCurve (9), 0x20 encoding (15) and
WSEC-DNS (27), have been proposed to eliminate cache poisoning vulnerabilities en-
tirely. While these solutions would reduce or eliminate cache poisoning, they require
explicit or implicit changes to the DNS protocol, are not widely deployed, or are not
likely to find wide-spread adoption in the short term (maybe except DNSSEC).

Internet-wide measurement via DNS has been previously used to estimate delay be-
tween two arbitrary hosts in King (21). Anax’s goal is not to measure distances between
arbitrary hosts, as King does, but to collect IP information about a set of “domain names
of interest” (detailed in Section 3.2) that King does not. Internet-wide DNS poisoning
scans have been performed by The Measurement Factory (20), but these scans only in-
vestigate parent zone poisoning, to which very few name servers are vulnerable, while
Anax can detect Kaminsky-class attacks, to which many currently deployed servers
are vulnerable. Anax is also able to detect cache poisoning targeted at a specific re-
solver or set of resolvers. Wendlandt et al. (38), proposed “Perspectives”, a system that
uses multiple hosts to verify a server’s public key. Our system has a similar scanning
methodology but the scope of the two systems is orthogonal; Anax deals with DNS RR
validation within cache, while “Perspectives” reactively validates public keys.

Finally, we note that our work has a superficial similarity to the Notos domain reputa-
tion system (5). Notos, created by many of the same authors of this work, uses machine
learning to assign a reputation score to unknown domains according to given trained
categories (e.g., spam-related domains, botnet domains). In contrast, the present study
uses a very limited set of features to identify poisonous DNS records. While Notos al-
lows one to identify groups of similar domains, Anax lets one judge the integrity of
selected in-cache records.

3 Methodology

In this section we describe the methods that Anax uses to detect cache poisoning. We
start with a discussion of the features inherent to cache poisoning attacks, in particular
how poisoning attacks may be detected by observing changes in records cached by
open-recursive DNS server (ORDNS).

Figure 2 shows the overview of the Anax poisoning detection system. In step one
the scanning engine sends to the scanning host a list of domain names and ORDNS
servers. The raw DNS answers from scanning (step two) are stored in the raw DNS
data collector. A one-time training step labels and verifies a portion of these records
(step three). After manually labeling the dataset, we send it to the detection engine for
modeling (step four). The resulting models around the benign and poisonous classes of
RRs will be stored in the Anax DB. At this point the system can be directly utilized (step
five) to classify new unknown RRs in DNS answers as they arrive from the scanning

A Centralized Monitoring Infrastructure for Improving DNS Security 23

Raw DNS
Data Collector

[2]

[3]

[5]

DNS Scanning
Points

[1]

Anax Poisoning Detection System

DNS
Scanning
Engine

[4]

Anax Data
Preparation

Engine

OFF-LINE Mode (Training)

Anax
Poisoning
Detection
Engine

Anax DB

ON-LINE Mode

Poisoning
Alert

[6]

.

.

.

.

.

.

Fig. 2. Anax Poisoning Detection System

points to the raw DNS data collector. Then, Anax can be switched to an on-line mode,
and detect new poisonous records using step six.

3.1 Abnormality in DNS Answers Due to Cache Poisoning

Kaminsky-class attacks have made cache poisoning even easier, especially against un-
patched servers or servers that cannot take advantage of full source port randomization
due to network configurations like NAT. As noted in section 2, poisoning attacks cre-
ate inherently local impacts, making it hard to observe once you are “off-path” of the
resolver.

The consensus of answers observed in the wild can be used to validate the resource
records (RRs) presented as valid answers. In practice, there are several nuances to this
simple approach. DNS can be used for load balancing, localizing content, and to mon-
etize typographical errors, so query results often vary, even without malicious manip-
ulation. To avoid effects of load balancing and content localization, it is necessary to
obtain consensus results based on network and geographic diversity.

An ORDNS that has been the victim of a cache poisoning attack, will answer “on-
path” queries using somehow different IP(s) in these RRs (Table 1, lower sub-table)
or NS(s) that cannot be correlated with the domain name we try to resolve (Table 1,
upper sub-table). Usually these IP(s) point to a different, attacker controlled server.
The answer for the poisoned record should inevitably contain at least a single different
IP than the IPs found in legitimate RRs for the same domain name. As noted in Sec-
tion 2, the only possible way to observe this variation in answers is to be “on-path”
with the ORDNS. In other words, one needs to be able to directly query the resolver for
the poisoned RR. Since we did not have access to customer transit data for this study,
we generated such data by utilizing two DNS scanning points: one located in Califor-
nia and one located in Ottawa. Using these two scanning points we probed a large,
geographically and network diverse set of open recursive DNS servers, as discussed
below.

24 M. Antonakakis et al.

Table 1. Poisoning cases observed by Anax. In the upper part of the table we can see NS replace-
ments observed in NS-type RRs. In the lower table we can see IPs in A-type RRs that were
manually labeled as poisoning cases. With the ORDNS column we provide the type of ORDNS
software from the poisoned resolver using the fpdns tool.

Domain Name NS CC Date ORDNS
amazon.com hu-bud02a-dhcp09-main.chello.hu HU 2009-07-26 Cisco CNR

americanexpress.com c.exam-ple.com PA 2009-03-20 BIND 9.2.3
americanexpress.com d.exam-ple.com PA 2009-05-05 Win DNS NT4
bankofamerica.com 209.59.194.246 US 2009-06-18 Win DNS 2003
bankofamerica.com 209.59.195.246 US 2009-06-18 Win DNS 2003

Domain Name IPs CC Owner ORDNS
americanexpress.com 189.38.88.129 BR CYBERWEB BIND 9.2.3

google.com 85.10.198.253 DE HETZNER-AS Win DNS 2000
visa.com 61.207.9.4 JP OCN NTT BIND 9.2.0

update.microsoft.com 205.178.145.65 US Net. Sol. No Match
google.com 65.98.8.192 US FORTRESSITX QuickDNS

To identify Kaminsky-class attacks (NS-type record replacements) and simple
DNS poisonings (A-type record manipulations), Anax relies on an inherent feature
of DNS poisoning: namely, that the poisoned ORDNS will report cached RRs that are
“abnormal” with respect to zone and the IP address space. We define as an abnormal the
RR with an IP that should not reside nor can be linked in any way with the poisoned
zone’s “network provisioning” — a network that can be associated with the zone’s
operator or a major Content Delivery Network (CDN). For example, a poisonous NS
record for amazon.com will point hosts to an authoritative name server (ANS) outside
of Amazon’s typical DNS provisioning address space. In other words, the IP address of
the attacker controlled ANS along with the IP address in the poisoned A-type records,
cannot be linked with Amazon’s IP address space or even worse it might be in dynamic
address space. This variation in the RRs can be measured externally as long as we can
be “on-path” with the ORDNS.

3.2 Probes and Measurements

Anax’s poisoning detection works in three discrete phases: preparation, measurement,
and analysis. The preparation phase consists of collecting IP addresses of open-recursive
DNS servers located throughout the world, determining which domains could be likely
targets of poisoning attacks, and probing open-recursive servers for poisoning detection
(DNS Scanning Engine, Figure 2).

During the measurement phase, Anax’s scanning engine performs a series of queries
while recording matching answers. All the resulting raw DNS traffic is placed in a fully
indexed database (Raw DNS Data Collector, Figure 2). Finally, in the analysis phase
(Data Labeling and Detection Engine, Figure 2), Anax performs a series of checks on
the recorded RRs from all scanned open-recursive servers. Anax will be able to assign a
label for each unique RR of a given zone, and decide its legitimacy. The preparation and
measurement phases are described below; the analysis phase is described in Section 5.

A Centralized Monitoring Infrastructure for Improving DNS Security 25

Preparation. The preparation phase of Anax is composed of three parts: the gathering
of ORDNS servers, the identification of domains likely to be poisoned, and the probing
of each ORDNS server for poisoning detection. ORDNS servers are gathered using the
method proposed by Dagon, et al. in (16). Using this method, we were able to obtain
8,274,341 open-recursive DNS servers distributed throughout the world. Anax also pe-
riodically re-checks DNS resolvers to ensure they continue to behave as open-recursive
servers. It is very expensive to regularly probe all discovered ORDNS, therefore we
sampled a smaller but geographically diverse set of 300,000 ORDNSs. We made hun-
dreds of thousands of DNS queries to a large, geographically and network diverse set
of these 300,000 ORDNSs for 131 zones of interest. A small glimpse of the overall
ORDNS diversity from our scanning list with regard to the country code (CC), the au-
tonomous systems (AS) and CIDR block can be found in Figure 4.

Since traditional cache poisoning attacks only affect DNS cache entries for a spe-
cific domain, poisoning may only be checked on a per-domain basis. To create a list of
domains that are likely to be attacked, we combined the top 100 worldwide websites as
ranked by Alexa with the world’s top 100 e-business websites, yielding 131 unique do-
mains. These 131 domains are globally distributed, focus on a variety of industries, and
all have very high visitor counts. To the best of our knowledge, none of these domains
are used for malicious operation, and theoretically the domain names and IPs from these
sites should not be part of any black list. The amount of financial transactions conducted
through these sites also makes them very tempting targets for phishing attacks (as noted
by several on-line phishing analysis resources (34)), that potentially could be staged via
DNS poisoning. We refer to this list of 131 domains as the “domains of interest”.

Measurement. Anax uses repeated queries to discover IP address records for the do-
mains of interest. Using the following scanning protocol, Anax maintains A-type
record information and NS-type record information for the domains of interest.

Anax’s scanning points issue a series of typical DNS queries like the one presented
in Figure 3. These scan points use such queries in order to capture the on-path behavior
of the ORDNS. A scan point always makes four types of queries to an ORDNS for
each of the domains of interest. The type of queries are A, NS, MX and AAAA. The main

Open Recursive
DNS

Anax's DNS
Scanning Point

 ANS for example.com

A ? example.com A ? example.com

example.com IN
A 192.0.32.10

example.com IN
A 192.0.32.10

Fig. 3. A typical A-type query for ex-
ample.com to an open-recursive server
(ORDNS). In this case the ORDNS’s cache
is empty, and the ORDNS needs to ask the
authoritative name server (ANS) of exam-
ple.com in order to find the IP that is cur-
rently “mapped” to the domain name.

CC #ORDNS #ASs #CIDRs
US 116213 3785 14340
CN 34778 90 2574
JP 20147 329 1760
NL 17651 172 483
FR 16261 164 482
KR 14822 326 1316
IT 12824 204 569
GB 9587 414 952
DE 9441 408 818
SE 9119 113 355

Fig. 4. A summary of the diverse ORDNS
scanning targets

26 M. Antonakakis et al.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Days

bestbuy.com
amazon.com

blogger.com
ebay.com

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250

V
ol

um
e

Days

Fig. 5. IP discovery trend in Anax for zones
that use CDN networks or are network
diverse

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Days

capitalone.com
chase.com

citibank.com
fedex.com

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 50 100 150 200 250

V
ol

um
e

Days

Fig. 6. IP discovery trend in Anax for network
stable zones

reason for selecting these different types of queries is to discover as many different RRs
as possible for each zone without requiring access to the zone itself.

Let us assume that d is a domain of interest. The complete probing protocol we use
is the following querying sequence: the first query is an A-type and for the domain
dcontrol, which we own and for which we operate the only “legitimate” authority name
server (ANS). The A-type of record for this domain contains a single IP that we never
change. Using this simple technique we can check if the ORDNS server we probe is
acting as a real open-recursive, is mis-configured or provides a DNS-tunneling service.
The second query is an A-type and for the domain d. These queries provide Anax
with the current IP address of the probed domain d. The third is an A-type query
for random value.d. Since the random nonce (random value) does not exist, and
the zone does not use wild-card entries, this query ensures that the remote ORDNS
always reaches the authority name server (ANS) of d. This results in an answer of
NXDOMAIN. We are certain about this since we can trivially verify that none of the
zones of interest are wild-carded in the 2nd level domain (2LD). The fourth query
is an NS-type query for d, from which Anax discovers the current IP and domain
name information about the authority name servers for the domain name d. Some CDN
enabled zones (e.g., bestbuy.com) tend to have their authority name servers operated
by the CDN network. We want to capture this diversity in our dataset.The fifth query
is an MX-type query for d, which provides us with the current email servers for the
domain name d. Typically this IP location is managed by the same owner of the domain
name d. Some zones, however, simply outsource their e-mail services (e.g., AT&T and
MessageLabs). The sixth is an AAAA-type query for the domain name d, based on
which we can record again the start of authority record (SOA-type) for the domain d.

As noted above, we probe using this sequence of queries so we can obtain key char-
acteristics about the open-recursive server in a single scan event: IP and nameserver
information for each domain of interest. We discover as many IP to domain name map-
pings for each zone as possible due to query type variation (A, NS, MX, AAAA). In
Figures 5 and 6 we can see a sample of the two observed IP address discovery growth
trends that we observe with Anax’s scanning engine. Figure 5 shows that domain names
that exhibit significant network diversity for IP address present in legitimate A-type

A Centralized Monitoring Infrastructure for Improving DNS Security 27

answers (e.g., blogger.com, amazon.com) or utilize CDN networks (e.g., bestbuy.com
uses akamai.net), Anax needs more time to identify all possible IPs addresses. In this
case Anax will identify 95% of address records for these network diverse zones in 8-12
days while at the same time continue discovering new IP addresses months after the
start of scanning. In Figure 6 domain names with a more stable network profile utilize
significantly fewer IP addresses over time. In this case Anax takes less time (95% of
address records will be discovered in 2-3 days) to discover almost all of them.

4 Dataset Evaluation

Using the Anax infrastructure described in Section 3, we periodically made a large
number of DNS queries to a set of 300,000 ORDNSs for the 131 zones of interest.
The raw DNS collector holds the DNS data generated by Anax’s scanning engines. The
scanning points periodically synchronize their data to this server for analysis. When the
system is in on-line mode (Figure 2; step five) the data can be instantly classified as
it arrives in the raw DNS collector. Potentially, the detection engine could be placed
directly at the scanning points and classify new RRs on-the-fly.

We evaluated the system in its off-line mode since it was necessary for us to carefully
obtain ground truth for our classification process. We used part of the captured traffic to
evaluate our detection algorithm. For training our detection system, we used 23 million
DNS answers recorded between January 2009 ant the end of February 2009. To create
the testing dataset, we used 57 million DNS answers recorded between March 2009 and
August 2009.

The raw DNS data gathered by Anax holds all possible observations made about
the resource records (RRs) in the received answers for all zones of interest. Our dataset
provides “evidence”—that is the RRs (“Domain Name to IP” and “Domain Name to NS
server”) returned by the ORDNS. A portion of the unique RRs present in these datasets
were manually classified to provide the ground truth for our study. At this point we
should note that Anax is able to classify A-type resource records or “Domain Name
to IP” mappings. The collection of the NS-type records (or “Domain Name to Name
Server” mappings) helped us in the manual classification process and forensic analysis
of the hand verified poisoning cases.

4.1 Dataset Labeling

We constructed our limited whitelist by selecting 23 “major” recursive DNS servers
across the US. Using a one-time probe against these open-recursive servers, we obtained
all address records for the 131 zones of interest. We hand verified that each address
found in the returned answers was indeed part of the legitimate domain resolution. After
mapping the returned IPs to the corresponding Classless Inter-Domain Routing (CIDR)
block, we used this newly created set of CIDRs as our only CIDR based whitelist.

During our eight month scanning period, while most of the answers were deemed
legitimate, not all illegitimate answers were necessarily poisonous. DNS misconfigura-
tion is a common phenomenon, and sometimes resembles malicious behavior (39; 16).
To account for this, we created several labels for a range of responses: Legitimate

28 M. Antonakakis et al.

Response, CDN, Misconfiguration, NXDOMAIN rewriting, DNS Proxy, and Poison-
ing, as described below:

Legitimate Response: Legitimate responses indicate a properly functioning ORDNS
server returning correct results. The resolutions and authoritative name servers for
the list of domain names of interest all point to machines in the same autonomous
system among open-recursive servers in the same geographic region, and match
prior, verified answers. Our initial whitelist is a small subset of this category.

Content Delivery Networks (CDN): Many zones use DNS to load balance and local-
ize web traffic for popular destinations. This appears where the domain’s addresses
are assigned to a known content delivery network such as Akamai or Limelight.
Network blocks operated by content delivery networks are highly diverse and it
is difficult to whitelist all their members. We consulted passive DNS databases
(e.g., (22)), to assist on labeling IPs on this category.

Misconfiguration: Some answers showed clear signs of misconfiguration. This is of-
ten seen when hosts answer as an authoritative for the root servers or common
TLDs such as .com, .net, or .org, or instead return an RFC 1918 or RFC
3330 address. These errant authoritative answers are described in (39) as
misconfiguration.

NXDOMAIN rewriting Services: When an IP address was returned for a query that
should elicit an NXDOMAIN response, the result was labeled as NXDOMAIN
rewriting. These results are not cases of malicious poisoning, and can be detected
when an open-recursive DNS server returns an IP address instead of NXDOMAIN
for a domain known not to exist. Generally, the resulting IP address points to an
advertising portal or a search engine.

DNS proxy: When the ORDNS always provides the same IP address for multiple zone
and query types, and at the same time we can identify it as DNS tunnel (2) or a
ToTD (31) server, we classify it as DNS proxy. Most tellingly, such resolvers ex-
hibit no IP variations, since they never consult authorities and maintain no cache.
Strictly speaking, we do not treat this as DNS poisoning, even though local net-
works may likely wish to ban the use of DNS proxies.

Poisoning: We hand-verify and label as “poisonous” any address returned by an
ORDNS that was not owned by the domain name owner, and pointed to a machine
under the control of a malicious party. To assist with this labeling, we consulted
numerous IP blacklists (30; 24; 13), do-not-route-lists (28), dynamic IP space (29)
and passive DNS databases (22). IPs in RRs that pointed to such hosts indicated
malicious poisoning of an ORDNS.

5 Detection Model and Results

The poison detection flow in Anax consists of detection modules placed in series to
reduce false positives and produce as few false negatives as possible. (As noted below,
we arranged these detection modules to place the highest false positive rate first, to
maximize the final true detection rate) Figure 7 shows the various steps of the detection
flow. RRs not in the Anax DB are forwarded to the CIDR analysis module defined

A Centralized Monitoring Infrastructure for Improving DNS Security 29

Poisoning
Alert

DB Check

Anax
DB

RR(s)

CIDR Analysis
Module

Anax 2-Class
Classifier

Poisoning?

No - L[0,1,2]

Yes

No

Not in
Anax DB

Poisoning?

Yes - L[3] L[4] -
Unknown

Fig. 7. Poisoning detection flow in Anax

in Section 5.2. The L[0]-L[4] categories (defined in Section 5.1) represent the various
ways the CIDR analysis module may classify a new RR. The 2-Class classifier (defined
in Section 5.3) handles the unknown RRs from the CIDR analysis module (category
L[4]) and flags them as benign or poisonous, based on trained models of benign and
poisonous RRs. In the case of poisonings, Anax produces a detailed poisoning report
on the RR that caused this alert. The detection flow ends by updating the Anax DB on
the analyzed RRs. In the following sections we examine in detail the key modules of
Anax’s detection flow, namely the CIDR analysis module and Anax’s 2-class classifier.

5.1 Categories of Resource Records

In Section 4.1 we identified the type of DNS responses we anticipate to receive. Be-
fore we elaborate on the details of the CIDR analysis module and 2-Class classifier we
introduce the categories of resource records that the modules can handle. Anax groups
RRs in the following five categories in order to clearly define the detection actions that
each detection module will enforce. These five categories are:

L[0] - Whitelisted RRs: This category is comprised of address records known to be
benign, based on our small CIDR-based whitelist.

L[1] - Misconfiguration & “non-routable” IPs: This category is comprised of RRs
with IPs that should be considered as misconfigurations since they point to “non-
routable” address space. Although interesting, they are not useful for detecting
DNS poisoning and are counted as benign when calculating the final detection rates.

L[2] - NXDomain rewriting & Proxies: This category contains two special cases of
A-type records. The first category contains address records that are meant to pro-
duce NXDOMAIN answers according to our probing protocol but did not. Ad-
dresses from such NXDOMAIN rewriting services are of no interest as poison,
and are deemed benign. The second category is composed of address records from
ORDNS acting as DNS tunneling servers. There is no interest in further analyzing
these RRs as poison.

30 M. Antonakakis et al.

L[3] - Poisonous RRs: This category includes address records that reside in any of
the following public lists: do-not-route or peer list (28), dynamic IP address space
(PBL) (29), hosts reported to drop malware (XBL) (30) or engage in other mali-
cious activity (24). These RRs will cause the detection algorithm to exit while cre-
ating a poisoning alert. The reason why these records will be considered as cases
of poisoning attacks is that none of the domains present in our list of “domains
of interest” would ever internationally serve malware. Therefore, none of the IPs
present in their resource records should ever be in any of these lists.

L[4] - Unknown RRs: This category contains address records from which the CIDR
analysis module (defined in Section 5.2) can make no immediate detection decision
based on the four previous categories. Finer grained analysis is needed for these
RRs. As we will describe in Section 5.3, this can be achieved by computing a six-
dimension statistical feature vector.

5.2 CIDR Analysis Module

Address records in RRs that fall into these five categories will initially be used by
the CIDR analysis to either create a poisoning report (category L[3]), claim that the
RR is not the subject of a poisoning attack (categories L[0]-L[2]) or forward any RR
that requires more expensive, fine-grained analysis to the Anax 2-Class classifier (cat-
egory L[4]). The CIDR analysis module receives RRs, such us google.com IN
74.125.67.104, with IP addresses from the monitored zones. Its goal is to make an
immediate detection decision about the address record. Based on the categories men-
tioned in Section 5.1, any IP address within the RR will reside in one of the five cate-
gories (L[0]-L[4]).

The primary motivation behind the use of this module is to reduce the overall false
positives and to eliminate unnecessary analysis of IPs that fall into the L[0]-L[3]
categories. Address records marked as L[0], L[1] and L[2] will cause the detection
algorithm to exit without producing a poisoning alert. Simultaneously, the detection al-
gorithm will update the Anax database. For address records that will be placed in the
L[3] category by the CIDR analysis module, a poisoning alert will be generated for the
corresponding RR. RRs that falls into the L[4] category will be forwarded to the 2-Class
classifier, which will make the final detection decision based on statistical models from
known benign and poisonous RRs profiles.

5.3 Anax 2-Class Classifier

RRs in category L[4] that cannot be directly checked with our limited white and black
listing. Therefore, we use a 2-class K-nearest neighbors (IBK) classifier to make the
final detection decision on them. This statistical classifier differentiates between benign
and poisonous RRs based on benign and malicious RR profiles built using passive DNS
information. Passive DNS data collection is a very common technique that gathers his-
toric DNS resolutions. We use such passive DNS data traces (pDNS) to produce six
statistical features for Anax’s 2-class classifier.

In order to compute these features, Anax requires a resource record (RR) as an input.
An RR of A-type, as we already mentioned in previous sections, is composed of a

A Centralized Monitoring Infrastructure for Improving DNS Security 31

domain name d and an IP dip. We define BGP (dip) as the set of all IPs in the same
BGP prefix of dip. Each domain name present in our list of “domains of interest” is
composed of two parts: the top level domain or TLD (e.g., .com, .org) and the second
level domain or 2LD (e.g., ebay, google). We represent every domain name d in our
list as d2ld.dtld. Using the same logic, when we query the pDNS against an IP, the
pDNS will report back to us a list of domain names that are historically linked with
this particular IP. We refer to each returned domain name from the pDNS DB as AD.
Each returned domain name can also be represented as AD = adnld.....ad2ld.adtld,
assuming that it is a nth level domain.

The set of all unique domain names returned from a passive DNS query on dip is
APDNSdip =

⋃
k=1..m ADk, where m is the number of unique domain names (AD)

that historically can be linked with the dip in the passive DNS database (22). Also, we
define APDNSBGP (dip) =

⋃
k=1..m ADk, where m is the number of unique domain

names (AD) that historically can be linked with any IP in the BGP prefix of dip in
the passive DNS DB. Next we define AD3ld.2ld.tld = ad3ld.ad2ld.adtld, AD2ld.tld =
ad2ld.adtld and AD2ld = ad2ld.

Now we can define the set APDNS3ld.2ld.tld
dip

=
⋃

k=1..m AD3ld.2ld.tld(k) which in-

clude all AD3ld.2ld.tld domains (e.g., www.example.com) from all domain names in the
set APDNSdip . We also can define the set APDNS2ld.tld

dip
=

⋃
k=1..m AD2ld.tld(k)

which include all AD2ld.tld domains (e.g., example.com) from all domain names in the
set APDNSdip . We define as APDNS2ld

dip
=

⋃
k=1..m AD2ld(k) the set of strings

which include all AD2ld (e.g., example) from all domain names in the set APDNSdip .
Similarly, we define the two sets APDNS2ld.tld

BGP (dip) =
⋃

k=1..m AD2ld.tld(k) and

APDNS2ld
BGP (dip) =

⋃
k=1..m AD2ld(k) that include all second level domain names

(AD2ld.tld) and all strings (AD2ld) from all domain names in the set APDNSBGP (dip)

respectively.
Finally, we define a list of popular second level domains (2LD) that belong to content

delivery networks (CDN) like Akamai, CoralCDN, Limelight and Redcondor. We refer
to this list as ACDN =

⋃
k=1..n cdnk, where cdnk is a distinct fully qualified second

level domain name (e.g., akamai.net, akamaiedge.net, coralcdn.net). We now elaborate
on how we compute the six statistical features based on each newly received resource
record:

[Φ1] - Domain Name Diversity: The number of unique domains in the set APDNSdip

that historically have been mapped with the dip in the RR.
[Φ2] - 2LD Diversity: The number of unique AD2ld.tld present in the set

APDNS2ld.tld
dip

and have been historically mapped with the dip in the RR.
[Φ3] - 3LD Diversity: The number of unique AD3ld.2ld.tld present in the set in the set

APDNS3ld.2ld.tld
dip

and have been historically mapped with the IPs in dip.
[Φ4] - Relative BGP CDN Occurrence: The frequency of the AD2ld.tld that histori-

cally are present in the set APDNSBGP (dip) and at the same time the AD2ld.tld ∈
ACDN .

[Φ5] - Relative BGP d2ld.dtld Occurrence: The frequency of the d2ld.dtld in the set
APDNS2ld.tld

BGP (dip) that historically have been mapped with any IP present in the
set BGP (dip).

32 M. Antonakakis et al.

[Φ6] - Relative BGP d2ld String Occurrence: The frequency of the string d2ld in the
set APDNS2ld

BGP (dip) that historically have been mapped with any IP present in
the BGP (dip).

The statistical features Φ1, Φ2 and Φ3 will provide us with historic DNS information
based only on the dip in the RR. The statistical feature Φ4 will capture the participation
of commonly used CDN second level domains that historically have been mapped with
any IP in the same BGP prefix as the dip. Finally, the statistical features Φ5 and Φ6 will
capture the participation of all other domain names that point into the same BGP prefix
with the dip and at the same time match with the 2ld.tld and the 2ld of the domain d.

If the 2-Class classifier labels the IP as poisonous, a poisoning alert will be created
for the corresponding RR. Otherwise, it will be marked as benign and it will be added
into Anax DB.

5.4 Model Selection and Detection Results

We evaluate the 2-Class classifier in two modes: standalone mode and “in-line” with the
CIDR analysis module. In the standalone mode we seed the classifier with any new RRs
directly, while in the in-line mode we feed the RRs to the CIDR analysis module and
the classifier receives only RRs that belong solely to the L[4] (unknown) category. We
evaluated our modules with this process to better justify our decision of assembling the
detection flow the way we did. It is straightforward, from an efficiency-minded point of
view, that placing the CIDR module in-front of the classifier should lessen the workload
on the classifier (since IPs labeled L[0] - L[3] need no further processing). The question
we try to answer in this section is the following: will the classifier perform better in
in-line or in standalone mode?

We start by carrying out the model selection, a very common technique from the
machine learning community. Model selection is used in order to select the optimal
machine learning method for solving a given classification problem (18). We select one
classifier for each major family of commonly used classifiers:

I. Simple Logistic Regression - SLR; a classifier for building linear logistic regres-
sion models.

II. K-nearest neighbors classifier - IBK; a “lazy” K-nearest neighbors classifier.
III. LAD Decision Tree; a classifier for generating a multi-class alternating decision

tree using the LogitBoost strategy.
IV. Support Vector Machine - SVM; a SVM based classifier with radial basis function

kernel.
V. Neural Network - MLP; a classifier that uses back-propagation to classify in-

stances.

We used several different classifiers, and found that with a 2-Class K-nearest neigh-
bors IBK classifier we obtain the best detection results with FPrate = 0.6% and
TPrate = 91.9%. This is not an unusual phenomenon in machine learning, that a sim-
ple classifier like the IBK performs significantly better than more sophisticated and
complex classification methods like neural networks (18; 40). The Receiver Operating

A Centralized Monitoring Infrastructure for Improving DNS Security 33

Table 2. Model Selection for Anax 2-Class Classifier in two modes; standalone and “in-line”
with the CIDR analysis module

CIDR and Classifier Classifier only
Families TP% / FP% / Preci. TP% / FP% / Preci.

NBayes (Poi) 94.1% / 63.4% / 15.1% 95.0% / 28.9% / 55.4%
IBK (Poi) 91.9% / 0.6% / 94.6% 96.4% / 2.7% / 93.1%
SVM (Poi) 57.0% / 0.9% / 88.6% 81.9% / 5.9% / 83.9%
MLP (Poi) 34.4% / 0.8% / 83.8% 54.2% / 3.7% / 84.8%
LAD (Poi) 73.9% / 3.6% / 70.8% 81.5% / 7.4% / 80.7%

Characteristic (ROC) curves for the poison class while using the IBK classifier can be
seen in Figure 8.

The reader should note that the FPrate = 0.6% and TPrate = 91.9% are not packet
rates. ROC analysis usually works on rates of detection over network traces, but doing
so would unfairly bias the classification results in Anax’s favor because the vast ma-
jority of the packets are benign. By the definition of the false positive rate (incorrectly
classified negatives over total negatives), the number of negatives (or benign packets)
is significantly higher than the very sporadic cases of poisoning. Therefore, we decided
to instead conservatively calculate the FPrate and the ROC curve based on the unique
RRs. In this case, the 0.6% of false positive rate means that for every 1000 unique be-
nign RRs Anax observes for a zone, the poisoning detection system will misclassify six
of them as poisonous. To further place the FPrate results into real world context we can
look into the domain name “ebay.com”, where Anax classified 137 unique RRs over the
period of eight months, which means that over an eight month period of time it would
misclassify less than a single RR. This indicates that Anax is able to produce low false
positive rates due not to the relative volume of the negatives, but due to the accuracy of
the 2-Class classifier.

The goal of the 2-Class classifier is to lower the FPrate inherent to the CIDR analy-
sis module due to the limitations of white and black lists. At the same time, we need to

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Poison [with CIDR Module]
Poison [without CIDR Module]

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

on

Threshold

Fig. 8. The ROC curve for poisoning detection in Anax

34 M. Antonakakis et al.

keep TPrate as high as possible. We observe that when the modules are “in-line”, both
the FPrate and TPrate are typically better. The only exception is the case of the Naive
Bayes (NBayes) classifier where the TPrate decreases in the “in-line” mode. Unfortu-
nately, NBayes cannot be considered as a candidate for our modeling due to the very
high FPrate that exhibits in both modes. The “in-line” mode is typically better since
the majority of RRs escaping the CIDR analysis module will have the following two
characteristics.

First, they are not commonly seen in RRs for the monitored zones. Our whitelist will
have very small visibility of the whitelisted address space because we do not risk re-
probing and re-verifying correct answers from a small set of trusted recursive servers. In
general, maintaining a whitelist has proven to be a very inefficient task. Instead, we use
the classifier to leverage the task of identifying other whitelisted RRs. This is possible
because the classification features we used to compute the statistical vectors from the
passive DNS database will place these uncommon legitimate RRs closer to legitimate
trained vectors due to the history of the given IP (present in the newly observed RR)
within the passive DNS database.

The second category of RRs that will escape the CIDR analysis module will in-
evitably contain IPs that belong to CDNs and mainly serve news sites. CDNs tend to
fluctuate the network addresses that they use to ensure better quality of service to the
end-user of the domain. Static whitelisting cannot keep up with these frequently chang-
ing addresses so the CIDR analysis module will not be able to whitelist all CDN ad-
dresses. Anax successfully addresses this issue in the 2-Class classification module. IPs
from CDN networks produce vectors that are very distinct. Such IPs tend to be mapped
to a large number of distinct domain names historically. This list of domain names also
shows very small diversity in the number of unique 2LDs and large participation of
typical domain names (2LDs) directly correlated with CDNs (e.g., akamai.net, cloud-
front.net, llnwd.net). A portion of some CDN related vectors will always be present in
the training dataset and the classifier will have no problem correctly classifying similar
statistical patterns in the testing dataset.

Anax utilizes passive DNS data for computing its statistical features, therefore it
is sensitive to the relative passive DNS window (how long are retained passive DNS
data) and how the passive DNS data are aggregated. Operators should collect passive
DNS data below the resolver in order to protect their database against out-of-Bailiwick
RRs. Furthermore, the utilization of past-CDN IP address space for poisoning could
be a significant evasion threat for Anax if the passive DNS window is more than a
few weeks. If the window is on the order of several months, then any past-CDN IP
address space will still contain past-CDN signal, (considered benign by Anax). This
increases the difficulty in identifying poisoning attempts with IPs originating from such
addresses.

6 Conclusion

Recently discovered flaws in the DNS protocol require new, innovative techniques to
detect poisoning. We have suggested and explored a new area for such research: the
detection of DNS poisoning using network observations. We built a system, Anax, that

A Centralized Monitoring Infrastructure for Improving DNS Security 35

aims to examine the nature of cache poisoning attacks. Anax is able to detect cache
poisoning locally and in a fully automated manner.

Leveraging the fact that DNS poisoning is an inherently localized attack, Anax pro-
vides useful insights into attacks, based largely on limited whitelisting and statistical IP
and domain name metrics. Anax’s detection engine shows that these heuristics can be
refined, and placed in order to yield a low (RR-based) FPrate (0.6%), high (RR-based)
TPrate (91.9%). Our work has focused on “zones of interest” that are historically tar-
gets of phishing attacks.

Anax relies on a fundamental observation about DNS: benign DNS records from
major zones generally direct users to a known, usually stable set of NS-type and
A-type records. Poisonings on the other hand generally point victims to new IP ad-
dresses. Anax utilizes detection heuristics based on historic passive DNS observations
and is able to accurately model benign and malicious RRs. The eight month, real world
evaluation shows that Anax is an effective and efficient real-time poisoning detection
system.

Acknowledgments

We thank Robert Edmonds and Paul Royal for their valuable comments. This mate-
rial is based upon work supported in part by the National Science Foundation under
grant no. 0831300, the Department of Homeland Security under contract no. FA8750-
08-2-0141, the Office of Naval Research under grants no. N000140710907 and no.
N000140911042. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation, the Department of Homeland Security, or the Of-
fice of Naval Research.

References

[1] Nessus: The network vulnerability scanner, http://www.nessus.org/nessus/
[2] OzymanDNS: Kaminsky DNS tunnel (2005), http://www.doxpara.com
[3] DNS multi vendor patch: CVE-2008-1447 (March 2008),

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1447
[4] CERT Advisory. Vulnerability Note VU-23495 - DNS implementations vulnerable to

denial-of-service attacks via malformed DNS queries (August 2001)
[5] Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a Dynamic Repu-

tation System for DNS. In: Proceedings of the 19th USENIX Security Symposium (August
2010)

[6] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: RFC 4033 - DNS Security Intro-
duction and Requirements

[7] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: RFC 4034 - Resource Records for
the DNS Security Extensions (2005), http://www.ietf.org/rfc/rfc4034.txt

[8] Bellis, R., Phifer, L.: Test report: DNSSEC impact on broadband routers and firewalls (2008),
http://download.nominet.org.uk/dnssec-cpe/
DNSSEC-CPE-Report.pdf

[9] Bernstein, D.J.: Introduction to DNSCurve (2008), http://dnscurve.org/

http://www.nessus.org/nessus/
http://www.doxpara.com
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1447
http://www.ietf.org/rfc/rfc4034.txt
http://download.nominet.org.uk/dnssec-cpe/DNSSEC-CPE-Report.pdf
http://download.nominet.org.uk/dnssec-cpe/DNSSEC-CPE-Report.pdf
http://dnscurve.org/

36 M. Antonakakis et al.

[10] Ccais/RNP (Brazilian Research Network CSIRT) and Vagner Sacramento. Vulnerability in
the sending requests control of Bind versions 4 and 8 allows DNS spoofing (November
2002)

[11] Callaway, D.: PorkBind - Recursive multi-threaded nameserver security scanner (2008),
http://innu.org/˜super/#tools

[12] Computer Academic Underground. bailiwicked domain.rb (2008),
http://www.caughq.org/exploits/CAU-EX-2008-0003.txt

[13] Team Cymru. The Darknet Project (2004),
http://www.team-cymru.org/Services/darknets.html

[14] Dagon, D., Antonakakis, M., Day, K., Luo, X., Lee, C., Lee, W.: Recursive DNS Archi-
tectures and Vulnerability Implications. In: Proceedings of the 16th NDSS, San Diego, CA
(2009)

[15] Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T., Lee, W.: Increased DNS Forgery Resis-
tance Through 0x20-Bit Encoding. In: Proceedings of the 15th ACM CCS, Alexandria, VA
(2008)

[16] Dagon, D., Provos, N., Lee, C., Lee, W.: Corrupted DNS Resolution Paths: The Rise of a
Malicious Resolution Authority. In: Proceedings of 15th NDSS, San Diego, CA (2008)

[17] DNSstufff. DNS Network Tools: Network Monitoring and DNS Monitoring (2008),
http://www.dnsstuff.com/

[18] Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken
(2000)

[19] Elz, R., Bush, R.: (July 1997), http://www.faqs.org/rfcs/rfc2181.html
[20] The Measurement Factory. DNS Survey: Cache Poisoners (2008),

http://dns.measurement-factory.com/surveys/poisoners.html
[21] Gummadi, K., Saroiu, S., Gribble, S.: King: Estimating latency between arbitrary internet

end hosts. In: Procceding of the 2nd ACM SIGCOMM IMW (2002)
[22] ISC. SIE@ISC, http://sie.isc.org
[23] Kaminsky, D.: Black ops 2008: It’s the end of the cache as we know it or: “64k should be

good enough for anyone” (2008), http://www.doxpara.com/DMK_BO2K8.ppt
[24] Karmasphere. The open reputation network (2006),

https://dnsparse.insec.auckland.ac.nz/dns
[25] Klein, A.: BIND 9 DNS Cache Poisoning (2008),

http://www.trusteer.com/files/BIND_9_DNS_Cache_Poisoning.pdf
[26] Osterweil, E., Massey, D., Zhang, L.: Observations from DNSSEC deployment. In: Pro-

ceedings of the 3rd NPSec (2007)
[27] Perdisci, R., Antonakakis, M., Luo, X., Lee, W.: WSEC DNS: Protecting Recursive DNS

Resolvers from Poisoning Attacks. In: Proceedings of DSN-DCCS, Estoril, Lispon, July 2
(2009)

[28] The Spamhaus Project. Lasso: The Spamhaus Don’t Route Or Peer List (2008),
http://www.spamhaus.org/drop/drop.lasso

[29] The Spamhaus Project. PBL: The Policy Block List (2008),
http://www.spamhaus.org/pbl

[30] The Spamhaus Project. XBL: Exploits block list (2008),
http://www.spamhaus.org/xbl

[31] WIDE Project. The TOTD (‘trick or treat daemon’) dns proxy (January 2006),
http://www.vermicelli.pasta.cs.uit.no

[32] Samosseiko, D.: The PARTNERKA - What is it, and why should you care? In: Proceedings
of USENIX, Workshop on Hot Topics in Cloud Computing (2009)

[33] Schuba, C.: Addressing weaknesses in the domain name system protocol. Master’s thesis,
Purdue University (1993)

http://innu.org/~super/#tools
http://www.caughq.org/exploits/CAU-EX-2008-0003.txt
http://www.team-cymru.org/Services/darknets.html
http://www.dnsstuff.com/
http://www.faqs.org/rfcs/rfc2181.html
http://dns.measurement-factory.com/surveys/poisoners.html
http://sie.isc.org
http://www.doxpara.com/DMK_BO2K8.ppt
https://dnsparse.insec.auckland.ac.nz/dns
http://www.trusteer.com/files/BIND_9_DNS_Cache_Poisoning.pdf
http://www.spamhaus.org/drop/drop.lasso
http://www.spamhaus.org/pbl
http://www.spamhaus.org/xbl
http://www.vermicelli.pasta.cs.uit.no

A Centralized Monitoring Infrastructure for Improving DNS Security 37

[34] Ulevitch, D.: Phishtank: Out of the Net into the Tank (2009),
http://www.phishtank.com/

[35] USDJ. Eugene E. Kashpureff pleaded guilty to unleashing malicious software on the inter-
net (July 1997)

[36] Vixie, P.: RFC 2671 - Extension Mechanisms for DNS, EDNS0 (1999),
http://www.faqs.org/rfcs/rfc2671.html

[37] Vixie, P.: DNS complexity. ACM Queue 5(3) (April 2007)
[38] Wendlandt, D., Andersen, D., Perrig, A.: Perspectives: Improving ssh-style host authentica-

tion with multi-path probing. In: Proceedings of the Usenix ATC (June 2008)
[39] Wessels, D.: DNS Cache Poisoners Lazy, Stupid, or Evil? (2002),

http://www.nanog.org/mtg-0602/pdf/wessels.pdf
[40] Witten, I., Frank, E.: Data mining: practical machine learning tools and techniques. In:

Morgan Kaufmann Series in Data Management Systems. Morgan Kaufman, San Francisco
(June 2005)

[41] Yuan, L., Kant, K., Mohapatra, P., Chuah, C.: DoX: A Peer-to-Peer Antidote for DNS Cache
Poisoning Attacks. In: ICC 2006 (2006)

http://www.phishtank.com/
http://www.faqs.org/rfcs/rfc2671.html
http://www.nanog.org/mtg-0602/pdf/wessels.pdf

Behavior-Based Worm Detectors Compared�

Shad Stafford and Jun Li

University of Oregon

{staffors,lijun}@cs.uoregon.edu

Abstract. Many worm detectors have been proposed and are being de-

ployed, but the literature does not clearly indicate which one is the best.

New worms such as IKEE.B (also known as the iPhone worm) continue

to present new challenges to worm detection, further raising the ques-

tion of how effective our worm defenses are. In this paper, we identify six

behavior-based worm detection algorithms as being potentially capable

of detecting worms such as IKEE.B, and then measure their performance

across a variety of environments and worm scanning behaviors, using

common parameters and metrics. We show that the underlying network

trace used to evaluate worm detectors significantly impacts their mea-

sured performance. An environment containing substantial gaming and

file sharing traffic can cause the detectors to perform poorly. No single

detector stands out as suitable for all situations. For instance, connection

failure monitoring is the most effective algorithm in many environments,

but it fails badly at detecting topologically aware worms.

Keywords: Internet worm, worm detector, behavior-based detection.

1 Introduction

Network worms have long posed a threat to the functioning of the Internet. As
early as the outbreak of the Morris worm in 1988 [1], they have been capable of
disrupting traffic over large swathes of the Internet. Significant outbreaks such as
the CodeRed [2] and Slammer [3] worms in 2001 and 2003 brought the threat to
national prominence and spurred the development of a wide range of mechanisms
to detect the presence of worms and to harden operating systems against common
attacks. The emergence of the Conficker worm [4] in late 2008 showed that those
efforts had not eradicated worms completely. As the Internet continues to play
a more important role in everyday life for hundreds of millions of people and as
the very nature of the devices on the Internet is changing (e.g., consumer-level
mobile devices begin to make up a substantial portion of connected devices),
the Internet requires more protection than ever. The question remains—can we
protect our networks from worms?
� This material is based upon work supported by the United States National Science

Foundation under Grant No. CNS-0644434. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 38–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Behavior-Based Worm Detectors Compared 39

The relevance of this question was further highlighted in late 2009 when a net-
work worm was found propagating exclusively on iPhones. The IKEE.B worm [5]
takes advantage of a default root password set in some jail-broken iPhones to
propagate. It brings to light some shortcomings in current worm detection and
prevention work. Specifically, because it propagates via an encrypted channel, it
bypasses worm detectors that rely on examining the content of network traffic;
and because it exploits a configuration error rather than a buffer overflow to
gain control of the target machine, it is undeterred by defensive techniques such
as address space randomization.

In this paper, we examine our ability to detect the presence of a worm in
a protected network. Existing detection schemes can be broadly classified into
host-based systems that monitor system call information or other host-level be-
havior for illegal operations, and network-based systems that monitor network
traffic. Network-based systems can be further broadly divided into content-based
systems that monitor the bytes transmitted across the network and behavior-
based systems that monitor the patterns of network traffic.

Unfortunately, it is unclear how these detection systems perform relative to
each other as there is very little work that directly compares them. Algorithms
are typically published with evaluations against a single network trace, which is
different for different algorithms and generally not available publicly. For exam-
ple, the MRW detector was evaluated against an unidentified week-long trace
of a university department with 1,133 identified hosts [6], whereas the TRW
algorithm was evaluated against two traces collected at the peering link of an
ISP containing 404 and 451 identified hosts [7]. Furthermore, worm detectors are
evaluated with different performance metrics, and tested worms do not always
follow the same set of parameters (such as scanning strategy and speed). For
example, the detection latency of the DSC detector is measured in the percent
of the network infected at detection time [8] while the MRW detector does not
provide detection latency results at all.

We seek to remedy this situation by performing a comprehensive analysis of
several worm detectors that are easily deployable and in principle capable of
detecting IKEE.B. We select six of the most prominent behavior-based worm
detection techniques and measure their detection performance against a variety
of worm propagation strategies over a common set of network traces. We evaluate
each detector using key performance metrics related to accuracy and latency.
The questions we seek to answer include: Is any one detection algorithm clearly
superior to the others, including cases when fast worms are the only concern
or a special network environment is protected (e.g., residential networks that
see game or peer-to-peer network usage)? If a worm adopts smart scanning
strategies such as slowing down or intelligently choosing victims, can it evade
these detectors? And, does the network trace selected for evaluation significantly
impact the detection performance?

Highlights of our findings include: (1) We find that the network trace impacts
the sensitivity of the detectors. They are less sensitive in environments with more
Internet gaming and file sharing activity, which appears more similar to worm

40 S. Stafford and J. Li

activity than other benign activities such as web browsing. (2) Our results show
that there is no clear winner and every detector has its limitations. For example,
connection-failure monitoring is the most consistently sensitive detection tech-
nique for random scanning and local-preference worms, but it fails drastically in
the case of a topologically aware worm. (3) In all environments, a stealthy worm
scanning at one scan per minute and employing some form of topologically aware
scanning that avoids connection failures could evade all the detectors evaluated
in all environments.

The rest of this paper is organized as follows: We first discuss how we selected
detectors in Section 2, and then examine the selected detectors in some detail in
Section 3. We discuss our selected metrics in Section 4, followed by the method-
ology by which we evaluate detectors in Section 5. We present the results of our
evaluations in Section 6. Section 7 reviews related work, with our conclusions in
Section 8.

2 Detector Selection

In this section we describe published worm detection algorithms and justify our
choice of six specific detectors for this comparison study. We performed an exten-
sive evaluation of proposed worm detectors, considering 36 different published
works. We grouped them into the following categories based on their detection
algorithm: host-based detectors, content-based detectors, and behavior-based
detectors. Each category has its own strengths and weaknesses.

Detectors that we classified as host-based included, among others: COV-
ERS [9], DACODA [10], TaintCheck [11], and Sweeper [12]. Several factors,
however, lead us to exclude host-based detectors from this study. Host-based
detectors require end-host deployment but a network operator may have no con-
trol over what software is installed on the end-hosts running in their network.
Furthermore, users may circumvent host-based software installs as illustrated
by IKEE.B, which targeted only those users who intentionally installed an un-
supported operating system. Finally, it is unclear whether host-based systems
are capable of detecting an attack like that used by IKEE.B. The systems listed
above all rely on observing malicious memory manipulations such as buffer over-
flows, but IKEE.B did not perform any illegal memory operations; it merely
exploited a configuration vulnerability.

Detectors that monitor the network instead of end-hosts seem much more
promising because they do not require deployment on each host to be protected.
We first look at detectors that examine the contents of network traffic, includ-
ing AutoGraph [13], EarlyBird [14], PAYL [15], Anagram [16], and LESG [17].
Each of these detection mechanisms share a similar limitation that leads us to
exclude them from our comparison: they are unable to monitor encrypted traffic.
Encrypted traffic is a special case of making a worm polymorphic. Content-based
systems designed to catch polymorphic worms (such as Polygraph [18]) depend
on attack-specific, invariant sections of content which may not be present for
an encrypted worm. Even when worms are transmitted using unencrypted con-
nections, advances in polymorphism research such as [19] have threatened the

Behavior-Based Worm Detectors Compared 41

promise of these detectors. Also, it is prohibitively difficult to acquire a variety
of network traces which contain full network content, making it infeasible to
evaluate these detectors.

The remaining and largest class of detectors is behavior-based (or payload
oblivious) detectors. These include TRW [7], RBS [20], PGD [21], and many
others. These systems also monitor network traffic, but they examine the behav-
ior of traffic from end hosts rather than the contents of their packets. This type
of system is easily deployed, requiring as little as a single monitor at the net-
work gateway. They are capable of detecting worms regardless of the scanning
mechanism or propagation type (including propagation via encrypted channels),
and many of them are capable of identifying the worm-infected hosts. However,
we do exclude some behavior-based systems that a network operator could not
easily deploy. For example, detectors using network telescopes (such as those by
Wu et al. [22] and Zou et al. [23]) require a large dark address space and cannot
be deployed by a network operator unless they control a large address space.

After our exhaustive evaluation of worm detectors, we are left with the fol-
lowing selections: TRW [7], RBS [20], TRWRBS [20], PGD [21], DSC [8], and
MRW [6]. We discuss these detectors in greater detail in the next section.

3 The Selected Worm Detectors

Having selected detectors for our comparison work, we now describe them each
in more detail in roughly chronological order of their publication. We present
only a brief a summary of each work, please refer to the original publications for
more detail. Note we used existing acronyms for each work where available.

The TRW detector was published by Schechter et al. in 2004 [7]. TRW identi-
fies a host as worm infected if connection attempts to new destinations result in
many connection failures. TRW is based on the idea that a worm-infected host
that is scanning the network randomly will have a higher connection failure rate
than a host engaged in legitimate operations. Even with the IPv4 address space
getting closer to complete allocation, the majority of addresses will not respond
to a connection attempt on any given port. Randomly targeted connections (as
in worm scanning) will likely fail.

The destination-source correlation detector (DSC) was published in 2004 by
Gu et al. [8]. It detects a worm infection by correlating an incoming connection
on a given port with subsequent outgoing infections on that port. If the outgoing
connection rate exceeds a threshold established during training, the alarm is
raised. A different threshold is maintained for each destination port.

The MRW detector was first published in 2006 [6]. It is based on the obser-
vation that whereas worm scanning results in connections to many destinations,
during legitimate operations the growth curve of the number of distinct des-
tinations over time is concave. And as the time window increases, destination
growth slows. This can be leveraged by monitoring over multiple time windows
with different thresholds for each window. If the number of new destinations for
a host within a given window exceeds the threshold, the alarm is raised.

42 S. Stafford and J. Li

The RBS detector was first published in 2007 [20] by Jung et al. . Similar to
the MRW detector, RBS measures the rate of connections to new destinations.
The work is based on the hypothesis that a worm-infected host contacts new
destinations at a higher rate than a legitimate host does. RBS measures this rate
by fitting the inter-arrival time of new destinations to a exponential distribution.

The TRWRBS detector was published alongside the RBS detector [20]. It
combines the TRW and RBS detectors into a unified scheme, and observes both
the connection failure rate and the first contact rate. It performs a sequential
hypothesis testing on the combined likelihood ratio to detect worms.

The Protocol Graph detector (PGD) was introduced by Collins and Reiter
in 2007 [21]. It is targeted at detecting slowly propagating hit-list or topologi-
cally aware worms. PGD works by building protocol-specific graphs where each
node in the graph is a host, and each edge represents a connection between
two hosts over a specific protocol. Collins and Reiter made the observation that
during legitimate operations over short time periods, the number of hosts in
the graphs is normally distributed and the number of nodes in the largest con-
nected component of each graph is also normally distributed. During a worm
infection, however, both numbers will go beyond their normal range, indicating
the presence of the worm.

4 Performance Metrics

The goal of this study is to evaluate the selected detectors over a comprehen-
sive parameter space to identify their strengths and weaknesses. We must first,
however, determine which performance attributes we are most interested in cap-
turing, and what metrics would be suitable for assessing them.

The focus of this study is on the ability of the detectors to discover the
presence of a worm in the network. We thus want to measure their accuracy:
does a detector alert us when a worm is present—but not do so when there is
no worm? Furthermore, we want to measure its ability to detect a broad range
of worm scanning algorithms. Moreover, accurate detection is not helpful if it
happens too far after the fact. We must obtain some notion of the speed of the
detectors—does it find a worm quickly or does it allow the worm free action for
a long time before raising the alarm.

There are some attributes that we are not as interested in. At this time we
are ignoring runtime costs such as processing or memory requirements. These
are dependent on implementation and optimization details, and can vary widely
for a given detection algorithm (for example, see the hardware implementation
of TRW by Weaver et al. [24]). It is beyond the scope of this work to attempt
to determine how efficiently each of these algorithms could be implemented.
Similarly, we do not consider the complexity of installing or running the detec-
tor. This is not because installation complexity does not impact the potential
adoption rate of a detector, but because it is somewhat orthogonal to the accu-
racy of the detector itself and could be addressed separately from the detection
algorithm itself.

Behavior-Based Worm Detectors Compared 43

As shown in Table 1, we have identified four metrics as the most useful mea-
sures of the performance of a worm detector. We explain them below:

Table 1. Metrics

F- Percentage of experiments where worm traffic is present

but not detected in time period τ

F+ by host The number of false alarms raised during a time period τ ,

limited to at most one false alarm per host

F+ by time Percentage of minutes during a time period τ where a false

alarm is triggered for any host

Detection Latency The number of outbound worm connections from an in-

fected network prior to detecting the worm

Our false negative metric works as follows. For each experiment we introduce
a worm to the background legitimate traffic. The detector is limited to a time
period τ (typically an hour) to detect the worm after it becomes active. If in that
time span an alarm is not raised, the experiment is scored as a false negative
for the detector. The false negative rate (F-) is the percentage of experiments
scored as false negatives. (We report F- for each different scanning rate of the
worm.)

The flip side of false negatives is false positives: reporting legitimate traffic
as a worm infection. This is a critical metric for worm detectors, because a
detector that repeatedly raises a false alarm (“cries wolf”) will quickly be ignored
by network administrators. We measure false positives by running the detector
against benign traffic with no injected worm activity. (Because we have inspected
the traces for known worm activity, we consider every alarm raised by a worm
detector a false alarm.) However, because worm detectors often repeat their
worm infection tests—on every connection in some cases, the same set suspicious
behavior may cause the alarm to be raised repeatedly, and these repetitive alarms
should be coalesced into a single notification to the network administrators. But
the exact mechanism and scope of alarm coalescing will be specific to the needs
and resources of the network administrators at each site. As a result, we present
two forms of false positive rate. We present the number of hosts identified as
infected (coalescing alarms by network address) as the false positive rate by host
(F+ by host). We also define false positive rate by time (F+ by time), which
is the fraction of minutes of the trace where an alarm is raised on at least one
host; note the alarm duration is only until the end of the current minute as we
coalesce alarms into 1 minute bins. The combination of these two metrics give a
better view of the overall false positive performance of the detector than either
does individually.

The next major performance attribute to consider is the speed with which a
worm is detected. The faster detection occurs, the less damage the worm can
do. We measure detection latency as the number of outbound worm connections

44 S. Stafford and J. Li

initiated by all infected hosts in the protected network prior to detection of any
internal infection. (Scans that do not leave the network do not inflict damage
on the Internet as a whole and are not included in this count.) Alternative
approaches such as using clock time or infected host count are less accurate and
less descriptive than our metric.

5 Experiment Design

We run the detectors against legitimate traffic to measure false positives, then
against legitimate traffic plus known worm traffic to measure false negatives
and detection latency. We developed a custom testing framework and imple-
mented each detector in our framework based on the detector’s published speci-
fications. Our framework can run against online, real-time traffic on the DETER
testbed [25], as well as run in an offline (not real-time) mode. We use legitimate
traffic from a variety of sources and generate known worm traffic by simulating a
worm with our GLOWS [26] simulator. We vary the following parameters as we
evaluate each worm detector: the environment it is run in (meaning the network
configuration and legitimate traffic), the worm scanning method, and the worm
scanning rate. We have also studied the effects of two additional parameters: the
target port attacked by the worm and the activity profile of the first host infected
by the worm, but omit those results from this paper due to space constraints.

5.1 Evaluation Environment and Background Traffic

Worm detectors must be evaluated in the context of a subnet to be protected
and against the legitimate background traffic that occurs in that subnet. For
our experiments, we define an environment as the network address space to be
monitored, the IP addresses of the active hosts inside that address space, and the
IP network traffic into and out of that address space during two time periods. We
use the first time period for training and the second to run experiments against.
To make the environments comparable to each other and to enable us to ensure
that they do not contain worm traffic, we select a /22 subnet from the original
recorded traces to use as the protected address space in our environment. Every
environment is thus a /22 network with between 100 and 200 active hosts. We
use four distinct environments in our evaluation.

The enterprise environment is built from a trace collected at LBNL [27] in
January of 2005. Heavy scanners were removed from the trace before it was
released. It has 139 active hosts and the training and experiment segments each
contain roughly 25,000 connections.

The campus environment is built from a trace that was collected in 2001
at the border of Auckland University [28]. The trace was anonymized using a
non-prefix preserving anonymization scheme, so we cannot entirely accurately
reconstruct the internal structure of their network. Instead, we randomly select
200 hosts and construct an environment using traffic to and from those hosts.
Each segment of the trace in our campus environment contains approximately
25,000 connections.

Behavior-Based Worm Detectors Compared 45

The wireless and department environments are built from traces collected at
the University of Massachusetts in 2006 [29]. The department environment is
built from a trace capturing all traffic to and from the wired computers in the
CS department. It has 92 active hosts and approximately 30,000 connections in
each segment. The wireless environment comes from a trace capturing all wireless
network traffic from the university. It has 313 active hosts and approximately
120,000 connections in each segment.

5.2 Worm Parameters

Several key parameters of a worm may impact the effectiveness of worm detectors.
We look at three scanning strategies worms can employ: random scan,
local-preference scan, and topologically aware (topo) scan, and evaluate them at
a variety of scanning rates. Our GLOWS simulator takes an environment as input
and simulates a worm as if it were attacking the network defined by that environ-
ment. The simulation starts with a single inbound worm connection that infects
one host in the protected network. We run the simulator once for each permutation
of worm parameters. The scanning mechanisms are defined as follows.

A random scanning worm simply chooses target addresses at random from
the entire IPv4 address space. This typically results in many connection at-
tempts to addresses with no host present or with a host that is not running
the requested service, resulting in many connection failures. Permutation and
sequential scanning worms should show very similar characteristics and are not
evaluated separately here.

A local-preference worm scans local addresses (in the same prefix) more fre-
quently than addresses in the full address space. This results in more scans that
do not cross the network border (and are therefore not visible to a border-located
detection mechanism). Existing local-preference scanning worms, such as Code-
Red II [2], target the local /16 prefix approximately 50% of the time, the local
/8 25% of the time, and the entire network the remaining time. As all our traces
are about a /22 network, such a worm would largely resemble a random scanning
worm. Instead, our local-preference worm scans the local /22 50% of the time,
the local /8 25% of the time, and the entire network the remaining time.

The topologically aware (topo) worm finds target information on the host that
it infects. This target information allows it to scan effectively because it already
knows about other hosts that are running the service it targets. The number of
new hosts (referred to as “neighbors”) the worm discovers is dependent on its
neighbor detection algorithm. We use three implementations of the topo worm
with differing neighbor counts. The topo100 worm starts with 100 neighbors, the
topo1000 worm starts with 1000 neighbors, and the topoall worm starts with an
unlimited supply of neighbors. After scanning its known neighbors, the topo
worm must either stop scanning or switch algorithms. In our implementation
it reverts to random scanning after exhausting its neighbor list. Note that the
neighbors discovered by the topo worm are randomly located, so could appear
both inside and outside the protected network. Also, they will be running the
target service but are not guaranteed to be vulnerable.

46 S. Stafford and J. Li

In addition to scanning mechanism the worm uses, the rate at which it initiates
connections is important. The faster a worm scans, the more visible it is to worm
detectors. We run experiments for a variety of worm scanning rates ranging from
10 connections per second down to one connection every 200 seconds.

5.3 Experiment Procedure

Measuring detector performance is a multi-step procedure. For each environ-
ment, every detector must (1) establish thresholds via training, (2) be evaluated
against the legitimate traffic in the environment to measure false positives, (3)
adjust their parameters to fix false positives at a specific level, and (4) be eval-
uated against legitimate traffic combined with worm traffic to measure false
negatives and detection latency. Let us now discuss each of these steps in more
detail.

These detectors are anomaly detectors, and they look for traffic that diverges
from normal. To do this, they must first measure what normal is. The TRW,
MRW, DSC, and PGD detectors are run against the training segment of the trace
using the training method outlined in their publication to perform this operation.
The RBS and TRWRBS detectors perform on-the-fly training as they are run
against the experiment segment of the trace.

After the thresholds are established from the training segment of the trace,
each detector is run against the experiment portion of the trace to measure false
positives. We measure F+ using the thresholds obtained from training and the
default detector parameters outlined in the original publication of each work,
presenting those results in Section 6.1.

Note that each detector can be tuned to favor producing either more F+ or
more F-. After reporting F+ using the default detector parameters as published,
in order to provide a fair comparison of the false negative rate of the detectors, we
modify each detector’s parameters such that they all produce the same number
of false positives in each environment. We chose to peg each detector at a rate
of two false positive alarms during the experiment period. Two false positives
is a high rate for the one-hour time period evaluated, but was chosen as an
achievable value for all detectors requiring the minimum amount of parameter
modifications.

After measuring F+ and adjusting the detectors to match their F+ levels, we
then measure the performance of the detectors against worm traffic. For each
detector in each environment, we run 16 experiments for every permutation of
the worm parameters. A single experiment consists of running the detector for
10 minutes of the experiment trace to warm up the connection histories, then
injecting the simulated worm traffic into the trace, and running until either an
hour has elapsed or the worm is detected. Each of the 16 experiments that we
run for a given set of worm parameters has a different host in the protected
network being infected first and uses a different random seed. The percentage of
experiments where the worm is not detected is the false negative rate, and the
mean number of worm connections that have left the network at detection time
is the detection latency.

Behavior-Based Worm Detectors Compared 47

 0

 1

 2

 3

 4

 5

trw rbs trwrbs mrw pgd dscF
al

se
 A

la
rm

s
(li

m
it

1
pe

r
ho

st
)

Detector

enterprise
campus

department
wireless

(a) By Host

 0

 20

 40

 60

 80

 100

trw rbs trwrbs mrw pgd dsc%
 o

f M
in

ut
es

 w
ith

 F
al

se
 A

la
rm

Detector

enterprise
campus

department
wireless

(b) By Time

Fig. 1. False positives against legitimate traffic: when running with default pa-

rameters against the experiment segment of the traces with no worm traffic injected

6 Results

We now measure the performance of the worm detectors in a variety of worm
scenarios. We first look at the false positives, then introduce worm traffic to mea-
sure false negative rates and detection latency. We start with the simplest worm
strategy of randomly scanning addresses, then increase the worm sophistication
to local-preference and then topologically aware scanning strategies.

6.1 False Positives against Legitimate Traffic

Figure 1(a) shows the results for each detector using default parameters from
its original publication. Raising an alarm for a host could either (a) indicate
that the host is considered permanently infected, or (b) indicate that the host is
behaving anomalously now (for some definition of now). Figure 1(a) shows F+
results using strategy (a) (with PGD limited to one alarm per 1-minute window
because it does not identify the infected host). Figure 1(b) shows F+ results
using strategy (b) and with an alarm duration of one minute. Strategy (a) is
probably more representative of how detectors would be deployed in practice,
but it is illustrative to show that without such a limitation, in some environments
RBS and TRWRBS would be in an alarm state more than 50% of the time and
TRW and MRW would be in an alarm state 100% of the time.

These results also demonstrate the impact that environment has on the detec-
tor performance. TRWRBS has five F+ in the wireless environmentbut none in the
campus or department environments. MRW is in an alarm state 100% of the time
in the department environment but not at all in the campus environment. An eval-
uation using only a single environment could produce grossly inaccurate results.

The wireless environment showed the most F+ activity with the default pa-
rameter choices. This appears to stem from several hosts playing network games
such as Counter-Strike (UDP connections on ports in the 27010-27050 range)
and NeverWinter Nights (TCP connections on port 5121) as well as from hosts
using BitTorrent (33 hosts active on ports in the 6881-6999 range). This environ-
ment represents the most residential/recreational usage patterns and indicates

48 S. Stafford and J. Li

that this sort of traffic is less amenable to behavior-based worm detection than
the less variable traffic of the enterprise environment. This represents the first
findings we are aware of that validate a common hypothesis: current behavior-
based anomaly detectors are not optimized for residential style network traffic
and may not show satisfactory performance in such an environment.

6.2 Detector Performance against Random Worm

In this section we report false negative and latency results against random scan-
ning worms. Figure 2 shows that TRW is the most consistently effective detector
across the environments, discovering all instances of the worm down to 0.05 scans
per second and catching the majority of the slower scans in the enterprise and
campus environments. RBS is the least effective, only able to consistently detect
the worm scan rates greater than five scans per second. TRWRBS blends the
two detectors with results right in the middle. The DSC and PGD detectors are
an order of magnitude more effective in the enterprise environment than in the
other environments due to the lower activity levels (and hence lower thresholds)
in the enterprise environment. The MRW detector provides middle of the road
performance except against in the wireless environment where it is unable to
detect the worm at speeds slower than five scans per second.

Figure 3 shows the average number of connections each infected network was
able to make before detection. Note that the scale is not consistent across the
graphs. We only show the value for those scenarios where F- is zero in order to
eliminate selection bias in the results. DSC is consistently the fastest detection

 0

 20

 40

 60

 80

 100
 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) RBS

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) MRW

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) DSC

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

Fig. 2. F- against random worm: percent of experiments where the worm was

not detected (lower is better performance) with a random scanning worm infecting

randomly selected hosts. For each environment and scanning rate we conducted 16

individual experiments using different first infected hosts and different random seeds.

In each case the experiment was run until the worm was detected or one hour elapsed

without detection.

Behavior-Based Worm Detectors Compared 49

 0
 10
 20
 30
 40
 50

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW

 0
 50

 100
 150
 200
 250
 300

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) RBS

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) MRW

 0

 5

 10

 15

 20

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) DSC

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

Fig. 3. Latency against random worm: from worm infection time to detection time

for random scanning worm, measured as the number of worm connections leaving the

protected network prior to detection. We report results only for those environments

and scan rates where the worm was detected with 100% accuracy.

mechanism, never allowing the worm to scan more than 23 times before detec-
tion. TRW again highlights the variation between environments, allowing roughly
50 worm scans in the wireless environment before detection, but only five scans in
the enterprise environment. MRW and RBS allowed several hundred scans before
detection in the wireless environment, but were much faster in the other environ-
ments. PGD showed the most variation, allowing over 1000 scans before detection
in some scenarios in the wireless environment but detecting the worm in 30-40 con-
nections in the other environments. TRWRBS showed increasing latency as the
scan rate drops. This is due to the influence of the RBS algorithm that increases
the destination threshold as the time window increases. The fast scanning worm
is caught in a short window, but the slower scanning worms take a substantially
longer time to hit the critical number of destinations.

Across the board, TRW shows the best detection performance against ran-
dom scanning worms. This indicates that connection failures are a strong and
highly identifiable signal. TRW also had consistent and low latencies, limiting
the damage a worm could do. Destination pattern based detection such as MRW
and RBS typically requires greater numbers of connections for accurate identi-
fication. PGD performed adequately, but is designed to detect multiple infected
internal hosts which did not happen with the random-scanning worm.

6.3 Detector Performance against Local-Preference Worms

Having examined the baseline case using the random scanning worm, we now
investigate performance against a more advanced foe: the local-preference scan-
ning worm. The local-preference worm directs half its connections at the local
network, meaning both that it is more likely to infect multiple hosts inside the

50 S. Stafford and J. Li

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) RBS

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) MRW

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) DSC

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

Fig. 4. F- against local-preference worm: percent of experiments where the worm

was not detected (lower is better performance) with a local-preference scanning worm

protected network and that fewer connections per time period are visible to a
gateway-based detector. However, the scan is still random in nature, so shares
the same general characteristics as the purely random scanning worm.

Figure 4 shows that for most scenarios, the detectors show a slight decrease
in sensitivity. This is visible as a shift to the right in the false negative curves.
The TRW detector was able to detect 100% of the random worms in the wireless
environment at 0.05 scans per second, but is only able to detect 100% of the local-
preference worms at 0.1 scans per second. TRWRBS, RBS, MRW, and DSC all
show similar decreases in performance in some environments. The reason for
this is simply the reduction of worm scans that are visible to the detector. The
limit of a detector’s ability to spot the worm—meaning the slowest worm that
it can detect reliably—is at the point where it can just barely observe enough
evidence to infer that a host is infected. If a worm scans more slowly or not all
its scans cross the gateway (as in local-preference worms), the evidence visible
to the detector may not be enough to make the determination that a worm is
present.

The one detector that shows a significantly different response is the PGD
detector, showing better performance against the local-preference worm than it
did against the random worm. The PGD detector measures the protocol graph
of all hosts in the network, and the more infected hosts there are, the more
scanning there will be using the protocol the worm targets. This leads to either
more total nodes in the graph or a larger connected component, allowing the
PGD detector to spot the local-preference worm in situations where it would
not have detected a random scanning worm.

The latency results are also impacted by the local-preference scanning strategy
(Figure 5). The TRWRBS, RBS, DSC, and MRW detectors show worse detec-
tion latency in all environments for the local-preference worm as compared to

Behavior-Based Worm Detectors Compared 51

 0
 20
 40
 60
 80

 100
 120

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW

 0

 2000

 4000

 6000

 8000

 10000

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0
 10000
 20000
 30000
 40000

 50000

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
department

wireless

(c) RBS

 0

 10000

 20000

 30000

 40000

 50000

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) MRW

 0

 5

 10

 15

 20

 25

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) DSC

 0
 100
 200
 300
 400
 500
 600

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

Fig. 5. Latency against local-preference worm: from worm infection time to de-

tection time for local-preference scanning worm, measured as the number of worm

connections leaving the protected network prior to detection

the random worm. This is because the worm targets the local network so aggres-
sively that in many scenarios it infects multiple hosts inside the network before
it is detected. Recall that our latency metric measures the combined external
scanning of all infected hosts in the network. The TRW detector, on the other
hand, shows identical latency performance for all environments when comparing
random and local-preference worms because it detects the worm before it infects
multiple hosts (except in the wireless environment).

PGD behaves quite differently than the other detectors. It detects the local-
preference worm more quickly than the random worm in the enterprise and
campus environments, but slower in the department environment. And in the
wireless environment the local-preference worm is detected more quickly at scan-
ning rates of two scans per second or less, but the random worm is detected more
quickly at rates above two scans per second.

The DSC detector is the fastest, allowing fewer than 25 outgoing worm con-
nections in all scenarios where it was able to detect the worm 100% of the time.
TRW is also quite fast, allowing fewer than 27 connections in all environment
except for the wireless environment where it allows roughly 100. Note TRW
also is the most sensitive detector, successfully detecting the worm at the lowest
scanning rates in all environments.

6.4 Detector Performance against Topo Worms

Topo scanning changes the observed behavior of an infected host by reducing
the number of connection failures that the detector can observe. The neighbors
discovered by the topo worm are vulnerable at the same level as other hosts in the
network but are guaranteed to be present, different from random scanning where

52 S. Stafford and J. Li

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW vs topo100

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRW vs topo1000

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) TRW vs topoall

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) TRWRBS vs topo100

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) TRWRBS vs topo1000

 0

 20

 40

 60

 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F
-

(%
 o

f r
un

s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) TRWRBS vs topoall

Fig. 6. F- against topo worm: percent of experiments where the worm was not
detected (lower is better performance) by the TRW and TRWRBS detectors with a

topo scanning worm. The topo100 worm uses 100 neighbors before reverting to random

scanning, the topo1000 worm uses 1000 neighbors before reverting to random scanning,

and the topoall worm never uses random scanning.

a large number of scans go to addresses with no host present. The only detectors
that are impacted by this strategy are those detectors that rely on observing
connection failures: TRW and TRWRBS. The RBS, MRW, DSC, and PGD
detectors show identical performance against the topo worm and the random
worm. The pattern of neighbors—whether they can be connected to or not—is
random in both the random and topo worms and thus triggers those algorithms
in the same way.

The TRW detector is unable to detect the topo worm during its topo scanning
phase because of the lack of connection failures. It only detects the worm after
it reverts to random scanning. In the topo100 scenario (Figure 6(a)), this occurs
relatively quickly as it does not take long for the worm to exhaust its list of
100 neighbors. TRW is able to detect the worm at speeds as low as 0.01 scans
per second in all environments. However, in the topo1000 scenario, the list of
neighbors is not exhausted during the one-hour experiment for speeds below 0.5
scans per second and the TRW detector is unable to detect topo worms with
slower scanning rates (Figure 6(a)). In the topoall scenario—where the topo
worm never exhausts its list of neighbors—the TRW detector is never successful
at detecting the worm (Figure 6(c)).

Not only is TRW’s ability to detect the worm compromised, but even in
scenarios where it does detect the worm it is much slower at it. Figures 7
show the latency results for TRW against the topo worm. Because during the
worm’s topo phase none of its scans were detected, the latency results against
the topo100 worm are approximately 100 scans worse than they were for TRW
against the random scanning worm. Similar results can be seen for the topo1000

Behavior-Based Worm Detectors Compared 53

 0
 20
 40
 60
 80

 100
 120
 140

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW vs topo100

 0

 200

 400

 600

 800

 1000

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRW vs topo1000

-1

-0.5

 0

 0.5

 1

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

Not Detected

(c) TRW vs topoall

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) TRWRBS vs topo100

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) TRWRBS vs topo1000

 0
 100
 200
 300
 400
 500
 600
 700

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) TRWRBS vs topoall

Fig. 7. Latency against topo worm: from worm infection time to detection time

for topo scanning worm, measured as the number of worm connections leaving the

protected network prior to detection. The topo100 worm uses 100 neighbors before

reverting to random scanning, the topo1000 worm uses 1000 neighbors before reverting

to random scanning, and the topoall worm never uses random scanning.

scenario, where TRW’s detection latency is 1000 connections worse than it was
for the random scanning worm.

This shortcoming in TRW is one of the motivations for the TRWRBS detector.
It uses connection failures in the detection algorithm, but it can also detect a
worm even with no connection failures by checking the rate of connections to
new destinations. The TRWRBS detector is able to detect the topo100 at rates
above 1 scan per second in the wireless environment and above 0.2 scans per
second in all other environments (Figure 6(d)). It does not perform quite as
well as TRW in this scenario because TRW is able to leverage the connection
failures so effectively. In the topo1000 scenario the detectors are effective at
approximately the same worm scanning rate (Figure 6(e)); but if one looks at
the latency, the TRWRBS detector is able to detect the worm more quickly
at most scanning rates (Figure 7(e)). At worm scanning rates of 2 scans per
second and higher, TRWRBS can detect the worm in under 30 connections in
all the environments except for the wireless environment. This compares well
against the TRW algorithm which requires over 1000 scans before detecting the
topo1000 worm. The TRWRBS detector even detects the worm in the topoall
scenario where the TRW detector could not.

This reliance on connection failures highlights a potential weakness of the
TRW algorithm. If a worm can generate a big enough list of hosts running the
target service that are likely to exist, it can make enough successful connections
to completely evade the TRW algorithm. The detectors based on destination
distributions do not have this weakness.

54 S. Stafford and J. Li

6.5 Summary

We now recap our findings and answer the questions posed in the introduction.
We found that no detector was clearly superior to the others in the study. The
TRW detector can detect slower random and local-preference scanning worms
than any of the other detectors in all the environments we tested. However, it
performs poorly against topo worms. In fact, a topo worm with a large supply
of neighbors to scan is entirely undetectable by the TRW algorithm. The PGD
detector was capable of detecting all types of worms scanning at 0.5 scans per
second or faster in all environments, but was relatively slow, frequently allowing
several hundred scans prior to detection. The TRWRBS detector was similar
to the PGD detector, but showed decreased performance against topo worms.
The RBS detector was only capable of detecting fast scanning worms. The MRW
detector struggled to detect worms in the wireless environment and was incapable
of detecting the local-preference worm in that environment. Finally, the DSC
detector performed quite well in many respects, but is otherwise quite limited
due to the requirement that an inbound infecting connection be observed in
order for the detector to function. An initial infection that came via some other
vector (removable media, direct download, etc.) would be undetectable by DSC.

If we narrow our criteria, however, we may be able to identify some detectors
as being superior at specific tasks. For example, if we only consider fast scanning
worms—those that make 10 scans per second—the TRWRBS detector suddenly
stands out as being an excellent choice. It detects fast scanning worms in every
environment regardless of scanning type and is the fastest in most scenarios.

The wireless environment was the most difficult for detectors to operate suc-
cessfully in. In virtually all scenarios, detectors showed the worst sensitivity
in the wireless environment, and detection latencies were typically an order of
magnitude worse. The traffic in this environment is more focused around enter-
tainment type activities such as network gaming and peer-to-peer file sharing.
These activities are prone to resembling worm scanning activity, making it more
difficult for the detectors to differentiate between legitimate hosts and worm
infected ones. For example, a peer-to-peer network client may receive a list of
peers who were recently active and attempt to contact every host on the list. If
the peer-to-peer network has a high churn rate and hosts on the peer list have
left the network, this activity will result in many connection failures, just as if a
worm were scanning for potential targets. Even in the face of this type of activity,
however, the detectors were still typically able to detect true worm activity. As in
the other environments, the TRW detector was able to detect slower worms than
any other detectors. The PGD detector showed the next best performance and
had the advantage of also detecting the topo worm in the wireless environment.

Our results indicate that worms scanning at one connection per second or
better are relatively easily detected in most environments, but a worm that
utilizes some sort of topo scanning with a low connection failure rate could
evade worm detectors in all our tested environments—if it scanned at a rate no
greater than 1 scan per 10 seconds.

Behavior-Based Worm Detectors Compared 55

7 Related Work

The most directly related work to ours—aside from the original publication of
the detectors evaluated here—is a study by M. Patrick Collins and Michael K.
Reiter that evaluates behavior-based (or payload-oblivious as they term it) de-
tectors [30]. This work is closely tied to ours, but is complementary in nature.
Their work, like ours, evaluates the effectiveness of several behavior-based detec-
tors. The key distinction is that instead of monitoring an internal network for
infections, they considered the performance of these systems in detecting incom-
ing scanning from external networks. This is actually a substantially different
problem than detecting internally infected hosts. There is a considerable volume
of incoming scan traffic to most networks [31], and separating worm scanning
from other scanning traffic is a different problem than detecting outgoing scans
among legitimate outgoing traffic. They developed new metrics for their evalu-
ation, measuring an attacker’s payoff over an observable attack space. This new
metric does not apply well to the job of detecting internal scanners, however,
as the target address space of an internal scanner is potentially the entire IPv4
address space.

A work by Li, Salour, and Su surveys behavior and content-based worm detec-
tors [32] and covers many of the works referenced here. They do not measure the
performance of detectors, however, limiting their study to describing and classi-
fying them instead. Our work briefly addresses broad classifications of detectors,
but then focuses on their relative performance in real world situations.

8 Conclusions

The relative lack of worm attacks in recent years has caused network operators to
focus their attention on other threats. However, Conficker and IKEE.B illustrate
the continued threat that worms pose. Lapses in worm activity are not new—13
years separated the Morris worm from the series of large worm outbreaks in the
early 2000’s—and continued vigilance is required to protect our networks.

Despite the large number of worm detectors published, it is still unclear
whether state-of-the-art systems are capable of coping with modern worms suc-
cessfully. It is even unclear how these systems compare to each other. We have
not seen a systematic comparison study that evaluates worm detectors against
the same performance metrics across the same parameter values.

This paper addresses that issue. We focus on behavior-based worm detectors
under different real-world environments, studying their false positive, false neg-
ative, and latency in detecting worms at various scanning rates using random,
local-preference, or topological-aware scanning methods. We found that worms
that scan at a low rate are the hardest to detect; for example, a topologically
aware worm scanning one destination per minute can evade all tested detectors
in all environments. Also, among all the environments we studied, the wireless
environment poses the biggest challenge, where almost every detector incurs a
lower—sometimes unacceptable—accuracy and higher latency than in other en-
vironments. No detector is a clear winner; TRW performs the best against the

56 S. Stafford and J. Li

random and local-preference worms, for example, but it fails badly at detecting
a topologically aware worm.

References

1. Eisenberg, T., Gries, D., Hartmanis, J., Holcomb, D., Lynn, M.S., Santoro, T.: The

Cornell commission: on Morris and the worm. Communications of the ACM 32(6),

706–709 (1989)

2. Moore, D., Shannon, C., Claffy, K.C.: Code-red: A case study on the spread and

victims of an Internet worm. In: Proceedings of the ACM Internet Measurement

Workshop, pp. 273–284 (2002)

3. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside

the slammer worm. IEEE Security and Privacy 1(4), 33–39 (2003)

4. Symantec, I.: The downadup codex. Technical report, Symantec (March 2009)

5. Porras, P.A., Saidi, H., Yegneswaran, V.: An analysis of the ikee.b (duh) iPhone

botnet. Technical report, SRI International (December 2009)

6. Sekar, V., Xie, Y., Reiter, M.K., Zhang, H.: A multi-resolution approach for worm

detection and containment. In: Proceedings of the International Conference on

Dependable Systems and Networks (2006)

7. Schechter, S.E., Jung, J., Berger, A.W.: Fast detection of scanning worm infections.

In: Proceedings of the Symposium on Recent Advances in Intrusion Detection

(2004)

8. Gu, G., Sharif, M., Qin, X., Dagon, D., Lee, W., Riley, G.: Worm detection, early

warning and response based on local victim information. In: Proceedings of the

Annual Computer Security Applications Conference (2004)

9. Liang, Z., Sekar, R.: Fast and automated generation of attack signatures: A basis

for building self-protecting servers. In: Proceedings of the Conference on Computer

and Communications Security (2005)

10. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities

from zero-day polymorphic and metamorphic worm exploits. In: Proceedings of the

Conference on Computer and Communications Security (2005)

11. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,

and signature generation of exploits on commodity software. In: Proceedings of the

Network and Distributed System Security Symposium (February 2005)

12. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y.,

Song, D.: Sweeper: A lightweight end-to-end system for defending against fast

worms. In: Proceedings of the EuroSys Conference (2007)

13. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature

detection. In: Proceedings of the USENIX Security Symposium, pp. 271–286 (Au-

gust 2004)

14. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:

Proceedings of the Symposium on Operating System Design and Implementation,

pp. 45–60 (2004)

15. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and

signature generation. In: Proceedings of the Symposium on Recent Advances in

Intrusion Detection (2005)

16. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resis-

tant to mimicry attack. In: Proceedings of the Symposium on Recent Advances in

Intrusion Detection (2006)

Behavior-Based Worm Detectors Compared 57

17. Li, Z., Wang, L., Chen, Y., Fu, Z.: Network-based and attack-resilient length sig-

nature generation for zero-day polymorphic worms. In: Proceedings of the IEEE

International Conference on Network Protocols, pp. 164–173 (October 2007)

18. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures

for polymorphic worms. In: Proceedings of the IEEE Symposium on Security and

Privacy (2005)

19. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-

ings of the Conference on Computer and Communications Security, pp. 524–533

(2009)

20. Jung, J., Milito, R., Paxson, V.: On the adaptive real-time detection of fast-

propagating network worms. In: Proceedings of the Conference on Detection of

Intrusions and Malware and Vulnerability Assessment, pp. 175–192 (July 2007)

21. Collins, M.P., Reiter, M.K.: Hit-list worm detection and bot identification in large

networks using protocol graphs. In: Proceedings of the Symposium on Recent Ad-

vances in Intrusion Detection, pp. 276–295 (September 2007)

22. Wu, J., Vangala, S., Gao, L., Kwiat, K.: An effective architecture and algorithm

for detecting worms with various scan techniques. In: Proceedings of the Network

and Distributed System Security Symposium (2004)

23. Zou, C.C., Gong, W., Towsley, D., Gao, L.: The monitoring and early detection of

Internet worms. ACM Transactions on Networking (2005)

24. Weaver, N., Staniford, S., Paxson, V.: Very fast containment of scanning worms.

In: Proceedings of the USENIX Security Symposium, pp. 29–44 (2004)

25. DETER: Cyber defense technology experiment research (DETER) network,

http://www.isi.edu/deter/

26. Stafford, S., Li, J., Ehrenkranz, T., Knickerbocker, P.: GLOWS: A high-fidelity

worm simulator. Technical Report CIS-TR-2006-11, University of Oregon (2006)

27. LBNL/ICSI enterprise tracing project (2005),

http://www.icir.org/enterprise-tracing/

28. Group, W.N.R.: WAND WITS: Auckland-IV trace data (April 2001),

http://wand.cs.waikato.ac.nz/wand/wits/auck/4/

29. Umass trace repository, http://traces.cs.umass.edu/

30. Collins, M.P., Reiter, M.K.: On the limits of payload-oblivious network attack

detection. In: Proceedings of the Symposium on Recent Advances in Intrusion

Detection, pp. 251–270 (September 2008)

31. Allman, M., Paxson, V., Terrell, J.: A brief history of scanning. In: Proceedings of

the ACM Internet Measurement Conference, pp. 77–82 (October 2007)

32. Li, P., Salour, M., Su, X.: A survey of internet worm detection and containment.

IEEE Communications Society Surveys and Tutorials 10(1), 20–35 (2008)

http://www.isi.edu/deter/
http://www.icir.org/enterprise-tracing/
http://wand.cs.waikato.ac.nz/wand/wits/auck/4/
http://traces.cs.umass.edu/

Improving NFA-Based Signature Matching
Using Ordered Binary Decision Diagrams�

Liu Yang1, Rezwana Karim1, Vinod Ganapathy1, and Randy Smith2

1 Rutgers University
2 Sandia National Laboratories

Abstract. Network intrusion detection systems (NIDS) make extensive use of
regular expressions as attack signatures. Internally, NIDS represent and operate
these signatures using finite automata. Existing representations of finite automata
present a well-known time-space tradeoff: Deterministic automata (DFAs) pro-
vide fast matching but are memory intensive, while non-deterministic automata
(NFAs) are space-efficient but are several orders of magnitude slower than DFAs.
This time/space tradeoff has motivated much recent research, primarily with a
focus on improving the space-efficiency of DFAs, often at the cost of reducing
their performance.

This paper presents NFA-OBDDs, a symbolic representation of NFAs that re-
tains their space-efficiency while improving their time-efficiency. Experiments
using Snort HTTP and FTP signature sets show that an NFA-OBDD-based repre-
sentation of regular expressions can outperform traditional NFAs by up to three
orders of magnitude and is competitive with a variant of DFAs, while still remain-
ing as compact as NFAs.

Keywords: NIDS, signature matching, ordered binary decision diagrams.

1 Introduction

Deep packet inspection allows network intrusion detection systems (NIDS) to accu-
rately identify malicious traffic by matching the contents of network packets against
attack signatures. In the past, attack signatures were keywords that could efficiently
be matched using string matching algorithms. However, the increasing complexity of
network attacks has lead the research community to investigate richer signature rep-
resentations, which require the full power of regular expressions. Because NIDS are
often deployed over high-speed network links, algorithms to match such rich signatures
must also be efficient enough to provide high-throughput intrusion detection on large
volumes of network traffic. This problem has spurred much recent research, and in par-
ticular has lead to the investigation of new representations of regular expressions that
allow for efficient inspection of network traffic (e.g., [1,2,3,4]).

To be useful for deep packet inspection in a NIDS, any representation of regular
expressions must satisfy two key requirements: time-efficiency and space-efficiency.
Time-efficiency requires the amount of time spent by the NIDS to process each byte

� Supported in part by NSF grants 0831268, 0915394, 0931992 and 0952128. L. Yang and
R. Karim contributed equally, while R. Smith contributed while at the University of Wisconsin.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 58–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 59

of network traffic to be small, thereby allowing large volumes of traffic to be matched
quickly. Space-efficiency requires the size of the representation to be small, thereby en-
suring that it will fit within the main memory of the NIDS. Space-efficiency also man-
dates that the size of the representation should grow proportionally (e.g., linearly) with
the number of attack signatures. This requirement is important because the increasing
diversity of network attacks has lead to a quick growth in the number of signatures used
by NIDS. For example, the number of signatures in Snort [5] has grown from 3,166 in
2003 to 15,047 in 2009.

Finite automata are a natural representation for regular expressions, but offer a trade-
off between time- and space-efficiency. Using deterministic finite automata (DFAs) to
represent regular expressions allows efficient matching (O(1) lookups to its transition
table to process each input symbol), while non-deterministic finite automata (NFAs) can
take up to O(n) transition table lookups to process each input symbol, where n is the
number of states in the NFA. However, NFAs are space-efficient, while DFAs for cer-
tain regular expressions can be exponentially larger than the corresponding NFAs [6].
More significantly, combining NFAs only leads to an additive increase in the number
of states, while combining DFAs can result in a multiplicative increase, i.e., an NFA
that combines two NFAs with m and n states has up to O(m + n) states, while a DFA
that combines two DFAs with m and n states can have up to O(m × n) states. DFA
representations for large sets of regular expressions often consume several gigabytes of
memory, and do not fit within the main memory of most NIDS.

This time/space tradeoff has motivated much recent research, primarily with a focus
on improving the space-efficiency of DFAs. These include heuristics to compress DFA
transition tables (e.g., [2,7]), techniques to combine regular expressions into multiple
DFAs [4], and variable extended finite automata (XFAs) [3,8], which offer compact
DFA representations and guarantee an additive increase in states when signatures are
combined, provided that the regular expressions satisfy certain conditions. These tech-
niques trade time for space, and though the resulting representations fit in main memory,
their matching algorithms are slower than those for traditional DFAs.

In this paper, we take an alternative approach and instead focus on improving the
time-efficiency of NFAs. NFAs are not currently in common use for deep packet inspec-
tion, and understandably so—their performance can be several orders of magnitude
slower than DFAs. Nevertheless, NFAs offer a number of advantages over DFAs, and
we believe that further research on improving their time-efficiency can make them a
viable alternative to DFAs. Our position is supported in part by these observations:

• NFAs are more compact than DFAs. Determinizing an NFA involves a subset con-
struction algorithm, which can result in a DFA with exponentially more states than
an equivalent NFA [6].

• NFA combination is space-efficient. Combining two NFAs simply involves linking
their start states together by adding new ε transitions; the combined NFA is therefore
only as large as the two NFAs put together. This feature of NFAs is particularly
important, given that the diversity of network attacks has pushed NIDS vendors to
deploy an ever increasing number of signatures. In contrast, combining two DFAs
can result in a multiplicative increase in the number of states, and the combined
DFA may be much larger than its constituent DFAs.

60 L. Yang et al.

• NFAs can readily be parallelized. An NFA can be in a set of states (called the
frontier) at any instant during its operation, each of which may contain multiple
outgoing transitions for an input symbol. States in the frontier can be processed in
parallel as new input symbols are encountered [9,10].

Motivated by these advantages, we develop a new approach to improve the time-efficiency
of NFAs. The frontier of an NFA can contain O(n) states, each of which must be pro-
cessed using the NFA’s transition relation for each input symbol to compute a new
frontier, thereby resulting in slow operation. Although this frontier can be processed
in parallel to improve performance, NFAs for large signature sets may contain several
thousand states in their frontier at any instant. Commodity hardware is not yet well-
equipped to process such large frontiers in parallel.

Our core insight is that a technique to efficiently apply an NFA’s transition relation
to a set of states can greatly improve the time-efficiency of NFAs. Such a technique
would apply the transition relation to all states in the frontier in a single operation to
produce a new frontier. We develop an approach that uses Ordered Binary Decision
Diagrams [11] (OBDDs) to implement such a technique. Our use of OBDDs to process
NFA frontiers is inspired by symbolic model checking, where the use of OBDDs allows
the verification of systems that contain an astronomical number of states [12]. NFAs
that use OBDDs (NFA-OBDDs) can be constructed from regular expressions in a fully
automated way, and are robust in the face of structural complexities in these regular
expressions (e.g., counters [8, Section 6.2]).

To evaluate the feasibility of our approach, we constructed NFAs in software using
HTTP and FTP signatures from Snort. We operated these NFAs using OBDDs and eval-
uated their time-efficiency and space-efficiency using HTTP and FTP traffic obtained
from our department’s network. Our experiments showed that NFA-OBDDs outperform
traditional NFAs by approximately three orders of magnitude—about 1645× in the best
case. Our experiments also showed that NFA-OBDDs retain the space-efficiency of
NFAs. In contrast, our machine ran out of memory when trying to construct DFAs (or
their variants) from our signature sets.

Our main contributions are as follows:

• Design of NFA-OBDDs. We develop a novel technique that uses OBDDs to improve
the time-efficiency of NFAs (Section 3). We also describe how NFA-OBDDs can be
used to improve the time and space-efficiency of NFA-based multi-byte matching
(Section 5).

• Comprehensive evaluation using Snort signatures. We evaluated NFA-OBDDs
using Snort’s HTTP and FTP signature sets and observed a speedup of about three
orders of magnitude over traditional NFAs. We also compared the performance of
NFA-OBDDs against a variety of automata implementations, including the PCRE
package and a variant of DFAs (Section 4).

2 Ordered Binary Decision Diagrams

An OBDD is a data structure that can represent arbitrary Boolean formulae. OBDDs
transform Boolean function manipulation into efficient graph transformations, and have
found wide use in a number of application domains. For example, OBDDs are used

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 61

x i y f(x, i, y)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(a) A Boolean function

f(x, i, y).

x

ii

yy

1 0

(b) OBDD(f) with

x < i < y.

x

ii

0 1

y

(c) APPLY(∧, OBDD(f),

OBDD(I(i))).

x

y

10

(d) RESTRICT(OBDD(f),

i ← 1).

Fig. 1. An example of a Boolean formula, its OBDD, and various operations on the OBDD. Solid
edges are labeled 1, dotted edges are labeled 0.

extensively by model checkers to improve the efficiency of state-space exploration al-
gorithms [12]. In this section, we present an informal overview of OBDDs, and refer
interested readers to Bryant’s seminal article [11] for details.

An OBDD represents a Boolean function f(x1, x2, . . . , xn) as a rooted, directed
acyclic graph (DAG). The DAG has two terminal nodes, which are labeled 0 and 1, and
have no outgoing edges. Each remaining non-terminal node is associated with a label ∈
{x1, x2, . . ., xn}, and has two outgoing edges labeled 0 and 1. An OBDD is ordered in
the sense that node labels are associated with a total order <. Node labels along all paths
in the OBDD from the root to the terminal nodes follow this total order.1 To evaluate
the Boolean formula denoted by an OBDD, it suffices to traverse appropriately labeled
edges from the root to the terminal nodes of the DAG. Figure 1(b) depicts an example
of an OBDD for the Boolean formula f(x, i, y) shown in Figure 1(a) with the variable
ordering x < i < y.

OBDDs allow Boolean functions to be manipulated efficiently. With OBDDs, check-
ing the satisfiability (or unsatisfiability) of a Boolean formula is a constant time oper-
ation, because it suffices to check whether the terminal node labeled 1 (respectively,
0) is present in the OBDD. The APPLY and RESTRICT operations [11], described be-
low, allow OBDDs to be combined and modified with a number of Boolean operators.
These two operations are implemented as a series of graph transformations and reduc-
tions to the input OBDDs, and have efficient implementations (their time complexity is
polynomial in the size of the input OBDDs).

APPLY allows binary Boolean operators, such as ∧ and ∨, to be applied to a pair of
OBDDs. The two input OBDDs, OBDD(f) and OBDD(g), must have the same variable
ordering. APPLY(OP, OBDD(f), OBDD(g)) computes OBDD(f OP g), which has the
same variable ordering as the input OBDDs. Figure 1(c) presents the OBDD obtained
by combining the OBDD in Figure 1(b) with OBDD(I(i)), where I is the identity func-
tion. The RESTRICT operation is unary, and produces as output an OBDD in which
the values of some of the variables of the input OBDD have been fixed to a certain
value. That is, RESTRICT(OBDD(f), x ← k) = OBDD(f |(x←k)), where f |(x←k) de-
notes that x is assigned the value k in f . In this case, the output OBDD does not have

1 DAGs denoting OBDDs satisfy additional properties, as described in Bryant’s article. How-
ever, they are not directly relevant for this discussion, and we elide them for brevity.

62 L. Yang et al.

any nodes with the label x. Figure 1(d) shows the OBDD obtained as the output of
RESTRICT(OBDD(f), i←1), where OBDD(f) is the OBDD of Figure 1(b).

APPLY and RESTRICT can be used to implement existential quantification, which is
used in a key way in the operation of NFA-OBDDs, as described in Section 3. In partic-
ular, ∃xi.f(x1, . . . , xn) = f(x1,. . . , xn)|(xi ← 0) ∨ f(x1,. . . , xn)|(xi ← 1). Therefore,
we have: OBDD(∃ xi.f(x1, . . . , xn)) = APPLY(∨, RESTRICT(OBDD(f), xi ← 1),
RESTRICT(OBDD(f), xi ← 0)). Note that OBDD(∃ xi.f(x1, . . . , xn)) will not have
a node labeled xi.

Representing Relations and Sets. OBDDs can be used to represent relations of
arbitrary arity. If R is an n-ary relation over the domain {0, 1}, then we define its
characteristic function fR as follows: fR(x1, . . . , xn) = 1 if and only if R(x1, . . . , xn).
For example, the characteristic function of the 3-ary relation R = {(1, 0, 1), (1, 1, 0)} is
fR(x1, x2, x3) = (x1 ∧ x̄2 ∧ x3) ∨ (x1 ∧ x2 ∧ x̄3). fR is a Boolean function and can
therefore be expressed using an OBDD.

An n-ary relation Q over an arbitrary domain D can be similarly expressed using
OBDDs by bit-blasting each of its elements. That is, if the domain D has m elements,
we map each of its elements uniquely to bit-strings containing �lg m� bits (call this
mapping φ). We then define a new relation R(φ(x1), . . . , φ(xn)) = Q(x1, . . . , xn). R
is a n × �lg m�-ary relation over {0, 1}, and can be converted into an OBDD using its
characteristic function.

A set of elements over an arbitrary domain D can also be expressed as an OBDD
because sets are unary relations, i.e., if S is a set of elements over a domain D, then
we can define a relation RS such that RS(s) = 1 if and only if s ∈ S. Operations
on sets can then be expressed as Boolean operations and performed on the OBDDs
representing these sets. For example, S ⊆ T can be implemented as OBDD(S) −→
OBDD(T) (logical implication), while ISEMPTY(S ∩ T) is equivalent to checking
whether OBDD(S) ∧ OBDD(T) is satisfiable. The conversion of relations and sets
into OBDDs is used in a key way in the construction and operation of NFA-OBDDs,
which we describe next.

3 Representing and Operating NFAs

We represent an NFA using a 5-tuple: (Q, Σ, Δ, q0, Fin), where Q is a finite set of
states, Σ is a finite set of input symbols (the alphabet), Δ: Q × (Σ ∪ {ε}) → 2Q is a
transition function, q0 ∈ Q is a start state, and Fin ⊆ Q is a set of accepting (or final)
states. The transition function Δ(s, i) = T describes the set of all states t ∈ T such
that there is a transition labeled i from s to t. Note that Δ can also be expressed as a
relation δ: Q×Σ ×Q, so that (s, i, t) ∈ δ for all t ∈ T such that Δ(s, i) = T . We will
henceforth use δ to denote the set of transitions in the NFA.

An NFA may have multiple outgoing transitions with the same input symbol from
each state. Hence, it maintains a frontier F of states that it can currently be in. The
frontier is initially the singleton set {q0} but may include any subset of Q during the
operation of the NFA. For each symbol in the input string, the NFA must process all of
the states in F and find a new set of states by applying the transition relation.

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 63

While non-determinism leads to frontiers of size O(|Q|) in NFAs, it also makes
them space-efficient in two ways. First, NFAs for certain regular expressions are expo-
nentially smaller than the corresponding DFAs, e.g., an NFA for (0|1)∗1(0|1)n has
O(n) states, while the corresponding DFA has O(2n) states [6]. Second, and perhaps
more significant from the perspective of NIDS, NFAs can be combined space-efficiently
while DFAs cannot. To combine a pair of NFAs, NFA1 and NFA2, it suffices to create a
new state qnew , add ε transitions from qnew to the start states of NFA1 and NFA2, and
designate qnew to be the start state of the combined NFA. This leads to an NFA with
O(|Q1|+ |Q2|) states. In contrast, combining two DFAs, DFA1 and DFA2, results in a
multiplicative increase in the number of states because the combined DFA must have a
state corresponding to s× t for each pair of states s and t in DFA1 and DFA2, respec-
tively. The number of states in the DFA can possibly be reduced using minimization, but
this does not always help. For example, the DFAs for the regular expressions ab∗cd∗

and ef∗gh∗ have 5 states and 6 transitions each, and the combined DFA (minimized)
has 16 states and 22 transitions.

NFA Operation using Boolean Functions. We now describe how the process
of applying an NFA’s transition relation to a frontier of states can be expressed as a
sequence of Boolean function manipulations. NFA-OBDDs implement Boolean func-
tions and operations on them using BDDs. For the discussion below and in the rest of
this paper, we assume NFAs in which ε transitions have been eliminated (using standard
techniques [6]). This is mainly for ease of exposition; NFAs with ε transitions can also
be expressed using NFA-OBDDs. Note that ε elimination may increase the total number
of transitions in the NFA, but does not increase the number of states.

Fig. 2. NFA for (0|1)∗1

We now define four Boolean functions for an
NFA (Q, Σ, δ, q0, Fin). These functions use three
vectors of Boolean variables: x, y, and i. The vec-
tors x and y are used to denote states in Q, and
therefore contain �lg |Q|� variables each. The vec-
tor i denotes symbols in Σ, and contains �lg |Σ|�
variables. As an example, for the NFA in Figure 2,
these vectors contain one Boolean variable each;
we denote them as x, y, and i.

• T (x, i, y) denotes the NFA’s transition relation δ. Recall that δ is a set of triples
(s, i, t), such that there is a transition labeled i from state s to state t. It can there-
fore be represented as a Boolean function as described in Section 2. For example,
consider the NFA in Figure 2. Using 0 to denote state A and 1 to denote state B,
T (x, i, y) is the function shown in shown in Figure 1(a).

• Iσ(i) is defined for each σ ∈ Σ, and denotes a Boolean representation of that sym-
bol. For the NFA in Figure 2, I0(i) = ī (i.e., i = 0) and I1(i) = i.

• F (x) denotes the current set of frontier states of the NFA. It is thus a Boolean repre-
sentation of the set F at any instant during the operation of the NFA. For the example
in Figure 2, if F = {A}, F (x) = x̄, while if F = {A, B}, then F (x) = x ∨ x̄.

• A(x) is a Boolean representation of Fin, and denotes the accepting states. In Figure 2,
A(x) = x.

64 L. Yang et al.

Note that T (x, i, y), Iσ(i) and A(x) can be computed automatically from any rep-
resentation of NFAs. The initial frontier F = {q0} can also be represented as a Boolean
formula. Suppose that the frontier at some instant during the operation of the NFA is
F (x), and that the next symbol in the input is σ. The following Boolean formula, G(y),
symbolically denotes the new frontier of states in the NFA after σ has been processed.

G(y) = ∃ x.∃ i.[T (x, i, y) ∧ Iσ(i) ∧ F(x)]

To see why G(y) is the new frontier, consider the truth table of the Boolean function
T (x, i, y). By construction, this function evaluates to 1 only for those values of x, i,
and y for which (x, i, y) is a transition in the automaton. Similarly, the function F (x)
evaluates to 1 only for the values of x that denote states in the current frontier of the
NFA. Thus, the conjunction of T (x, i, y) with F (x) and Iσ(i) only “selects” those
rows in the truth table of T (x, i, y) that correspond to the outgoing transitions from
states in the frontier labeled with the symbol σ. However, the resulting conjunction is a
Boolean formula in x, i and y. To find the new frontier of states, we are only interested
in the values of y (i.e., the target states of the transitions) for which the conjunction has
a satisfying assignment. We achieve this by existentially quantifying x and i to obtain
G(y). To express the new frontier in terms of the Boolean variables in x, we rename the
variables in y with the corresponding ones in x.

We illustrate this idea using the example in Figure 2. Suppose that the current frontier
of the NFA is F = {A, B}, and that the next input symbol is a 0, which causes the new
frontier to become {A}. In this case, T (x, i, y) is the function shown in Figure 1(a),I0(i)
= ī and F (x) = x ∨ x̄. We have T (x, i, y) ∧ I0(i) ∧ F(x) = (x ∧ ī ∧ ȳ). Existentially
quantifying x and i from the result of this conjunction, we get G(y) = ȳ. Renaming the
variable y to x, we get F (x) = x̄, which is a Boolean formula that denotes {A}, the
new frontier.

To determine whether the NFA accepts an input string, it suffices to check that
F ∩ Fin = ∅. Using the Boolean notation, this translates to check whether F (x)
∧ A(x) has a satisfying assignment. In the example above with F = {A}, F (x) = x̄
and A(x) = x, so the NFA is not in an accepting configuration. Recall that checking
satisfiability of a Boolean function is an O(1) operation if the function is represented
as an OBDD.

NFA-OBDDs. The main idea behind NFA-OBDDs is to represent and manipulate the
Boolean functions discussed above using OBDDs. Formally, an NFA-OBDD for an
NFA (Q, Σ, δ, q0, Fin) is a 7-tuple (x, i, y, OBDD(T), {OBDD(Iσ | ∀σ ∈ Σ)},
OBDD(Fq0), OBDD(A)), where x, i, y are vectors of Boolean variables, and T , Iσ ,
and A are the Boolean formulae discussed earlier. Fq0 denotes the Boolean function
that denotes the frontier {q0}. For each input symbol σ, the NFA-OBDD obtains a new
frontier as discussed earlier. The main difference is that the Boolean operations are
performed as operations on OBDDs.

The use of OBDDs allows NFA-OBDDs to be more time-efficient than NFAs. In
an NFA, the transition table must be consulted for each state in the frontier, leading to
O(|δ| × |F |) operations per input symbol. In contrast, the complexity of OBDD op-
erations to obtain a new frontier is O(SIZEOF(OBDD(T)) × SIZEOF(OBDD(F))).
Because OBDDs are a compact representation of the frontier F and the transition

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 65

relation δ, NFA-OBDDs are more time-efficient than NFAs. The improved performance
of NFA-OBDDs is particularly pronounced when the transition table of the NFA is
sparse or the NFA has large frontiers. This is because OBDDs can effectively remove
redundancy in the representions of δ and F .

NFA-OBDDs retain the space-efficiency of NFAs because NFA-OBDDs can be com-
bined using the same algorithms that are used to combine NFAs. Although the use of
OBDDs may lead NFA-OBDDs to consume more memory than NFAs, our experiments
show that the increase is marginal. In particular, the cost is dominated by OBDD(T),
which has a total of 2 × �lg |Q|� + �lg |Σ|� Boolean variables. Even in the worst case,
this OBDD consumes only O(|Q|2×|Σ|) space, which is comparable to the worst-case
memory consumption of the transition table of a traditional NFA. However, in practice,
the memory consumption of NFA-OBDDs is much smaller than this asymptotic limit.

4 Implementation and Evaluation

We evaluated the feasibility of our approach using a software-based implementation
of NFA-OBDDs. As depicted in Figure 3, the implementation consists of two offline
components and an online component.

The offline components are executed once for each set of regular expressions, and
consist of re2nfa and nfa2obdd. The re2nfa component accepts a set of regular expres-
sions as input, and produces an ε-free NFA as output. To do so, it first constructs NFAs
for each of the regular expressions using Thompson’s construction [13,6], combines
these NFAs into a single NFA, and eliminates ε transitions. The nfa2obdd component
analyzes this NFA to determine the number of Boolean variables needed (i.e., the sizes
of the x, i and y vectors), and constructs OBDD(T), OBDD(A), OBDD(Iσ) for each
σ ∈ Σ, and OBDD(Fq0).

It is well-known that the size of an OBDD for a Boolean formula is sensitive to the
total order imposed on its variables. For the NFA-OBDDs used in our experiments, we
empirically determined that an ordering of variables of the form i < x < y yields the
best performance for NFA-OBDDs. For example, we found that an implementation of
NFA-OBDDs that uses the variable ordering x < i < y operates more than an order of
magnitude slower than one that uses the ordering i < x < y; we therefore used the latter
ordering in our implementation. Within each vector, nfa2obdd uses a simple sorting
scheme to order variables. Although it is NP-hard to choose a total order that yields the
most compact OBDD for a Boolean function [11], future work could develop heuristics
that leverage the structure of the input regular expressions to determine orderings that
yield high-performance NFA-OBDDs.

The online component, exec nfaobdd, begins execution by reading these OBDDs
into memory and processes a stream of network packets. It matches the payloads of
these network packets against the regular expressions using the NFA-OBDD. To manip-
ulate OBDDs and produce a new frontier for each input symbol processed, this compo-
nent interfaces with Cudd, a popular C++-based OBDD library [14]. It checks whether
each frontier F produced during the operation of the NFA-OBDD contains an accept-
ing state. If so, it emits a warning with the offset of the character in the input stream
that triggered a match, as well as the regular expression(s) that matched the input. Note

66 L. Yang et al.

Fig. 3. Components of our software-based implementation of NFA-OBDDs

that in a NIDS setting, it is important to check whether the frontier F obtained after
processing each input symbol contains an accepting state. This is because any byte in
the network input may cause a transition in the NFA that triggers a match with a regular
expression. We call this the streaming model because the NFA continuously processes
input symbols from a network stream.

Data Sets. We evaluated our implementation of NFA-OBDDs with three sets of regu-
lar expressions [15]. The first set was obtained from the authors of the XFA paper [8],
and contains 1503 regular expressions that were synthesized from the March 2007 snap-
shot of the Snort HTTP signature set. The second and third sets, numbering 2612 and 98
regular expressions, were obtained from the October 2009 snapshot of the Snort HTTP
and FTP signature sets, respectively. About 50% of these regular expressions were taken
from the uricontent fields of the signatures, while the rest were extracted from the
pcre fields. Although extracting just pcre fields from individual Snort rules only cap-
tures a portion of the corresponding signatures, it suffices for our experiments, because
our primary goal is to evaluate the performance of NFA-OBDDs against other regular-
expression based techniques. All three sets of regular expressions include client-side
and server-side signatures. For all sets, we excluded Snort signatures that contained
non-regular constructs, such as back-references and subroutines (which are allowed by
PCRE [16]), because these constructs cannot be implemented in NFA-based models. In
all, we excluded 1837 HTTP and 41 FTP signatures due to non-regular constructs.

To evaluate the performance of HTTP signatures, we fed traces of live HTTP traffic
obtained from our department’s network to exec nfaobdd. We collected this traffic
over a one week period in August 2009. This traffic was collected using tcpdump, and
includes whole packets of port 80 traffic from our departmental Web server and our
lab’s machines.

The traffic observed during this period consisted largely of Web traffic typically ob-
served at an academic department’s main Web server; most of the traffic was to view
and query Web pages hosted by the department. Overall, we observed connections from
18,618 distinct source IP addresses during this period, with 653,670 GET, 137,737
POST, 3,504 HEAD, and 1,576 PUT commands. This traffic triggered 1,816,410 and
17,107,588 matches in the HTTP/1503 and HTTP/2612 signature sets, corresponding
to 47 and 120 distinct signatures, respectively.2 The payloads in these packets ranged

2 These numbers are not indicative of the number of alerts produced by Snort because our signa-
ture sets only contain patterns from the pcre and uricontent fields of the Snort rules. The
large number of matches is because signatures contained patterns common in HTTP packets.

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 67

in size from 1 byte to 1460 bytes, with an average of 126 bytes (standard deviation of
271). However, we partitioned this traffic into 33 traces of various sizes, containing be-
tween 5.1MB–1.24GB worth of data. We did so because the the NFA and PCRE-based
implementations discussed in this section were too slow to process the weeklong traffic
trace. The size distribution of these traces was as follows: 21 traces of 5.1-7.2MB, 9
traces of 10.3-20.1MB, and one trace each of 227.2MB, 575.8MB, and 1.24GB.

We evaluated the FTP signatures using two traces of live FTP traffic (from the com-
mand channel), obtained over a two week period in March 2010 from our department’s
FTP server; these FTP traces contained 19.4MB and 24.7MB worth of data. The traffic
consisted of FTP requests to fetch and update technical reports hosted by our depart-
ment. We observed traffic from 528 distinct source IP addresses during this period.
Statistics on various FTP commands observed during this period appear in the table
below (commands that were not observed are not reported). This traffic triggered 9,656
and 15,976 matches in the FTP/98 signature set, corresponding to matches on 6 and
5 distinct signatures, respectively. The payload sizes of packets ranged from 2 to 402
bytes with an average of 40 bytes (standard deviation of 44).

Command CWD LIST MDTM MKD PASS PORT PWD QUIT RETR SIZE STOR TYPE USER
Number 62,561 3,098 613 89 14,701 232 453 12,244 7,676 1,110 1,401 12,201 14,834

We also used synthetic traces during our experiments, but do not report these results
in the paper because they are substantially similar to those obtained using real traffic.
Because our primary goal is to study the performance of NFA-OBDDs, we assume
that the network traces have been processed using standard NIDS operations, such as
defragmentation and normalization. We fed these traces, which were in tcpdump format,
to exec nfaobdd.

Experimental Setup. All our experiments were performed on a Intel Core2 Duo
E7500 Linux-2.6.27 machine, running at 2.93GHz with 2GB of memory (however, our
programs are single-threaded, and only used one of the available cores). We used the
Linux /proc file system to measure the memory consumption of nfa2obdd and the
Cudd ReadMemoryInUse utility to obtain the memory consumption of exec nfaobdd.
We instrumented both these programs to report their execution time using processor per-
formance counters. We report the performance of exec nfaobdd as the number of CPU
cycles to process each byte of network traffic (cycles/byte), i.e., fewer processing cy-
cles/byte imply greater time-efficiency. All our implementations were in C++; we used
the GNU g++ compiler suite (v4.3.2) with the O6 optimization level to produce the
executables used for experimentation.

Our experiments show that NFA-OBDDs: (1) outperform traditional NFAs by up
to three orders of magnitude while retaining their space-efficiency; (2) outperform or
are competitive in performance with the PCRE package, a popular library for regular
expression matching; (3) are competitive in performance with variants of DFAs while
being drastically less memory-intensive.

Constructing NFA-OBDDs. We used nfa2obdd to construct NFA-OBDDs from ε-
free NFAs of the regular expression sets. Figure 4 presents statistics on the sizes of the
input NFAs, the size of the largest of the four OBDDs in the NFA-OBDD (OBDD(T)),

68 L. Yang et al.

Size of the input NFA |OBDD(T)| Construction
Signature Set #Reg. Exps. #States #Transitions #Nodes Time/Memory

HTTP (March 2007) 1503 159,734 3,986,769 659,981 305sec/176MB
HTTP (October 2009) 2612 239,890 5,833,911 989,236 453sec/176MB
FTP (October 2009) 98 26,536 5,927,465 69,619 246sec/134MB

Fig. 4. NFA-OBDD construction results

and the time taken and memory consumed by nfa2obdd. For the NFA-OBDDs cor-
responding to the HTTP signature sets, the vectors x and y had 18 Boolean variables
each, while the vector i had 8 Boolean variables to denote the 256 possible ASCII char-
acters. For the NFA-OBDD corresponding to the FTP signature set, the vectors x and
y had 15 Boolean variables each. We also tried to determinize these NFAs to produce
DFAs, but the determinizer ran out of memory in all three cases.

Performance of NFA-OBDDs. Figure 5 depicts the performance of NFA-OBDDs.
Figures 5(a) and 5(b) show the performance for each of the 33 HTTP traces, while
Figure 5(c) shows the performance for both FTP traces. Figure 5(d) also presents the
raw throughput and memory consumption of NFA-OBDDs observed for each signa-
ture set. The throughput and memory consumption of NFA-OBDDs varies across dif-
ferent traces for each signature set; this variance can be attributed to the size and
shapes of OBDD(F) (the OBDD of the NFA’s frontier) observed during execution.
We also observed that larger traces are processed more efficiently on average than
smaller traces. For example, in Figure 5(a), the 1.24GB trace was processed at 7,935
cycles/byte, whereas a 20MB trace was processed at 19,289 cycles/byte. We hypothe-
size that the improved throughput observed for larger traces is because of cache effects.
As exec nfaobdd executes, it is likely that NFA-OBDDs that are frequently observed
will be cached, therefore producing improved throughput for larger traces.

Comparison with NFAs. We compared the performance of NFA-OBDDs with an
implementation of NFAs that uses Thompson’s algorithm. This algorithm maintains a
frontier F , and operates as follows: for each state s in the frontier F , fetch the set of
targets Ts of the transitions labeled σ and compute the new frontier F ′=

⋃
s ∈ F Ts.

Our implementation of NFAs makes heavy use of the C++ standard template library.
It stores the transition table as an array of |Q| multimaps. The entry for state s denotes
the set of outgoing transitions from s, where each transition is of the form (σ, t). There
may be multiple entries with the same input symbol σ in each multimap, corresponding
to all the states reachable from s via transitions labeled σ. The performance and memory
consumption of our NFA implementation was relatively stable across the traces used for
each signature set. Figure 5 therefore reports only the averages across these traces.

As Figure 5 shows, NFA-OBDDs outperform NFAs for all three sets of signatures
by approximately three orders of magnitude for the HTTP signatures, and two orders
of magnitude for the FTP signatures. In Figure 5(a), for example, NFA-OBDDs are
between 570×–1645× faster than NFAs, while consuming approximately the same
amount of memory. The difference in the performance gap between NFA-OBDDs and
NFAs for the HTTP and FTP signatures can be attributed to the number and structure
of these signatures. As discussed in Section 3, the benefits of NFA-OBDDs are more

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 69

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

50

100

150

200

250

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

NFA
NFA−BDD
MDFA
PCRE

10
4

10
5

10
6

10
7

10
8

0

100

200

300

400

500

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

NFA
NFA−BDD
MDFA−2604−sigs
PCRE

(a) HTTP/1503 regular expressions (b) HTTP/2612 regular expressions

10
3

10
4

10
5

0

20

40

60

80

100

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

NFA
NFA−BDD
MDFA−95−sigs
PCRE

Sig. Set Processing time Memory

NFA-OBDDs

HTTP/1503 7,935–22,895 cycles/byte 39–59MB
HTTP/2612 22,968–51,215 cycles/byte 54–61MB

FTP/98 5,095 cycles/byte 8MB
NFAs

HTTP/1503 1.3× 107 cycles/byte 53MB
HTTP/2612 2.1× 107 cycles/byte 73MB

FTP/98 5.6× 105 cycles/byte 29MB
PCRE

HTTP/1503 2.1–6.2× 105 cycles/byte 3.6MB
HTTP/2612 1.3–2.8× 107 cycles/byte 3.9MB

FTP/98 2,210–6,185 cycles/byte 5.9–6.2MB
MDFA (partial signature sets in Figure 5(b) and (c))

HTTP/1503 1,000–15,951 cycles/byte 71–232MB
HTTP/2604 15,891–49,296 cycles/byte 335–426MB

FTP/95 1,160–1,386 cycles/byte 54–82MB

(c) FTP/98 regular expressions (d) Raw performance numbers

Fig. 5. Comparing memory versus processing time of (1) NFA-OBDDs, (2) traditional NFAs,
(3) the PCRE package, and (4) different MDFAs for the Snort HTTP and FTP signature sets.
The x-axis is in log-scale. Note that Figure 5(b) and Figure 5(c) only report the performance of
MDFAs with 2604 and 95 regular expressions, respectively.

pronounced if larger frontiers are to be processed. Since there are a larger number of
HTTP signatures, the frontier for the corresponding NFAs are larger. As a result, NFA-
OBDDs are much faster than the corresponding NFAs for HTTP signatures than for
FTP signatures. Nevertheless, these results clearly demonstrate that OBDDs can im-
prove the time-efficiency of NFAs without compromising their space-efficiency.

Comparison with the PCRE package. We compared the performance of NFA-
OBDDs with the PCRE package used by a number of tools, including Snort and Perl.
The PCRE package represents regular expressions using a tree structure, and matches
input strings against this structure using a backtracking algorithm. For a given input
string, this algorithm iteratively explores paths in the tree until it finds an accepting
state. If it fails to find an accepting state in one path, it backtracks and tries another path
until all paths have been exhausted.

Figure 5 reports three numbers for the performance of the PCRE package, corre-
sponding to different values of configuration parameters of the package. In both

70 L. Yang et al.

Figure 5(a) and (b), NFA-OBDDs outperform the PCRE package. The throughput of
NFA-OBDDs is about an order of magnitude (9×–26×) better than the fastest config-
uration of the PCRE package for the set HTTP/1503. The difference in performance
is more pronounced for the set HTTP/2612, where NFA-OBDDs outperform the most
time-efficient PCRE configuration by 248×–554×. The poorer throughput of the PCRE
package for the second set of signatures is likely because the backtracking algorithm
that it employs degrades in performance as the number of paths to be explored in the
NFA increases. However, in both cases, the PCRE package is more space-efficient than
NFA-OBDDs, and consumes between 3.7MB–4MB memory.

For the FTP signatures (Figure 5(c)), NFA-OBDDs are about 2× slower than the
fastest PCRE configuration. However, unlike NFA-OBDDs which report all substrings
of an input packet that match signatures, this PCRE configuration only reports the first
matching substring. The performance of the PCRE configurations that report all match-
ing substrings is comparable to that of NFA-OBDDs.

Note that in all cases, the PCRE package outperforms our NFA implementation,
which use Thompson’s algorithm [13] to parse input strings. Despite this gap in perfor-
mance, Cox [17] shows that Thompson’s algorithm performs more consistently than the
backtracking approach employed by PCRE. For example, the backtracking approach is
vulnerable to algorithmic complexity attacks, where a maliciously-crafted input can
trigger the worst-case performance of the algorithm [18].

Comparison with DFA variants. We compared the performance of NFA-OBDDs
with a variant of DFAs, called multiple DFAs (MDFAs), produced by set-splitting [4].3

An MDFA is a collection of DFAs representing a set of regular expressions. Each DFA
represents a disjoint subset of the regular expressions. To match an input string against
an MDFA, each constituent DFA is simulated against the input string to determine
whether there is a match. MDFAs are more compact than DFAs because they result
in a less than multiplicative increase in the number of states. However, MDFAs are also
slower than DFAs because all the constituent DFAs must be matched against the input
string. An MDFA that has a larger number of constituent DFAs will be more compact,
but will also have lower time-efficiency than an MDFA with fewer DFAs.

Using Yu et al.’s algorithms [4], we produced several MDFAs by combining the
Snort signatures in several ways, each with different space/time utilization. Each point
in Figure 5 denotes the performance of one MDFA (again, averaged over all the input
traces), which in turn consists of a collection of combined DFAs as described above.

Producing MDFAs for the HTTP/2612 and FTP/98 signature sets was more challeng-
ing, primarily because these sets contained several structurally-complex regular expres-
sions that were difficult to determinize efficiently. For example, they contained several
signatures with large counters (i.e., sequences of repeating patterns) often used in com-
bination with the alternation (i.e., re1|re2) operator. Our determinizer frequently ran
out of memory when attempting to construct MDFAs for such regular expressions. As
an example, consider the following regular expression in HTTP/2612:
/.*\x2FCSuserCGI\x2Eexe\x3FLogout\x2B[ˆ\s]{96}/i

3 We were unable to compare the performance of NFA-OBDDs against DFAs because DFA con-
struction ran out of memory. However, prior work [3] estimates that DFAs may offer through-
puts of about 50 cycles/byte.

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 71

Our determinizer consumed 1.6GB of memory for this regular expression alone, before
aborting. Producing a DFA for such regular expressions may require more sophisticated
techniques, such as on-the-fly determinization [19] that are not currently implemented
in our prototype. We therefore decided to exclude problematic regular expressions, and
constructed MDFAs with the remaining ones (2604 for HTTP/2612 and 95 for FTP/98).
Note that the MDFAs for these smaller sets of regular expressions may be more time-
efficient and much more space-efficient than corresponding MDFAs for the entire set of
regular expressions.

Figure 5 shows that in many cases NFA-OBDDs can provide throughputs compa-
rable to those offered by MDFAs while utilizing much less memory. For example, the
fastest MDFA in Figure 5(b) (constructed for a subset of 2604 signatures) offered about
50% more throughput than NFA-OBDDs, but consumed 7×more memory. The remain-
ing MDFAs for this signature set had throughputs comparable to those of NFA-OBDDs,
but consumed 270MB more memory than NFA-OBDDs. The performance gap between
NFA-OBDDs and MDFAs was largest for FTP signature set, where the MDFAs (for a
subset of 95 signatures) were about 4× faster than the NFA-OBDD; however, the MD-
FAs consumed 46MB-74MB more memory.

These results are significant for two reasons. First, conventional wisdom has long
held that traditional NFAs operate much slower than their deterministic counterparts.
This is supported by our experiments, which show that the time-efficiency of NFAs is
three to four orders of magnitude slower than that of MDFAs. However, our results show
that OBDDs can drastically improve the performance of NFAs and even make them
competitive with MDFAs, which are a determinstic variant of finite automata. We believe
that further enhancements to improve the time-efficiency of NFA-OBDDs can make
them operate even faster than MDFAs (e.g., by relaxing the OBDD data structure, and
thereby eliminating several graph operations in the APPLY and RESTRICT operations).

Second, processing the set of regular expressions to produce compact yet performant
MDFAs is a non-trivial exercise, often requiring time-consuming partitioning heuristics
to be applied [4]. Some of the partitioning heuristics described by Yu et al. also require
modifications to the set of regular expressions, thereby changing their semantics. Our
own experience constructing MDFAs for HTTP/2612 and FTP/98 shows that this pro-
cess is often challenging, especially if the regular expressions contain complex structural
patterns. In contrast, NFA-OBDDs can be constructed automatically in a straightforward
manner from regular expressions, including those with counters and other complex struc-
tural patterns, yet are competitive in performance and more compact than MDFAs.

Finally, we also attempted to compare the performance of NFA-OBDDs with a vari-
ant of DFAs, called hybrid finite automata (HFA) [20]. HFAs are constructed by inter-
rupting the determinization algorithm when it encounters structurally-complex patterns
(e.g., large counters and .* patterns) that are known to cause memory blowups when
determinized. We used Becchi and Crowley’s implementation [20] in our experiments,
but found that it ran out of memory when trying to construct HFAs from our signature
sets. For example, the HFA construction process exhausted the available memory on
our machine after processing just 106 regular expressions in the HTTP/1503 set.

Deconstructing NFA-OBDD Performance. We further analyzed the performance
of NFA-OBDDs to understand the time consumption of each OBDD operation. The

72 L. Yang et al.

Operation Fraction
ANDABSTRACT 50%

AND 39%
MAP 4%

Acceptance check 7%

Fig. 6. Fraction of time spent performing
OBDD operations Fig. 7. 2-stride NFA for Figure 2

results reported in this section are based upon the first set of 1503 signatures; the results
with the other signature sets were similar.

Figure 6 shows the fraction of time that exec nfaobdd spends performing various
OBDD operations as it processes a single input symbol. As discussed earlier,
exec nfaobdd uses the Cudd package to manipulate OBDDs. Although Cudd imple-
ments the OBDD operations described in Section 2, it also implements composite op-
erations that combine multiple Boolean operations; the composite operations are often
more efficient than performing the individual operations separately. ANDABSTRACT is
one such operation, which allows two OBDDs to be combined using an AND operation
followed by an existential quantification. ANDABSTRACT takes a list of Boolean vari-
ables to be quantified, and performs the OBDD transformations needed to eliminate all
these variables. The MAP operation allows variables in an OBDD to be renamed, e.g., it
can be used to rename the y variables in G(y) to x variables instead.

We implemented the Boolean operations required to obtain a new frontier (described
in Section 3) using one set of AND, ANDABSTRACT and MAP operations. Each AND-
ABSTRACT step existentially quantifies 26 Boolean variables (the x and i variables).
To check whether a frontier should be accepted, we used another AND operation to
combine OBDD(F) and OBDD(A); the cost of an acceptance check appears in the last
row of Figure 6.

Figure 6 shows that the cost of processing an input symbol is dominated by the cost
of the ANDABSTRACT and AND operations to compute a new frontier. This is because
the sizes of the OBDDs to be combined for frontier computation are bigger than the OB-
DDs that must be combined to check acceptance. Moreover, computing new frontiers
involves several applications of APPLY and RESTRICT, as opposed to an acceptance
check, which requires only one APPLY, thereby causing frontier computation to domi-
nate the cost of processing an input symbol.

These results suggest that an OBDD implementation that optimizes the ANDAB-
STRACT and AND operations (or a relaxed variant of OBDDs that allows more efficient
ANDABSTRACT and AND) can further improve the performance of NFA-OBDDs.

5 Matching Multiple Input Symbols

The preceding sections assumed that only one input alphabet is processed in each
step. However, there is growing interest to develop techniques for multi-byte matching,
i.e., matching multiple input symbols in one step. Prior work has shown that multi-byte
matching can improve the throughput of NFAs [21,22]. We present one such technique,

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 73

k-stride NFAs [21], and show that OBDDs can further improve the performance of k-
stride NFAs.

A k-stride NFA matches k symbols of the input in a single step. Given a traditional
(i.e., 1-stride) ε-free NFA (Q, Σ, δ, q0, F), a k-stride NFA is a 5-tuple (Q, Σk, Γ ,
q0, F), whose input symbols are k-grams, i.e., elements of Σk. The set of states and
accepting states of the k-stride NFA are the same as those for the 1-stride NFA. Intu-
itively, the transition relation Γ of the k-stride NFA is computed as a k-step closure
of δ, i.e., (s, σ1σ2 . . . σk , t) ∈ Γ if and only if the state t is reachable from state s in
the original NFA via transitions labeled σ1, σ2, . . ., σk. The algorithm to compute Γ
from δ must also consider cases where the length of the input string is not a multiple
of k. Intuitively, this is achieved by padding the input string with a new “do-not-care”
symbol, and introducing this symbol in the labels of selected transitions. We refer the
interested reader to prior work [21,22] for a detailed description of the construction.

Figure 7 presents an example of a 2-stride NFA corresponding to the NFA in Figure 2.
The do-not-care symbol is denoted by a “•”. Thus, for instance, an input string 101
would be padded with • to become 101•. The 2-stride NFA processes digrams in each
step. Thus, the first step would result in a transition from state A to itself A (because
of the transition labeled 10), followed by a transition from A to B when it reads the
second digram 1•, thereby accepting the input string.

A k-stride NFA (Q, Σk, Γ , q0, F) can readily be converted into a k-stride NFA-
OBDD using the same approach described in Section 3. The main difference is that the
input alphabet is Σk (plus “•”). Transition tables of k-stride NFAs encountered in prac-
tice are generally sparse. We therefore applied a well-known technique called alphabet
compression [21], which reduces the size of the input alphabet by combining symbols
in the input alphabet into equivalence classes. An alphabet-compressed NFA can also
be converted into an NFA-OBDD using the same techniques described in Section 3, and
operated in the same way.

Performance of k-stride NFA-OBDDs. To evaluate the performance of k-stride
NFAs and k-stride NFA-OBDDs, we used a toolchain similar to the one discussed in
Section 4, but additionally applied alphabet compression. Our implementation accepts
k as an input parameter. However, we have only conducted experiments for k = 2
because alphabet compression ran out of memory for larger values of k.

The setup that we used for the experiments reported below is identical to that de-
scribed in Section 4. However, we only used two sets of Snort signatures in our mea-
surements: (1) HTTP/1400: a subset of 1400 HTTP signatures from HTTP/1503 and
(2) FTP/95 a subset of 95 FTP signatures from FTP/98. This was because the 2-stride
NFA for a larger number of signatures ran out of memory during execution, thereby
precluding a head-to-head comparison between the performance of 2-stride NFAs and
NFA-OBDDs. We did not consider HTTP/2612 for the experiments reported in this
section, because alphabet compression ran out of memory on these signature sets.

Figure 8(a) presents the size of the 1-stride and 2-stride NFA-OBDDs, and the size
of the compressed alphabet. In each case, the alphabet compression algorithm took over
a day to complete, and consumed over 1GB of memory. Figure 8(b) and (c) compare
the performance of 1-stride NFAs and NFA-OBDDs with the performance of 2-stride

74 L. Yang et al.

Signature Set #States #Transitions (1-stride) #Transitions (2-stride) #Alpbahet Symbols

HTTP/1400 146,992 2,246,701 44,815,280 6,928
FTP/95 15,266 3,361,065 5,136,420 848

(a) 1-stride and 2-stride NFA-OBDD construction results.

10
3

10
4

10
5

10
6

10
7

10
8

0

200

400

600

800

1000

1200

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

1−stride−NFA
2−stride−NFA
1−stride−NFA−OBDD
2−stride−NFA−OBDD

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

400

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

1−stride−NFA
2−stride−NFA
1−stride−NFA−OBDD
2−stride−NFA−OBDD

(b) HTTP/1400 regular expressions. (c) FTP/95 regular expressions.

Fig. 8. Memory versus throughput for 1-stride NFAs, 1-stride NFA-OBDDs, 2-stride NFAs, and
2-stride NFA-OBDDs

NFAs and NFA-OBDDs. As in Section 4, for NFAs we only report the average perfor-
mance across all network traces because their performance was relatively stable across
all traces. We first note from Figure 8 that as expected, matching multiple bytes in the
input stream improved the performance of NFAs. However, this increase in throughput
comes at a drastic increase in the memory consumption of the 2-stride NFA.

In both the 1-stride and 2-stride NFAs, the use of OBDDs improved throughput—by
about three orders of magnitude for HTTP/1400 and about two orders of magnitude for
FTP/95. In both cases, the memory utilization of the 2-stride NFA-OBDD was smaller
than that of the 2-stride NFA by two orders of magnitude. This is because OBDDs
compactly encode the NFA’s transition relation. These results show that 2-stride NFA-
OBDDs are drastically more efficient in time and space than 2-stride NFAs. Further
investigation of the benefits of k-stride NFAs is a topic for future work.

6 Related Work

Early NIDS exclusively employed strings as attack signatures. String-based signatures
are space-efficient, because their size grows linearly with the number of signatures. They
are also time-efficient, and have O(1) matching algorithms (e.g., Aho-Corasick [23]).
They are ideally suited for wire-speed intrusion detection, and have been implemented
both in software and hardware [24,25,26,27,28,29]. However, prior work has shown that
string-based signatures can easily be evaded by malware using polymorphism, meta-
morphism and other mutations [30,31,32,33]. The research community has therefore
been investigating sophisticated signature schemes that require the full power of regu-
lar expressions. This in turn, has spurred both the research community to develop im-
proved algorithms for regular expression matching, as well as NIDS vendors, who are
increasingly beginning to deploy products that use regular expressions [34,35,36].

DFAs provide high-speed matching, but DFAs for large signature sets often consume
gigabytes of memory. Researchers have therefore investigated techniques to improve

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 75

the space-efficiency of DFAs. These include, for example, techniques to determinize
on-the-fly [19]; MDFAs, which combine signatures into multiple DFAs (as discussed
in Section 4) [4]; D2FAs [2], which reduce the memory footprint of DFAs via edge
compression; and XFAs [3,8], which extend DFAs with scratch memory to store auxil-
iary variables, such as bitmaps and counters, and associate transitions with instructions
to manipulate these variables. Some DFA variants (e.g., [2,3,21]) also admit efficient
hardware implementations.

These techniques use the time-efficiency of DFAs as a starting point, and seek to
reduce their memory footprint. In contrast, our work uses the space-efficiency of NFAs
as a starting point, and seeks to improve their time-efficiency. We believe that both ap-
proaches are orthogonal and may be synergistic. For example, it may be possible to use
OBDDs to also improve the time-efficiency of MDFAs.

Our approach also provides advantages over several prior DFA-based techniques.
First, it produces NFA-OBDDs from regular expressions in a fully automated way.
This is in contrast to XFAs [8], which required a manual step of annotating regular ex-
pressions. Second, our approach does not modify the semantics of regular expressions,
i.e., the NFA-OBDDs produced using the approach described in Section 3 accept the
same set of strings as the regular expressions that they were constructed from. MDFAs,
in contrast, employ heuristics that relax the semantics of regular expressions to improve
the space-efficiency of the resulting automata [4]. Last, because these techniques op-
erate with DFAs, they may sometimes encounter regular expressions that are hard to
determinize. For example, Smith et al. [8, Section 6.2] present a regular expression
from the Snort data set for which the XFA construction algorithm runs out of memory.
Our technique operates with NFAs and therefore does not encounter such cases.

Research on NFAs for intrusion detection has typically focused on exploiting paral-
lelism to improve performance [9,10,37,38]. NFA operation can be parallelized in many
ways. For example, a separate thread could be used to simulate each state in an NFA’s
frontier. Else, a set of regular expressions can be represented as a collection of NFAs,
which can then be operated in parallel. FPGAs have been used to exploit this parallelism
to yield high-performance NFA-based intrusion detection systems [9,10,37,38].

Although not explored in this paper, OBDDs can potentially improve NFA perfor-
mance in parallel execution environments as well. For example, consider a NIDS that
performs signature matching by operating a collection of NFAs in parallel. The perfor-
mance of this NIDS can potentially be improved by converting it to use a collection
of NFA-OBDDs instead; in this case, OBDDs improve the performance of each NFA,
thereby increasing the throughput of the NIDS as a whole. Finally, NFA-OBDDs may
also admit a hardware implementation. Prior work has developed techniques to imple-
ment OBDDs in CAMs [39] and FPGAs [40]. Such an implementation of NFA-OBDDs
can potentially be used to improve the performance of hardware-based NFAs as well.

7 Summary

Many recent algorithms for regular expression matching have focused on improving
the space-efficiency of DFAs. This paper sought to take an alternative viewpoint, and
aimed to improve the time-efficiency of NFAs. To that end, we developed NFA-OBDDs,

76 L. Yang et al.

a representation of regular expressions in which OBDDs are used to operate NFAs.
Our prototype software-based implementation with Snort signatures showed that NFA-
OBDDs can drastically outperform NFAs—by up to 1645× in the best case. We also
showed how OBDDs can enhance the performance of NFAs that match multiple input
symbols.

Acknowledgements. We thank Cristian Estan and Somesh Jha for useful discussions
in the early stages of this project. We also thank Michael Bailey for shepherding the
paper and the anonymous reviewers for their feedback on our work.

References

1. Becchi, M.: Data Structures, Algorithms and Architectures for Efficient Regular Expression
Evaluation. PhD thesis, Washington University in St. Louis (2009)

2. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to accelerate mul-
tiple regular expressions matching for deep packet inspection. In: ACM SIGCOMM Con-
ference, pp. 339–350. ACM, New York (2006)

3. Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the Big Bang: Fast and scalable deep packet
inspection with extended finite automata. In: SIGCOMM Conference, pp. 207–218. ACM,
New York (2008)

4. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-efficient regular
expression matching for deep packet inspection. In: ACM/IEEE Symp. on Arch. for Net-
working and Comm. Systems, pp. 93–102 (2006)

5. Roesch, M.: Snort - lightweight intrusion detection for networks. In: USENIX Conf. on
System Administration, USENIX, pp. 229–238 (1999)

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation, 3rd edn. Addison-Wesley, Reading (2007)

7. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression evaluation.
In: Intl. Conf. on Architectures for Networking and Communication Systems, pp. 145–154.
ACM, New York (2007)

8. Smith, R., Estan, C., Jha, S.: XFA: Faster signature matching with extended automata. In:
Symp. on Security and Privacy, pp. 187–201. IEEE Computer Society, Los Alamitos (2008)

9. Sidhu, R., Prasanna, V.: Fast regular expression matching using FPGAs. In: Symp. on Field-
Programmable Custom Computing Machines, pp. 227–238. IEEE Computer Society, Los
Alamitos (2001)

10. Clark, C.R., Schimmel, D.E.: Scalable pattern matching for high-speed networks. In: IEEE
Symp. on Field-Programmable Custom Computing Machines, pp. 249–257. IEEE Computer
Society, Los Alamitos (2004)

11. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers 35(8), 677–691 (1986)

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model check-
ing: 1020 states and beyond. In: Symp. on Logic in Computer Science, pp. 401–424. IEEE
Computer Society, Los Alamitos (1990)

13. Thompson, K.: Programming techniques: Regular expression search algorithm. ACM Com-
mun. 11(6), 419–422 (1968)

14. Somenzi, F.: CUDD: CU decision diagram package, release 2.4.2 Department of Electrical,
Computer, and Energy Engineering, University of Colorado at Boulder,
http://vlsi.colorado.edu/˜fabio/CUDD

http://vlsi.colorado.edu/~fabio/CUDD

Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams 77

15. Signatures referenced in Section 4 and Section 5,
http://www.cs.rutgers.edu/˜vinodg/papers/raid2010

16. PCRE: The Perl compatible regular expression library, http://www.pcre.org
17. Cox, R.: Regular expression matching can be simple and fast (but is slow in Java, Perl, PHP,

Python, Ruby, ...) (2007),
http://swtch.com/\simrsc/regexp/regexp1.html.

18. Smith, R., Estan, C., Jha, S.: Backtracking algorithmic complexity attacks against a NIDS.
In: Annual Computer Security Applications Conf., pp. 89–98. IEEE Computer Society, Los
Alamitos (2006)

19. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signatures with
context. In: Conf. on Computer and Comm. Security, pp. 262–271. ACM, New York (2003)

20. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet inspection. In:
Intl. Conf. on emerging Networking EXperiments and Technologies (2007)

21. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-throughput regular-
expression pattern matching. In: Intl. Symp. Computer Architecture, pp. 191–202. IEEE
Computer Society, Los Alamitos (2006)

22. Becchi, M., Crowley, P.: Efficient regular expression evaluation: Theory to practice. In: Intl.
Conf. on Architectures for Networking and Communication Systems, pp. 50–59. ACM, New
York (2008)

23. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. ACM
Comm. 18(6), 333–340 (1975)

24. Dharmapurikar, S., Lockwood, J.W.: Fast and scalable pattern matching for network intru-
sion detection systems. Jour. on Selected Areas in Comm. 24(10), 1781–1792 (2006)

25. Liu, R., Huang, N., Chen, C., Kao, C.: A fast string-matching algorithm for network
processor-based intrusion detection system. Trans. on Embedded Computing Sys. 3(3), 614–
633 (2004)

26. Sourdis, I., Pnevmatikatos, D.: Fast, large-scale string match for a 10Gbps FPGA-based
network intrusion detection system. In: Cheung, P., Constantinides, G., Sousa, J. (eds.) FPL
2003. LNCS, vol. 2778, pp. 880–889. Springer, Heidelberg (2003)

27. Tan, L., Sherwood, T.: A high throughput string matching architecture for intrusion detec-
tion and prevention. In: Intl. Symp. Computer Architecture, pp. 112–122. IEEE Computer
Society, Los Alamitos (2005)

28. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient string
matching algorithms for intrusion detection. In: IEEE INFOCOM 2004, pp. 333–340. IEEE
Computer Society, Los Alamitos (2004)

29. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.: Gnort: High
performance network intrusion detection using graphics processors. In: Lippmann, R., Kirda,
E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 116–134. Springer, Heidelberg
(2008)

30. Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: Evasion, traffic normal-
ization, and end-to-end protocol semantics. In: Usenix Security, p. 9. USENIX (2001)

31. Jordan, M.: Dealing with metamorphism. Virus Bulletin Weekly (2002)
32. Ptacek, T., Newsham, T.: Insertion, evasion and denial of service: Eluding network intrusion

detection, http://insecure.org/stf/secnet_ids/secnet_ids.html.
33. Shankar, U., Paxson, V.: Active mapping: Resisting NIDS evasion without altering traffic.

In: Symp. on Security and Privacy, pp. 44–61. IEEE Computer Society, Los Alamitos (2003)
34. TippingPoint, http://www.tippingpoint.com
35. LSI-Corporation: Tarari RegEx content processor, http://www.tarari.com
36. Cisco: IOS terminal services configuration guide, http://tinyurl.com/2eouvq

http://www.cs.rutgers.edu/~vinodg/papers/raid2010
http://www.pcre.org
http://swtch.com/$\sim $rsc/regexp/regexp1.html
http://insecure.org/stf/secnet_ids/secnet_ids.html
http://www.tippingpoint.com
http://www.tarari.com
http://tinyurl.com/2eouvq

78 L. Yang et al.

37. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intrusion detection with re-
configurable hardware. In: Annual Symp. on Field-Programmable Custom Computing Ma-
chines, pp. 111–120. IEEE Computer Society, Los Alamitos (2002)

38. Mitra, A., Najjar, W., Bhuyan, L.: Compiling PCRE to FPGA for accelerating Snort IDS.
In: Symp. on Arch. for Networking and Comm. Systems, pp. 127–136. ACM, New York
(2007)

39. Yusuf, S., Luk, W.: Bitwise optimized CAM for network intrusion detection systems. In:
Intl. Conf. on Field Prog. Logic and Applications, pp. 444–449. IEEE Press, Los Alamitos
(2005)

40. Sinnappan, R., Hazelhurst, S.: A reconfigurable approach to packet filtering. In: Brebner,
G., Woods, R. (eds.) FPL 2001. LNCS, vol. 2147, pp. 638–642. Springer, Heidelberg (2001)

GrAVity: A Massively Parallel Antivirus Engine

Giorgos Vasiliadis and Sotiris Ioannidis

Institute of Computer Science, Foundation for Research and Technology – Hellas,

N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

{gvasil,sotiris}@ics.forth.gr

Abstract. In the ongoing arms race against malware, antivirus soft-

ware is at the forefront, as one of the most important defense tools in

our arsenal. Antivirus software is flexible enough to be deployed from

regular users desktops, to corporate e-mail proxies and file servers. Un-

fortunately, the signatures necessary to detect incoming malware number

in the tens of thousands. To make matters worse, antivirus signatures are

a lot longer than signatures in network intrusion detection systems. This

leads to extremely high computation costs necessary to perform match-

ing of suspicious data against those signatures.

In this paper, we present GrAVity, a massively parallel antivirus en-

gine. Our engine utilized the compute power of modern graphics pro-

cessors, that contain hundreds of hardware microprocessors. We have

modified ClamAV, the most popular open source antivirus software, to

utilize our engine. Our prototype implementation has achieved end-to-

end throughput in the order of 20 Gbits/s, 100 times the performance

of the CPU-only ClamAV, while almost completely offloading the CPU,

leaving it free to complete other tasks. Our micro-benchmarks have mea-

sured our engine to be able to sustain throughput in the order of 40

Gbits/s. The results suggest that modern graphics cards can be used ef-

fectively to perform heavy-duty anti-malware operations at speeds that

cannot be matched by traditional CPU based techniques.

1 Introduction

The ever increasing amount of malicious software in todays connected world,
poses a tremendous challenge to network operators, IT administrators, as well as
ordinary home users. Antivirus software is one of the most widely used tools for
detecting and stopping malicious or unwanted software. For an effective defense,
one needs virus-scanning performed at central network traffic ingress points,
as well as at end-host computers. As such, anti-malware software applications
scan traffic at e-mail gateways and corporate gateway proxies, and also on edge
compute devices such as file servers, desktops and laptops. Unfortunately, the
constant increase in link speeds, storage capacity, number of end-devices and the
sheer number of malware, poses significant challenges to virus scanning applica-
tions, which end up requiring multi-gigabit scanning throughput.

Typically, a malware scanner spend the bulk of its time matching data streams
against a large set of known signatures, using a pattern matching algorithm.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 79–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

80 G. Vasiliadis and S. Ioannidis

Pattern matching algorithms analyze the data stream and compare it against
a database of signatures to detect known malware. The signature patterns can
be fairly complex, composed of different-size strings, wild-card characters, range
constraints, and sometimes recursive forms. Every year, as the amount of mal-
ware grows, the number of signatures is increasing proportional, exposing scaling
problems of anti-malware products.

To come up with the large signature sets, most approaches rely on the quickly,
fast and accurate filtering of the “no-match” cases, based on the fact that the
majority of network traffic and files is not supposed to contain viruses [9]. Other
approaches are based on specialized hardware, like FPGAs and ASICs, to achieve
high performance [15,14]. Such hardware solutions are very efficient and perform
quite well, however they are hard to program, complex to modify, and are usually
tied to a specific implementation.

In contrast, commodity graphics processing units (GPUs) have been proven
to be very efficient and highly effective at accelerating the pattern matching
operations of network intrusion detection systems (NIDS) [26,21,27]. Driven
by the ever-growing video game industry, modern GPUs have been constantly
evolving to ever more powerful and flexible stream processors, specialized for
computationally-intensive and highly parallel operations. The massive number
of transistors devoted to data processing, rather than data caching and flow con-
trol, can be exploited to perform computations that up till now were handled by
the CPU.

In this work, we explore how the highly parallel capabilities of commodity
graphics processing units can be utilized to improve the performance of mal-
ware scanning programs and how they can assist and offload the CPU whenever
possible.

From a high-level view, malware scanning is divided into two phases. First, all
files are scanned by the GPU, using a combined DFA state machine that contain
only a prefix from each signature. This results in identifying all potentially ma-
licious files, but a number of clean files as well. The GPU then outputs a set of
suspect matched files and the corresponding offsets in those files. In the second
phase, all those files are rescanned using a full pattern matching algorithm.

The contributions of our work are:

– We have designed, implemented and evaluated a pattern matching algorithm
on modern GPUs. Our implementation could be adapted to any other multi-
core system, as well.

– We integrated our GPU implementation into ClamAV [12], the most popu-
lar and widely used open-source virus scanning software, proving that our
solution can be used in the real-world.

– We developed and implemented a series of system level optimizations to
improve end-to-end performance of our system.

– We implemented, experimented and analyzed our GPU-assisted virus scan-
ning application with various configurations and we show that modern GPUs
can effectively be used, in coordination with the CPU, to drastically improve
the performance of anti-malware applications.

GrAVity: A Massively Parallel Antivirus Engine 81

Our prototype implementation, called GrAVity, achieved a scanning through-
put of 20 Gbits/s for binary files. This represents a speed-up factor of 100 from
the single CPU-core case. Also, in special cases, where data is cached on the
graphics card, the scanning throughput can reach 110 Gbits/s.

The rest of the paper is organized as follows. In Section 2, we present some
background on general-purpose GPU (GPGPU) programming and introduce
the related virus scanning architectures. The architecture and acceleration tech-
niques are presented in Section 3. The performance analysis and evaluation are
given in Section 4. The paper ends with an outline of related work in Section 5
and some concluding remarks in Section 6.

2 Background

In this section, we briefly describe the architecture of modern graphics cards
and the general-purpose computing functionality they provide for non-graphics
applications. We also discuss some general aspects of virus-scanning techniques.

2.1 GPU Programming

For our work we selected the NVIDIA GeForce 200 Series architecture, which of-
fers a rich programming environment and flexible abstraction models through the
Compute Unified Device Architecture (CUDA) SDK [18]. The CUDA program-
ming model extends the C programming language with directives and libraries
that abstract the underlying GPU architecture and make it more suitable for
general purpose computing. In contrast with standard graphics APIs, such as
OpenGL and DirectX, CUDA exposes several hardware features to the program-
mer. The most important of these features is the existence of convenient data
types, and the ability to access the DRAM of the device card through the general
memory addressing mode it provides. CUDA also offers highly optimized data
transfer operations to and from the GPU.

The GeForce 200 Series architecture, in accordance with its ancestors GeForce
8 (G80) and GeForce 9 (G90) Series, is based on a set of multiprocessors, each of
which contains a set of stream processors operating on SIMD (Single Instruction
Multiple Data) programs. When programmed through CUDA, the GPU can be
used as a general purpose processor, capable of executing a very high number of
threads in parallel.

A unit of work issued by the host computer to the GPU is called a kernel,
and is executed on the device as many different threads organized in thread
blocks. Each multiprocessor executes one or more thread blocks, with each group
organized into warps. A warp is a fraction of an active group, which is processed
by one multiprocessor in one batch. Each of these warps contains the same
number of threads, called the warp size, and is executed by the multiprocessor
in a SIMD fashion. Active warps are time-sliced: A thread scheduler periodically
switches from one warp to another to maximize the use of the multiprocessors
computational resources.

82 G. Vasiliadis and S. Ioannidis

Stream processors within a processor share an instruction unit. Any control
flow instruction that causes threads of the same warp to follow different execution
paths reduces the instruction throughput, because different executions paths
have to be serialized. When all the different execution paths have reached a
common end, the threads converge back to the same execution path.

A fast shared memory is managed explicitly by the programmer among thread
blocks. The global, constant, and texture memory spaces can be read from or writ-
ten to by the host, are persistent across kernel launches by the same application,
and are optimized for different memory usages [18]. The constant and texture
memory accesses are cached, so a read from them costs much less compared to
device memory reads, which are not being cached. The texture memory space is
implemented as a read-only region of device memory.

2.2 Virus Scanning and ClamAV

ClamAV [12] is the most widely used open-source virus scanner. It offers client-
side protection for personal computers, as well as mail and file servers used
by large organizations. As of January 2010, it has a database of over 60,000
virus signatures, and consists of a core scanner library and various command-
line utilities. The database includes signatures for non-polymorphic viruses in
simple string format, and for polymorphic viruses in regular expression format
(polymorphic signatures).

The current version of ClamAV uses an optimized version of the Boyer-Moore
algorithm [3] to detect non-polymorphic viruses using simple fixed string signa-
tures. For polymorphic viruses, on the other hand, ClamAV uses a variant of the
classical Aho-Corasick algorithm [1].

The Boyer-Moore implementation in ClamAV, uses a shift-table to reduce
the number of times the Boyer-Moore routine is called. At start up, ClamAV
preprocess every signature and stores the shift value of every possible block
(arbitrarily choosing a block size of 3 bytes) to initialize a shift table. Then, at
any point in the input stream, ClamAV can determine if it can skip up to three
bytes by performing a quick hash on them. ClamAV also creates a hash table
based on the first three bytes of the signature and uses this table at run-time
when the shift table returns a match. Since this algorithm uses hash functions
on all bytes of a signature, it is only usable against non-polymorphic viruses.

The Aho-Corasick implementation uses a trie to store the automaton gen-
erated from the polymorphic signatures. The fixed string parts of each poly-
morphic signatures are extracted, and are used to build a trie. At the scanning
phase, the trie will be used to scan for all these fixed parts of each signature
simultaneously. For example, the signature ‘‘495243*56697275’’ contains two
parts, ‘‘495243’’ and ‘‘56697275’’, which are matched individually by the
Aho-Corasick algorithm. When all parts of a signature are found, ClamAV also
verifies the order and the gap between the parts, as specified in the signature.
To quickly perform a lookup in this trie, ClamAV uses a 256 element array for
each node. In the general case, the trie has a variable height, and all patterns
beginning with the same prefix are stored under the corresponding leaf node.

GrAVity: A Massively Parallel Antivirus Engine 83

However, in order to simplify the trie construction, the height is restricted to
be equal to the size of the shortest part in the polymorphic signatures, which is
currently equal to two. Thus, the trie depth is fixed to two and all patterns are
stored at the same trie level. During the scanning phase, ClamAV scans an in-
put file and detects occurrences of each of the polymorphic signatures, including
partially and completely overlapping occurrences. The Aho-Corasick algorithm
has the desirable property that the processing time does not depend on the size
or number of patterns in a significant way.

The main reason that ClamAV uses both Boyer-Moore and Aho-Corasick is
that many parts in the polymorphic signatures are short, and they restrict the
maximum shift distance allowed (bounded by the shortest pattern) in the Boyer-
Moore algorithm. Matching the polymorphic signatures in Aho-Corasick avoid
this problem. Furthermore, compared with the sparse automaton representation
of the Aho-Corasick algorithm, the compressed shift table is a more compact
representation of a large number of non-polymorphic signatures in fixed strings,
so the Boyer-Moore algorithm is more efficient in terms of memory space.

3 Design and Implementation

GrAVity utilizes the GPU to quickly filter out the data segments that do not
contain any viruses. To achieve this, we have modified ClamAV, such that the
input data stream is initially scanned by the GPU. The GPU uses a prefix of
each virus signature to quickly filter-out clean data. Most data do not contain
any viruses, so such filtering is quite efficient as we will see in Section 4.

The overall architecture of GrAVity is shown in Figure 1. The contents of each
file are stored into a buffer in a region of main memory that can be transferred
via DMA into the memory of the GPU. The SPMD operation of the GPU is ideal

Files
Malicious
Files

dma_copy

read
File Buffer Potential

Matces
Verification
Module Report

Full Virus
Signatures

Filtering

PCIe x16

Verification

GPU
dfa_new
(offline)

check_offsets

match

Fig. 1. GrAVity Architecture. Files are mapped onto pinned memory that can be

copied via DMA onto the graphics card. The matching engine performs a first-pass

filtering on the GPU and return potential true positives for further checking onto the

CPU.

84 G. Vasiliadis and S. Ioannidis

for creating multiple search engine instances that will scan for virus signatures
on different data in a massively parallel fashion. If the GPU detects a suspicious
virus, that is, there is prefix match, the file is passed to the verification module
for further investigation. If the data stream is clean, no further computation
takes place. Therefore, the GPU is employed as a first-pass high-speed filter,
before completing any further potential signature-matching work on the CPU.

3.1 Basic Mechanisms

At start-up, the entire signature set of ClamAV is preprocessed, to construct a
deterministic finite automaton (DFA). Signature matching using a DFA machine
has linear complexity as a function of the input text stream, which is very effi-
cient. Unfortunately, the number of virus signatures, as well as their individual
size is quire very large, so it may not be always feasible to construct a DFA
machine that will contain the complete signature set. As the number and size of
matching signatures increase, the size of the automaton also increases.

To overcome this, we chose to only use a portion from each virus signature.
By using the first n symbols from each signature, the height of the corresponding
DFA matching machine is limited to n, as shown in Figure 2. In addition, all
patterns that begin with the same prefix are stored under the same node, called
final node. In case the length of the signature pattern is smaller than the prefix

0 1 ... 254 255

0 1 ... 254 255 0 1 ... 254 255

0 1 ... 254 255 0 1 ... 254 255

Patterns

Depth 0

Depth 1

Depth n

Leaf Leaf Leaf

Fig. 2. A fragment of the DFA structure with n levels. The patterns beginning with

the same prefix are stored under the same final node (leaf).

GrAVity: A Massively Parallel Antivirus Engine 85

length, the entire pattern is added. A prefix may also contain special characters,
such as the wild-characters * and ?, that are used in ClamAV signatures to
describe a known virus.

At the scanning phase, the input data will be initially scanned by the DFA
running on the GPU. Obviously, the DFA may not be able to match an exact
virus signature inside a data stream, as in many cases the length of the signature
is longer than the length of the prefix we used to create the automaton. This
will be the first-level filtering though, designed to offload the bulk of the work
from the CPU, by drastically eliminating a significant portion of the input data
that need to be scanned.

It is clear that the longer the prefix, the fewer the number of false positives at
this initial scanning phase. As we will see in Section 4, using a value of 8 for n,
can result to less than 0.0001% of false positives in a realistic corpus of binary
files.

3.2 Parallelizing DFA Matching on the GPU

During scan time, the algorithm moves over the input data stream one byte at
a time. For each byte, the scanning algorithm moves the current state appro-
priately. The pattern matching is performed byte-wise, meaning that we have
an input width of 8 bits and an alphabet size of 28 = 256. Thus, each state
will contain 256 pointers to other states, as shown in Figure 2. The size of the
DFA state machine is thus |#States| ∗ 1024 bytes, where every pointer occupies
4 bytes of storage.

If a final-state is reached, a potential signature match has been found. Con-
sequently, the offset where the match has been found is marked and all marked
offsets will be verified later by the CPU. The idea is to quickly weed-out the
dominant number of true negatives using the superior performance and high
parallelism of the GPU, and pass on the remaining potential true positives to
the CPU.

To utilize all streaming processors of the GPU, we exploit its data parallel ca-
pabilities by creating multiple threads. An important design decision is how to
assign the input data to each thread. The simplest approach would be to use mul-
tiple data input streams, one for each thread, in separate memory areas. However,
this will result in asymmetrical processing effort for each processor and will not
scale well. For example, if the sizes of the input streams vary, the amount of work
per thread will not be the same. This means that threads will have to wait, until
all have finished searching the data stream that was assigned to them.

Therefore, each thread searches a different portion of the input data stream,
at the matching phase. To best utilize the data-parallel capabilities of the GPU,
we create a large number of threads that run simultaneously. Our strategy splits
the input stream in distinct chunks, and each chunk is processed by a different
thread. Figure 3 shows how each GPU thread scans its assigned chunk, using
the underlying DFA state table. Although they access the same automaton, each
thread maintains its own state, eliminating any need for communication between
them.

86 G. Vasiliadis and S. Ioannidis

Matches

File Buffer

Threads:

Texture Memory

1 2 N3 4 5 6

Host Machine

GPU

Host Machine

Global Memory

Bit Array

Fig. 3. Pattern matching on the GPU

A special case, however, is for patterns that may span across two or more
different chunks. The simplest approach for fixed string patterns, would be to
process in addition, n bytes, where n is the maximum pattern length in the
dictionary. Unfortunately, the virus patterns are usually very large, as shown
in Figure 4 for the ClamAV, especially when compared with patterns in other
pattern matching systems like Snort. Moreover, a regular expression may contain
the wild card character *, thus the length of the patterns may not be determined.
To solve this problem, we used the following heuristic: each thread continues
the search up to the following chunk (which contains the consecutive bytes),
until a fail or final-state is reached. While matching a pattern that spans chunk
boundaries, the state machine will perform regular transitions. However, if the
state machine reaches a fail or final-state, then it is obvious that there is no need
to process the data any further, since any consecutive patterns will be matched
by the thread that was assigned to search the current chunk. This allows the
threads to operate independently and avoid any communication between them,
regarding boundaries in the input data buffer.

Every time a match is found, it is stored to a bit array. The size of the bit
array is equal to the size of the data that is processed at concurrently. Each bit in

GrAVity: A Massively Parallel Antivirus Engine 87

Number of patterns
0 20 40 60 80 100 120 140 >160

P
at

te
rn

 le
ng

th

0

5000

10000

15000

20000

25000

30000

ClamAV
Snort

Fig. 4. ClamAV pattern length distribution

the array represents whether a match was found in the corresponding position.
We have chosen the bit array structure, since it is a compact representation of
the results, even in the worst case scenario where a match is found at every
position.

3.3 Optimized Memory Management

The two major tasks of DFA matching, is determining the address of the next
state in the state table, and fetching the next state from the device memory.
These memory transfers can take up to several hundreds of nanoseconds, de-
pending on the traffic conditions and congestion.

Our approach for hiding memory latencies is to run many threads in paral-
lel. Multiple threads can improve the utilization of the memory subsystem, by
overlapping data transfer with computation. To obtain the highest level of per-
formance, we tested GrAVity to determine how the computational throughput
is affected by the number of threads. As discussed in Section 4.2 the memory
subsystem is best utilized when there is a large number of threads, running in
parallel.

Moreover, we have investigated storing the DFA state table both in the global
memory space, as well as in the texture memory space of the graphics card. The
texture memory can be accessed in a random fashion for reading, in contrast
to global memory, where the access patterns must be coalesced. This feature
can be very useful for algorithms like DFA matching, which exhibit irregular
access patterns across large data sets. Furthermore, texture fetches are cached,
increasing the performance when read operations preserve locality. As we will
see in Section 4.2, the usage of texture memory can boost the computational
throughput up to a factor of two.

3.4 Other Optimizations

In addition to optimizing the memory usage, we considered two other optimiza-
tions: the use of page-locked (or pinned) memory, and reducing the number of
transactions between the host and the GPU device.

The page-locked memory offers better performance, as it does not get swapped
(i.e. non-pageable memory). Furthermore, it can be accessed directly by the GPU

88 G. Vasiliadis and S. Ioannidis

through Direct Memory Access (DMA). Hence, the usage of page-locked memory
improves the overall performance, by reducing the data transferring costs to and
from the GPU. The contents of the files are read into a buffer allocated from
page-locked memory, through the CUDA driver. The DMA then, transfers the
buffer from the physical memory of the host, to the texture memory of the GPU.

To further improve performance, we use a large buffer to store the contents of
many files, that is transferred to the GPU in a single transaction. The motivation
behind this feature, is that the matching results will be the same, whether we
scan each file individually or scanning several files back-to-back, all at once. This
results in a reduction of I/O transactions over the PCI Express bus.

4 Performance Evaluation

In this section, we evaluate our prototype implementation. First, we give a short
description of our experimental setup. We then present an overall performance
comparison of GrAVity and ClamAV, as well as detailed measurements to show
how it scales with the prefix length and the number of threads that are executing
on the GPU.

4.1 Experimental Environment

For our experiment testbed, we used the NVIDIA GeForce GTX295 graphics
card. The card consists of two PCBs (Printed Circuit Board), each of which is
equipped with 240 cores, organized in 30 multiprocessors, and 896MB of GDDR3
memory. Our base system is equipped with two Intel(R) Xeon(R) E5520 Quad-
core CPUs at 2.27GHz with 8192KB of L2-cache, and a total of 12GB of memory.
The GPU is interconnected using a PCIe 2.0 x16 bus.

We use the latest signatures set of ClamAV (main v.52, released on February
2010). The set consists of 60 thousand string and regular expression signatures.
As input data stream, we used the files under /usr/bin/ in a typical Linux
installation. The directory contains 1516 binary files, totalling about 132MB
of data. The files do not contain any virus, however they exercise most code
branches of GrAVity.

In all experiments we conducted, we disregarded the time spent in the initial-
ization phase for both ClamAV and GrAVity. The initialization phase includes
the loading of the patterns and the building of the internal data structures, so
there is no actual need to include this time in our graphs.

4.2 Microbenchmarks

Figure 5 shows the matching throughput for varying signature prefix lengths.
We explore the performance that different types of memory can provide, by
using global device and texture memory respectively to store the DFA state
table. The horizontal axis shows the signature prefix length. We also repeated
the experiment using different number of threads. As the number of threads

GrAVity: A Massively Parallel Antivirus Engine 89

Prefix length

2 3 4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t (

G
B

its
/s

ec
)

0

10

20

30

40

50

Threads=256K
Threads=512K

Threads=1024K
Threads=2048K

Threads=4096K
Threads=8192K

(a)

Prefix length

2 3 4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t (

G
B

its
/s

ec
)

0

10

20

30

40

50

Threads=256K
Threads=512K

Threads=1024K
Threads=2048K

Threads=4096K
Threads=8192K

(b)

Fig. 5. Sustained throughput for varying signature prefix. Higher number of threads

achieve higher performance as memory latencies are hidden. We demonstrate the effect

of different GPU memory types on performance. (a) uses global device memory to store

the DFA state table, where (b) uses texture memory.

Prefix length

2 3 4 5 6 7 8 9 10 11 12 13 14N
um

be
r

of
 s

ta
te

s
(1

00
0’

s)

100

200

300

400

Fig. 6. Memory requirements for the storage of the DFA as a function of the signature

prefix length

increases, the throughput sustained by the GPU also increases. When using eight
millions threads, which is the maximum acceptable number of threads for our
application, the computational throughput raises to a maximum of 40 Gbits/s.

Comparing the two types of memory available in the graphics card, we observe
that the texture memory significantly improves the overall performance by a
factor of two. The irregularity of memory accesses that DFA matching exhibits,
can be partially hidden when using texture memory. Texture memory provides
a random access model for fetching data, in contrast with global memory where
access patterns have to be coalesced. Moreover, texture fetches are cached, which
offers an additional benefit.

The total memory requirements for storing the DFA, independently of the
memory type, is shown in Figure 6. We observe that the total number of states
of the DFA machine is growing linearly to the length of the prefix. Using a value
of 14 as a prefix length, results in a DFA machine that holds about 400 thousands
states. In our DFA implementation this is approximately 400MB of memory —
each state requires 1KB of memory.

90 G. Vasiliadis and S. Ioannidis

4.3 Application Performance

In this section, we evaluate the overall performance of GrAVity. Each experiment
was repeated a number of times, to ensure that all files were cached by the
operating system. Thus, no file data blocks were read from disk during our
experiments. We have verified the absence of I/O latencies using the iostat(1)
tool.

Throughput. In this experiment we evaluate the performance of GrAVity com-
pared to vanilla ClamAV. Figure 7 shows the throughput achieved for different
prefix lengths. The overall throughput increases rapidly, raising at a maximum
of 20 Gbits/s. A plateau is reached for a prefix length of around 10.

As the prefix length increases, the number of potential matches decreases, as
shown in Figure 9. This results to lower CPU post-processing, hence the overall
application throughput increases. In the next section, we investigate in more
detail the breakdown of the execution time.

Prefix length

2 3 4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t (

G
B

its
/s

ec
)

0.2

1

5

20

GrAVity
ClamAV (1x core)
ClamAV (8x cores)

Fig. 7. Performance of GrAVity and ClamAV. We also include the performance num-

ber for ClamAV running on 8 cores. The CPU-only performance is still an order of

magnitude less that the GPU-assisted. The numbers demonstrate that additional CPU

cores offer less benefit than that of utilizing the GPU.

Execution Time Breakdown. We measure the execution time for data trans-
fers, result transfers, CPU and GPU execution. We accomplish this by adding
performance counters before each task.

As expected, Figure 8 shows that for small prefix sizes most of the time is
dominated by the cost of the CPU, verifying the possible matches reported back
by the GPU. For example, for a prefix length equal to 2, approximately 95% of
the total execution time is spent on the CPU to validate the potential matches.
For a prefix length equal to 14, the corresponding CPU time results in just 20%
of the total execution time, and in actual time signifies a reduction of three
orders of magnitude, while the GPU consumes 54% of the total execution. As
the prefix length increases, this overhead decreases and the GPU execution time
becomes the dominant factor. For verification, in Figure 9 we plot the number
of potential matches reported in accordance with the signature prefix length.

GrAVity: A Massively Parallel Antivirus Engine 91

Prefix length

2 3 4 5 6 7 8 9 10 11 12 13 14E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

)

0

500

1000

1500

2000
Transfer Results

Transfer Data

GPU Search

CPU Post−process

Fig. 8. GrAVity execution time breakdown

Prefix length

2 3 4 5 6 7 8 9 10 11 12 13 14P
ot

en
tia

l M
at

ch
es

 (
10

00
’s

)

0

500

1000

1500

2000

2500

3000

3500

Fig. 9. Number of matches as a function of the signature prefix length

4.4 Scaling Factor

To measure how our GPU pattern matching implementation has improved dur-
ing the evolution of GPU models, we used three additional older-generation
graphics cards. Specifically, we utilized a GeForce 8600GT, which was released
early on March 2007, a GeForce8800GT released on December 2007, and a
GeForce 9800GX2 that released 4 months later, on March 2008.

Figure 10 shows that in less than two years, the computational throughput
has raised 20 times, from about 2 Gbits/sec to over 40 Gbits/sec. For compar-
ison reasons, we also calculated and included the respective numbers of various
generations of CPUs.

4.5 Peak Performance

In the final experiment we explore the ideal performance our GPU implemen-
tation can achieve. For this reason, we created a large file containing the NULL
character, to ensure that no state transitions will be performed at the match-
ing phase. The automaton will remain always at the same state, which will be
cached. Moreover, no matches will be reported, that would trigger an expen-
sive memory write at the global device memory. In this “best-case” scenario,

92 G. Vasiliadis and S. Ioannidis

Year

2005 2006 2007 2008 2009 2010

T
hr

ou
gh

pu
t (

G
B

its
/s

ec
)

0.1

1

4

10

20

45

GeForce8600GT

GeForce8800GT

GeForce9800GX2

GeForceGTX295

Pentium4 Xeon2.8

XeonE5520(4x2.66GHz)

Fig. 10. Performance sustained by our pattern matching implementation on different

generation of GPU and CPU models

Depth (Number of States)

2 3 4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t (

G
B

its
/s

ec
)

0

20

40

60

80

100

120

Threads=256K
Threads=512K

Threads=1024K
Threads=2048K

Threads=4096K
Threads=8192K

Fig. 11. Peak performance sustained by our pattern matching implementation on the

GPU

our throughput reached an order of 110 Gbits/s. This demonstrated the top
end performance the hardware can support. GrAVity’s end-to-end performance
reaches a very respectable 20% of this upper bound.

5 Related Work

Multi-pattern matching algorithms is one of the core operations used by appli-
cations in many domains. In the networking area, the most important applica-
tions, that primarily rely on pattern matching, are intrusion detection systems
and malware scanners.

Many approaches rely on the hardware implementation of pattern match-
ing algorithms, like FPGAs [20,22,10,2], CAMs [24,29,23] and Network Proces-
sors [6,7]. Most of these studies have focused primarily on network intrusion
detection systems, which are quite different from virus scanning applications [9].

Recently, however, several efforts have been made to improve the performance
of ClamAV [16,9,15,14]. Many approaches rely on the simple, fast and accu-
rate filtering of the input data stream, as software implementations running on
generic processors [16,9], or more complex approaches using specialized hard-
ware [15,14].

GrAVity: A Massively Parallel Antivirus Engine 93

Recent software implementations have adapted Bloom filters for use in virus
scanning as a first-level filter before the exact pattern matching algorithm oc-
curs [9,5]. A fragment of constant length is extracted from every signature and
inserted into a Bloom filter. At the scanning phase, a window of the same size
slides over the files to be examined, and its content at every position is tested
against the filter. A Bloom filter is the most compact structure that can store
a dictionary and is used to determine whether a string belongs to that dictio-
nary or not. A major drawback of Bloom filters, however, is that they cannot be
used for regular expressions matching. A possible solution is to select an invari-
ant fragment (i.e. a fixed byte sequence) from a wild-card containing signature
and put it in the filter. Unfortunately, the fact that the fragments have to be
of the same length, will shorten the hashing window to the shortest signature
or fragment, and will increase the false positive rate. Several approaches have
been used Bloom filters efficiently in specialized hardware, for example with FP-
GAs [8,17,4]. Hardware implementations provide better performance, although
with a high, and often prohibitive, cost for many organizations.

Besides specialized hardware solutions, commodity multi-core processors have
begun gaining popularity, primarily due to their increased computing power and
low cost. It has been shown that fixed-string pattern matching implementations
on SPMD processors, such as the IBM Cell processor, can achieve a computa-
tional throughput of up to 2.2 Gbits/s [19], while regular expression matching up
to 7.5 Gbits/s [13]. In the context of network intrusion detection systems, graph-
ics processors have been used to accelerate their performance [26,27,21,11,28,25].
Specifically, work in [26,27] significantly improved the performance of Snort by
offloading the string searching and regular expression matching operations to
the GPU. The work in this paper, exploits and extends some of those ideas
and applies them in a hybrid, GPU-CPU malware detection architecture, with
a drastic improvement in performance.

6 Conclusions

In this paper, we presented GrAVity, a massively parallel antivirus engine that
utilizes the GPU to offload the bulk of pattern and regular expression match-
ing from a popular antivirus system. Our system exploits the highly threaded
architecture of modern graphics processors, as well as the embarrassingly par-
allel nature of virus scanning to achieve end-to-end throughput in the order
of 20 Gbits/s. This result is 100 times faster than the unmodified ClamAV
running on a modern CPU. Our benchmarks also showed that our approach
completely offloads the CPU and frees it to perform other tasks. Finally, our
micro-benchmarks showed that it is possible to achieve throughput in the order
of 40 Gbits/s in cases where data is pre-cached on the graphics card, showing
that solving data transfer bottlenecks can lead to doubling of performance.

To achieve such high performance, we tuned our system and performed a
number of optimizations. Since virus signatures are both very long and more
numerous compared to other signature matching systems, like network intrusion

94 G. Vasiliadis and S. Ioannidis

detection systems, we build our engine as a pre-filter, that uses prefixes of the
actual signatures. These prefixes are used to create the DFAs used in the actual
pattern matching on the GPU. Our architecture also takes advantage of the
physical memory hierarchies of graphics processors, as well as, bulk data transfers
using DMA.

As future work we plan to investigate how to port our engine to commercial
antivirus software, as well, other tools such as antispyware. In terms of archi-
tecture, we plan to overlap GPU and CPU matching phase, as right now our
system is serialized in that respect. Finally we plan on utilizing multiple GPUs
instead of a single one. Modern motherboards, such as the one we used in our
evaluation, support multiple GPUs on the PCI Express bus. In our case it would
be possible to utilize up to four such cards. Such a system would require a more
thorough investigation of communication and synchronization between multiple
GPUs.

Acknowledgments

This work was supported in part by the Marie Curie Actions – Reintegration
Grants project PASS. Giorgos Vasiliadis and Sotiris Ioannidis are also with the
University of Crete.

References

1. Aho, A.V., Corasick, M.J.: Efficient String Matching: an Aid to Bibliographic

Search. Communications of the ACM 18(6), 333–340 (1975)

2. Baker, Z.K., Prasanna, V.K.: Time and area efficient pattern matching on FPGAs.

In: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field

Programmable Gate Arrays (FPGA 2004), pp. 223–232. ACM, New York (2004)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the

Association for Computing Machinery 20(10), 762–772 (1977)

4. Braun, F., Lockwood, J., Waldvogel, M.: Protocol wrappers for layered network

packet processing in reconfigurable hardware. IEEE Micro 22(1), 66–74 (2002)

5. Cha, S.K., Moraru, I., Jang, J., Truelove, J., Brumley, D., Andersen, D.G.:

SplitScreen: Enabling efficient, distributed malware detection. In: Proceedings of

the 7th USENIX Symposium on Networked Systems Design and Implementation

(NSDI), San Jose, CA (April 2010)

6. Clark, C.R., Lee, W., Schimmel, D.E., Contis, D., Kon, M., Thomas, A.: A Hard-

ware Platform for Network Intrusion Detection and Prevention. In: Crowley, P.,

Franklin, M.A., Hadimioglu, H., Onufryk, P.Z. (eds.) Network Processor Design:

Issues and Practices, vol. 3, pp. 99–118. Morgan Kaufmann, San Francisco (2005)

7. de Bruijn, W., Slowinska, A., van Reeuwijk, K., Hruby, T., Xu, L., Bos, H.: Safe-

Card: a Gigabit IPS on the network card. In: Zamboni, D., Krügel, C. (eds.) RAID

2006. LNCS, vol. 4219, pp. 311–330. Springer, Heidelberg (2006)

8. Dharmapurikar, S., Krishnamurthy, P., Sproull, T.S., Lockwood, J.W.: Deep packet

inspection using parallel bloom filters. IEEE Micro 24(1), 52–61 (2004)

9. Erdogan, O., Cao, P.: Hash-AV: Fast virus signature scanning by cache-resident

filters. International Journal of Security and Networks 2(1/2), 50–59 (2007)

GrAVity: A Massively Parallel Antivirus Engine 95

10. Ho, J.T.L., Lemieux, G.G.: PERG-Rx: a hardware pattern-matching engine

supporting limited regular expressions. In: FPGA 2009: Proceeding of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp.

257–260. ACM, New York (2009)

11. Huang, N.-F., Hung, H.-W., Lai, S.-H., Chu, Y.-M., Tsai, W.-Y.: A gpu-based

multiple-pattern matching algorithm for network intrusion detection systems. In:

22nd International Conference on Advanced Information Networking and Applica-

tions - Workshops, AINAW 2008, pp. 62–67 (25-28, 2008)

12. Kojm, T.: Clamav, http://www.clamav.net/

13. Kulishov, F.: DFA-based and SIMD NFA-based regular expression matching on

Cell BE for fast network traffic filtering. In: SIN 2009: Proceedings of the 2nd

International Conference on Security of Information and Networks, pp. 123–127.

ACM, New York (2009)

14. Lin, Y.-D., Lin, P.-C., Lai, Y.-C., Liu, T.-Y.: Hardware-Software Codesign for

High-Speed Signature-based Virus Scanning. IEEE Micro 29(5), 56–65 (2009)

15. Lin, Y.-D., Tseng, K.-K., Lee, T.-H., Lin, Y.-N., Hung, C.-C., Lai, Y.-C.: A

platform-based SoC design and implementation of scalable automaton matching

for deep packet inspection. J. Syst. Archit. 53(12), 937–950 (2007)

16. Miretskiy, Y., Das, A., Wright, C.P., Zadok, E.: Avfs: An On-Access Anti-Virus File

System. In: Proceedings of the 13th USENIX Security Symposium, p. 6. USENIX

Association, Berkeley (2004)

17. Moscola, J., Lockwood, J., Loui, R., Pachos, M.: Implementation of a Content-

Scanning Module for an Internet Firewall. In: Proceedings of IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), Napa, CA, USA, pp.

31–38 (April 2003)

18. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming

Guide, version 3.0,

http://developer.download.nvidia.com/compute/cuda/

3 0/toolkit/docs/NVIDIA CUDA ProgrammingGuide.pdf

19. Scarpazza, D.P., Villa, O., Petrini, F.: Exact multi-pattern string matching on the

cell/b.e. processor. In: CF 2008: Proceedings of the 2008 Conference on Computing

Frontiers, pp. 33–42. ACM, New York (2008)

20. Sidhu, R., Prasanna, V.: Fast regular expression matching using FPGAs. In: IEEE

Symposium on Field-Programmable Custom Computing Machines, FCCM 2001

(2001)

21. Smith, R., Goyal, N., Ormont, J., Sankaralingam, K., Estan, C.: Evaluating GPUs

for Network Packet Signature Matching. In: Proceedings of the International Sym-

posium on Performance Analysis of Systems and Software (2009)

22. Song, T., Zhang, W., Wang, D., Xue, Y.: A Memory Efficient Multiple Pattern

Matching Architecture for Network Security. In: INFOCOM 2008. The 27th Con-

ference on Computer Communications, pp. 166–170. IEEE, Los Alamitos (13-18,

2008)

23. Sourdis, I., Pnevmatikatos, D.: Pre-decoded CAMs for efficient and high-speed

NIDS pattern matching. In: FCCM 2004: Proceedings of the 12th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines, Washington,

DC, USA, pp. 258–267. IEEE Computer Society, Los Alamitos (2004)

24. Sourdis, I., Pnevmatikatos, D.N., Vassiliadis, S.: Scalable multigigabit pattern

matching for packet inspection. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 16(2), 156–166 (2008)

http://www.clamav.net/
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf

96 G. Vasiliadis and S. Ioannidis

25. Tumeo, A., Villa, O., Sciuto, D.: Efficient pattern matching on GPUs for intru-

sion detection systems. In: CF 2010: Proceedings of the 7th ACM International

Conference on Computing Frontiers, pp. 87–88. ACM, New York (2010)

26. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:

Gnort: High Performance Network Intrusion Detection Using Graphics Processors.

In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,

pp. 116–134. Springer, Heidelberg (2008)

27. Vasiliadis, G., Polychronakis, M., Antonatos, S., Markatos, E.P., Ioannidis, S.:

Regular Expression Matching on Graphics Hardware for Intrusion Detection. In:

Proceedings of 12th International Symposium on Recent Advances in Intrusion

Detection (RAID) (2009)

28. Wu, C., Yin, J., Cai, Z., Zhu, E., Chen, J.: A Hybrid Parallel Signature Matching

Model for Network Security Applications Using SIMD GPU. In: Dou, Y., Gru-

ber, R., Joller, J.M. (eds.) APPT 2009. LNCS, vol. 5737, pp. 191–204. Springer,

Heidelberg (2009)

29. Yu, F., Katz, R.H., Lakshman, T.V.: Gigabit Rate Packet Pattern-Matching Us-

ing TCAM. In: Proceedings of the 12th IEEE International Conference on Network

Protocols (ICNP 2004), Washington, DC, USA, pp. 174–183. IEEE Computer So-

ciety, Los Alamitos (October 2004)

Automatic Discovery of Parasitic Malware

Abhinav Srivastava and Jonathon Giffin

School of Computer Science, Georgia Institute of Technology, USA

{abhinav,giffin}@cc.gatech.edu

Abstract. Malicious software includes functionality designed to block

discovery or analysis by defensive utilities. To prevent correct attribution

of undesirable behaviors to the malware, it often subverts the normal ex-

ecution of benign processes by modifying their in-memory code images

to include malicious activity. It is important to find not only maliciously-

acting benign processes, but also the actual parasitic malware that may

have infected those processes. In this paper, we present techniques for

automatic discovery of unknown parasitic malware present on an infected

system. We design and develop a hypervisor-based system, Pyrenée, that

aggregates and correlates information from sensors at the network level,

the network-to-host boundary, and the host level so that we correctly

identify the true origin of malicious behavior. We demonstrate the effec-

tiveness of our architecture with security and performance evaluations

on a Windows system: we identified all malicious binaries in tests with

real malware samples, and the tool imposed overheads of only 0%–5%

on applications and performance benchmarks.

1 Introduction

Malware instances exhibit complex behaviors designed to prevent discovery or
analysis by defensive utilities. In addition to file system and registry changes,
malicious software often subverts the normal execution of benign processes by
modifying their in-memory code image (parasitic behavior). For example, the
Conficker worm injects undesirable dynamically linked libraries (DLLs) into le-
gitimate software [38]. In another example, the Storm worm injects code into a
user-space network process from a malicious kernel driver to initiate a DDoS at-
tack from the infected computers [23]. Parasitic behaviors help malware execute
behaviors—such as spam generation, denial-of-service attacks, and propagation—
without themselves raising suspicion. When analyzing a misbehaving system to
identify and eradicate malware, it is important both to terminate maliciously-
acting but benign processes and to find other software that may have induced
the malicious activity.

The visible effects of current attacks against software regularly manifest first
as suspicious network traffic. This is due to the monetary gains involved in
controlling large networks for botnet, spam, and denial of service attacks [36].
After detecting malicious traffic, network intrusion detection systems (NIDSs)
can pinpoint a host within a network or enterprise responsible for that traf-
fic [11,25]. These network sensors can identify an infected system’s IP address,

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 97–117, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 A. Srivastava and J. Giffin

network ports, and traffic behaviors. This coarse-grained information permits
only coarse-grained responses: an administrator could excise an infected sys-
tem from the network, possibly for reimaging. Unfortunately, in many common
use scenarios, complete disk sanitization results in intolerable losses of critical
data not stored elsewhere, even though that data may not have been affected
by the infection. On-host analysis changes these brutal remediation techniques
by providing a means to appropriately attribute malicious behavior to malicious
software. Realizing that a process sending or receiving attack traffic is a hijacked
benign program requires cooperation between network sensors and on-host exe-
cution monitors. By gaining a better understanding of a malware infection on a
system, we can offer opportunities for surgical response.

This paper presents techniques and a prototype system, Pyrenée, for auto-
matic discovery of unknown parasitic malware present on an infected system.
Pyrenée correlates network-level events with host-level activities, so it applies
exclusively to attacks that send or receive detectably-suspicious traffic. We de-
sign Pyrenée to effectively detect parasitic behavior occurring both at the user
and kernel level. To remain tamper-resistant from kernel-level malware, we make
use of hypervisors or virtual machine monitors (VMMs). Pyrenée’s architecture
is comprised of sensors at the network-to-host boundary (network attribution
sensor), the host level (host attribution sensor) and the network level (network
sensor), as well as a correlation engine that uses information provided by the
sensors to identify likely malware on an infected computer.

The sensors cooperate so that Pyrenée can correctly attribute undesirable
behaviors to a malicious software infection. Pyrenée uses off-the-shelf network
sensors, such as BotHunter [11] or Snort [31], to detect suspicious network traffic
and identify hosts with possible malware infections. When a network sensor
detects malicious packets, it informs the network-to-host boundary (network
attribution) sensor, deployed at the host in a trusted virtual machine (VM).
On receiving the information, the network attribution sensor performs secure
virtual machine introspection (VMI) to find the process bound to the malicious
connection inside the guest VM. Though knowing the end-point of a malicious
connection on an infected system significantly reduces the cleaning effort of an
administrator, this information is still not complete. The network attribution
sensor does not know if the identified process is malicious, or if it is a hijacked
benign program victim of the parasitic behavior.

To find the true origin of malicious parasitic behaviors, Pyrenée uses a host-
attribution sensor implanted inside the hypervisor. A process can suffer from
parasitic behaviors either from another process or an untrusted kernel driver.
To counter that, the host-attribution sensor monitors the execution of both
user-level processes and untrusted kernel drivers. The host-attribution sensor
monitors system calls and their parameters invoked by processes to detect the
process-to-process parasitic behavior. To detect untrusted drivers’ parasitic DLL
and thread injection behaviors, we contain untrusted drivers in an isolated ad-
dress space from the kernel. This design provides the host-attribution sensor an

Automatic Discovery of Parasitic Malware 99

ability to monitor kernel APIs invoked by untrusted drivers and enables it to
detect parasitic behaviors originating from the untrusted drivers.

The correlation engine gathers information from all the sensors to identify
the true origin of parasitic behaviors. Correlating network information with host
information is a key design feature of our system. Taken alone, either approach
will have diminished utility in the presence of typical attacks or normal work-
loads. Network-based detection can identify an infected system but cannot pro-
vide finer-grained process-specific information. Host-based detection can identify
occurrences of parasitism, but it cannot differentiate malicious parasites from
benign symbiotes. For example, debugging software and other benign software,
such as the Google toolbar, use DLL injection for legitimate purposes. These ob-
servations are critical: A process sending or receiving malicious network traffic
may not itself be malware, and a process injecting code into another process may
not be malicious. Only by linking injection with subsequent malicious activity
observed at the network (or other) layer can we correctly judge the activity at
the host.

This paper makes the following contributions:

– We develop a well-reasoned malware detection architecture that finds un-
known malware based on its undesirable network use. Our design correlates
activity on the network with behaviors at the infected host.

– We correctly attribute observed behaviors to the actual malware responsi-
ble for creating those behaviors, even in the presence of parasitic malware
that injects code into benign applications. Proper attribution creates the
foundation for subsequent surgical remediation of the malware infection.

– Our system works for both the user- and kernel-level malware. To monitor
parasitic behaviors at the user-level, we monitor system calls. For kernel-level
parasitism, we securely monitor kernel APIs invoked by untrusted drivers.

– Our design satisfies protection and performance goals. We leverage virtual-
ization to isolate security software from the infected Windows system. Our
security evaluation shows that our system is able to detect the true ori-
gin of parasitic behavior occurring at user or kernel level. The performance
evaluation demonstrates that even with runtime on-host monitoring, our
performance impact remains only 5% or better.

2 Related Work

Pyrenée discovers unknown parasitic malware by identifying the true origin of
malicious activities. To achieve its goals, it combines information gathered at
both the host and the network level. Previous research in both individual areas
has developed a collection of solutions to aspects of this problem.

Host-based security software generally either scans unknown programs for
patterns that match signatures of known malware [17, 2] or continually mon-
itors behaviors of software searching for unusual or suspicious runtime activ-
ity [10, 12, 32]. Pyrenée’s host attribution sensor is closest in spirit to the latter

100 A. Srivastava and J. Giffin

systems. It monitors the execution behavior of processes and untrusted drivers to
identify instances of DLL injection or remote thread injection. Unlike traditional
host-based utilities, it does not rely on injection alone as evidence of malware,
as benign software sometimes uses injection for benign purposes. A heuristic-
based malware detection system that monitors system calls or kernel APIs and
detects code injection attacks may produce false positives. For example, DLL
injection is used by the Microsoft Visual Studio debugger to monitor processes
under development. Likewise, the Google toolbar injects code into explorer.exe
(the Windows graphical file browser) to provide Internet search from the desk-
top. Pyrenée uses system-call information only when a network-sensor provides
corroborating evidence of an attack.

Pyrenée uses virtualization to isolate its on-host software from an infected
system. Virtualization has been used previously in the development of security
software, including intrusion detection systems [8, 14, 20, 15, 28], firewalls [35],
protection [26,30,40], and other areas [6]. Pyrenée’s network attribution sensor
is an evolution of the VMwall virtualization-based firewall design [35]. VMwall
required packet queuing that introduced delay into network communication; our
sensor has no such need and allows network communication to operate at full
speed. The sensor makes use of virtual machine introspection (VMI), proposed
by Garfinkel and Rosenblum [8], to attribute network communication to pro-
cesses. Nooks [37] and SIM [33] proposed address space partitioning to isolate
drivers and security applications, respectively. Pyrenée also uses address space
partitioning to isolate only untrusted drivers from the core kernel and trusted
drivers in a different address space.

Backtracker [19] reconstructs the sequence of steps that occurred in an intru-
sion by using intrusion alerts to initiate construction of event dependency graphs.
In a similar way, Pyrenée uses NIDS alerts to initiate discovery of malicious soft-
ware even in the presence of parasitic behaviors. Technical aspects of Backtracker
and Pyrenée differ significantly. Backtracker identifies an attack’s point of entry
into a system by building dependencies among host-level events. It assumes that
operating system kernels are trusted and hence monitors system calls; it stores
each individual system call in its log for later dependency construction. Pyrenée
identifies software components responsible for a post-infection attack behavior
visible on the network by correlating behaviors at both the network level and
host level. On the host, it monitors and stores only high-level parasitic behaviors.
It does not trust the OS kernel and assumes that kernel-level malware may be
present, and it monitors both system calls and kernel APIs to detect both user-
and kernel-level parasitism. Both Backtracker and Pyrenée are useful to remedi-
ation in different ways: Pyrenée’s information guides direct removal of malicious
processes, while Backtracker’s information helps develop patches or filters that
may prevent future reinfection at the identified entry point.

Malware analysis tools [41] have also built upon virtualization. Dinaburg et
al. [5] developed an analysis system that, among other functionality, traced the
execution of system calls in a manner similar to our host attribution sensor. Mar-
tignoni et al. [21] proposed a system that builds a model of high-level malware

Automatic Discovery of Parasitic Malware 101

behavior based upon observations of low-level system calls. Like that system,
Pyrenée uses a high-level characterization of DLL and thread injection identi-
fied via low-level system-call monitoring; however, our system does not employ
the performance-costly taint analysis used by Martignoni. In contrast to analysis
systems, our goal is to provide malware detection via correct attribution of ma-
licious behavior to parasitic malware. We expect that it could act as a front-end
automatically supplying new malware samples to deep analyzers.

3 Parasitic Malware

Pyrenée discovers parasitic malware. In this section, we present the threat model
under which Pyrenée operates and describe common parasitic behaviors exhib-
ited by malware.

3.1 Threat Model

We developed Pyrenée to operate within a realistic threat model. We assume that
attackers are able to install malicious software on a victim computer system
at both the user and kernel levels. Installed malware may modify the system
to remain stealthy. These facts are demonstrated by recent attacks happening
at the user and the kernel level. A preventive approach that does not allow
users to load untrusted drivers may not be effective because users sometimes
unknowingly install untrusted drivers for various reasons, such as gaming or
adding new devices. Due to these reasons, we distinguish between trusted and
untrusted drivers and isolate untrusted drivers in a separate address space. We
assume that the malware will at some point send or receive network traffic that
network-level intrusion detection systems (network sensors) are able to classify as
malicious or suspicious: this may include traffic related to spam, denial-of-service
attacks, propagation, data exfiltration, or botnet command-and-control.

Pyrenée makes use of virtual machine introspection (VMI) in its network at-
tribution sensor. We perform VMI from a high-privilege virtual machine different
than the infected system and assume that the high-privilege machine and the un-
derlying hypervisor are within the trusted computing base. VMI requires kernel
data structure invariants to hold. Pyrenée does not protect these data structures,
but rather assumes that either existing invariant testing solutions protect the
structures [27,1,34] or introspection is performed in a secure way [3]. We do not
attempt to detect illicit hooking, control data attacks, evasion from hypervisor-
based monitors, or modification of binaries on disk, as previous research has
already studied those threats [28,40,18, 5].

3.2 Malware Behaviors

Parasitic malware alters the execution behavior of existing benign processes as
a way to evade detection. These malware often abuse both Windows user and

102 A. Srivastava and J. Giffin

Table 1. Different parasitic behavior occurring from user- or kernel-level

Number Source Target Description

Case 1A Process Process DLL and thread injection

Case 1B Process Process Raw code and thread injection

Case 2A Kernel driver Process DLL and thread alteration

Case 2B Kernel driver Process Raw code and thread alteration

Case 2C Kernel driver Process Kernel thread injection

kernel API functions to induce parasitic behaviors. We consider a malware par-
asitic if it injects either executable code or threads into other running processes.
The parasitic behaviors can originate either from a malicious user-level process
or a malicious kernel driver. Table 1 lists the different cases in which malware
can induce parasitic behavior, and the following section explains each of those
cases in detail.

Case 1A: Dynamically-linked library (DLL) injection allows one process to in-
ject entire DLLs into the address space of a second process [29]. An attacker
can author malicious functionality as a DLL and produce malware that injects
the DLL into a victim process opened via the Win32 API call OpenProcess or
created via CreateProcess. These functions return a process handle that allows
for subsequent manipulation of the process. The malware next allocates memory
inside the victim using the VirtualAllocEx API function and writes the name
of the malicious DLL into the allocated region using WriteProcessMemory. Mal-
ware cannot modify an existing thread of execution in the victim process, but it
can create a new thread using CreateRemoteThread. The malware passes to that
function the address of the LoadLibrary API function along with the previously
written-out name of the malicious DLL.

Case 1B: A raw code injection attack is similar to a DLL injection in that
user-space malware creates a remote thread of execution, but it does not require
a malicious DLL to be stored on the victim’s computer system. The malware
allocates memory space as before within the virtual memory region of the victim
process and writes binary code to that space. It then calls CreateRemoteThread,
passing the starting address of the injected code as an argument.

Case 2A: A kernel-level malicious driver also shows parasitic behavior by in-
jecting malicious DLLs inside the user-space process. A malicious driver can
perform this task in a variety of ways, such as by calling system call functions
directly from the driver. A stealthy technique involves Asynchronous Procedure
Calls (APCs): a method of executing code asynchronously in the context of a
particular thread and, therefore, within the address space of a particular pro-
cess [22]. Malicious drivers identify a process, allocate memory inside it, copy
the malicious DLL to that memory, create and initialize a new APC, alter an
existing thread of the target process to execute the inserted code, and queue the
APC to later run the thread asynchronously. This method is stealthy as APCs

Automatic Discovery of Parasitic Malware 103

Kernel

User

Xen Host attribution sensor

Trusted VM (Fedora) Untrusted VM (Windows XP)

Correlation
engine

Network
attribution sensor

Network
attribution sensor

Network
sensor
(NIDS)

Kernel

User

Apps

Trusted
address space

Untrusted
address space

Fig. 1. Architecture of Pyrenée

are very common inside the Windows kernel, and it is very hard to distinguish
between benign and malicious APCs.

Case 2B: This method is similar to the one explained in Case 2A. The difference
lies in the form of malicious code that injected into a benign process. Here,
malicious kernel drivers inject raw code into a benign process and execute it
using the APC.

Case 2C: Finally, a kernel thread injection is the method by which malicious
drivers execute malicious functionality entirely inside the kernel. A kernel thread
executing malicious functionality is owned by a user-level process, though the
user-level process had not requested its creation. By default, these threads are
owned by the System process, however a driver may also choose to execute its
kernel thread on behalf of any running process.

Our system adapts well as new attack information becomes available. Though
the described methods are prevalent in current attacks, other means of injecting
malicious code into benign software also exist. For example, SetWindowsHookEx,
AppInit DLL, and SetThreadContext APIs can be used for malice. Our general
technique can easily encompass these additional attack vectors by monitoring
their use in the system.

4 Architecture

Pyrenée automatically identifies at runtime the malicious code running on an
infected system. That objective leads to the following design goals:
– Accurate Attribution: Pyrenée combines data from network-based and

host-based sensors to avoid false positives, provide process or driver level
granularity in malware identification, and to account for evasive behaviors
of parasitic malware.

– Automatic, Runtime Detection: We design lightweight sensors that in-
cur low overhead, allowing Pyrenée to operate at runtime. We identify ma-
licious code without any human intervention.

– Resist Direct and Indirect Attacks: Pyrenée’s tamper-resistant design
prevents direct attack by a motivated attacker. We deploy all components
of our system outside of an infected operating system.

104 A. Srivastava and J. Giffin

Pyrenée has a modular design (Figure 1). Its architecture uses the hypervisor
to provide isolation between our software and the infected system. To perform
accurate detection and identification of malicious code, Pyrenée aggregates infor-
mation collected from three different sensors. A network sensor identifies inbound
or outbound network traffic of suspicion; we use off-the-shelf network intrusion
detection systems (NIDS) like BotHunter, Snort, or Bro and will not further
discuss this component. The network attribution and host attribution sensors
are software programs executing in the isolated high-privilege virtual machine
and hypervisor, respectively. A correlation engine, also running in the trusted
VM, takes data from all three types of sensors and determines the malicious
software present in the victim. Our sensors are lightweight and suitable for on-
line detection. The following sections describe the network attribution and host
attribution sensors as well as the correlation engine.

4.1 Network Attribution Sensor

The network attribution sensor maps network-level packet information to host-
level process identities. Given a network sensor (NIDS) alert for some suspicious
traffic flow, the network attribution sensor is responsible for determining which
process is the local endpoint of that flow in the untrusted VM. This process may
be malicious, or it may be a benign process altered by a parasitic malware infec-
tion. We deployed the network attribution sensor in a trusted virtual machine. It
has two subcomponents: one in the VM’s kernel space and one in userspace. The
kernel component provides high-performance packet filtering services by inter-
cepting both inbound and outbound network packets for an untrusted VM. The
userspace component performs virtual machine introspection (VMI) whenever
requested by the kernel component.

The kernel component identifies separate TCP traffic flows. Whenever it re-
ceives a SYN packet, it extracts both the source and destination IP addresses
and ports, which it then passes to the userspace component for further use. The
kernel component is a passive network tap and allows all packets flows to con-
tinue unimpeded. Though in the current prototype of Pyrenée we only work with
TCP flows, our system is able to intercept packets of any protocol.

The userspace component determines which process in the victim VM is the
local endpoint of the network flow. When invoked by the kernel component,
it performs memory introspection of the untrusted VM to identify the process
bound to the source (or destination) port as specified in the data received by
the kernel component. To find a process name, it must locate the guest kernel’s
data structures that store network and process information. We have reverse
engineered part of the Windows kernel to identify these structures, discussed in-
depth in Section 5. The userspace component stores the extracted process and
network connection information in a database to be used later by the correlation
engine. The stored information helps even in the case when malware exits after
sending malicious packets.

The network attribution sensor’s task is to determine the end-point of a
network connection originated from the guest VM. Recent kernel-level attacks

Automatic Discovery of Parasitic Malware 105

complicate this task. For example, srizbi [16] is a kernel-level bot that executes
entirely in the kernel. When untrusted drivers send/receive packets from the
kernel, there is no user-space process that can be considered as the end-point of
the connection. Pyrenée solves this problem by monitoring the execution of un-
trusted drivers. Since all kernel threads created by drivers are always assigned to
a user-level process, that process becomes the end-point of the in-driver connec-
tion. To determine the actual driver, we enumerate all threads of the end-point
process and match against threads of untrusted drivers.

4.2 Host Attribution Sensor

The local endpoint of a malicious network flow may itself be a benign program:
it may have been altered at runtime by a DLL or thread injection attack orig-
inating at a different parasitic malware process or driver. The host attribution
sensor, deployed within the hypervisor, identifies the presence of possible para-
sitic malicious code. We describe the monitoring of both user and kernel level
parasitic behaviors in the following sections.

User-level Parasitism. User-level parasitism occurs when a malicious user
process injects a DLL or raw code along with a thread into a running benign
process as explained in Cases 1A and 1B. To detect a process-to-process parasitic
behavior, the host attribution sensor continuously monitors the runtime behavior
of all processes executing within the victim VM by intercepting their system calls
[9,7]. Note that we monitor the native API, or the transfers from userspace to
kernel space, rather than the Win32 API calls described in Section 3. High-level
API monitors are insecure and may be bypassed by knowledgeable attackers,
but native API monitoring offers complete mediation for user-level processes.

The host attribution sensor intercepts all system calls, but it processes only
those that may be used by a DLL or thread injection attack. This list includes
NtOpenProcess, NtCreateProcess, NtAllocateVirtualMemory, NtWriteVirt-
ualMemory, NtCreateThread, and NtClose, which are the native API forms of
the higher-level Win32 API functions described previously. The sensor records
the system calls’ parameter values: IN parameters at the entry of the call and
OUT parameters when they return to userspace. Recovering parameters requires
a complex implementation that we describe in detail in Section 5.

KeAttachProcess

ZwAllocateMemory

ZwOpenProcess

KeInitializeApc

KeInsertQueueApc

Code
Injection

handle = OpenProcess()

AllocateMemory(handle)
handle = CreateProcess() WriteMemory(handle)

CreateThread(handle)

Code
Injection

(a) (b)

Fig. 2. Runtime parasitic behavioral models. (a) Process-to-process injection.

(b) Driver-to-process injection.

106 A. Srivastava and J. Giffin

The sensor uses an automaton description of malware parasitism to determine
when DLL or thread injection occurs. The automaton (Figure 2a) characterizes
the series of system calls that occur during an injection. As the sensor inter-
cepts system calls, it verifies them against an instance of the automaton spe-
cific to each possible victim process. We determine when the calls apply to the
same victim by performing data-flow analysis on the process handle returned by
NtOpenProcess and NtCreateProcess. Should the handle be duplicated (using
NtDuplicateObject), we include the new handle in further analysis. The sensor
communicates information about detected injections to the correlation engine
for further use.

Kernel-level Parasitism. Kernel-level parasitism occurs when a malicious
kernel driver injects either a DLL or raw code followed by the alteration of an
existing targeted process’ thread (Case 2A and 2B). A kernel-level malicious
driver can also create a new thread owned by any process as explained in Case
2C. To detect kernel-to-process parasitic behavior, the host attribution sensor
monitors all kernel APIs invoked by untrusted drivers. However, there is no mon-
itoring interface inside the kernel for drivers similar to the system-call interface
provided to user applications. To solve this problem, Pyrenée creates a moni-
toring interface inside the kernel for untrusted drivers by isolating them in a
separate address space and monitoring kernel APIs invoked by untrusted drivers
through this new interface.

Pyrenée creates a new address space inside the hypervisor transparent to
the guest OS and loads all untrusted drivers in this address space. This new
address space is analogous to the existing kernel address space, however per-
missions are set differently. The existing kernel space, called the trusted page
table (TPT), contains all the core kernel and trusted driver code with read and
execute permissions, and untrusted driver code with read-only permissions. The
untrusted driver address space, called the untrusted page table (UPT), contains
untrusted code with read and execute permissions, and trusted code as non-
readable, non-writable, and non-executable. Pyrenée also makes sure that the
data pages mapped in both the address spaces are non-executable. Table 2 shows
the permissions set on UPT and TPT memory pages. With these permission
bits, any control flow transfers from untrusted to trusted address space induce
page faults thereby enabling the host-attribution sensor to monitor kernel APIs
invoked by untrusted drivers.

Pyrenée differentiates between trusted and untrusted drivers at the time of
loading to decide in which address space they must be mapped. This differenti-
ation can be made using certificates. For example, a driver signed by Microsoft

Table 2. Permission bits on trusted and untrusted address spaces

Address Space Trusted Code Trusted Data Untrusted Code Untrusted Data

Trusted rx rw r rw

Untrusted — rw rx rw

Automatic Discovery of Parasitic Malware 107

can be loaded in the trusted address space. However, Microsoft might not rely
on drivers signed by other parties whose authenticity is not verified. With this
design, all Microsoft signed drivers are loaded into the trusted address space,
and other drivers signed by third party vendors or unsigned drivers, including
kernel malware, are loaded into the untrusted address space.

Due to the isolated address space, the host-attribution sensor intercepts all
kernel APIs invoked by untrusted drivers and inspects their parameters. The
sensor uses an automaton to characterize the parasitic behavior originating from
malicious drivers. When the sensor intercepts kernel APIs, it verifies against the
automaton to recognize the parasitic behavior. In our current prototype, we
create an automaton based on the kernel APC-based code injection (Figure 2b).
The host-attribution sensor records the gathered information for future use by
the correlation engine.

4.3 Correlation Engine

The correlation engine identifies which code on an infected system is malicious
based on information from our collection of sensors [39]. The engine has three in-
terfaces that communicate with a NIDS, the host attribution sensor, and the net-
work attribution sensor. Architecturally, it resides in the isolated, high-privilege
VM.

The NIDS provides network alert information to the correlation engine’s first
interface. This information includes the infected machine’s IP address, port used
in the suspicious flow, and other details. The alert acts as a trigger that acti-
vates searches across information from the software sensors. The second interface
gathers information from the network attribution sensor, which provides infor-
mation that maps the malicious network connection identified by the NIDS to a
host-level process.

The third interface collects information from the host attribution sensor. In its
process-to-process injection report, the host attribution sensor passes identifiers
of injecting and victim processes, a handle for the victim of the injection, and
other data. When receiving this information, the correlation engine uses VMI to
retrieve detailed data about the victim and injecting processes, including their
name, their component DLLs, and their open files. Should the victim process
not have an identifier, as is the case for victims created via NtCreateProcess,
the engine uses the victim’s process handle to recover information about the
victim. Section 5 provides low-level details of this data extraction. In the kernel-
to-process injection report, it passes details of the victim process, such as the
process identifier, name, and the name of the malicious kernel driver.

Based on the information provided by sensors, the correlation engine con-
structs a list of malicious processes and drivers. It matches attack information
provided by a NIDS with network flow endpoint records generated by the net-
work attribution sensor. When it finds a match, it extracts the name of the
process bound to the malicious connection. Using information from the host at-
tribution sensor, it determines whether or not the process has suffered from a
parasitic attack. When it finds an injection, it extracts the name of the injecting

108 A. Srivastava and J. Giffin

process or driver and adds it to the list of malicious code. Finally, it identi-
fies other benign processes infected by the malware by searching again within
the host attribution sensor’s records. The correlation engine periodically purges
records generated by the network and host attribution sensors.

5 Low-Level Implementation Details

Pyrenée is an operating prototype implemented for Windows XP SP2 victim
systems hosted in virtual machines by the Xen hypervisor version 3.2. The high-
privilege VM executing our software runs Fedora Core 9. Implementing Pyrenée
for Windows victim systems required technical solutions to challenging, low-level
problems.

5.1 Fast Network Flow Discovery

The network attribution sensor intercepts all inbound and outbound network
flows of untrusted virtual machines. To intercept packets at a fast rate, we de-
ployed the sensor’s packet filter inside the trusted VM’s kernel-space; we de-
veloped the packet filter as a Linux kernel module. To capture packets before
they exit the network, we set up our untrusted VMs to use a virtual network
interface bridged to the trusted VM. We inserted a hook into a bridge-based
packet filtering framework called ebtables [4] to view packets crossing the bridge.
Whenever the sensor’s kernel component receives a TCP SYN packet from the
hook, it notifies the userspace component to perform introspection.

5.2 Introspection

The network attribution sensor identifies local processes that are the endpoints
of network flows via virtual machine introspection. This requires the sensor’s
userspace component to inspect the runtime state of the victim system’s kernel

Processes:

Drivers:

ID ID ID

tcpip.sys

PID
Match

Return:
Process name
from EPROCESS

Linked list iteration

Linked list iteration

MODULE_ENTRY MODULE_ENTRY MODULE_ENTRY

TCBTable

Pointer

Process ID
Destination Port
Destination IP
Source Port
Source IP

Process ID
Destination Port
Destination IP
Source Port
Source IP

Process ID
Destination Port
Destination IP
Source Port
Source IP

Linked list iteration

EPROCESS EPROCESS EPROCESS

Name NameName

Fig. 3. Network connection to host-level process correlation in Windows

Automatic Discovery of Parasitic Malware 109

031

910 10

Handle Table
Pointer

Pointer
Entry

Object
Header

EPROCESS

Handle Identifier

Fig. 4. Handle resolution in Windows converts a 32-bit handle identifier into a structure

for the object referenced by the handle. Resolution operates in a manner similar to

physical address resolution via page tables.

state. Unfortunately, Windows does not store network port and process name
information in a single structure. A network driver (tcpip.sys) manages net-
work connection related information. To locate the data structure corresponding
to tcpip.sys, the sensor’s userspace component iterates across the kernel’s list
of loaded drivers to find the structure’s memory address. The driver maintains
a pointer to a structure called TCBTable, which in turn points to a linked list
of objects containing network ports and process IDs for open connections. To
convert the process ID to a process name, the component iterates across the
guest kernel’s linked list of running processes. Figure 3 illustrates the complete
process of resolving a network connection to a host-level process name.

The correlation engine uses VMI across handle tables to identify the names
of processes that receive DLL or thread injection from other, potentially mali-
cious, software. The engine knows handle identifiers because the host attribution
sensor observes IN parameters to the Windows system calls used as part of an
injection, and these parameters include handles. All handles used by a process
are maintained by the Windows kernel in handle tables, which are structured as
shown in Figure 4.

To resolve a handle to a process name, the correlation engine uses the handle
to find the corresponding EPROCESS data structure in the Windows kernel mem-
ory. Since it knows the process ID of an injecting process, the engine can find
that process’ handle table. It searches the table for the specific object identifier
recorded by the host attribution sensor. As a pleasant side-effect, this inspection
of the handle table will additionally reveal the collection of files and registries
currently open to the possibly malicious injecting process.

5.3 System Call Interpositioning and Parameter Extraction

Pyrenée’s host attribution sensor requires information about system calls used
as part of DLL or thread injection. We developed a system call interpositioning
framework deployable in Xen; this framework supports inspection of both IN and
OUT system call parameters. An IN parameter’s value is passed by the caller of
a system call while an OUT parameter’s value is filled after the execution of the
system call inside the kernel.

110 A. Srivastava and J. Giffin

Windows XP uses the fast x86 system-call instruction SYSENTER. This instruc-
tion transfers control to a system-call dispatch routine at an address specified
in the IA32 SYSENTER EIP register. Unfortunately, the Intel VTx hardware vir-
tualization design does not allow the execution of SYSENTER to cause a VM to
exit out to the hypervisor. As a result, our host attribution sensor must forcibly
gain execution control at the beginning of a system call. It alters the contents
of IA32 SYSENTER EIP to contain a memory address that is not allocated to the
guest OS. When a guest application executes SYSENTER, execution will fault to
the hypervisor, and hence to our code, due to the invalid control-flow target.

Inside the hypervisor, the sensor processes all faults due to its manipulation of
the register value. It records the system call number (stored in the eax register),
and it uses the edx register value to locate system-call parameters stored on the
kernel stack. The sensor extracts IN parameters with a series of guest memory
read operations. It uses the FS segment selector to find the Win32 thread infor-
mation block (TIB) containing the currently-executing process’ ID and thread
ID. It then modifies the instruction pointer value to point at the original address
of the system-call dispatch routine and re-executes the faulted instruction.

We use a two-step procedure to extract values of OUT parameters at system-
call return. In the first step, we record the value present in an OUT parameter at
the beginning of the system call. Since OUT parameters are passed by reference,
the stored value is a pointer. In order to know when a system call’s execution
has completed inside the kernel, we modify the return address of an executing
thread inside the kernel with a new address that is not assigned to the guest
OS. This modification occurs when intercepting the entry of the system call. In
the second step, a thread returning to usermode at the completion of a system
call will fault due to our manipulation. As before, the hypervisor receives the
fault. Pyrenée reads the values of OUT parameters, restores the original return
address, and re-executes the faulting instruction. By the end of the second step,
the host attribution sensor has values for both the IN and OUT system-call
parameters.

5.4 Address Space Construction and Switching

We create isolated address space for untrusted drivers using the Xen hypervisor
and the Windows XP 32-bit guest operating system, though our design is general
and applicable to other operating systems and hypervisors. We allocate memory
for UPT page tables transparent to the guest OS inside the hypervisor. We
then map untrusted driver code pages into the UPT and trusted kernel and
driver code into the TPT. We mark all untrusted driver code pages in TPT as
non-executable and non-writable and mark all trusted code pages in UPT as
non-executable, non-writable, and non-readable.

Pyrenée switches between the two address spaces depending upon the execu-
tion context. It manipulates the CR3 register: a hardware register that points to
the current page tables used by memory management hardware and inaccessi-
ble to any guest OS. When an untrusted driver invokes a kernel API, execution
faults into the hypervisor due the non-executable kernel code in the UPT. Inside

Automatic Discovery of Parasitic Malware 111

the hypervisor, Pyrenée verifies the legitimacy of the control flow by checking
whether the entry point into the TPT is valid. If the entry point is valid, it
switches the address space by storing the value of TPT CR3, the trusted page
table base, into CR3. If the entry point is not valid, Pyrenée records this behav-
ior as an attack and raises an alarm. Similarly, control flow transfers from TPT
to UPT fault because untrusted driver code pages are marked non-executable
inside the TPT. On this fault, Pyrenée switches the address space by storing the
untrusted page table base, UPT CR3, in the CR3 register.

Pyrenée identifies the legitimate entry points into the TPT by finding the
kernel and trusted drivers’ exported functions. These exported functions’ names
and addresses are generated from the PDB files available from Microsoft’s symbol
server. Pyrenée keeps this information in the hypervisor for the host-attribution
sensor.

5.5 Interception of Driver Loading

Pyrenée requires knowledge of drivers’ load addresses to map their code pages
into either the UPT or TPT. Since Windows dynamically allocates memory
for all drivers, these addresses change. Moreover, Windows uses multiple mech-
anisms to load drivers. Pyrenée intercepts all driver loading mechanisms. It
rewrites the kernel’s binary code on driver loading paths automatically at run-
time. It modifies the direct call instruction to the ObInsertObject kernel func-
tion by changing its target to point to a location in the guest which is not
assigned to the guest VM; it stores the original target. With this design, during
the driver loading process execution faults into the hypervisor. On the fault,
Pyrenée extracts the driver’s load address securely from the driver object and
resumes the execution at the original target location. This design provides com-
plete interpositioning of driver loading.

6 Evaluation

We tested our prototype implementation of Pyrenée to evaluate its ability to
appropriately identify malicious software on infected systems, its performance,
and its avoidance of false positives. To generate alerts notifying the correlation
engine of suspicious network activity in our test environment, we ran a network
simulator that acted as a network-based IDS.

6.1 User-Level Malware Identification

We tested Pyrenée’s ability to detect process-to-process parasitic behaviors with
the recent Conficker worm [38]. Conficker employs DLL injection to infect be-
nign processes running on the victim system. We executed Conficker inside a test
VM monitored by Pyrenée and connected to a network overseen by our NIDS
simulator. When executed, the worm ran as a process called rundll32.exe. The

112 A. Srivastava and J. Giffin

host attribution sensor recorded DLL injection behavior from rundll32.exe
targeting specific svchost processes.

When our NIDS simulator sent the IP addresses and port numbers for out-
bound malicious traffic to Pyrenée’s correlation engine, the engine then deter-
mined what malicious code on the host was responsible. It searched the network
attribution sensor’s data to extract the name of the process bound to the con-
nection’s source port, here svchost.exe. It then searched the host attribution
sensor’s data and found that svchost.exe was the victim of a parasitic DLL
injection from rundll32.exe. The correlation engine also found the names of
other executables infected by the malware, and it generated a complete listing
that could be sent to a security administrator.

We repeated these tests with the Adclicker.BA trojan and successfully de-
tected its parasitic behavior.

6.2 Kernel-Level Malware Identification

We evaluated Pyrenée’s ability to detect kernel-level parasitism by testing it with
the recent Storm worm [23]. Storm is kernel-level malware that exhibits parasitic
behaviors by injecting malicious DLLs into the benign services.exe process,
causing services.exe to launch DDoS attacks. We loaded Storm’s malicious
driver in the test VM. Since the driver is untrusted, Pyrenée loaded it into the
separate isolated address space. On the execution of the driver’s code, all kernel
APIs invoked by the driver were verified and logged by Pyrenée’s host attribution
sensor. The sensor found that the driver was performing injection via APCs, and
it recorded both the parasitic behavior and the victim process.

When our network simulator flagged the traffic made by services.exe, the
correlation engine gathered the data collected by the host and network attri-
bution sensors. The network attribution sensor determined services.exe to be
the end-point of the connection, and the host attribution sensor identified the
parasitism of the malicious driver.

6.3 Performance

We designed Pyrenée to operate at runtime, so its performance cost on an end
user’s system must remain low. We tested our prototype on an Intel Core 2
Quad 2.66 GHz system. We assigned 1 GB of memory to the untrusted Win-
dows XP SP2 VM and 3 GB combined to the Xen hypervisor and the high-
privilege Fedora Core 9 VM. We carried out CPU and memory experiments
using a Windows benchmark tool called PassMark Performance Test [24]. We
measured networking overheads using IBM Page Detailer [13] and wget. Our
experiments measured Pyrenée’s overhead during benign operations, during ac-
tive parasitic attacks, and during the isolation of a heavily-used driver in the
UPT. We executed all measurements five times and present here the median
values.

First, we measured Pyrenée’s overhead on CPU-bound and memory inten-
sive operations. Tables 3 and 4 list a collection of benchmark measurements for

Automatic Discovery of Parasitic Malware 113

Table 3. Results of CPU performance tests for unmonitored execution and for

Pyrenée’s monitoring with and without parasitic behaviors present; higher absolute

measurements are better. Percentages indicate performance loss.

Parasitic Behavior
Operations Unmonitored Present % Absent %

Integer Math (MOps/sec) 126.5 92.5 26.88 124.8 1.34

Floating Point Math (MOps/sec) 468.4 439.5 6.17 444.3 5.14

Compression (KB/sec) 1500.9 1494.7 0.41 1496.0 0.32

Encryption (MB/sec) 4.21 4.19 0.48 4.20 0.24

String Sorting (Thousand strings/sec) 1103.3 1072.2 2.82 1072.3 2.81

Table 4. Results of memory performance tests for unmonitored execution and for

Pyrenée’s monitoring with and without parasitic behaviors present; higher absolute

measurements are better. Percentages indicate performance loss.

Parasitic Behavior
Operations Unmonitored Present % Absent %

Allocate Small Block (MB/sec) 2707.4 2322.3 14.22 2704.1 0.12

Write (MB/sec) 1967.0 1931 1.83 1942.9 1.23

execution in a VM with and without Pyrenée’s monitoring. For executions in-
cluding Pyrenée, we measured performance both during execution of a DLL
injection attack against an unrelated process and during benign system opera-
tion. Our system’s performance in the absence of parasitic behavior is excellent
and largely reflects the cost of system-call tracing. Experiments including the
execution of an injection attack show diminished performance that ranges from
inconsequential to a more substantial performance loss of 27%. The additional
overhead measured during the attack occurred when Pyrenée’s host sensor identi-
fied injection behavior and harvested state information for its log. This overhead
is infrequent and occurs only when parasitic behaviors actually occur.

Next, we measured Pyrenée’s performance during network operations. Us-
ing the IBM Page Detailer, we measured the time to load a complex webpage
(http://www.cnn.com) that consisted of many objects spread across
multiple servers. The page load caused the browser to make numerous network
connections—an important test because Pyrenée’s network attribution sensor
intercepts each packet and performs introspection on SYN packets. The result,
shown in Table 5, demonstrates that the overhead of the network attribution
sensor is low. We next executed a network file transfer by hosting a 174 MB file
on a local networked server running thttpd and then downloading the file over
HTTP using wget from the untrusted VM. Table 5 shows that Pyrenée incurred
less than 3% overhead on the network transfer; we expect that this strong per-
formance is possible because its packet interception design does not require it to
queue and delay packets.

Finally, we measured the cost of our driver isolation strategy by isolating a
heavily-used driver in the UPT, forcing a high volume of page faults handled

http://www.cnn.com

114 A. Srivastava and J. Giffin

Table 5. Results of the network performance tests for unmonitored execution and for

Pyrenée’s monitoring without parasitic behaviors present; smaller measurements are

better. Percentages indicate performance loss.

Operations Unmonitored Pyrenée %

Page Loading (sec) 3.64 3.82 4.95

Network File Copy (sec) 38.00 39.00 2.63

Table 6. Effect of isolating the tcpip.sys driver on CPU operations for unmonitored

execution and for Pyrenée’s monitoring without parasitic behaviors present; higher

measurements are better. Percentages indicate performance loss.

Operations Unmonitored Pyrenée %

Integer Math (MOps/sec) 126.5 122.0 3.55

Floating Point Math (MOps/sec) 468.4 434.8 7.17

Compression (KB/sec) 1500.9 1467.5 2.23

Encryption (MB/sec) 4.21 4.11 2.38

String Sorting (Thousand strings/sec) 1103.3 1060.8 3.85

Table 7. Effect of isolating the tcpip.sys driver on memory performance for unmon-

itored execution and for Pyrenée’s monitoring without parasitic behaviors present;

higher measurements are better. Percentages indicate performance loss.

Operations Unmonitored Pyrenée %

Allocate Small Block (MB/sec) 2707.4 2649.8 2.12

Write (MB/sec) 1967.0 1922.0 2.29

Table 8. Effect of isolating the tcpip.sys driver on network performance for unmon-

itored execution and for Pyrenée’s monitoring without parasitic behaviors present;

smaller measurements are better. Percentages indicate performance loss.

Operations Unmonitored Pyrenée %

Network File Copy (sec) 38.00 51.00 34.21

by our hypervisor-level code. We isolated the networking driver tcpip.sys and
repeated our previous CPU, memory, and network performance measurements
in the new setting without active parasitic behaviors. We anticipated that CPU
and memory overheads would remain similar, but that network operations would
experience decreased performance. Tables 6, 7, and 8 provide evidence that our
intuition was correct. Given that the moderate performance cost of isolating a
driver in the UPT is borne only by operations invoking that driver’s functionality,
we believe that it represents a feasible deployment strategy for unknown and
untrusted drivers. The clear performance gain to be had by relocating known-
benign drivers in the TPT provides an incentive for driver authors to produce
verifiably-safe drivers acceptable to a driver-signing authority.

Automatic Discovery of Parasitic Malware 115

6.4 False Positive Analysis

Pyrenée finds malicious code present on an infected system whenever it receives
an alert from a NIDS; it does not detect attacks directly on its own. Hence, false
positives will be exhibited by Pyrenée only when it identifies a benign processes’
binary or a driver as malicious. We see two possible reasons for such behavior.

First, a NIDS may have false positives when distinguishing between benign
and malicious traffic, and it may mis-characterize benign traffic as malicious. In
this case, when the NIDS sends an alert along with the network-related informa-
tion, the network attribution sensor will identify the process that is bound to the
connection, and the correlation engine will mark that process as malicious. Cer-
tainly, this is a false positive. Fortunately, this problem will diminish over time as
NIDS’ false positive rates decrease [11]. Even in the case of such false positives,
Pyrenée helps an administrator meaningfully look into the actual problem by
locating the endpoint of the network traffic. We feel that this design is stronger
than an alternative that stores a whitelist of benign parasitic applications and
considers malicious parasitic behaviors to be those initiated by non-whitelisted
applications. The alternative design requires a whitelist that may not be feasible
to generate.

Second, Pyrenée could identify a benign process as malicious when a NIDS
correctly generates an alert. Absent implementation bugs, this could only be
possible if the network attribution sensor or the host attribution sensor collect
incorrect information. Benign parasitic behaviors, such as injections caused by
debugging, will not appear to be malicious unless the debugged process is using
the network in a way that appears to the NIDS as an attack.

7 Conclusions

We demonstrated the usefulness of identifying malicious code present on an
infected system during attacks. We presented techniques and a prototype sys-
tem, Pyrenée, for the automatic discovery of unknown malicious code. Pyrenée
correlates network-level events to host-level activities with the help of multi-
ple sensors and the correlation engine. When alerted by a NIDS, our system
discovered malicious code, even in the presence of parasitic malware, by corre-
lating information gathered from the host and network attribution sensors. Real
malware samples showed that Pyrenée correctly identified malicious code. Our
performance analysis demonstrated that our solution was suitable for real world
deployment.

Acknowledgment of Support and Disclaimer. We thank our shepherd,
Davide Balzarotti, and our anonymous reviewers for their extremely helpful
comments. This material is based upon work supported by National Science
Foundation contract number CNS-0845309. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors
and do not reflect the views of the NSF or the U.S. Government.

116 A. Srivastava and J. Giffin

References

1. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of

kernel data structures invariants. In: ACSAC, Anaheim, CA (December 2008)

2. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware

malware detection. In: Proceedings of the IEEE Symposium on Security and Pri-

vacy, Oakland, CA (May 2005)

3. Christodorescu, M., Sailer, R., Schales, D., Sgandurra, D., Zamboni, D.: Cloud

security is not (just) virtualization security. In: Cloud Computing Security Work-

shop, Chicago, IL (November 2009)

4. Community Developers. Ebtables, http://ebtables.sourceforge.net/ (last ac-

cessed April 15, 2010)

5. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware analysis via hardware

virtualization extensions. In: ACM CCS, Alexandria, VA (October 2008)

6. Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: Revirt: Enabling intrusion

analysis through virtual-machine logging and replay. In: OSDI, Boston, MA (De-

cember 2002)

7. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for UNIX

processes. In: IEEE Symposium on Security and Privacy, Oakland, CA (May 1996)

8. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture

for intrusion detection. In: NDSS, San Diego, CA (February 2003)

9. Giffin, J., Jha, S., Miller, B.: Detecting manipulated remote call streams. In: 11th

USENIX Security Symposium, San Francisco, CA (August 2002)

10. Giffin, J.T., Jha, S., Miller, B.P.: Efficient context-sensitive intrusion detection. In:

NDSS, San Diego, CA (February 2004)

11. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting mal-

ware infection through IDS-driven dialog correlation. In: USENIX Security Sym-

posium, Boston, MA (August 2007)

12. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of

system calls. Journal of Computer Security 6(3), 151–180 (1998)

13. IBM. Ibm page detailer,

http://www.alphaworks.ibm.com/tech/pagedetailer/download (last accessed

April 15, 2010)

14. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based

‘out-of-the-box’ semantic view. In: ACM CCS, Alexandria, VA (November 2007)

15. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden pro-

cess detection and identification using Lycosid. In: ACM VEE, Seattle, WA (March

2008)

16. Kasslin, K.: Evolution of kernel-mode malware,

http://igloo.engineeringforfun.com/malwares/

Kimmo Kasslin Evolution of kernel mode malware v2.pdf (last accessed April

15, 2010)

17. Kephart, J., Arnold, W.: Automatic extraction of computer virus signatures. In:

Virus Bulletin, Jersey, Channel Islands, UK (1994)

18. Kim, G.H., Spafford, E.H.: The design and implementation of tripwire: a file system

integrity checker. In: ACM CCS, Fairfax, VA (November 1994)

19. King, S.T., Chen, P.M.: Backtracking intrusions. In: ACM SOSP, Bolton Landing,

NY (October 2003)

20. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly

executing binaries. In: USENIX Security Symposium, San Jose, CA (August 2008)

http://ebtables.sourceforge.net/
http://www.alphaworks.ibm.com/tech/pagedetailer/download
http://igloo.engineeringforfun.com/malwares/Kimmo_Kasslin_Evolution_of_kernel_mode_malware_v2.pdf
http://igloo.engineeringforfun.com/malwares/Kimmo_Kasslin_Evolution_of_kernel_mode_malware_v2.pdf

Automatic Discovery of Parasitic Malware 117

21. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A layered archi-

tecture for detectingmalicious behaviors. In: Lippmann,R.,Kirda, E., Trachtenberg,

A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 78–97. Springer, Heidelberg (2008)

22. MSDN. Asynchronous procedure calls,

http://msdn.microsoft.com/en-us/library/ms681951VS.85.aspx (last accessed

April 15, 2010)

23. OffensiveComputing. Storm Worm Process Injection from the Windows Kernel,

http://www.offensivecomputing.net/?q=node/661 (last accessed April 15, 2010)

24. Passmark Software. PassMark Performance Test,

http://www.passmark.com/products/pt.htm (last accessed April 15, 2010)

25. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Usenix

Security, San Antonio, TA (January 1998)

26. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure

active monitoring using virtualization. In: IEEE Symposium on Security and Pri-

vacy, Oakland, CA (May 2008)

27. Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An architecture for

specification-based detection of semantic integrity violations in kernel dynamic

data. In: USENIX Security Symposium, Vancouver, BC, Canada (August 2006)

28. Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow

attacks. In: ACM CCS, Alexandria, VA (November 2007)

29. Richter, J.: Load your 32-bit DLL into another process’s address space using injlib.

Microsoft Systems Journal 9(5) (May 1994)

30. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with

VMM-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.

(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

31. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings

of USENIX LISA, Seattle, WA (November 1999)

32. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method

for detecting anomalous program behaviors. In: IEEE Symposium on Security and

Privacy, Oakland, CA (May 2001)

33. Sharif, M., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware

virtualization. In: ACM CCS, Chicago, IL (November 2009)

34. Srivastava, A., Erete, I., Giffin, J.: Kernel data integrity protection via memory

access control. Technical Report GT-CS-09-05, Georgia Institute of Technology,

Atlanta, GA (2009)

35. Srivastava, A., Giffin, J.: Tamper-resistant, application-aware blocking of malicious

network connections. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID

2008. LNCS, vol. 5230, pp. 39–58. Springer, Heidelberg (2008)

36. Staniford, S., Paxson, V., Weaver, N.: How to 0wn the internet in your spare time.

In: USENIX Security Symposium, San Francisco, CA (August 2002)

37. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity

operating systems. In: ACM SOSP, Bolton Landing, NY (October 2003)

38. ThreatExpert. Conficker/downadup: Memory injection model.

http://blog.threatexpert.com/2009/01/

confickerdownadup-memory-injection.html (last accessed April 15, 2010)

39. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi,

A. (eds.) RAID 2001. LNCS, vol. 2212, p. 54. Springer, Heidelberg (2001)

40. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight

hook protection. In: ACM CCS, Chicago, IL (November 2009)

41. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis

using cwsandbox. IEEE Security & Privacy 5(2) (March 2007)

http://msdn.microsoft.com/en-us/library/ms681951VS.85.aspx
http://www.offensivecomputing.net/?q=node/661
http://www.passmark.com/products/pt.htm
http://blog.threatexpert.com/2009/01/confickerdownadup-memory-injection.html
http://blog.threatexpert.com/2009/01/confickerdownadup-memory-injection.html

BotSwindler: Tamper Resistant Injection of Believable
Decoys in VM-Based Hosts for Crimeware Detection�

Brian M. Bowen1, Pratap Prabhu1, Vasileios P. Kemerlis1, Stelios Sidiroglou2,
Angelos D. Keromytis1, and Salvatore J. Stolfo1

1 Department of Computer Science, Columbia University
{bb2281,pvp2105,vk2209,ak2052,sjs11}@columbia.edu

2 Computer Science and Artificial Intelligence Laboratory, MIT
stelios@csail.mit.edu

Abstract. We introduce BotSwindler, a bait injection system designed to delude
and detect crimeware by forcing it to reveal during the exploitation of moni-
tored information. The implementation of BotSwindler relies upon an out-of-host
software agent that drives user-like interactions in a virtual machine, seeking to
convince malware residing within the guest OS that it has captured legitimate
credentials. To aid in the accuracy and realism of the simulations, we propose a
low overhead approach, called virtual machine verification, for verifying whether
the guest OS is in one of a predefined set of states. We present results from exper-
iments with real credential-collecting malware that demonstrate the injection of
monitored financial bait for detecting compromises. Additionally, using a compu-
tational analysis and a user study, we illustrate the believability of the simulations
and we demonstrate that they are sufficiently human-like. Finally, we provide re-
sults from performance measurements to show our approach does not impose a
performance burden.

1 Introduction

The creation and rapid growth of an underground economy that trades in stolen digital
credentials has spurred the growth of crime-driven bots that harvest sensitive data from
unsuspecting users. This form of malevolent software employs a variety of techniques
ranging from web-based form grabbing and key stroke logging, to screenshots and video
capture for the purposes of pilfering data on remote hosts to automate financial crime
[1,2]. The targets of such malware range from individual users and small companies to
the most wealthiest organizations [3]—recent studies indicate that bot infections are on
the rise and up to 9% of the machines in an enterprise are now bot-infected [4].

Traditional crimeware detection techniques rely on comparing signatures of known
malicious instances to identify unknown samples, or on anomaly-based detection tech-
niques in which host behaviors are monitored for large deviations from a baseline.

� This work was partly supported by the National Science Foundation through grants CNS-
07-14647 and CNS-09-14312. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
the NSF.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 118–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

BotSwindler: Tamper Resistant Injection of Believable Decoys 119

Unfortunately, these approaches suffer a large number of known weaknesses. Signature-
based methods can be useful when a signature is known, but due to the large number
of possible variants, learning and searching all possible signatures to identify unknown
binaries is intractable [5]. On the other hand, anomaly-based methods are susceptible
to false positives and negatives, limiting their potential utility. Consequently, a large
amount of existing crimeware now operate undetected by antivirus software. A recent
study focused of Zeus1 (the largest botnet with over 3.6 million PC infections in the US
alone [7]), revealed that the malware bypassed up-to-date antivirus software 55% of the
time [8].

Another drawback of conventional host-based antivirus software is that it typically
monitors from within the host it is trying to protect, making it vulnerable to evasion or
subversion by malware; we see an increasing number of malware attacks that disable
defenses such as antivirus software prior to undertaking some malicious activity [9].

In this work, we introduce BotSwindler, a novel system designed for the proactive
detection of credential stealing malware on VM-based hosts. BotSwindler relies upon
an out-of-host software agent to drive user simulations that are meant to convince mal-
ware residing within the guest OS that it has captured legitimate credentials. By the
nature of its out-of-host operating position, the simulator is tamper resistant and diffi-
cult to detect by malware residing within the host environment. We posit that malware
that detects BotSwindler would need to analyze the behavior of its host and decide
whether it is observing a human or not. In other words, the crimeware would need to
solve a Turing Test [10]. We assert that if attackers are forced to spend their time look-
ing at the actions on each infected host one by one to determine if they are real or not
in order to steal information, BotSwindler would be a success; the attackers’ task does
not scale. To generate simulations, BotSwindler relies on a formal language that is used
to specify a simulation of human user’s sequence of actions. The language provides a
flexible way to generate variable simulation behaviors that appear realistic. Simulations
can be tuned to mimic particular users by using various models for keystroke speed,
mouse speed and the frequency of errors made during typing.

One of the challenges in designing an out-of-host simulator lies in the ability to
detect the underlying state of the OS. That is, to verify the success or failure of mouse
and keyboard events that are passed to the guest OS. For example, if the command is
given to open a browser and navigate to a particular URL, the simulator must validate
that the URL was successfully opened before proceeding with the next command. To aid
in the accuracy and realism of the simulations, we developed a low overhead approach,
called virtual machine verification (VMV), for verifying whether the state of the guest
OS is in one of a predefined set of states.

BotSwindler aims to detect crimeware by deceptively inducing it into an observable
action during the exploitation of monitored information injected into the guest OS. To
entice attackers with information of value, the system supports a variety of different
types of bait credentials including decoy Gmail and PayPal authentication credentials,
as well as those from a large financial institution2. Our system automatically monitors

1 Zeus uses key-logging techniques to steal sensitive data such as user names, passwords, ac-
count numbers. It can be purchased on the black market for $600, complete with support and
maintenance [6].

2 By agreement, the institution requested that its name be withheld.

120 B.M. Bowen et al.

the decoy accounts for misuse to signal exploitation and thus detect the host infection
by credential stealing malware.

BotSwindler presents an instance of a system and approach that can be used to deal
with information-level attacks, regardless of their origin. In our prototype, we rely on
credentials for financial institutions because they are good examples that we can easily
evaluate, but the approach is aimed at any kind of large-scale automated harvesting of
“interesting” data — where “interesting” depends on both the environment and the mal-
ware. Although we demonstrate our system with three types of credentials, the system
can be extended to support any type of credential that can be monitored for misuse. As
one of the contributions of this work, we consider different applications of BotSwindler
including how it could be applied practically in an enterprise environment with simu-
lations and decoys adapted to the specific deployment setting. In part of doing so, we
discuss how BotSwindler can be deployed to service hosts that include those which are
not VM-based, making this approach broadly applicable.

We have implemented a prototype version of BotSwindler using a modified version
of QEMU [11] running on a Linux host. User simulation is implemented using X11
libraries and interaction with the graphical frame buffer. We demonstrate our prototype
through experiments with crimeware on a Windows guest, but BotSwindler can oper-
ate on any guest operating system supported by the underlying hypervisor or virtual
machine monitor (VMM).

1.1 Overview of Results

To demonstrate the effectiveness of BotSwindler, we tested our prototype against real
crimeware samples obtained from the wild. Our results from two separate experiments
with different types of decoy credentials show that BotSwindler succeeds in detecting
malware through attackers’ exploitation of the monitored bait. In our first experiment
with 116 Zeus samples, we received 14 distinct alerts using PayPal and Gmail decoys.
In a second experiment with 59 different Zeus samples, we received 3 alerts from our
banking decoys.

The long-term viability of BotSwindler defense largely depends on the believabil-
ity of the bait-injecting simulations by the attackers. We performed a computational
analysis to see if attackers could employ machine learning algorithms on keystrokes to
distinguish simulations. We present results from experiments running Naive Bayes and
Support Vector Machine (SVM) classifiers on real and generated timing data to show
that they produce nearly identical classification results making this kind of analysis in-
effectual for an adversary. To show that adversaries resorting to manual inspection of
the user activities would be sufficiently challenged, we evaluated the believability of
user simulations via a decoy Turing Test in which human judges were tasked with try-
ing to distinguish BotSwindler’s actions from those of a real human. The failure of the
judges to distinguish suggests BotSwindler’s simulations are convincingly human-like.
In our study with 25 human judges evaluating 10 videos of BotSwindler actions and of
a human, the judges’ average success rate was 46%, indicating the simulations provide
a good approximation of human actions.

Finally, recognizing that attackers may try to distinguish simulated behavior via per-
formance metrics, we evaluated the overhead of our approach by measuring the cost

BotSwindler: Tamper Resistant Injection of Believable Decoys 121

imposed by the virtual machine verification (VMV) technique. Our results indicate that
VMV imposes no measurable overhead, making the technique difficult to detect by
malware using performance analysis [12].

1.2 Summary of Contributions

This paper makes the following contributions:

– BotSwindler architecture: It introduces BotSwindler, a novel, accurate, efficient,
and tamper-resistant zero-day crimeware detection system. BotSwindler relies on
the use of decoy injection whereby bogus information is used to bait and de-
lude crimeware, causing it to reveal itself during the exploitation of the monitored
information.

– VMSim language: It introduces VMSim, a new language for expressing simulated
user behavior. VMSim facilitates the construction and reproduction of complex user
activity, including specifying aggregate statistical behavior.

– Virtual Machine Verification (VMV): It introduces virtual machine verification,
a low overhead approach for verifying simulation state. VMV enables robust out-
of-host user action simulation through graphical state verification.

– Real malware detection results: It presents results to show the effectiveness of
BotSwindler in detecting real malware when decoy PayPal, Gmail, and banking
credentials are injected, stolen, and exploited by the attackers.

– Statistical and information theoretic analysis: It presents the results of a compu-
tational analysis on generated keystroke timing data to show it would be difficult
to detect simulations through analysis with machine learning algorithms or entropy
measurements.

– Believability user study results: It presents user study results that show the be-
lievability of simulations created with BotSwindler’s VMSim language.

– Performance overhead results: It shows that BotSwindler imposes no measurable
overhead, hence making itself undetectable via timing measurement methods.

2 Related Work

Deception-based information resources that have no production value other than to at-
tract and detect adversaries are commonly known as honeypots. Honeypots serve as ef-
fective tools for profiling attacker behavior and to gather intelligence to understand how
attackers operate. They are considered to have low false positive rates since they are de-
signed to capture only malicious attackers, except for perhaps an occasional mistake by
innocent users. Spitzner discusses the use of honeytokens [13], which he defines as “a
honeypot that is not a computer,” citing examples that include bogus medical records,
credit card numbers, and credentials. Our work harnesses the honeytoken concept to
detect crimeware that may otherwise go undetected.

Injecting human input to detect malware has been shown to be useful by Borders
et al. [14] with their Siren system. The aim of Siren is to thwart malware that attempts

122 B.M. Bowen et al.

to blend in with normal user activity to avoid anomaly detection systems. However,
detection is performed by manually injecting human input to generate a sequence of
network requests and observing the resulting network traffic to identify differences
from the known sequences of requests; deviations are flagged as malicious. Expand-
ing upon Siren, Chandrasekaran et al. [15], developed a system to randomize generated
human input to foil potential analysis techniques that may be employed by malware.
The work by Holz et al. [1] to investigate keyloggers and dropzones, relied on execut-
ing maleware in CWSandbox [16] and automating user input with AutoIt3. However, it
was limited to ad hoc scenarios designed for the sole purpose of detecting harvesting
channels. Their approach depends on miss-configured and insecure dropzone servers to
learn about what sort of information is being stolen. While this effort did reveal lots of
interesting details about stolen information, it is limited by law and skill of the attack-
ers (i.e., they can just secure their dropzone servers). In addition, relying on simulator
software that resides within the host, such as AutoIt, provides attackers with a simple
means to detect and avoid it. In contrast to these systems, BotSwindler is difficult to
detect, automatically injects input that is designed to be believable, relies on monitored
decoy credentials for detection, and provides a platform to convince malware that it has
captured legitimate credentials.

Taint analysis is another technique that has been used to detect credential stealing
malware. Egele et al. [17] used taint analysis to track information as it is processed by
the web browser and loaded in to browser helper objects (BHOs). Their approach allows
for a human analyst to observe where information is being sent in offline analysis.
Similarly, Yin et al. [18] built Panorama, a taint tracking system that extends beyond
BHOs to handle tracking throughout multiple processes, memory swapping, and disks.
These systems may work well to track information in a system, but they do so with large
overhead (factor of 10-20 slowdown in the systems described) or contain components
that reside on the guest [18]; both these features that can be detected by malware and
used for evasion purposes.

BotSwindler injects monitored bait into VM-based hosts by simulating user activity
that is of interest to crimeware. The simulation is performed on the native OS out-
side of the VM to minimize artifacts that could be used to tip-off resident malicious
software. To keep track of the simulation state within the virtual environment, our ap-
proach relies on a form of virtual machine introspection (VMI), a concept proposed by
Garfinkel and Rosenblum [19] to describe the act of inspecting a virtual machine’s soft-
ware from outside the virtual environment. The challenge of VMI lies in overcoming
the semantic gap [20] between the two levels of abstraction represented by the VM and
the underlying service or OS. Garfinkel and Rosenblum focused on inspecting memory,
registers, device state, and other process related information to implement an attack re-
sistant host-based IDS for VMs whereby the IDS is located outside of the guest in the
virtual machine monitor (VMM). Other VMI implementations include [21,22,23], but
unlike most of these approaches, we circumvent the semantic gap and rely on artifacts
found in the VMM graphical framebuffer. To the best of our knowledge, we are the
first to focus on the verification of state for user simulations, a challenge with unique
requirements.

3 http://www.autoitscript.com

http://www.autoitscript.com

BotSwindler: Tamper Resistant Injection of Believable Decoys 123

3 BotSwindler Components

The BotSwindler architecture, as shown in Fig. 1, consists of two primary components
including a simulator engine, VMSim, and a virtual machine verification component.
Another aspect of BotSwindler (although not shown in the figure) are the monitored
decoys that we employ for detecting malware. These components are described in the
next three sections.

3.1 VMSim

BotSwindler’s user simulator component, VMSim, performs simulations that are de-
signed to convince malware residing inside the VM that command sequences are gen-
uine. We posit that successfully creating a sequence of actions that tricks the malware
into stealing and uploading a decoy credential can be achieved only if two essential
requirements are met:

1. the simulator process remains undetected by the malware
2. the actions of the simulator appear to be generated by a human

We approach the first requirement by decoupling the location of where the simulation
process is executed and where its actions are received. To do this, we run the simulator
outside of a virtual machine and pass its actions to the guest host by utilizing the X-
Window subsystem on the native host. The second requirement is addressed through
a simulation creation process that entails recording, modifying, and replaying mouse
and keyboard events captured from real users. To support this process, we leverage
the Xorg Record and XTest extension libraries for recording and replaying X-Window
events. The product is a simulator that runs on the native host producing human-like
events without introducing technical artifacts that could be used to alert malware of the
BotSwindler facade.

VMSim relies on formal language to specify the sequence of actions in the simula-
tions. Representative details of the formal language are provided in Fig. 2 (many details

Guest Operating
System

Virtualization Layer

VMV

Host Operating System

VMSim

User Actions

Decoys

Verification

Fig. 1. BotSwindler architecture

124 B.M. Bowen et al.

are omitted due to space limitations). The language provides a flexible way to generate
variable simulation behaviors and workflows, but more importantly it supports the use
of cover and carry actions; carry actions result in the injection of decoys (described
in Sect. 3.3), whereas cover actions include everything else to support the believabil-
ity of carry traffic. For example, cover actions may include the opening and editing
of a text document (WordActions) or the opening and closing of particular win-
dows (SysActions). The VerifyAction allows VMSim to interact with VMV
(described in Sect. 3.2) and provides support for conditional operations, synchroniza-
tion, and error checking. Interaction with the VMV is crucial for the accuracy of sim-
ulations because a particular action may cause random delays for which the simulation
must block on before proceeding to the next action.

�
<ActionType> : : = <WinLogin> <ActionType>

| <CoverAct ion> <ActionType> | <Car ryAc t ion> <ActionType>

| <WinLogout> | <V e r i f y A c t i o n> <ActionType> | e
<CoverAct ion> : : = <BrowserAct ion> <CoverAct ion>

| <WordAction> <CoverAct ion> | <SysAct ion> <CoverAct ion>

<BrowserAct ion> : : = <URLRequest> <BrowserAct ion>

| <OpenLink> <BrowserAct ion> | <Close>

<WordAction> : : = <NewDoc> <WordAction>

| <EditDoc> <WordAction> | <Close>

<SysAct ion> : : = <OpenWindow> | <MaxWindow>

| <MinWindow> | <CloseWindow>

<V e r i f y A c t i o n> : : = Img1 | Img2 | . . . | ImgN | Unknown
<Car ryAc t ion> : : = <P a y P a l I n j e c t > | <G m a i l I n j e c t>

| <CCIn jec t> | <U n i v I n j e c t> | <B a n k I n j e c t>
�� �

Fig. 2. VMSim language

The simulation creation process involves the capturing of mouse and keyboard events
of a real user as distinct actions. The actions that are recorded map to the constructs
of the VMSim language. Once the actions are implemented, the simulator is tuned to
mimic a particular user by using various biometric models for keystroke speed, mouse
speed, mouse distance, and the frequency of errors made during typing. These parame-
ters function as controls over the language shown in Fig. 2 and aid in creating variabil-
ity in the simulations. Depending on the particular simulation, other parameters such as
URLs or other text that must be typed are then entered to adapt each action. VMSim
translates the language’s actions into lower level constructs consisting of keyboard and
mouse functions, which are then outputted as X protocol level data that can be replayed
via the XTest extensions.

To construct biometric models for individuals, we have extended QEMU’s VMM to
support the recording of several features including keycodes (the ASCII code represent-
ing a key), the duration for which they are pressed, keystroke error rates, mouse move-
ment speed, and mouse movement distance. Generative models for keystroke timing are
created by first dividing the recorded data for each keycode pair into separate classes
where each class is determined by the distance in standard deviations from the mean.
We then calculate the distribution for each keycode sequence as the number of instances
of each class. We adapt simulation keystroke timing to profiles of individual users by
generating random times that are bounded by the class distribution. Similarly, for mouse
movements we calculate user specific profiles for speed and distance. Recorded mouse

BotSwindler: Tamper Resistant Injection of Believable Decoys 125

movements are broken down into variable length vectors that represent periods of mouse
activity. We then calculate distributions for each user using these vectors. The mouse
movement distributions are used as parameters for tuning the simulator actions. We note
that identifying the complete set of features to model an individual is an open problem.
Our selection of these features is to illustrate a feasible approach to generating statisti-
cally similar actions. In addition, these features have been useful for verifying the iden-
tify of individuals in keystroke and mouse dynamics studies [24,25]. In Sect. 4.1 we
provide a statistical and information theoretic analysis of the simulated times.

One of the advantages of using a language for the generation of simulation work-
flows is that it produces a specification that can be ported across different platforms.
This allows the cost of producing various simulation workflows to be amortized over
time. In the prototype version of BotSwindler, the task of mapping mouse and keyboard
events to language actions is performed manually. The mappings of actions to lower
level mouse and keyboard events are tied to particular host configurations. Although
we have not implemented this for the prototype version of BotSwindler, the process
of porting these mappings across hosts can be automated using techniques that rely on
graphical artifacts like those used in the VMV implementation and applying geometric
transformations to them.

Once the simulations are created, playing them back requires VMSim to have access
to the display of the guest OS. During playback, VMSim automatically detects the po-
sition of the virtual machine window and adjusts the coordinates to reflect the changes.
Although the prototype version of BotSwindler relies on the display to be open, it is
possible to mitigate this requirement by using the X virtual frame buffer (Xvfb) [26].
By doing so, there would be no requirement to have a screen or input device.

3.2 Virtual Machine Verification

The primary challenge in creating an of out-of-host user simulator is to generate human-
like events in the face of variable host responses. This task is essential for being able
to tolerate and recover from unpredictable events caused by things like the fluctua-
tions in network latency, OS performance issues, and changes to web content. Conven-
tional in-host simulators have access to OS APIs that allow them to easily to determine
such things. For example, simulations created with the popular tool AutoIt can call its
WinWait function, which can use the Win32 API to obtain information on whether a
window was successfully opened. In contrast, an out-of-host simulator has no such API
readily available. Although the Xorg Record extensions do support synchronization to
solve this sort of problem, they are not sufficient for this particular case. The Record
extensions require synchronization on an X11 window as opposed to a window of the
guest OS inside of an X11 window, which is the case for guest OS windows of a VM4.

We address this requirement by casting it as a verification problem to decide whether
the current VM state is in one of a predefined set of states. In this case, the states
are defined from select regions of the VM graphical output, allowing states to consist
of any visual artifact present in a simulation workflow. To support non-deterministic

4 This was also a challenge when we tested under VMware Unity, which exports guest OS
windows as what appear to be ordinary windows on the native host.

126 B.M. Bowen et al.

simulations, we note that each transition may end in one of several possible next states.
We formalize the VMV process over the set of transitions T , and set of states S, where
each t0, t1, ..., tn ∈ T can result in the the set of states st1, st2, ..., stn ⊆ S. The VMV
decides a state verified for a current state c, when c ∈ sti.

The choice for relying on the graphical output allows the simulator to depend on the
same graphical features a user would see and respond to, enabling more accurate sim-
ulations. In addition, information specific to a VM’s graphical output can be obtained
from outside of the guest without having to solve the semantic gap problem [20], which
requires detailed knowledge of the underlying architecture. A benefit of our approach
is that it can be ported across multiple VM platforms and guest OS’s. In addition, we
do not have to be concerned with side effects of hostile code exploiting a system and
interfering with the Win32 API like traditional in-host simulators do, because we do not
rely on it. In experiments with AutoIt scripts and in-host simulations, we encountered
cases where scripts would fail as a result of the host being infected with malware.

The VMV was implemented by extending the Simple DirectMedia Layer (SDL)
component of QEMU’s [11] VMM. Specifically, we added a hook to the sdl update
function to call a VMV monitor function. This results in the VMV being invoked
every time the VM’s screen is refreshed. The choice of invoking the VMV only during
sdl update was both to reduce the performance costs and because it is precisely
when there are updates to the screen that we seek to verify states (it is a good indicator
of user activity).

States are defined during a simulation creation process using a pixel selection tool
(activated by hotkeys) that we built into the VMM. The pixel selection tool allows the
simulation creator to select any portion of a guest OS’s screen for use as a state. In
practice, the states should be defined for any event that may cause a simulation to delay
(e.g., network login, opening an application, navigating to a web page). The size of the
screen selection is left up to the discretion of the simulation creator, but typically should
be minimized as it may impact performance. In Sect. 4.3 we provide a performance
analysis to aid in this consideration.

3.3 Trap-Based Decoys

Our trap-based decoys are detectable outside of a host by external monitors, so they do
not require host monitoring nor do they suffer the performance burden characteristic of
decoys that require constant internal monitoring (such as those used for taint analysis).
They are made up of bait information including online banking logins provided by
a collaborating financial institution, login accounts for online servers, and web based
email accounts. For the experiments in this paper, we focused on the use of decoy
Gmail, PayPal credentials, and banking credentials. These were chosen because they
are widely used and known to have underground economy value [1,27], making them
alluring targets for crimeware, yet inexpensive for us to create. The banking logins are
provided to us by a collaborating financial institution. As part of the collaboration, we
receive daily reports showing the IP addresses and timestamps for all accesses to the
accounts at any time.

The decoy PayPal and bank accounts have an added bonus that allows us to ex-
pose the credentials without having to be concerned about an attacker changing their

BotSwindler: Tamper Resistant Injection of Believable Decoys 127

password. PayPal requires multi-factor authentication to change the passwords on an
account. Yet, we do not reveal all of the attributes of an account making it difficult for
an attacker to change the authentication credentials. For the banking logins, we have
the ability to manage the usernames and passwords.

Custom monitors for PayPal and Gmail accounts were developed to leverage inter-
nal features of the services that provide the time of last login, and in the case of Gmail
accounts, the IP address of the last login. In the case of PayPal, the monitor logs into the
decoy accounts every hour to check the PayPal recorded last login. If the delta between
the times is greater than 75 seconds, the monitor triggers an alert for the account and
notifies us by email. The 75 second threshold was chosen because PayPal reports the
time to a resolution of minutes rather than seconds. The choice as to what time inter-
val to use and how frequently to poll presents significant tradeoffs that we analyze in
Sect. 4.4.

In the case of the Gmail accounts, custom scripts access mail.google.com to
parse the bait account pages, gathering account activity information. The information
includes the IP addresses for the previous 5 account accesses and the time. If there is
any activity from IP addresses other than the BotSwindler monitor’s host IP, an alert
is triggered with the time and IP of the offending host. Alerts are also triggered when
the monitor cannot login to the bait account. In this case, we conclude that the account
password was stolen (unless monitoring resumes) and maliciously changed unless other
corroborating information (like a network outage) can be used to convince otherwise.

4 Experimental Results

4.1 Statistical and Information Theoretic Analysis

In this section we present results from the statistical analysis of generated keystroke
timing information. The goal of these experiments was to see if a machine learning algo-
rithm (one that would be available to a malware sample to determine whether keystrokes
are real or not) might be able to classify keystrokes accurately into user generated or
machine generated. For these experiments, we relied on Killourhy and Maxion’s bench-
mark data set [28]. The data set was created by having 51 subjects repeatedly type the
same 10 character password, 50 times in 8 separate sessions, to create 400 samples for
each user. Accurate timestamps were recorded by using an external clock. Using this
publicly available real user data ensures that experiments can be repeated.

To evaluate VMSim’s generated timing information, we used Weka [29] for our clas-
sification experiments. We divided the benchmark data set in half and used 200 pass-
word timing vectors from each user to train Naive Bayes and Support Vector Machine
(SVM) classifiers. The remaining 200 timing vectors from each user were used as input
to VMSim’s generation process to generate 200 new timing vectors for each user. The
same 200 samples were used for testing against the generated samples in the classifica-
tion experiments. Note that we only used fields corresponding to hold times and inter-
key latencies because the rest were not applicable to this work (they can also contain
negative values). The normalized results of running the SVM and Naive Bayes classi-
fiers on the generated data and real data are presented in Figs. 3 and 4, respectively. The
results are nearly identical for these two classifiers suggesting that this particular type

mail.google.com

128 B.M. Bowen et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30 35 40 45 50

co
rr

ec
t

subject #id

actual
 vmsim

Fig. 3. SVM classification

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30 35 40 45 50

co
rr

ec
t

subject #id

actual
 vmsim

Fig. 4. Naive Bayes classification

 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

5 10 15 20 25 30 35 40 45 50
nu

m
be

r
of

 b
its

subject #id

actual
 vmsim

Fig. 5. Entropy of generated and actual timing data.

of analysis would not be useful for an attacker attempting to distinguish the real from
generated actions. In Fig. 5, we present a comparison of entropy values (the amount of
information or bits required to represent the data) [30] for the actual and generated data
for each of the 200 timing vectors of the 51 test subjects. The results indicate that there
is no loss of information in our generation process that would be useful by an adversary
that is attempting distinguish real from generated actions.

4.2 Decoy Turing Test

We now discuss the results of a Turing Test [10] to demonstrate BotSwindler’s per-
formance regarding the humanness, or believability, of the generated simulations. The
point of this experiments is to show that adversaries resorting to manual inspection
of the user activities would be sufficiently challenged. Though the simulations are de-
signed to delude crimware, here we focus on convincing humans, a task we posit to
be a more difficult feat, making the adversaries task of designing malware that dis-
cerns decoys far more difficult. To conduct this study, we formed a pool of 25 human
judges, consisting of security-minded PhDs, graduate-level students, and security pro-
fessionals. Their task was to observe a set of 10 videos that capture typical user actions
performed on a host and make a binary decision about each video: real or simulated
(i.e., whether the video shows the actions of a real user or those of a simulator). Our
goal was to demonstrate the believability of the simulated actions by showing failure of

BotSwindler: Tamper Resistant Injection of Believable Decoys 129

human judges to reliably distinguish between authentic human actions and those gener-
ated with BotSwindler. Our videos contained typical user actions performed on a host
such as composing and sending an email message through Gmail, logging into a website
of a financial institution such as Citibank or PayPal, and editing text document using
Wordpad. For each scenario we generated two videos: one that captured the task per-
formed by a human and another one that had the same task performed by BotSwindler.
Each video was designed to be less than a minute long since we assumed that our judges
would have limited patience and would not tolerate long-running simulations.

The human generated video samples were created by an independent user who was
asked to perform sets of actions which were recorded with a desktop recording tool
to obtain the video. Similar actions by another user were used to generate keystroke
timing and error models, which could then be used by VMSim to generate keystroke
sequences. To generate mouse movements, we rely on movements recorded from a
real user. Using these, we experimentally determine upper and lower bounds for mouse
movement speed and replay the movements from the real user, but with a new speed
randomized within the determined limits. The keyboard and mouse sequences were
merged with appropriate simulator parameters such as credentials and URLs to form
the simulated sequence which was used to create the decoy videos.

Figure 6 summarizes the results for each of the 10 videos. The videos are grouped in
per-scenario pairs in which the left bars correspond to simulated tasks, while the right
bars correspond to the tasks of authentic users on which the simulations are based. The
height of the bars reflects the number of judges that correctly identified the given task
as real or simulated. The overall success rate was ∼46%, which indicates that VMSim
achieves a good approximation of human behavior. The ideal success rate is 50%, which
suggests that judges cannot differentiate whether a task is simulated or real.

Figure 7 illustrates the overall performance of each judge separately. The judges’ cor-
rectness varies greatly from 0% up to 90%. This variability can be attributed to the fact
that each judge interprets the same observed feature differently. For example, since VM-
Sim uses real user actions as templates to drive the simulation, it is able to include ad-
vanced “humanized” actions inside simulations, such as errors in typing (e.g., invalid
typing of a URL that is subsequently corrected), TAB usage for navigating among form
fields, auto-complete utilization, and so forth. However, the same action (e.g., TAB us-
age for navigating inside the fields of a web form) is assumed by some judges as a
real human indicator, while some others take it as a simulation artifact. This observa-
tion is clearly a “toss up” as a distinguishing feature. An important observation is that
even highly successful judges could not achieve a 100% accuracy rate. This indicates
that given a diverse and plentiful supply of decoys, our system will be believable at
some time. In other words, given enough decoys, BotSwindler will eventually force the
malware to reveal itself. We note that there is a “bias” towards the successful identi-
fication of bogus videos compared to real videos. This might be due to the fact that
most of the judges guess “simulated” when unsure, due to the nature of the experiment.
Despite this bias, results indicate that simulations are highly believable by humans. In
cases where they may not be, it is important to remember that the task of fooling hu-
mans is far harder than tricking malware, unless the adversary has solved the AI prob-
lem and designed malware to answer the Turing Test. Furthermore, if attackers have to

130 B.M. Bowen et al.

 0

 20

 40

 60

 80

 100

Citibank

G
m

ail

Paypal

Paypal #2

W
ordpad

m
ean

co
rr

ec
t (

%
)

video pairs

bogus
real

Fig. 6. Decoy Turing Test results: real vs.
simulated

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 m
ean

co
rr

ec
t (

%
)

judge #id

Fig. 7. Judges’ overall performance

spend their time looking at the actions one by one to determine if they are real or not, we
consider BotSwindler a success because that approach does not scale for the adversary.

4.3 Virtual Machine Verification Overhead

The overhead of the VMV in BotSwindler is controlled by several parameters including
the number of pixels in the screen selections, the size of the search area for a selection,
the number of possible states to verify at each point of time, and the number of pixels re-
quired to match for positive verification. A key observation responsible for maintaining
low overhead is that the majority of the time, the VMV process results in a negative ver-
ification, which is typically obtained by inspecting a single pixel for each of the possible
states to verify. The performance cost of this result is simply that of a few instructions
to perform pixel comparisons. The worst case occurs when there is a complete match
in which all pixels are compared (i.e., all pixels up to some predefined threshold). This
may result in thousands of instructions being executed (depending on the particular
screen selection chosen by the simulation creator), but it only happens once during the
verification of a particular state. It is possible to construct a scenario in which worse
performance is obtained by choosing screen selections that are common (e.g., found on
the desktop) and almost completely matches but results in a negative VMV outcome. In
this case, obtaining a negative VMV result may cost hundreds of thousands of CPU cy-
cles. In practice, we have not found this scenario to occur; moreover, it can be avoided
by the simulation creator.

In Table 1, we present the analysis of the overhead of QEMU5 with the BotSwindler
extensions. The table presents the amount of time, in seconds, to load web pages on
our test machine (2.33GHz Intel Core 2 Duo with 2GB 667MHz DDR2 SDRAM) with
idle user activity. The results include the time for a native OS, an unmodified version
of QEMU (version 0.10.5) running Windows XP, and QEMU running Windows XP
with the VMV processing a verification task (a particular state defined by thousands of
pixels).

5 QEMU does not support graphics acceleration, so all processing is performed by the CPU.

BotSwindler: Tamper Resistant Injection of Believable Decoys 131

Table 1. Overhead of VMV with idle user

Min. Max. Avg. STD
Native OS .48 .70 .56 .06

QEMU .55 .95 .62 .07
QEMU w/VMV .52 .77 .64 .07

Table 2. Overhead of VMV with active user

Min. Max. Avg. STD
Native OS .50 .72 .56 .06

QEMU .57 .96 .71 .07
QEMU w/VMV .53 .89 .71 .06

In Table 2, we present the results from a second set of tests where we introduce rapid
window movements forcing the screen to constantly be refreshed. By doing this, we
ensure that the BotSwindler VMV functions are repeatedly called. The results indicate
that the rapid movements do not impact the performance on the native OS, whereas in
the case of QEMU they result in a ∼15% slowdown. This is likely because QEMU does
not support graphics acceleration, so all processing is performed by the CPU. The time
to load the web pages on QEMU with the VMV is essentially the same as without it.
This is true whether the tests are done with or without user activity. Hence, we conclude
that the performance overhead of the VMV is negligible.

4.4 PayPal Decoy Analysis

The PayPal monitor relies on the time differences recorded by the BotSwindler moni-
toring server and the PayPal service for a user’s last login. The last login time displayed
by the PayPal service is presented with a granularity of minutes. This imposes the con-
straint that we must allow for at least one minute of time between the PayPal monitor,
which operates with a granularity of seconds, and the PayPal service times. In addition,
we have observed that there are slight deviations between the times that can likely be at-
tributed to time synchronization issues and latency in the PayPal login process. Hence,
it is useful to add additional time to the threshold used for triggering alerts (we make it
longer than the minimum resolution of one minute).

Another parameter that influences the detection rate is the frequency at which the
monitor polls the PayPal service. Unfortunately, it is only possible to obtain the last lo-
gin time from the PayPal service, so we are limited to detecting a single attack between
polling intervals. Hence, the more frequent the polling, the greater the number of attacks
on a single account that we can detect and the quicker an alert can be generated after an
account has been exploited. However, the fact that we must allow for a minimum of one
minute between the PayPal last login time and the BotSwindler monitor’s, implies we
must consider a significant tradeoff. The more frequent the polling, the greater the like-
lihood is for false negatives due to the one minute window. In particular, the likelihood
of a false negative is:

PFN =
length of window
polling interval

.

Table 3 provides examples of false negative likelihoods for different polling frequencies
using a 75 second threshold. These rates assume only a single attack per polling interval.
We rely on this threshold because we experimentally determined that it exhibits no
false positives. For the experiments described in Sect. 4.5, we use the 1 hour polling
frequency because we believe it provides an adequate balance (the false negative rate is
relatively low and the alerts are generated quickly enough).

132 B.M. Bowen et al.

Table 3. PayPal decoy false negative likelihoods

Polling Frequency False Negative Rate
.5 hour .0417
1 hour .0208

24 hour .0009

4.5 Detecting Real Malware with Bait Exploitation

To demonstrate the efficacy of our approach, we conducted two experiments using
BotSwindler against crimeware found in the wild. For the first experiment, we injected
Gmail and PayPal decoys, and for second, we used decoy banking logins. The exper-
iments relied on Zeus because it is the largest botnet in operation. Zeus is sold as a
crimeware kit allowing malicious individuals to create and configure their own unique
botnets. Hence, it functions as a payload dissemination framework with a large number
of variants. Despite the abundant supply of Zeus variants, many are no longer functional
because they require active command and control servers to effectively operate. This re-
quirement gives Zeus a relatively short life span because these services become inactive
(e.g., they are on a compromised host that is discovered and sanitized). To obtain active
Zeus variants, we subscribed to an active feed of binaries at the Swiss Security blog,
which has a Zeus Tracker [6] and Offensive Computing6.

In our first experiment, we used 5 PayPal decoys and 5 Gmail decoys. We deliber-
ately limited the number of accounts to avoid upsetting the providers and having our
access removed. After all, the use of these accounts as decoys requires us to contin-
uously poll the servers for unauthorized logins as described in Sect. 4.4, which could
become problematic with a large number of accounts. To further limit the load on the
services, we limited the BotSwindler monitoring to once every hour.

We constructed a BotSwindler sandbox environment so that any access to
www.paypal.com would be routed to a decoy website that replicates the look-and-
feel of the true PayPal site. This was done for two reasons. First, if BotSwindler ac-
cessed the real PayPal site, it would be more difficult for the monitor to differentiate
access by the simulator from an attacker, which could lead to false positives. More im-
portantly, hosting a phony PayPal site enabled us to control attributes of the account
(e.g., balance and verified status) to make them more enticing to crimeware. We lever-
aged this ability to give each of our decoy accounts unique balances in the range of
$4,000 - $20,000 USD, whereas in the true PayPal site, they have no balance. In the
case of Gmail, the simulator logs directly into the real Gmail site, since it does not
interfere with monitoring of the accounts (we can filter on IP) and there is no need to
modify account attributes.

The decoy PayPal environment was setup by copying and slightly modifying the
content from www.paypal.com to a restricted lab machine with internal access only.
The BotSwindler host machine was configured with NAT rules to redirect any access
directed to the real PayPal website to our test machine. The downside of using this setup
is that we lack a certificate to the www.paypal.com domain signed by a trusted

6 http://www.offensivecomputing.net

www.paypal.com
www.paypal.com
www.paypal.com
http://www.offensivecomputing.net

BotSwindler: Tamper Resistant Injection of Believable Decoys 133

Certificate Authority. To mitigate the issue, we used a self-signed certificate that is
installed as a trusted certificate on the guest. Although this is a potential distinguishing
feature that can be used by malware to detect the environment, existing malware is
unlikely to check for this. Hence, it remains a valid approach for demonstrating the use
of decoys to detect malware in this proof of concept experiment. The banking logins
used in the second experiment do not have this limitation, but they may not have the
same broad appeal to attackers that make PayPal accounts so useful.

The experiments worked by automating the download and installation of individ-
ual malware samples using a remote network transfer. For each sample, BotSwindler
conducted various simulations designed from the VMSim language to contain inject
actions, as well as other cover actions. The simulator was run for approximately 20 min-
utes on each of the 116 binaries that were tested with the goal of determining whether
attackers would take and exploit the bait credentials. Over the course of five days of
monitoring, we received thirteen alerts from the PayPal monitor and one Gmail alert.
We ended the study after five days because the results obtained during this period were
enough to convince us the system worked7. The Gmail alert was for a Gmail decoy ID
that was also associated with a decoy PayPal account; the Gmail username was also a
PayPal username and both credentials were used in the same workflow (we associate
multiple accounts to make a decoy identity more convincing). Given that we received
an alert for the PayPal ID as well, it is likely both sets of credentials were stolen at the
same time. Although the Gmail monitor does provide IP address information, we could
not obtain it in this case. This particular alert was generated because Gmail detected
suspicious activity on the account and locked it, so the intruder never got in.

We attribute the fewer Gmail alerts to the economics of the black market. Although
Gmail accounts may have value for activities such as spamming, they can be purchased
by the thousands for very little cost8 and there are inexpensive tools that can be used
to create them automatically. Hence, attackers have little incentive to build or purchase
a malware mechanism, and to find a way to distribute it to many victims, only to net a
bunch of relatively valueless Gmail accounts. On the other hand, high-balance verified
PayPal accounts represent something of significant value to attackers. The 2008 Syman-
tec Global Internet Security Threat Report [27] lists bank accounts as being worth $10-
$1000 on the underground market, depending on balance.

For the PayPal alerts that were generated, we found that some alerts were triggered
within an hour after the corresponding decoy was injected, where other alerts occurred
days after. We believe this variability to be a consequence of attackers manually testing
the decoys rather than testing through some automatic means. In regards to the quantity
of alerts generated, there are several possible explanations that include:

– as a result of the one-to-many mapping between decoys and binaries, the decoys
are exfiltrated to many different dropzones where they are then tested

– the decoy accounts are being sold and resold in the underground market where first
the dropzone owner checks them, then resell them to others, who then resell them
to others who check them

7 We ended the study after 5 days, but a recent examination of the monitoring logs revealed
alerts still being generated months after.

8 We have found Gmail accounts being sold at $20 per 1000.

134 B.M. Bowen et al.

While the second case is conceivable for credentials of true value, our decoys lack
any balance. Hence, we believe that once this fact is revealed to the attacker during
the initial check, the attackers have no reason to keep the credentials or recheck them
(lending support for the first case). We used only five PayPal accounts with a one-to-
many mapping to binaries, making it impossible to know exactly which binary triggered
the alert and which scenario actually occurred. We also note that the number of actual
attacks may be greater than what was actually detected. The PayPal monitor polls only
once per hour, so we do not know when there are multiple attacks in a single hour.
Hence, the number of attacks we detected is a lower bound. In addition, despite our
efforts to get active binaries, many were found to be inactive, some cause the system to
fail, and some have objectives other than stealing credentials.

In the second experiment, we relied on several bank accounts containing balances
over $1,000 USD. In contrast with the PayPal experiments, this experiment relied on an
actual bank website with authentic SSL certificates. The bank account balances were
frozen so that money could not actually be withdrawn. We ran the simulator for approx-
imately 10 minutes on 59 new binaries. Over the course of five days of monitoring, we
received 3 alerts from the collaborating financial institution. The point of these exper-
iments is to show that decoy injection can be useful tool for detecting crimeware that
can be difficult to detect through traditional means. These results validate the use of
financial decoys for detecting crimeware. A BotSwindler system fully developed as a
deployable product would naturally include many more decoys and a management sys-
tem that would store information about which decoy was used and when it was exposed
to the specific tested host.

5 Applications of BotSwindler in an Enterprise

Beyond the detection of malware using general decoys, BotSwindler is well suited for
use in an enterprise environment where the primary goal is to monitor for site-specific
credential misuse and to profile attackers targeting that specific environment. Since the
types of credentials that are used within an enterprise are typically limited to business
applications for specific job functions, rather than general purpose uses, it is feasible
for BotSwindler to provide complete test coverage in this case. For example, typical
corporate users have a single set of credentials for navigating their company intranet.
Corporate decoy credentials could be used by BotSwindler in conducting simulations
modeled after individuals within the corporation. These simulations may emulate sys-
tem administrative account usage (i.e., logging in as root), access to internal databases,
editing of confidential documents, navigating the internal web, and other workflows
that apply internally. Furthermore, software monocultures with similar configurations,
such as those found in an enterprise, may simplify the task of making a single instance
of BotSwindler operable across multiple hosts.

Within the enterprise environment, BotSwindler can run simulations on a user’s sys-
tem when it is idle (e.g., during meetings, at night). Although virtual machines are com-
mon in enterprise environments, in cases where they are not used, they can be created
on demand from a user’s native environment. One possible application of BotSwindler
is in deployment as an enterprise service that runs simulations over exported copies of

BotSwindler: Tamper Resistant Injection of Believable Decoys 135

multiple users’ disk images. In another approach, a user’s machine state could be syn-
chronized with the state of a BotSwindler enabled virtual machine [31]. In either case,
BotSwindler can tackle the problem of malware performing long-term corporate recon-
naissance. For example, malware might attempt to steal credentials only after they have
been repeatably used in the past. This elevates the utility of BotSwindler from a general
malware detector to one capable of detecting targeted espionage software.

The application of BotSwindler to an enterprise would require adaptation for site-
specific things (e.g, internal URLs), but use of specialized decoys does not preclude
the use of general decoys like those detailed in Sect. 3.3. General decoys can help the
organization identify compromised internal users that could be, in turn, the target of
blackmail, either with traditional means or through advanced malware [32].

6 Limitations and Future Work

Our approach of detecting malware relies on the use of deception to trick malware
to capture decoy credentials. As part of this work, we evaluated the believability of
the simulations, but we did so in a limited way. In particular, our study measured the
believability of short video clips containing different user workflows. These types of
workflows are adequate for the detection of existing threats using short-term deception,
but for certain use cases (such as the enterprise service) it is necessary to consider long-
term deception, and the believability of simulation command sequences over extended
periods of time. For example, adversaries conducting long-term reconnaissance on a
system may be able to discover some invariant behavior of BotSwindler that can be
used to distinguish real actions from simulated actions, and thus avoid detection. To
counter this threat, more advanced modeling is needed to be able to emulate users over
extended periods of time, as well as a study that considers the variability of actions over
time. For long-term deception, the types of decoys used must also be considered. For
example, some malware may only accept as legitimate those credentials that it has seen
several times in the past. We can have “sticky” decoy credentials of course, but that
negates one of their benefits (determining when a leak happened).

Malware may also be able to distinguish BotSwindler from ordinary users by at-
tempting to generate bogus system events that cause erratic system behavior. These can
potentially negatively impact a simulation and cause the simulator to respond in ways
a real user would not. In this case, the malware may be able to distinguish between
authentic credentials and our monitored decoys. Fortunately, erratic events that result in
workflow deviations or simulation failure are also detectable by BotSwindler because
they result in a state that cannot be verified by the VMV. When BotSwindler detects
such events, it signals the host is possibly infected. The downside of this strategy is
that it may result in false positives. As part our future work we will investigate how to
measure and manage this threat using other approaches that ameliorate this weakness.

7 Conclusion

BotSwindler is a bait injection system designed to delude and detect crimeware by forc-
ing it to reveal itself during the exploitation of monitored decoy information. It relies on

136 B.M. Bowen et al.

an out-of-host software agent to drive user-like interactions in a virtual machine aimed
at convincing malware residing within the guest OS that it has captured legitimate cre-
dentials. As part of this work we have demonstrated BotSwindler’s utility in detecting
malware by means of monitored financial bait that is stolen by real crimeware found in
the wild and exploited by the adversaries that control that crimeware. In anticipation of
malware seeking the ability to distinguish simulated actions from human actions, we de-
signed our system to be difficult to detect by the underlying architecture and the believ-
able actions it generates. We performed a computational analysis to show the statistical
similarities of simulations to real actions conducted. To demonstrate the believability of
the simulations by humans, we conducted a Turing Test that showed we could succeed
in convincing humans about 46% of the time. Finally, Botwindler has been shown to
be an effective and efficient automated tool to deceive and detect crimeware.

References

1. Holz, T., Engelberth, M., Freiling, F.: Learning More About the Underground Economy: A
Case-Study of Keyloggers and Dropzones. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 1–18. Springer, Heidelberg (2009)

2. Stahlberg, M.: The Trojan Money Spinner. In: 17th Virus Bulletin International Conference
(VB) (September 2007), http://www.f-secure.com/weblog/archives/
VB2007 TheTrojanMoneySpinner.pdf

3. Researcher Uncovers Massive, Sophisticated Trojan Targeting Top Businesses. Darkreading
(July 2009),
http://www.darkreading.com/database security/security/privacy/
showArticle.jhtml?articleID=218800077

4. Higgins, K.J.: Up To 9 Percent Of Machines In An Enterprise Are Bot-Infected. Darkreading
(September 2009),
http://www.darkreading.com/insiderthreat/security/client/
showArticle.jhtml?articleID=220200118

5. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the Infeasibility of
Modeling Polymorphic Shellcode. In: 14th ACM Conference on Computer and Communi-
cations Security (CCS), pp. 541–551. ACM, New York (2007)

6. Blog, T.S.S.: ZeuS Tracker, https://zeustracker.abuse.ch/index.php
7. Messmer, E.: America’s 10 most wanted botnets. Network World (July 2009),

http://www.networkworld.com/news/2009/072209-botnets.html
8. Measuring the in-the-wild effectiveness of Antivirus against Zeus. Technical report, Trusteer

(September 2009),
http://www.trusteer.com/files/Zeus_and_Antivirus.pdf

9. Ilett, D.: Trojan attacks Microsoft’s anti-spyware (February 2005),
http://news.cnet.com/Trojan-attacks-Microsofts-anti-spyware/
2100-7349 3-5569429.html

10. Turing, A.M.: Computing Machinery and Intelligence. Mind, New Series 59(236), 433–460
(1950)

11. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: USENIX Annual Technical
Conference, pp. 41–46. USENIX Association, Berkeley (April 2005)

12. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is Not Transparency:
VMM Detection Myths and Realities. In: 11th Workshop on Hot Topics in Operating System
(HotOS). USENIX Association, Berkeley (May 2007)

http://www.f-secure.com/weblog/archives/VB2007_TheTrojanMoneySpinner.pdf
http://www.f-secure.com/weblog/archives/VB2007_TheTrojanMoneySpinner.pdf
http://www.darkreading.com/database_security/security/privacy/showArticle.jhtml?articleID=218800077
http://www.darkreading.com/database_security/security/privacy/showArticle.jhtml?articleID=218800077
http://www.darkreading.com/insiderthreat/security/client/showArticle.jhtml?articleID=220200118
http://www.darkreading.com/insiderthreat/security/client/showArticle.jhtml?articleID=220200118
https://zeustracker.abuse.ch/index.php
http://www.networkworld.com/news/2009/072209-botnets.html
http://www.trusteer.com/files/Zeus_and_Antivirus.pdf
http://news.cnet.com/Trojan-attacks-Microsofts-anti-spyware/2100-7349_3-5569429.html
http://news.cnet.com/Trojan-attacks-Microsofts-anti-spyware/2100-7349_3-5569429.html

BotSwindler: Tamper Resistant Injection of Believable Decoys 137

13. Spitzner, L.: Honeytokens: The Other Honeypot (July 2003),
http://www.securityfocus.com/infocus/1713

14. Borders, K., Zhao, X., Prakash, A.: Siren: Catching Evasive Malware. In: IEEE Symposium
on Security and Privacy (S&P), pp. 78–85. IEEE Computer Society, Washington (May 2006)

15. Chandrasekaran, M., Vidyaraman, S., Upadhyaya, S.: SpyCon: Emulating User Activities
to Detect Evasive Spyware. In: Performance, Computing, and Communications Conference
(IPCCC), pp. 502–509. IEEE Computer Society, Los Alamitos (May 2007)

16. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis Using
CWSandbox. In: IEEE Symposium on Security and Privacy (S&P), pp. 32–39. IEEE Com-
puter Society, Washington (March 2007)

17. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic Spyware Analysis. In: USENIX
Annual Technical Conference, pp. 233–246. USENIX Association, Berkeley (June 2007)

18. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing System-wide In-
formation Flow for Malware Detection and Analysis. In: 14th ACM Conference on Computer
and Communications Security (CCS), pp. 116–127. ACM, New York (2007)

19. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In: 10th Annual Network and Distributed System Security Symposium
(NDSS). Internet Society, Reston (February 2003)

20. Chen, P.M., Noble, B.D.: When Virtual Is Better Than Real. In: 8th Workshop on Hot Top-
ics in Operating System (HotOS), pp. 133–138. IEEE Computer Society, Washington (May
2001)

21. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: Tracking Processes
in a Virtual Machine Environment. In: USENIX Annual Technical Conference, pp. 1–14.
USENIX Association, Berkeley (March 2006)

22. Jiang, X., Wang, X.: “Out-of-the-Box” Monitoring of VM-Based High-Interaction Honey-
pots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
198–218. Springer, Heidelberg (2007)

23. Srivastava, A., Giffin, J.: Tamper-Resistant, Application-Aware Blocking of Malicious Net-
work Connections. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 39–58. Springer, Heidelberg (2008)

24. Monrose, F., Rubin, A.: Authentication via Keystroke Dynamics. In: 4th ACM Conference
on Computer and Communications Security (CCS). ACM, New York (April 1997)

25. Ahmed, A.A.E., Traore, I.: A New Biometric Technology Based on Mouse Dynamics. IEEE
Transactions on Dependable and Secure Computing (TDSC) 4(3), 165–179 (2007)

26. The XFree86 Project: XVFB(1), http://www.xfree86.org/4.0.1/Xvfb.1.html
27. Symantec: Trends for July - December 2007. White paper (April 2008)
28. Killourhy, K.S., Maxion, R.A.: Comparing Anomaly Detectors for Keystroke Dynamics. In:

39th Annual International Conference on Dependable Systems and Networks (DSN). IEEE
Computer Society Press, Los Alamitos (June-July 2009)

29. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter 11(1), 10–18
(2009)

30. Lee, W., Xiang, D.: Information-Theoretic Measures for Anomaly Detection. In: IEEE Sym-
posium on Security and Privacy (S&P), pp. 130–143. IEEE Computer Society, Washington
(2001)

31. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus: High
Availability via Asynchronous Virtual Machine Replication. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pp. 161–174. USENIX Associa-
tion, Berkeley (April 2008)

32. Bond, M., Danezis, G.: A Pact with the Devil. In: New Security Paradigms Workshop
(NSPW), pp. 77–82. ACM, New York (September 2006)

http://www.securityfocus.com/infocus/1713
http://www.xfree86.org/4.0.1/Xvfb.1.html

CANVuS: Context-Aware Network Vulnerability
Scanning

Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

Computer Science and Engineering, University of Michigan
2260 Hayward St., Ann Arbor, Michigan 48109, USA

{yunjing,mibailey,ericvw,farnam}@eecs.umich.edu

Abstract. Enterprise networks face a variety of threats including worms, viruses,
and DDoS attacks. Development of effective defenses against these threats re-
quires accurate inventories of network devices and the services they are running.
Traditional vulnerability scanning systems meet these requirements by periodi-
cally probing target networks to discover hosts and the services they are running.
This polling-based model of vulnerability scanning suffers from two problems
that limit its effectiveness—wasted network resources and detection latency that
leads to stale data. We argue that these limitations stem primarily from the use
of time as the scanning decision variable. To mitigate these problems, we in-
stead advocate for an event-driven approach that decides when to scan based on
changes in the network context—an instantaneous view of the host and network
state. In this paper, we propose an architecture for building network context for
enterprise security applications by using existing passive data sources and com-
mon network formats. Using this architecture, we built CANVuS, a context-aware
network vulnerability scanning system that triggers scanning operations based on
changes indicated by network activities. Experimental results show that this ap-
proach outperforms the existing models in timeliness and consumes much fewer
network resources.

1 Introduction

Users in modern enterprise networks are assailed with spyware that snoops on their
confidential information, spam that floods their e-mail accounts, and phishing scams
that steal their identities. Network operators, whose goal is to protect these users and
the enterprise’s resources, make use of intrusion detection/prevention systems [22, 23],
firewalls, and antivirus software to defend against these attacks. To be effective, the
deployment and configuration of these systems require accurate information about the
devices in the network and the services they are running. While both passive network-
based and host-based methods for building these inventories exist, the most prevalent
method of assessment continues to be active network-based vulnerability scanning. In
this model, a small number of scanners enumerate the potential hosts in a network by
applying a variety of tests to determine what applications and versions are being run
and whether these services are vulnerable. For very large networks, scanning can take a
significant amount of time (e.g., several weeks) and consume a large amount of network
resources (e.g., Mbps). As a result, network operators frequently choose to run these
scans only periodically.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 138–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

CANVuS: Context-Aware Network Vulnerability Scanning 139

Unfortunately, the dynamics of a hosts’ mobility, availability and service configura-
tions exacerbate the problem of when vulnerability scanning should take place. We de-
fine the knowledge of these changes as the context of the network. A context insensitive
model for vulnerability scanning suffers from wasted resources (e.g., time, bandwidth,
etc.) and the observation of stale data. For example, often the network operators who are
responsible for protecting the network do not have full control over the placement and
availability of hosts in the network. Addresses may be allocated to departments within
the organization who use the addresses in different ways, leaving the network operators
with little insight into what addresses are allocated or unallocated. Furthermore, these
departments themselves often have little control over how their users make use of these
resources and even known, allocated IP addresses and hosts may exhibit availability
patterns that are difficult to predict. As a result, network operators spend resources and
time scanning IP addresses that have not been allocated or for hosts that are unavailable.

In addition, network operators have limited visibility into what services are being run
on these hosts because they are typically managed by different administrators. Without
the knowledge about the context, the accuracy of detecting these services and their con-
figurations is bound by the frequency of scanning. As a result, any change that occurs
since the last scan will obviously not be visible until the next scanning iteration. The
rapid occurrence of new, active exploits, announced vulnerabilities, and available soft-
ware patches, along with the dynamic nature of how users utilize the network, suggest
that even small drifts in these inventories may result in a large security impact for the
organization. Furthermore, the assumption that services remain relatively static over a
short period of time is increasingly flawed. The emergence of peer-to-peer, voice-over-
ip, messaging, and entertainment applications have led to a large number of dynamic
services on these hosts. Periodically scanning, by its very nature, only captures a snap-
shot of those services that are active at an instant in time and it may miss many other
important services.

To solve these problems, we introduce a context-aware architecture that provides a
uniform view of network states and their changes. The architecture makes use of exist-
ing sources of host behavior across a wide variety of network levels including the link,
network, transport, and application layers. Diverse data formats such as syslog, SNMP,
and Netflow representing activities at these layers are used to generate abstract views
that represent important network activities (e.g., a host connecting to the network, a new
subnet allocated, a new binary in use). Instead of scanning all the hosts in the network at
the same frequency, periodic scanning in our architecture selectively scans hosts based
on their availability patterns. Moreover, these abstract views are used to create events
about host configuration changes (e.g., users connecting to a new service, downloads
from update sites, and reboots) to trigger active scanning. Thus, this approach is inher-
ently interrupt driven and this event-based model, on top of the context-aware archi-
tecture, provides more timely and accurate results. In contrast, scanning periodically
at a higher frequency would be the alternative, but would require substantially more
resources.

To demonstrate the effectiveness of this architecture, a prototype system is con-
structed and deployed in a large academic network consisting of several thousand ac-
tive hosts distributed across a /16 and a /17 network. Evaluation of this architecture

140 Y. Xu et al.

over a 16-day period in March of 2010 illustrates that CANVuS outperforms existing
techniques in detection latency and accuracy with a much fewer number of scans. The
experimental results also reveal several problems of the current methodology including
the lack of ground truth and the limited event types, both of which will be addressed in
future work.

The rest of this paper is organized as follows: § 2 discusses research papers and
commercial products that relate to enterprise network security, especially vulnerabil-
ity assessment, and how our system differs from existing solutions. § 3 discusses our
year-long evaluation of the university’s scanning activities that lead to our current re-
search. § 4 has an in-depth description of our context-aware architecture. Details of the
CANVuS system implementation on this architecture is presented in § 5. § 6 describes
the evaluation of CANVuS and the context-aware architecture. § 7 discusses the risks
involved in this project and our mitigation efforts. The limitations and future work are
explored in § 8. Finally, § 9 concludes the paper.

2 Related Work

A variety of security software solutions and appliances have been proposed to defend
against the threats faced by enterprise networks. These fall roughly into those focused
on real-time, reactive detection and prevention and those based on proactive risk iden-
tification and policy enforcement. Network-based, real-time detection and prevention
solutions, such as intrusion detection systems [22, 23] are deployed at natural aggrega-
tion points in the network to detect or stop attacks buried in network packets by applying
known signatures for malicious traffic, or by identifying abnormal network behaviors.
Host-based antivirus software [32, 18] is meant to protect hosts from being infected
by malicious programs before their binaries are executed and, like network-based ap-
proaches, may do so either through static signatures or anomaly detection.

In contrast, proactive approaches to network security seek to reason about risks be-
fore an attack event happens and to limit exposure to threats. To accomplish this form
of proactive assessment and enforcement, these approaches require accurate views of
the hosts, their locations, and the services running on them. One common way of de-
termining this information is through the use of a network-based vulnerability scanner.
Active network-based vulnerability scanners (e.g., Nessus [25], Retina [11]) operate
by sending crafted packets to hosts to inventory the targets, providing fingerprints of
the host operating systems and the host network services. Conversely, passive scan-
ners [26, 31, 8, 17] fingerprint software versions by auditing their network traffic and
matching them with the signature database. They can continuously monitor target net-
works and are less intrusive to the targets. However, their scope is limited by the traffic
they have access to and, as a result, passive scanners are usually deployed alongside ac-
tive scanners. In addition to these generic scanners, there has been a great deal of recent
work in specialized scanners that evaluate the security of popular applications such as
web applications [15, 6].

Once the accurate inventory and service data is acquired, it can be used for a vari-
ety of tasks. For example, firewalls [9] are available to both networks and end hosts to
enforce administrator polices, to block unwanted services [1, 2], and to prioritize the

CANVuS: Context-Aware Network Vulnerability Scanning 141

patching of vulnerable services [19, 7] before they are exploited. Often this reasoning
makes use of attack graph representations of this inventory and service data to make
their placement and configuration services. An attack graph is a graphical represen-
tation of all possible ways to compromise hosts in a network by taking advantage of
its vulnerabilities. Sheyner et al. did the early work of attack graph generation using a
model checking approach [27]. Subsequently, several improvements [5,21,20,13] have
been proposed to solve the scalability problem of the original attack graph approach.
Another improvement is the introduction of link analysis methods in attack graphs to
automate the analysis process [16, 24].

CANVuS varies from this existing work in that it does not provide new active or
passive tests to determine a host configuration, nor does it propose a new representation
or application of the host and service inventory data. Rather, the proposed architec-
ture seeks to provide more up-to-date data with fewer costs than existing approaches
by leveraging network context. In this sense, our work is relevant to other work in
utilizing context to improve the performance and accuracy of a variety of security tech-
niques [29]. For example, Sinha et al. leveraged the characteristics of the network work-
load to improve the performance of IDSes [30] and showed that building honeypots that
are consistent with the network could improve the resilience of honeypots to attacks and
improve their visibility [28]. Notions of managing numerous remote probing devices
through a middleware layer was explored, though only in the context of IDSes, in the
Broccoli system [14]. Cooke et al. built the Dark Oracle [10] that closely resembles
the work in this paper in terms of methodology by using context-aware information to
provide a database of network state, but it addressed primarily allocation information.
Allman et al. proposed a general framework that also uses a trigger-based approach
to do reactive network measurement [4]. While this is similar to our work in terms of
the high-level idea, it tries to solve a different problem, and it contains no implemen-
tation or evaluation to demonstrate the effectiveness of their approach. More generally,
to address the problems of comprehensive network visibility, a set of guidelines were
outlined in [3] for three broad categories — basic functionality, handling and stor-
age of data, and crucial capabilities. To our knowledge, no work has fully addressed
all of these guidelines, although some work has been attempted to address the storage
and querying of this ubiquitous visibility over time and space [34]. Our work makes
progress towards comprehensive network visibility with the goal of creating a flexible,
yet efficient unified network visibility system for CANVuS.

3 Motivation

The motivation for this work derives directly from our interactions with the University
of Michigan’s office of Information and Infrastructure Assurance (IIA) [33]. This group
is tasked with: “(i) Facilitating campus-wide incident response activities, (ii) Providing
services such as security assessments and consultation, network scans, education and
training, and (iii) Managing IT security issues at the university level.” As part of these
roles, this office engages in quarterly scans of seven /16 subnets belonging to the Uni-
versity of Michigan. As part of an effort to evaluate this process, we assisted the IIA
staff in analyzing several quarterly scans of this space by using both Nessus [25] and

142 Y. Xu et al.

Retina [11]. The results of this analysis were kept private to assist the security operation
staff, but we were struck by several poignant observations from the experience:

– The scans generally take one and a half to two weeks to complete.
– In an effort to reduce the amount of time spent scanning, a significant number of

vulnerability signatures present in the tools were not used.
– With the exception of a handful of departments, the scans of the IP space proceeded

without knowledge of sub allocations in each department, scanning large blocks of
space in their entirety.

– Due to the impact of work day availability patterns, the operators schedule the scans
to occur only during working hours (i.e., 8 AM to 5 PM, Monday through Friday).

– Only 85% of the IP addresses in each scan were shared, the other 15% were unique.
– Only 85% of the total unique vulnerabilities discovered were present in both scans,

with 15% of each scan’s vulnerabilities appearing only in that scan.
– Only 56% of the configurations between two scans were unchanged for those IPs

in common between the scans.

While surprising to us, the IIA staff were keenly aware of the dynamic nature of their
network and the overhead imposed by the scanning activities. Although they deployed
several stop-gap measures to deal with the effect of this dynamic network context (e.g.,
scan during work hours), these operators simply lacked the platform with which to
achieve network-wide visibility.

4 Architecture and Design

In this section, we describe a context-aware architecture that provides a uniform view
of network states and their changes for security applications. The architecture consists
of three major components. The first component is a set of network monitors that are
distributed over many network devices. The list of network devices to monitor could
include switches, routers, and servers, but the architecture allows for other similar de-
vices as well. The second major architectural component is a Context Manager, which
converts data from network monitors to a network state database. The third and final
component is the network state database that provides a uniform model for context-
aware vulnerability scanning. Other context-aware applications may be built upon this
database as well. A high-level diagram with the major components of the architecture
is illustrated in Figure 1.

The design of this context-aware architecture is informed strongly by the design
principles outlined in Allman et al. [3], especially those basic guidelines of scope, in-
cremental deployability, and operational realities. We aim for a system that built for
an individual enterprise and utilizes existing sources of data collected from infras-
tructure and services already deployed in the network. We utilize the existing com-
mon data formats (e.g., syslog, SNMP, Netflow) and store and access this data through
common, extensible mechanisms (e.g., databases, SQL). Where necessary, we support
probe-based mechanisms for extracting similar data from network data streams in the
event that existing hardware is overloaded or does not support data export. With re-
spect to the outlined data-oriented goals, we opt to focus on exploring data breadth over

CANVuS: Context-Aware Network Vulnerability Scanning 143

Switches

Routers

Access Point

S
yslog

S
N

M
P

N
etflow

DNS Server

DHCP Server

Kerberos Server

Bro

Infrastructure
 D

evices
N

etw
ork

S
ervices

N
etw

ork S
tate D

atabase

C
ontext M

anagem
ent M

iddlew
are

N
etw

ork
P

robes

Other Context Aware
Applications

S
yslog

S
yslog

CANVuS: Context-Aware
Network Vulnerability

Scanning

Vuln.
DB

Scanning
Subsystem

Query

Trigger

Active
Scanning

Context Aware Architecture

Fig. 1. Our context-aware network vulnerability scanning (CANVuS) architecture. The enterprise
network is monitored by using data from existing physical infrastructure devices, network service
appliances, and generic network probes. These heterogeneous sources of data are combined into
a unified view of the network context which can be queried by context-aware applications or
can have triggers automatically executed in response to certain contextual changes. In the case
of CANVuS, contextual changes that indicate possible configuration changes are used to more
efficiently scan network devices.

long term storage, smart storage management, graceful degradation, etc. The CANVuS
application does not require extensive historical data, although we acknowledge that
other context-aware applications will indeed require these functionalities and we look
to leverage existing work in this direction for future versions of our architecture [34].

In the next three subsections, we first describe categories of monitoring points or
data sources, from which creates a view of network context. Using this understanding,
we then present the design of the Context Manager, which converts data from network
monitors to the network state database in a uniform representation. Finally, we pro-
vide an example of what the network state database would look like for context-aware
applications.

4.1 Sources of Data

Inferring network states and state changes is a challenging problem because the re-
quired information is distributed across many devices, network services, and applica-
tions. Thus, the key to capture the states and changes is to monitor the targets from a
network perspective and approximate the context by aggregating network events from
various data sources, which may lay in different layers of the network stack. To de-
termine what data sources to use for event collection and integration, we first need to
understand what types of network activities could be monitored and how they relate to
changes in the network.

144 Y. Xu et al.

In this architecture, the monitors distributed across the network fall into three cate-
gories. The first category is monitors deployed in infrastructure devices, such as switches,
routers and wireless access points. The advantage of having these types of monitors is
that they provide detailed knowledge about the entire network, as well as the host infor-
mation, with high resolution. This is a direct result of these devices providing the core
hardware infrastructure for the network. For example, by querying the switches with
SNMP, the system knows exactly when a particular physical machine is plugged into
the network and when it leaves. However, because of the importance of these devices,
tradeoffs are involved between the fidelity of data and the overhead (or difficulty) of the
data collection.

The second category of monitors is for network services, which may include DNS,
DHCP and even Kerberos services. The data observed by this second category of mon-
itors provides additional detailed states about the hosts. Services in this class are the
ones that are deployed in almost every enterprise and are critical to the operation of
the network. For example, the data generated for DHCP service helps to distinguish
between configuration changes for the same host and MAC-to-IP binding changes for
different hosts. Depending on the types of the network, monitors in this category may
require access to the syslog that are local to each service.

The final category consists of passive probes, which are deployed along with packet
taps. These probes perform realtime analysis of network traffic that can be either generic
TCP/UDP flows or application/OS specific to generate events. By monitoring TCP/UDP
flows, the system gains the knowledge of which hosts are available and what services
are running and being used by clients. In addition, using Deep Packet Inspecting (DPI)
for an application protocol or OS fingerprint helps inventory the specific versions of
applications (e.g., HTTP, SSH) or operating systems running in the network. Deviating
version information for the same host directly indicates configuration changes for that
host. For example, one could use Bro’s protocol analysis to do connection reconstruc-
tion and application version fingerprinting [22] (which we used in our implementation
of CANVuS). However, the visibility of passive probes is limited to the network traffic
they have access to. In other words, silent applications/services will be missed, which is
also the limitation of passive vulnerability scanners [26, 8, 17]. Thus, the passive probe
is merely an additional type of monitor for collecting context data for observing a com-
plete view of the network.

We acknowledge that host-based monitors exist for clients, but we decided that they
are beyond the scope of this work. Intuitively, host-based monitors can provide the most
accurate inventory information that effectively renders vulnerability scanning useless.
Unfortunately, they are very difficult, if not impossible, to be enforced in large enter-
prise networks due to scalability and administrative reasons. However, as some tradi-
tional host-based programs, like antivirus software, are moved into the cloud [18], we
may be able to build another type of monitors for potential in-cloud security services.
The key advantage is that the in-cloud version of the services already have the visibil-
ity into the end hosts because they provide functionalities that used to be local to the
hosts. Thus, the system will be able to obtain more fine-grained information about host
activities without unacceptable modifications or performance penalties to the end hosts.

CANVuS: Context-Aware Network Vulnerability Scanning 145

4.2 Context Manager

The Context Manager, a layer between data monitors and the network state database,
infers network context (states and state changes) from aggregated data collected from
various monitors and translates this to a uniform model. Specifically, the network states
are a collection of simple facts about the target network, and they keep evolving as
underlying hosts and services change. For example, these facts may include what hosts
are available at the moment, what are the MAC addresses for a set of IPs in a certain
period of time, or when is the first time a particular host connected to the network.

Existing libraries are used to read data from syslog, SNMP and Netflow that then get
filtered and processed into a uniform representation of the network’s state that is then
inserted into the network state database. These modules can come from a programming
languages standard library (e.g., Python’s syslog module) or from third party libraries
(e.g., PySNMP [12]). Additionally, the Context Manager supports a flexible framework
for adding additional plugins to read input from new data monitoring sources and trans-
late this data into a uniform model. These plugins can be thought of as data adapters
that convert the source inputs canonical data format into a representation used in our
architecture.

4.3 Network State Database

The network state database provides underlying model for which context-aware appli-
cations are written upon. The applications use standard database triggers or the pro-
grammable querying interfaces to interact with the database. The types of data that
may be represented can be found in Table 1. This table shows how for that the data
is uniformly represented across typical network abstraction layers, sources, and their
respective data formats.

Table 1. Example contents of the network state database

Network Layer Data Source Data Format Description
Switch SNMP Mapping between a MAC address and a Physical Switch Port

Link Layer Switch SNMP Mapping between a MAC address and an IP address
Bro Ethernet Mapping between a MAC address and an IP address

Network Layer Router SNMP Network allocation
Transport Layer Router Netflow New connection established

Bro TCP/IP New connection established
DNS Server Syslog Name resolution

Bro UDP/IP Name resolution
Application Layer DHCP Server Syslog Mapping between a MAC address and an IP address

Bro UDP/IP Mapping between a MAC address and an IP address
Bro TCP/IP Application version fingerprint

5 CANVuS

In this section, we describe the implementation of CANVuS, a vulnerability scanning
system, based on our context-aware architecture. It was implemented in Python to con-
nect the network state database and a vulnerability scanner. In our implementation, we

146 Y. Xu et al.

used Nessus [25]. Ideally, if all host configuration changes produce network artifacts,
the need for network vulnerability scanning of these events would be straightforward.
However, not all host changes have network evidence that can be captured by at least
one of the monitors. Thus, CANVuS uses both query and callback interfaces from the
network state database to leverage the context information and to maintain a history of
scanning results in its own vulnerability database.

During the initialization phase, CANVuS queries the database for all available hosts
as scanning candidates. Due to the constraints in hardware and network resources, all
hosts are not scanned concurrently. Instead, candidates are queued for pending scans,
whose size depends on the network conditions, the configured policies, and the amount
of available physical resources. A scheduling strategy is needed here to select the
next candidate to scan. For example, each candidate could be weighted based on their
triggering events and scheduled accordingly. In the current implementation, a simple
FIFO strategy is applied. At the same time, CANVuS registers a callback function with
database triggers so that a new candidate will be appended to the pending queue when a
change happens, unless the same target is already in the queue. To conduct actual scan-
ning operations, Nessus is used, yet is modified to change its target pool from a static
configuration file to the queue discussed above.

Conversely, if a scanned host has no events fired after N seconds since its last scan,
and there is no evidence (including both the context information and former scanning
results) indicating that it becomes unavailable, it will be added to the queue for another
scan. Thus, each host is effectively equipped with its own timer. Once it expires, CAN-
VuS will query the network state database and its vulnerability database to determine
if further scanning is necessary. Clearly, the value of the timer is a configurable policy
up to the decision of the operators. In addition, when registering callback functions,
instead of simply subscribing all possible changes in the database, CANVuS defines a
set of event-specific policies to filter the ones that are less relevant to host configuration
changes.

The choices of polices involve tradeoffs and depend on the objectives of the admin-
istrators who manage this system. The purpose of our current implementation is not to
provide a reference system for production use. Instead, we aim to figure out what events
are more effective in detecting changes and what policies are more appropriate with the
given network conditions and administrative requirements. Therefore, the policies used
for our experiment were set to be as aggressive as possible so that an optimal solution
could be determined by filtering unnecessary scans after the experiment was complete.
More specifically, the default policy is that every single events triggers a scan. The only
exception is the TCP event, since there are too many of them for each host, an active
timeout is enforced to prevent them from overwhelming the system. On the other hand,
if scans are being constantly triggered by inbound connections to ports that scanners fail
to discover, a negative timeout is also enforced to suppress this type of event being fired
over and over again. Further details regarding the revision of our trigger implementation
and policy decisions are presented in the evaluation.

The vulnerability database is the central storage of vulnerability data for all of the
hosts in the network. It keeps track of the result for every scan conducted against each

CANVuS: Context-Aware Network Vulnerability Scanning 147

host. In addition to the raw results generated by our modified Nessus scanner, each scan
record contains following information:

– The time when this scan is triggered.
– The time when the backend scanner starts and finishes the scan.
– A list of open ports and the vulnerabilities on each port.
– A map from open ports to services.
– Operating system fingerprint (optional).
– The type of triggering event.

As more results are inserted into the vulnerability database, the information can be used
in policy evaluation for further scans. Additionally, this information may be queried by
administrators at any time for risk assessment or used by other security applications.

6 Evaluation

In this section, we evaluate CANVuS in a large academic network. The basic metrics
used throughout this section is the number of scans conducted, which represents the re-
source consumption or overhead, and the latency of detecting configuration changes,
which represents the system efficacy. Ideally, CANVuS should outperform periodic
scanning with fewer number of scans by implicitly avoiding examining unallocated
IP addresses and unavailable hosts. Moreover, CANVuS should also achieve lower de-
tection latency as many host configuration changes create network evidence that trigger
scans timely in our architecture.

We begin by discussing our experimental methodology. Then we show how CAN-
VuS outperforms existing models in terms of the number of scans required and the de-
tection latency. Next, we explore the impact of timeout values to the CANVuS system.
The following section evaluates the contribution of various data sources to CANVuS
and their correlations with observed changes on the hosts. We conclude the evaluation
by discussing the scalability requirements of the context-aware architecture.

6.1 Experimental Methodology

The target network for the experiment is a college-level academic network with one
/16 and one /17 subnet. There are two measurement points for the experiments. One is
the core router for the entire college network. Because it has the access to the traffic
between the Internet and the college network, there were two monitors built on it:

– TCP connection monitor: records the creation of new TCP connections.
– Application version monitor: records the version strings in protocol headers.

The second measurement point is a departmental network within the college that has
the visibility into both the inbound/outbound traffic and more fine-grained inter-switch
traffic. As result, the following monitors were deployed:

– ARP monitor: records the ARP messages probing for newly assigned IPs.
– DHCP monitor: records DHCP acknowledgment events.

148 Y. Xu et al.

– DNS monitor: records queries to certain software update sites.
– TCP connection monitor: as described above.
– Application version monitor: as described above.

This choice of measurement points and event monitors enables CANVuS to cover the
network stack from the link layer to the application layer. Moreover, it also allows us to
analyze the effectiveness of individual monitors with different visibility.

Based on these event monitors, CANVuS was deployed to scan the college network
using a 12-hour active/inactive timeout and 1-hour negative timeout. In addition, an-
other instance of a Nessus scanner was deployed for comparison purposes. It was con-
figured to constantly enumerate the entire college network (a.k.a. the loop scanner).
Both scanners were restricted to allow a maximum of 256 concurrent scans. The exper-
iment lasted for 16 days in March, 2010, during which time the loop scanner completed
46 iterations. And it was interrupted by a power outage for a couple of hours at the
end of the first week. Since we expect the system to be running long term, occasional
interrupts would not have a major impact to the experiment results.

We performed a direct comparison between CANVuS and the loop scanner across
both dimensions of resource consumption and detection latency. During the current
exceptionally aggressive experiment, the loop scanner took less then 9 hours to finish
one iteration. In realistic deployments, we envision using larger values and scanning less
aggressively. Thus, the result of the loop scanner is only considered to represent the best
performance that traditional periodic scanning systems can achieve in detection latency.
More realistic values are represented below by sampling multiple 9-hour periods.

Ground truth for the experiments was established by identifying the period in which
an observable network change occurred. Specifically, the scanning records from both
scanners are first grouped together based on the MAC (if available) or IP address of
each target host, and then each group of records are sorted by the time when each
scan started. In each sorted group, a change is defined as two consecutive scan records
(scans of unavailable hosts are ignored) with different sets of open ports. In addition,
we assume that the change always happens immediately after the former scan finishes.
Subsequent discussions that require the knowledge about ground truth are all based
on this model unless otherwise noted. We approximated the ground truth in this way
because it is infeasible to gain the local access to a large number of hosts in the target
network to collect the real ground truth. As a result, we will not be able to analyze the
true positive rate of CANVuS, and the average latencies for both scanners represent the
upper bound, or the worst case.

6.2 CANVuS Evaluation

Table 2 lists the number of scans conducted by CANVuS with a break down by event
types and the total for the loop scanner. The loop scanner has an order of magnitude
more scans than CANVuS because only about 20% of the IP addresses in the target
network are known to be allocated, and at any instant of time, the number of available
hosts are even less than that. However, the loop scanner has to exhaust the entire IP
blocks unless the address allocation and host availability information can be statically
encoded, which is rarely the case in enterprise networks [10].

CANVuS: Context-Aware Network Vulnerability Scanning 149

Table 2. The numbers of scans conducted by CANVuS and the loop scanner

CANVuS Loop Scanner
Total 534,717 4,355,624
ARP 1.55%

DHCP 17.37%
TCP 38.33% N/A
DNS 10.28%

App. Protocol 0.03%
Timeout 32.44%

100 1 2 3 4 5 6 7 8 9

110,000

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

Sampling Rate

La
ten

cy
 (s

)

Loop

CANVuS

Fig. 2. A comparison of the detection latency
with sampled results for the loop scanner

100 1 2 3 4 5 6 7 8 9

4,500,000

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000
4,000,000

Sampling Rate

o
f S

ca
ns

Loop

CANVuS

Fig. 3. A comparison of the number of
scans with sampled results for the loop
scanner

In addition, the average detection latencies for changes discovered by CANVuS is
22,868.751 seconds versus 26,124.391 seconds for the loop scanner. Please recall that
our assumption says the evidence of configuration changes will trigger scans instan-
taneously. However, the latency for CANVuS here is far from zero. This anomaly is
caused by the fact that we used the combined scanning results to approximate the
ground truth and timeout-based scanning was still applied in some situations when no
network network changes occurred.

Moreover, the latency for CANVuS is not significantly better than that of the loop
scanner. This is because the configuration for the loop scanner is already very aggres-
sive and represents the best performance that traditional periodic scanning systems can
achieve in detection latency. To make the loop scans less aggressive and to demonstrate
the tradeoff in scanning costs, the data set is sampled with a rate from 1 to 10 to in-
clude both the original case and the case that both scanners have a comparable number
of scans. Figure 2 illustrates the result. The curve for the loop scanner goes up almost
linearly because of the linear sampling, while the curve for CANVuS goes slightly up
and down because the approximated ground truth has been changed after sampling. In
addition, Figure 3 shows the corresponding changes for the number of scans.

6.3 Timeout-Based Scanning In CANVuS

As discussed previously, a timeout-based scanning approach is used along with the
trigger-based scanning as many configuration changes are not observable through

150 Y. Xu et al.

10000 100000 1x106

Change intervals in log scale (seconds)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Fig. 4. The CDF for the intervals of detected changes

network events. However, unlike traditional periodic scanning, which randomly picks
scanning targets in a large pool with fixed cycles, the timeout mechanism in CANVuS
is still context-aware. Specifically, the system uses the context data to infer IP alloca-
tion information and host availability patterns so that only the hosts that are believed
to be connected to the network will be scanned. These timeouts are assigned per-host
timer and are based on the network state, scanning history, and administrators’ policy
decisions. As a result of these approach, fewer scans are “wasted” on hosts that don’t
exists or are unavailable. Taken another way, given the same number of scans, CANVuS
is more likely to examine a larger number of active hosts and detect host changes with
lower latency than the periodic scanning system.

Figure 4 depicts the distribution of intervals between all detected changes the val-
ues ranging between hours and days. The bias demonstrated in the middle of the graph
is the result of our experimental methodology and the choice of 12 hours for our ac-
tive/inactive timeout.

Thus, in practice, we determining the timeout value based on operators’ administra-
tive requirements. For example, using a timeout value at the order of a week, which
covers the changes on the tail of the curve in Figure 4, would be reasonable. An al-
ternative strategy is to halve the timeout value if a change is detected accordingly, but
otherwise double it adaptively modifying a host’s timeout value. In either case, there is
clearly a tradeoff between the number of scans and the detection latency, which is also
the case for normal periodic scanning.

6.4 Exploring the Impact of Various Data Sources and Triggers

In this subsection, we study the relationship between triggering events and the captured
configuration changes. Specifically, the study is focused on their temporal correlations
instead of causalities, which requires detailed control over the target hosts.

To do this, two problems need to be addressed. First, since most subnets in the tar-
get network use DHCP to assign IP addresses (despite whether the address mapping
is dynamic or static), the changes witnessed may actually be mapping changes instead

CANVuS: Context-Aware Network Vulnerability Scanning 151

Table 3. Permanent changes categorization

Triggering Event Count With network evidence
ARP 1 1

DHCP 15 10
TCP 2 2
DNS 3 1

Timeout 4 0

of changes in configuration. To eliminate the negative impact of dynamic address as-
signment, which would obscure the analysis results, the discussion in this subsection is
confined to the 535 hosts that were assigned exactly one unique IP address during the
experiment period. They are extracted from the 1,691 scanned IP addresses in the nine
/24 departmental network subnets for which we have complete DHCP message logs.

Among these 535 hosts, 1,985 changes were detected by CANVuS during the ex-
periment. After merging with the results from the loop scanner, the number of detected
changes becomes 2,145, where the increase is an artifact of the method used to generate
the approximated ground truth. However, many changes are considered to be ephemeral
or short-lived, which is the second problem that must be handled. In other words, certain
ports appear for a short while and then disappear without exhibiting real configuration
changes. Many client programs may exhibit this behavior. For example, the client side
of Apple’s iTunes uses port 5353 to communicate with each other for sharing. P2P
download software is another example. This type of changes provide little value in re-
vealing the temporal correlations between changes and triggering events, due to their
short lifetime.

As a result, we only consider those long-term or permanent changes to study their
temporal correlations with triggering events. However, the word ‘permanent’ is not well
defined, given the limited experiment period. Thus, for the simplicity of analysis, we
only examine hosts that had exactly one change during the entire 16-day period because
these changes are most likely to be permanent unless they were detected at the very end
of the experiment. Among the 535 hosts, 25 of them fall into this category. Though this
is not statistically significant, they still provide important clues for us to find appropriate
policy setting for the target network. Recall that our conjecture is that most permanent
changes have network evidence that can be witnessed and used for creating triggers to
achieve timely detection. By manually going through all these changes and analyzing all
logged events that happened around the time when the changes were detected, we find
56% of them have network evidence that has strong temporal correlation with changes,
which means they either have triggered or could have triggered scans to detect the
changes.

Table 3 is a summary of the analysis results in detail. Several things should be noted
here. First, all the permanent changes we studied that were captured by timeout exhib-
ited no network evidence at all. This is a limitation of our system using pure network
events. Unless some level of host information is monitored, this timeout-based method
cannot be completely replaced with the trigger-based approach. In addition, a signifi-
cant portion of changes were detected via DHCP and ARP events, which corresponded

152 Y. Xu et al.

to hosts reboots. This is reasonable because many configuration changes may not take
effect until the host is restarted. Finally, the rest of the changes corresponded to activi-
ties on the service or process level.

Moreover, we argue that although ephemeral changes may not be helpful in studying
the temporal correlations, they are still relevant to risk assessment. Despite the possi-
bility of being exploited by sophisticated attackers, many short-lived but well-known
ports may be used to tunnel malicious traffic for cutting through firewalls. For exam-
ple, the TCP event monitor captured some occasional events through port 80 for certain
hosts, while the application event monitor failed to fingerprint any version informa-
tion for them, which means the traffic did not follow the HTTP protocol. Thus, in both
cases, it is valuable to detect these short-lived changes, but there is no guarantee for the
loop scanner to achieve this goal. In fact, the loop scanner tends to miss most of these
changes once its scanning period greatly increases (e.g., in the order of weeks). With
the help of TCP events, CANVuS can fire scans immediately after there is traffic going
through these ports. And there are 35 changes exclusively captured by CANVuS that
fall in this category. Conversely, if there is no traffic ever going through the short-lived
ports, while CANVuS may also miss them, the resulting risk is much lower because
attackers have no chance to leverage them either.

6.5 Scalability Requirements of the Context-Aware Architecture

Figures 5 and 6 constitute a summary for the scale of the data from the departmen-
tal monitors done in hour intervals. The number of raw packets or flows per hour is
counted in Figure 5. This raw data was observed at the various network monitors and
probes before being converted by the Context Manager into the network state database.
We note that the first three days worth of data are missing in our graph due to the mis-
configuration of the monitoring infrastructure. For the duration of our experiment, we
observed flows on the order of 16 million per hour at its peak and on average around 4
million per hour. Other noticeable observations include a typical average of 1 million
DNS packets per hour and about 12 thousand ARP packets per hour. These four graphs
in Figure 5 show that this system must handle adequately large volumes of traffic due
to its distributed nature.

Figures 6 shows the number of events per hour that triggered scans after being con-
verted by the Context Manager. Compared to the graphs in Figure 5, the volume of
events generated from the raw data was greatly reduced. To highlight the number of
flows and DNS packets went from the order of millions to the low hundreds. ARP
packets when from the order of thousands to tens. This shows that our Context Man-
ager is able to greatly reduce large volumes of data to something manageable for our
event-based vulnerability scanning.

In addition, the cumulative number of unique MAC addresses in the departmental
network is shown in Figure 7, which quantifies the scale of the physical boxes within
the department (only for the second measurement point) that should be audited. We ob-
served that slight bumps indicate new observances of MAC addresses over the course
of a day while plateaus occurred over the weekends. We speculate that the observance
of new, unique MAC addresses will level off if given a longer period of time to run
our experiments. This graph also gives insight in bounding to the amount of raw and

CANVuS: Context-Aware Network Vulnerability Scanning 153

0

4e+06

8e+06

12.e+07

1.6e+07

o
f fl

ow
s

0

1e+06

2e+06

3e+06

4e+06

o
f D

NS
 pa

ck
ets

35,000

0
5000

10,000
15,000
20,000
25,000
30,000

o
f D

HC
P p

ac
ke

ts

4000 50 100 150 200 250 300 350
0

4e+04

8e+04

1.2e+05

1.6e+05

Time (hours)

of

 A
RP

 p
ac

ke
ts

Fig. 5. The scale of the raw data

0

200

400

600

800

of

 T
CP

 e
ve

nt
s

500

0

100

200

300

400

o
f D

NS
 ev

en
ts

0
200
400
600
800

1000
1200

o
f D

HC
P e

ve
nt

s

4000 50 100 150 200 250 300 350
0

20

40

60

80

Time (hours)

of

 A
RP

 e
ve

nt
s

Fig. 6. The scale of the events

event-generated traffic that would be observed by the detection of fewer and fewer
unique MAC addresses.

7 Risk Mitigation and Analysis

In this section, we examine our efforts in minimizing the harm to users, services, hosts,
and network infrastructure while performing our experiments. We understand that ac-
tive probing involves the use of network resources and interaction with product services.
In consultation with the Computer Science and Engineering Departmental Computing
Office, the College of Engineering Computer Added Engineering Network, and the Uni-
versity of Michigan office of Information and Infrastructure Assurance, we developed
the following research plan to mitigate the impact on hosts, services, and network in-
frastructure: (i) to minimize the effect of network scanning, we limited the bandwidth
available to our scanning devices, (ii) We implemented a whitelisting feature to our
scanning, and the engineering computer organization broadcasted an opt-out message
to all departmental organizations prior to our experiment (along with the complete re-
search plan), (iii) We applied only those polices consistent with the Nessus “Safe Check
Only” label.

Acknowledging that a network’s security context is considered sensitive informa-
tion and data such as MAC addresses and IP addresses have been viewed as personally

154 Y. Xu et al.

4000 50 100 150 200 250 300 350

4000

0

500

1000

1500

2000

2500

3000

3500

Time (hours)

Ac
cu

m
ul

at
ed

 n
um

be
r

of
 M

AC
s

Fig. 7. The accumulated number of unique MAC addresses in the departmental network

identifiable information in several contexts, we took steps to assure that the “research
records, data and/or specimens be protected against inappropriate use or disclosure, or
malicious or accidental loss or destruction” according to our IRB guidelines. This in-
cludes, but is not limited to the following official categories: Locked office, Restricted
access, Restrictions on copying study-related materials, Access rights terminated when
authorized users leave the project or unit, Individual ID plus password protection, En-
cryption of digital data, Network restrictions, No non-UM devices are used to access
project data, Security software (firewall, anti-virus, anti-intrusion) is installed and regu-
larly updated on all servers, workstations, laptops, and other devices used in the project.
Due to the technical nature of the work, we did not seek IRB approval for the project
as we did not feel they were prepared to understand the risks of this work. The pro-
posed research plan was instead approved through the College of Engineering Dean of
Research, and additionally approved by the departmental, college, and university com-
puting organizations specified above.

8 Limitations and Future Work

While our initial evaluation demonstrates the promise of a context-aware approach to
vulnerability scanning, it does highlight several limitations which form the foundation
for future work in this area. First, the accuracy of our evaluation is hampered by the
use of network vulnerability scanning results as the sole ground truth for measuring
host configuration changes. In addition to the previously discussed limitation that a
network-based scanner provides only an approximate view of a host changes, this ap-
proach also limited the granularity of our measurements to the polling frequency of the
network scanner. To overcome this issue, we plan on developing a host agent that is
capable of collecting fine-grained information on local changes and deploying it on a
network with a large number of different hosts (e.g., end hosts vs. application servers).
A second rich area for future work is the exploration of new triggers (either new events
or combinations of these events) for host configuration changes. Currently, the most ef-
fective events were generated by the DHCP monitor and corresponded to host reboots.

CANVuS: Context-Aware Network Vulnerability Scanning 155

In the future, we plan to increase the diversity of trigger events and explore other types
of network evidence for host changes.

9 Conclusion

In this paper, we proposed a context-aware architecture that provides information about
the network states and their changes for enterprise security applications. We described
how this architecture converts network data from infrastructure devices, network ser-
vices, and passive probes to a uniform representation stored in the network state database.
Then we introduced CANVuS, a context-aware vulnerability scanning system built
upon this architecture that triggers scanning operations based on changes indicated by
network activities. We experimentally evaluated the system by deploying it in a college-
level academic network and comparing CANVuS against an existing system. We found
that this approach outperforms existing models in low detection latency, while consum-
ing fewer network resources.

Acknowledgments

The authors wish to gratefully acknowledge the following colleagues at the University
of Michigan for their assistance in performing this work: Paul Howell, Kirk Soluk,
Dawn Isabel, Dan Maletta, Kevin Cheek, and Donald Winsor. This work was sup-
ported in part by the Department of Homeland Security (DHS) under contract numbers
NBCHC080037, NBCHC060090, and FA8750-08-2-0147, the National Science Foun-
dation (NSF) under contract numbers CNS 091639, CNS 08311174, CNS 0627445, and
CNS 0751116, and the Department of the Navy under contract N000.14-09-1-1042.

References

1. Abedin, M., Nessa, S., Al-Shaer, E., Khan, L.: Vulnerability analysis for evaluating quality
of protection of security policies. In: Proceedings of the 2nd ACM Workshop on Quality of
Protection (QoP 2006), Alexandria VA (October 2006)

2. Ahmed, M.S., Al-Shaer, E., Khan, L.: Towards autonomic risk-aware security configuration.
In: Proceedings of the 11th IEEE/IFIP Network Operations and Management Symposium
(NOMS 2008), Salvador, Bahia, Brazil (April 2008)

3. Allman, M., Kreibich, C., Paxson, V., Sommer, R., Weaver, N.: Principles for developing
comprehensive network visibility. In: Provos, N. (ed.) Proceedings of 3rd USENIX Work-
shop on Hot Topics in Security, San Jose, CA, USA, July 29, USENIX Association (2008)

4. Allman, M., Paxson, V.: A reactive measurement framework. In: Claypool, M., Uhlig, S.
(eds.) PAM 2008. LNCS, vol. 4979, pp. 92–101. Springer, Heidelberg (2008)

5. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analy-
sis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS 2002), Washington DC (November 2002)

6. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: Automated black-box web
application vulnerability testing. In: Proceedings of the 31st IEEE Symposium on Security
& Privacy (S&P 2010), Oakland, CA (May 2010)

156 Y. Xu et al.

7. Beattie, S., Arnold, S., Cowan, C., Wagle, P., Wright, C., Shostack, A.: Timing the application
of security patches for optimal uptime. In: Proceedings of the 16th Annual LISA System
Administration Conference, Philadelphia, PA, USA (November 2002)

8. Edward Bjarte. Prads - passive real-time asset detection system,
http://gamelinux.github.com/prads

9. Cheswick, W.R., Bellovin, S.M.: Firewalls and Internet Security; Repelling the Wily Hacker.
Addison Wesley, Reading (1994)

10. Cooke, E., Bailey, M., Jahanian, F., Mortier, R.: The dark oracle: Perspective-aware unused
and unreachable address discovery. In: Proceedings of the 3rd USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2006) (May 2006)

11. eEye Digital Security. Retina - network security scanner,
http://www.eeye.com/Products/Retina.aspx

12. Ilya Etingof. Pysnmp, http://pysnmp.sourceforge.net/
13. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network

defense. In: Proceedings of the 22nd Annual Computer Security Applications Conference,
ACSAC 2006 (December 2006)

14. Kreibich, C., Sommer, R.: Policy-controlled event management for distributed intrusion de-
tection. In: ICDCS Workshops, pp. 385–391. IEEE Computer Society, Los Alamitos (2005)

15. McAllister, S., Kirda, E., Kruegel, C.: Leveraging user interactions for in-depth testing of
web applications. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 191–210. Springer, Heidelberg (2008)

16. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking attack graphs. In: Zamboni, D.,
Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 127–144. Springer, Heidelberg (2006)

17. Microsoft. Watcher - web security testing tool and passive,
http://websecuritytool.codeplex.com

18. Oberheide, J., Cooke, E., Jahanian, F.: Cloudav: N-version antivirus in the network cloud. In:
Proceedings of the 17th USENIX Security Symposium (Security 2008), San Jose, CA (July
2008)

19. Oberheide, J., Cooke, E., Jahanian, F.: If It Ain’t Broke, Don’t Fix It: Challenges and New
Directions for Inferring the Impact of Software Patches. In: 12th Workshop on Hot Topics in
Operating Systems (HotOS XII), Monte Verita, Switzerland (May 2009)

20. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph generation. In:
Proceedings of the 13th ACM Conference on Computer and Communications Security (CCS
2006), Alexandria, VA (October 2006)

21. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security analyzer.
In: Proceedings of the 14th USENIX Security Symposium (USENIX Security 2005), Balti-
more, MD (August 2005)

22. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works 31(23-24), 2435–2463 (1999)

23. Roesch, M.: Snort: Lightweight intrusion detection for networksx. In: Proceedings of the
13th Systems Administration Conference (LISA), pp. 229–238 (1999)

24. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack graphs. In: Jajo-
dia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 18–34. Springer, Heidelberg
(2008)

25. Tenable Network Security. Nessus - vulnerability scanner, http://www.nessus.org
26. Tenable Network Security. Nessus passive vulnerability scanner,

http://www.nessus.org/products/pvs/
27. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and anal-

ysis of attack graphs. In: Proceedings of 2002 IEEE Symposium on Security and Privacy
(S&P 2002), Oakland, CA (May 2002)

http://gamelinux.github.com/prads
http://www.eeye.com/Products/Retina.aspx
http://pysnmp.sourceforge.net/
http://websecuritytool.codeplex.com
http://www.nessus.org
http://www.nessus.org/products/pvs/

CANVuS: Context-Aware Network Vulnerability Scanning 157

28. Sinha, S., Bailey, M., Jahanian, F.: Shedding light on the configuration of dark addresses. In:
Proceedings of Network and Distributed System Security Symposium (NDSS 2007) (Febru-
ary 2007)

29. Sinha, S., Bailey, M.D., Jahanian, F.: One Size Does Not Fit All: 10 Years of Applying Con-
text Aware Security. In: Proceedings of the 2009 IEEE International Conference on Tech-
nologies for Homeland Security (HST 2009), Waltham, Massachusetts, USA (May 2009)

30. Sinha, S., Jahanian, F., Patel, J.M.: Wind: Workload-aware intrusion detection. In: Zam-
boni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 290–310. Springer, Heidelberg
(2006)

31. Sourcefire. Sourcefire rna - real-time network awareness,
http://www.sourcefire.com/products/3D/rna

32. Sourcefire, Inc. Clamav antivirus (2008), http://www.clamav.net/
33. University of Michigan. University of Michigan — ITS — Safe Computing — IT Security

Services Office (April 2010), http://safecomputing.umich.edu/about/
34. Vallentin, M.: VAST: Network Visibility Across Space and Time. Master’s thesis, Technische

Universitat Munchen (January 2009)

http://www.sourcefire.com/products/3D/rna
http://www.clamav.net/
http://safecomputing.umich.edu/about/

HyperCheck: A Hardware-Assisted Integrity Monitor

Jiang Wang, Angelos Stavrou, and Anup Ghosh

Center for Secure Information Systems
George Mason University, VA, USA

{jwanga,astavrou,aghosh1}@gmu.edu

Abstract. Over the past few years, virtualization has been employed to environ-
ments ranging from densely populated cloud computing clusters to home desktop
computers. Security researchers embraced virtual machine monitors (VMMs) as
a new mechanism to guarantee deep isolation of untrusted software components.
Unfortunately, their widespread adoption promoted VMMs as a prime target for
attackers. In this paper, we present HyperCheck, a hardware-assisted tampering
detection framework designed to protect the integrity of VMMs and, for some
classes of attacks, the underlying operating system (OS). HyperCheck leverages
the CPU System Management Mode (SMM), present in x86 systems, to securely
generate and transmit the full state of the protected machine to an external server.
Using HyperCheck, we were able to ferret-out rootkits that targeted the integrity
of both the Xen hypervisor and traditional OSes. Moreover, HyperCheck is ro-
bust against attacks that aim to disable or block its operation. Our experimental
results show that HyperCheck can produce and communicate a scan of the state
of the protected software in less than 40ms.

Keywords: Hypervisor, Protection framework, System Management Mode.

1 Introduction

Hypervisors1 have become the de facto standard in server consolidation because they
decrease the energy footprint and cost of management of modern computing clusters.
In addition, hypervisors are increasingly used as components to enforce system security
and resilience [22, 28, 16, 38, 21, 36, 31]. This widespread adoption of virtualization
has attracted the attention of the attackers towards VMM vulnerabilities. Indeed, re-
cently, there has been a surge in the reported vulnerabilities for commercial and open
source hypervisors [27]. Moreover, the number and nature [40, 6] of attacks against the
hypervisors are poised to grow.

This increasing attack trend has spurred research towards reducing the hypervisor
Trusted Code Base (TCB) of current commercial hypervisors [26]. Others developed
new specialized prototype hypervisors [36, 24]. However, having a small code base can
only limit the code exposure and thus the attack surface of the hypervisor – it cannot
provide strong guarantees about the code integrity of all the hypervisor components.

To address these limitations and to complement the existing protection mechanisms,
we designed a hardware-assisted tampering detection framework called HyperCheck.

1 Also called Virtual Machine Monitors VMMs.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 158–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

HyperCheck: A Hardware-Assisted Integrity Monitor 159

HyperCheck is designed to protect the integrity of VMMs and, for some classes of
attacks, the underlying operating system (OS). To achieve that, HyperCheck harnesses
the CPU System Management Mode (SMM) which is present in all x86 commodity
systems to create a snapshot view of the current state of the CPU and memory registers
of the protected machine. This information is securely and verifiably transmitted using a
network card to a remote analysis server. Using that information, the analysis server can
identify any tampering by comparing the newly generated view with the one recorded
when the machine was initialized. If the two views do not match, a human operator is
notified. As shown in Figure 1, HyperCheck works at the BIOS level and can protect the
software above it. Our assumptions are that the attacker does not have physical access
to the machine and that the SMM BIOS is locked and thus cannot be altered during run.
We do not explicitly require trusted boot to initialize HyperCheck [23, 24]. However,
having a machine equipped with trusted boot can prevent attacks against HyperCheck
that simulate a hardware reset.2

Fig. 1. HyperCheck can offer protection
to services running above BIOS

Unlike previous work [30] that use special-
ized PCI hardware, we are able to acquire a
complete view of the target machine’s state
including the entire memory and CPU regis-
ters. In addition, our approach is able to thwart
attacks aimed at disabling, blocking, or even
taking over PCI devices. To evaluate the va-
lidity and performance of our approach, we
implemented two prototypes for HyperCheck.
HyperCheck-I uses QEMU [3] – a fully sys-
tem emulator – to emulate the PCI NIC, while
HyperCheck-II is based on an Intel e1000 phys-
ical NIC. Using our prototypes, we were able to ferret-out rootkits aimed at Xen [11]
hypervisor, Xen Domain 0, Linux, and Windows. Our experimental results indicate that
HyperCheck does not cause prohibitive performance overhead requiring only a few
milliseconds to completely transmit each snapshot.

In summary, we make the following contributions:

1. Designed a novel hardware-assisted tampering detection framework that creates a
complete snapshot of the state of the system with commercial hardware and no
modification to the installed software.

2. Implemented two prototypes: one based on QEMU and the other based on the real
hardware. The latter has overhead in the order of few milliseconds. Using our pro-
totype, we demonstrate that we can successfully detect rootkits and code integrity
attacks against the Xen VMM, Xen Domain 0, Linux, and Windows.

2 Related Work

Protecting software from integrity attacks using hardware-assisted techniques is not
new: researchers used a special-purpose PCI device to acquire the physical memory

2 As we discuss in Section 7, the same can be accomplished using a management interface.

160 J. Wang, A. Stavrou, and A. Ghosh

either for rootkit detection [30, 2] or for forensic purpose [8] in the past. The closest
system to our work is Copilot [30]. Copilot employed a special PCI device to poll the
physical memory of the host and send it to an admin station periodically. In Hyper-
Check, we do not require specialized hardware – only an out-of-the-box network card.
We also offer a complete view of the CPU state including its registers. Such view is
important to prevent copy-and-change attacks that can mislead the PCI card to scan the
wrong regions of memory and report erroneously that the system is not affected.

Another closely related work is HyperGuard [33]. Rutkowska et al. suggested using
SMM of the x86 CPU to monitor the integrity of the hypervisors. Although we have
similar goals as the HyperGuard project, the use of a network card allows us to out-
source the analysis of the state snapshot. This results in a drastic improvement in the
performance of the system reducing the system busy time from seconds to millisec-
onds. Due to its low performance overhead, HyperCheck can also monitors the code
and data of the privileged domain and underlying OSes. Another difference is that the
monitoring machine can be used to detect the DoS attacks to the SMM code.

DeepWatch [6] also offers detection of hypervisor rootkits, called virtualization
malware in DeepWatch, by using the embedded micro-controller(s) in the chipset. Deep-
Watch is signature based and used to detect rootkits relying on hardware-assisted virtu-
alization technologies such as Intel VT-d [18]. Contrary, HyperCheck performs anomaly
detection and thus can identify a larger class of software rootkits.

Flicker [23] uses a TPM based method to provide a minimum Trusted Code Base
(TCB), which can be used to detect the modification to the kernels. Flicker requires
advanced hardware features such as Dynamic Root of Trust Measurement (DRTM) and
late launch. In contrast, HyperCheck uses the static Platform Configuration Registers
(PCRs) to secure the booting process. In addition, by sending out the data, HyperCheck
has a lower overhead on the target machine compared to Flicker. To reduce the overhead
of Flicker, TrustVisor [24] has a small footprint hypervisor to perform some cryptogra-
phy operations. However, all the legacy applications should be ported for TrustVisor to
work. In addition, TrustVisor requires DRTM.

Another branch of research tries to improve the security of the hypervisor by adding
hooks [10] and enforcing security policies between virtual machines [34]. These meth-
ods are hypervisor specific and run as the same level as the hypervisor. HyperCheck
monitors the hypervisor state from a lower level and thus, is complementary to these
methods.

Furthermore, there is a plethora of research aimed towards protecting the Linux ker-
nel [2, 22, 16, 38, 21, 36, 31]. Baliga [2] et al. use a PCI device to acquire the memory
and automatically derive the kernel invariance. Currently, we discover the kernel invari-
ance manually but we could employ their techniques directly and without modifications.
Litty [22] et al. developed a technique to discover the address of key data structures that
are instantiated during run-time by relying on processor hardware and executable file
specifications. But they also rely on the integrity of the underlying hypervisors. Hyper-
Check first obtains the virtual addresses of those symbols through the symbol file, but
then calculates the physical addresses through CPU registers. Therefore, HyperCheck
can get the correct view of the system memory even if the underlying OS or hypervisor
is compromised and page tables are altered. Other existing research [38, 21, 36, 31],

HyperCheck: A Hardware-Assisted Integrity Monitor 161

including work by Jiang et al., depend on the integrity of the hypervisor to protect the
kernel. Our work is complementary and can be employed as a meta-protection mecha-
nism to guard the integrity of OS-level defenses. A lot of recent work has gone towards
using SMM to generate efficient rootkits [39, 5, 15, 12]. These rootkits can be used
either to get root privilege or as a key-stroke loggers. We use SMM to offer integrity
protection by monitoring the state of hypervisors and operating systems.

3 Threat Model

3.1 Background of System Management Mode

System Management Mode (SMM) was introduced in the Intel386 SL and Intel486 SL
processors. It became a standard IA-32 feature in the Pentium [20] processor. SMM is a
separate CPU mode besides the protected and real mode. The original purpose of SMM
was to provide a transparent mechanism for implementing platform specific functions
such as power management and system security. The processor enters SMM when the
external SMM interrupt pin (SMI#) is activated or a SMI is received from the advanced
programmable interrupt controller (APIC) [20].

In SMM, the processor switches to a separate address space, called system manage-
ment RAM (SMRAM). In addition, all hardware context of the currently running code
is saved in SMRAM. Then, the CPU, being in SMM, executes transparently code that
is usually a part of BIOS and resides in SMRAM. The SMRAM can be made inacces-
sible from other CPU operating modes. Therefore, it can act as trusted storage, sealed
from being accessed from any device or even the CPU (while not in SMM mode). In
HyperCheck, we modify the SMM code to execute our monitoring functions. This mod-
ification of SMM code can be integrated into the BIOS. Another way is to use a trust
boot mechanism or a management interface to upload the code to SMM (when SMRAM
is not locked) and then lock the SMRAM. Upon returning from SMM, the processor is
placed back into its state prior to enter SMM.

3.2 Attacker’s Capabilities

We assume that the adversary has following capabilities: she is able to exploit vulner-
abilities in any software running in the machine after bootup. This includes the VMM
and all of its privileged components. For instance, the attacker can compromise a guest
domain and escape to the privileged domain. In Xen 3.0.3, pygrub [9] allows local users
with elevated privileges in the guest domain (Domain U) to execute arbitrary commands
in Domain 0 via a crafted grub.conf file [25]. Also, the attacker can modify the hypervi-
sor code or data using any known or zero-day attacks. For instance, the DMA attack [40]
hijacks a device driver to perform unauthorized DMA to the hypervisor’s code or data.

3.3 General Assumptions

The attacker cannot tamper with, or replace the installed PCI NIC with a malicious NIC
using the same driver interface. Also, if the SMM code is integrated with BIOS, we

162 J. Wang, A. Stavrou, and A. Ghosh

assume the SMRAM is properly setup by BIOS upon boot time. If the SMM code is not
included in the BIOS, it has to be reliably uploaded to the SMRAM during boot. This
can be done by either using trusted boot or using the management interface to bootstrap
the computer. In this case, to initialize the SMM code, a trusted bootstrap mechanism
has to be employed. The SMRAM is locked once it is properly set up. Once it is locked,
we assume it cannot be subverted by the attacker (an assumption supported by current
hardware). Attacks that attempt to modify the SMM code [41, 13, 14] are beyond the
scope of this paper.

3.4 In-Scope Attacks

HyperCheck aims to detect the in-memory, Ring-0 level (hypervisor or general OS)
rootkits and rootkits in privileged domains of hypervisors. A rootkit is a set of programs
and code that allows a permanent or consistent, undetectable presence on a computer
[19]. One kind of rootkits only modifies the memory and/or registers and runs in the
kernel level. For example, the idt-hook rootkit [1] modifies the interrupt descriptor table
(IDT) in the memory and then gains the control of the complete system. An stealthier
version of the idt-hook rootkit could keep the original IDT unchanged by copying it to a
new location and altering it. Next, the attacker could change the IDTR register to point
to the new location. When it comes to the hypervisor level rootkit, there is yet another
kernel: the hypervisor kernel which runs underneath the operating system kernel. There
are existing methods to detect in-memory, kernel-level rootkits. We try to bridge this
gap by introducing HyperCheck.

3.5 Limitations

Currently, our analysis cannot protect against attacks that modify dynamic data. There
are two types of threats: modification to the dynamically generated function pointers
and return-oriented attacks. In these attacks, the control flow is redirected to memory
location controlled by the attacker. There are techniques to thwart such attacks: the non-
executable bit in new CPUs and Address Space Layout Randomization to name a few.
HyperCheck can leverage and integrate those techniques to provide full protection but
it was not part of our implementation in this paper. Having said that, we can still detect
the presence of the malfease if it tries to interfere with the VMM code or statically
defined function pointer.

4 System Architecture

HyperCheck is composed of three key components: the physical memory acquiring
module, the analysis module and the CPU register checking module. The memory ac-
quiring module reads the contents of the physical memory of the protected machine
and sends them to the analysis module. Then, the analysis module checks the memory
contents and verifies if anything is altered. The CPU register checking module reads

HyperCheck: A Hardware-Assisted Integrity Monitor 163

Hardware

Hypervisor

OS 1 OS 2

Monitor
Machine PCI NIC

(1)
SMM
(2)

Analysis
Module

(1) Acquiring module
(2) Register Checking module

Fig. 2. The architecture of HyperCheck

the registers and validates their integrity. The overall architecture of HyperCheck is
shown in Figure 2. Before introducing the key components, we first describe our design
principles.

Our main design principle is that HyperCheck should not rely on any software run-
ning on the machine except the boot loader. Since the software may be compromised,
one cannot trust even the hypervisor. Therefore, we use hardware – a PCI Ethernet card
– as a memory acquiring module and SMM to read the CPU registers. Usually, Ethernet
cards are PCI devices with bus master mode enabled and are able to read the physical
memory through DMA, which does not need help from CPU. SMM is an independent
operating mode and could be made inaccessible from protected mode which is what the
hypervisor and privileged domains run in.

Previous researchers only used PCI devices to read the physical memory. However,
CPU registers are also important because they define the location of active memory
used by the hypervisor or an OS kernel such as CR3 and IDTR registers. Without these
registers, the attacker can launch a copy-and-change attack. It means the attacker copies
the memory to a new location and modifies it. Then the attacker updates the register to
point to the new location. PCI devices cannot read the CPU registers, thereby failing to
detect this kind of attacks. By using SMM, HyperCheck can examine the registers and
report the suspicious modifications.

Furthermore, HyperCheck uses the CR3 register to translate the virtual addresses
used by the kernel to the physical addresses captured by the analysis module. Since the
acquiring module relies on the physical address to read the memory, HyperCheck needs
to find the physical addresses of the protected hypervisor and privileged domain. For
that purpose, HyperCheck checks both symbol files and CPU registers. From symbol
files, HyperCheck can read the virtual addresses of the target memory. Then, Hyper-
Check utilizes CPU registers to find the physical addresses corresponding to the vir-
tual ones. Previous systems only used the symbol files to read the virtual addresses
and calculate the physical addresses. Such systems can not detect attacks that modify
page tables and leave the original memory untouched. Another possible way to get the
physical addresses without using registers, is to scan the entire physical memory and

164 J. Wang, A. Stavrou, and A. Ghosh

use pattern matching to find all potential targets. However, this method is not scalable
or even efficient especially since hypervisors and operating system kernels have small
memory footprint.

4.1 Acquiring the Physical Memory

In general, there are two ways to acquire the physical memory: a software method
and a hardware one. The former uses the interface provided by the OS or the hyper-
visor to access the physical memory, such as /dev/kmem on Linux [7] or \Device
\PhysicalMemory on Windows [37]. This method relies on the integrity of the under-
lying operating system or the hypervisor. If the operating system or the hypervisor is
compromised, the malware may provide a false view of the physical memory. Moreover,
these interfaces to access memory can be disabled in future versions of the operating
systems. In contrast, the hardware method uses a PCI device [8, 30] or other kinds of
hardware [6]. The hardware method is more reliable because it depends less on the
integrity of the operating system or the hypervisor.

We choose the hardware method to read the physical memory. There are also multi-
ple options for the hardware components such as a PCI device, a FireWire bus device or
customized chipset. We selected to use a PCI device because it is the most commonly
used hardware. Moreover, existing commercial Ethernet cards need drivers to func-
tion. These drivers normally run in the operating system or the driver domain, which
are vulnerable to the attacks and may be compromised in our threat model. To avoid
this problem, HyperCheck puts these drivers into the SMM code. Since the SMRAM
memory is going to be locked after booting, it will not be modified by the attacker. In
addition, to prevent the attacker from using a malicious NIC driver in the OS to spoof
the SMM driver, we use a secret key. The key is obtained from the monitor machine
when the target machine is booting up and then stored in the SMRAM. The key then
is used as a random seed to selectively hash a small portion of the data to avoid data
replay attacks.

Another class of attacks is denial of service(DoS) attacks. Such attacks aim to stop
or disable the device. For instance, according to ACPI [17] specification, every PCI
device supports D3 state. This means that an ACPI-compatible device can be suspended
by an attacker who takes over the operating system: ACPI was designed to allow the
operating system to control the state of the devices. Of course, the OS is not a trusted
component in our threat model. Therefore, one possible attack is to selectively stop the
NIC without stopping any other hardware. To prevent ACPI DoS attacks, we need an
out-of-band mechanism to verify that the PCI card is not disabled. The remote server
that receives the state snapshots plays that role.

4.2 Translating the Physical Memory

In practice, there is a semantic gap between the physical memory that we monitor and
the virtual memory addressing used by the hypervisor. To translate the physical mem-
ory, the analysis module must be aware of the semantics of the physical memory layout
depends on the specific hypervisor we monitor. On the other hand, the acquiring module
may support many different analysis modules with no or small modifications.

HyperCheck: A Hardware-Assisted Integrity Monitor 165

The current analysis module depends on three properties of the kernel memory: lin-
ear mapping, static nature and persistence. Linear mapping means the kernel (OS or
hypervisor) memory is linearly mapped to physical memory and the physical addresses
are fixed. For example, on x86 architecture, the virtual memory of Xen hypervisor is
linearly mapped into the physical memory. Therefore, in order to translate the physical
address to a given virtual address in Xen, we have to subtract the virtual address from an
offset. In addition, Domain 0 of Xen is also linear mapped to the physical memory. The
offset for Domain 0 is different on different machines but remains the same on a given
machine. Moreover, other operating system kernels, such as Windows [35], Linux [4]
or OpenBSD [12], also have this property when they are running directly on the real
hardware.

Static nature means the contents of the monitoring part of the hypervisor have to be
static. If the contents are changing, then there might be a time window between the CPU
changing the contents and our acquiring module reading them. This may result in in-
consistency for analysis and verification. Persistence property means the memory used
by hypervisors will not be swapped out to the hard disk. If the memory is swapped out,
then we cannot identify and match any content by only reading the physical memory.
We would have to read the swap file on the hard disk.

The current version of HyperCheck relies on these three properties (linear mapping,
static nature and persistence) to work correctly. Besides the Xen hypervisor, most op-
erating systems hold these three properties too.

4.3 Reading and Verifying the CPU Registers

Since the Ethernet card cannot read the CPU registers, we must use another method
to read them. Again, there are software and hardware based methods. For software
method, one could install a kernel module in the hypervisor and then it could obtain
registers by reading from the CPU directly. However, this is vulnerable to the rootk-
its, which can potentially modify the kernel module or replace it with a fake one. For
hardware method, one could use a chipset to obtain registers.

We choose to use SMM in x86 CPU which is similar to a hardware method. As we
mentioned earlier, SMM is a different CPU mode from the protected mode which the
hypervisor or the operating system reside in. When CPU switches to SMM, it saves the
register context in the SMRAM. The default SMRAM size is 64K Bytes beginning at a
base physical address in physical memory called the SMBASE. The SMBASE default
value following a hardware reset is 0x30000. The processor looks for the first instruction
of the SMI handler at the address [SMBASE + 0x8000]. It stores the processor’s state
in the area from [SMBASE + 0xFE00] to [SMBASE + 0xFFFF] [20]. In SMM, if SMI
handler issues rsm instruction, the processor will switch back to the previous mode
(usually it is protected mode). In addition, the SMI handler can still access I/O devices.
HyperCheck verifies the registers in SMM and reports the result by sending it via the
Ethernet card to the monitor machine. HyperCheck focuses on monitoring two registers:
IDTR and CR3. IDTR should never change after system initialization. For CR3, SMM
code can use it to translate the physical addresses of the hypervisor kernel code and
data. The offsets between physical addresses and virtual ones should never change as
we discussed in Section 4.2.

166 J. Wang, A. Stavrou, and A. Ghosh

5 Implementation

We implemented two prototypes for HyperCheck: HyperCheck-I is using QEMU full
system emulation while HyperCheck-II is running on a physical machine. We first
developed HyperCheck-I for quick prototyping and debugging. To measure the over-
all system performance, we implemented HyperCheck-II on non-virtualized hardware.
Both of them utilize the Intel e1000 Ethernet card as the acquiring module.

In HyperCheck-I, the target machine is as a virtual machine that uses QEMU. The
analysis module runs on the host operating system of QEMU. For the acquiring module,
we placed a small NIC driver into the SMM of the target machine. Using the driver, we
can program the NIC to transmit the contents of physical memory as an Ethernet frame.
On the monitoring machine, an analysis module receives the packet from the network.
The analysis module compares contents of the physical memory with the original (ini-
tial) versions. If a new snapshot of the memory contents is different from the original
one, the module will report the event to a system operation who can decide how to pro-
ceed. Moreover, another small program runs in the SMM and collects and sends out the
CPU registers also via the Ethernet card.

For HyperCheck-II, we used two physical machines: one as the target and the other
as the monitor. On the target machine, we installed Xen 3.1 natively and used the phys-
ical Intel e1000 Ethernet card as the acquiring module. Also, we modified the default
SMM code on the target machine to enable our system similarly to our QEMU imple-
mentation. The analysis module runs on the monitor machine and is the same as the one
in HyperCheck-I. HyperCheck-II is mainly used for performance measurement.

As we mentioned earlier, we used QEMU for HyperCheck-I. QEMU is suitable for
debugging potential implementation problems. However, it comes with two drawbacks.
First, the throughput of a QEMU network card is much lower than a real NIC device.
For our QEMU based prototype, the network card throughput is approximately 10MB/s,
although Gigabit Ethernet cards are common in practice. Second, the performance mea-
surement on QEMU may not reflect the real world performance. HyperCheck-II help
us overcome these problems.

5.1 Memory Acquiring Module

The main task to implement the acquiring module is to port the e1000 network card
driver into SMM to scan the memory and send it out. Normally, SMM code is one part
of BIOS. Since we don’t have the source code of the BIOS, we used the method similar
to the one mentioned in [5] to modify the default SMM code. Basically, it writes the
SMM code in 16bit assembly and uses a user level program to open the SMRAM and
copy the assembly code to the SMRAM.

To overcome the limitations of [5], we divided the e1000 driver into two parts: initial-
ization and data transfer. The initialization part is complex and very similar to the Linux
driver. The communication part is simpler and different from the Linux driver. There-
fore, we modified the existing Linux e1000 driver to initialize the network card and only
program the transferring part in assembly. The e1000 driver on Linux is changed to only
initialize the NIC but does not send out any packet. The assembly code is compiled to

HyperCheck: A Hardware-Assisted Integrity Monitor 167

an ELF object file. Next, we wrote a small loader which can parse the ELF object file
and load the code and data to the SMM.

For this implementation, the NIC driver is ported to the SMM, the next step is to mod-
ify the driver to scan the memory and send them out. HyperCheck uses two transmission
descriptors per packet, one for the header and the other for the data. The content of the
header should be predefined. Since the NIC is already initialized by the OS, the driver
in SMM has only to prepare the descriptor table and write it to the Transmit Descriptor
Tail (TDT) register of the NIC. The NIC will send the packet to the monitoring machine
using DMA. The NIC driver in SMM prepares the header data and let the descriptor
point to this header. For the payload, the descriptor is directly pointed to the address of
the memory that needs to be scanned. In addition, e1000 NIC supports CRC offloading.

To prevent replay attacks, a secret key is transferred from the monitor machine to
the target machine upon booting. The key is used to create a random seed to selectively
hash the data. If we hash the entire data stream, the performance impact may be high.
To reduce the overhead, we use the secret key as a seed to generate one big random
number used for one-time pad encryption and another set of serial random numbers.
The serial of random numbers are used as the indexes of the positions of the memory
being scanned. Then, the content at these positions are XORed with the one-time pad
with the same length before starting NIC DMA. After the transmission is done, the
memory content is XORed again to restore the original value.

The NIC driver also checks the loop-back setting of the device before sending the
packet. To further guarantee the data integrity ,the SMM NIC driver stays in the SMM
until all the packet is written to the internal FIFO of the NIC, and add 64KB more data
to the end to flush the internal FIFO of the NIC. Therefore, the attacker cannot use loop-
back mode to get the secret key or peek into the internal NIC buffer through debugging
registers of the NIC.

5.2 Analysis Module

On the monitoring machine, a dedicated network card is connected with the acquiring
module. The operating system of the monitoring machine was CentOS 5.3. We run
tcpdump to filter the packets from the acquiring module; the output of tcpdump is
sent to the analysis module. The analysis module written in a Perl script reads the input
and checks for any anomalies. The analysis module first recovers the contents using the
same secret key. After that, it compares every two consecutive memory snapshots bit by
bit. If they are different, the analysis module outputs an alert on the console, as we are
checking the persistent and static portion of the hypervisor memory. The administrator
can then decide whether it is a normal update of the hypervisor or an intrusion. Note that
during the system boot time, the contents of those control data and code are changing.

Currently, the analysis module can check the integrity of the control data and code.
The control data includes IDT table, hypercall table and exception table of Xen, and
the code is the code part of Xen hypervisor. To find out the physical address of these
control tables, we use Xen.map symbol file. First, we find the virtual addresses of
idt_table,hypercall_table and exception table. The physical address of these
symbols is virtual address − 0xff00,0000 on x86-32 architecture with PAE. The ad-
dress of Xen hypervisor code is between _stext and _etext. HyperCheck can also

168 J. Wang, A. Stavrou, and A. Ghosh

monitor the control data and codes of Domain 0. This includes the system call table
and the code part of Domain 0 (a modified Linux 2.6.18 kernel). The kernel of Domain
0 is also linearly mapped to the physical memory. We use a kernel module running in
Domain 0 to compute the exact offset. On our test machine, the offset is 0x83000000.
Note that, there is no IDT table for Domain 0, because there is only one such table in
the hypervisor. We input these parameters to the acquiring module to improve the scan
efficiency.

Note that these control tables are critical to system integrity. If their contents are
modified by any malware, it can potentially run arbitrary code in the hypervisor level,
i.e. the most privileged level. An antivirus software or intrusion detection system that
runs in Domain 0 is difficult or unable to detect this hypervisor level malware because
they rely on the hypervisor to provide the correct information. If the hypervisor itself is
compromised, it may provide fake information to hide the malware. The checking for
the code part of the hypervisor enables HyperCheck to detect the attacks which do not
modify the control table but just modify the code invoked by those tables.

5.3 CPU Register Checking Module

HyperCheck uses SMM code to acquire and verify CPU registers. In a product, the SMI
handler should be integrated into BIOS. Or it can be set up during the system boot time.
This requires the bootstrap to be protected by some trusted bootstrap mechanism. In
addition, most chipsets provide a function to lock the SMRAM. Once it is locked, SMM
handler cannot be changed until reboot. Therefore, the SMRAM should be locked once
it is set up. In our prototype, we used the method mentioned in Section 5.1 to modify
the default SMM code.

There are three steps for CPU register checking: 1) triggering SMI to enter SMM;
2) checking the registers in SMM; 3) reporting the result. SMI is a hardware interrupt
and can only be triggered by hardware. Normally, I/O Controller Hub (ICH), also called
Southbridge, defines the events to trigger SMI. For HyperCheck-I, the QEMU emulates
Intel 82371SB chip as the Southbridge. It supports some device idle events to generate
SMI. SMI is often used for power management, and Southbridge provides some timers
to monitor the state of a device. If that device remains idle for a long time, it will trigger
SMI to turn off that device. The resolutions of these timers are typically one second.
However, on different motherboard, the method to generate the SMI may be different.
Therefore, we employ the Ethernet card to trigger the SMI event.

For the register checking, HyperCheck monitors IDTR and CR3 registers. The con-
tents of IDTR should never change after system boot. The SMM code just reads this
register by sidt instruction. HyperCheck uses CR3 to find out the physical addresses
of hypervisor kernel code and data given their virtual addresses. Essentially, it walks
through all the page tables as a hardware Memory Management Unit (MMU) does. Note
that offset between the virtual address and the physical address of hypervisor kernel code
and data should never change. For example, it is 0xff000000 for Xen 32bit with PAE.
The Domain 0 has the same property. The SMM code requires the virtual address range
as the input (this can be obtained through the symbol file and send to the SMM in the
boot time) and afterwards check their physical addresses. If any physical address is not

HyperCheck: A Hardware-Assisted Integrity Monitor 169

equal to virtual address – offset, this signifies a possible attack. The SMM code reports
the result of this checking via the Ethernet card. The assembly code of it is just 67 LOC.

The SMM code uses the Ethernet card to report the result. Without the Ethernet
card, it is difficult to send the report reliably without stopping the whole system. For
example, the SMM code could write the result to a fixed address of physical memory.
But according to our threat model, the attacker has access to that physical memory and
can easily modify the result. Or the SMM code could write it to the hard disk. Again,
this can be altered by the attacker too. Since security cannot relies on the obscurity, the
only way left without a network card is to stay in the SMM mode and put the warning
message on the screen. This is reliable, but the system in the protected mode becomes
completely frozen. Sometimes, it may not be desirable, and could be abused by the
attacker to launch Denial of Service attacks.

5.4 HyperCheck-II

In HyperCheck-II, the main difference from HyperCheck-I is the acquiring module. We
ported the SMM NIC driver from QEMU to a physical machine. Both of them have
the same model of the NIC: 82540EM Gigabit Ethernet card. However, the SMM NIC
driver from the QEMU VM does not work on the physical machine. And it took one of
the author one week to debug the problem. Finally, we find out that the main difference
between a QEMU VM and the physical machine (Dell Optiplex GX 260) is that the
NIC can access the SMRAM in a QEMU VM while it cannot on the physical machine.
For HyperCheck-I SMM NIC driver, the TX descriptor is stored in the SMRAM and it
works well. For HyperCheck-II, the NIC cannot read the TX descriptor in the SMRAM
and therefore does not transmit any data.

To solve this problem, we reserved a portion of physical memory by adding a boot
parameter: mem=500M to the Xen hypervisor or Linux kernel. Since the total physical
memory on the physical machine is 512MB, we reserved 12MB for HyperCheck by
using mem parameter. This 12MB is used to store the data used by SMM NIC and
the TX descriptor ring. We also modified the loader to be a kernel module; it calls
ioremap() to map the physical memory to a virtual address and load the data there.
In a product, the TX descriptor ring should be prepared every time by the SMM code
before transmitting the packet. In our prototype, since we don’t have the source code of
the BIOS, we used the loader to load the TX descriptor.

Finally, we built a debugging interface for the SMM code on the physical machine.
We use the reserved physical memory to pass the information between the SMM code
and the normal OS. This interface is also used to measure the performance of the SMM
code as we will discuss in Section 6.

6 Evaluation

To validate the correct operation of HyperCheck, we first verified the properties that
need to hold for us to be able to protect the underlying code as we discussed in Sec-
tion 4.2. Then, we tested the detection for hypervisor rootkits and measured the opera-
tional overhead of our approach. We have worked on two testbeds: testbed 1 is mainly

170 J. Wang, A. Stavrou, and A. Ghosh

used for HyperCheck-I and also as the monitor machine for HyperCheck-II. Testbed 2
uses HyperCheck-II to produce the plotted performance overhead on the real hardware.
Testbed 1 was equipped with a Dell Precision 690 with 8GB RAM and one 3.0GHz
Intel Xeon CPU with two cores. The host operating system was CentOS 5.3 64bit. The
QEMU version was 0.10.2 (without kqemu). The Xen version was 3.3.1 and Domain
0 was CentOS 5.3 32bit with PAE. Testbed 2 was a Dell Optiplex GX 260 with one
2.0GHz Intel Pentium 4 CPU and 512MB memory. Xen 3.1 and Linux 2.6.18 was in-
stalled on the physical machine and the Domain 0 is CentOS 5.4.

6.1 Verifying the Static Property

An important assumption is that the control data and respective code are statically
mapped into the physical memory. We used a monitoring module designed to detect
legitimate control data and code modifications throughout the experiments. This en-
abled us to test our approach against data changes and self-modifying code in the Xen
hypervisor and Domain 0. We also tested the static properties of Linux 2.6 and Win-
dows XP 32bit kernels. In all these tests, the hypervisor and the operating systems are
booted into a minimal state. The symbols used in the experiments are shown in Table 1.
During the tests, we found out that during boot the control data and the code changes.
For example, the physical memory of IDT is all 0 when the system first boots up. But
after several seconds, it becomes non-zero and static. The reason is that the IDT table
is initialized later in the boot process.

Table 1. Symbols for Xen hypervisor, Domain 0, Linux and Windows

System Symbol Use
idt table Hypervisor’s Interrupt Descriptor Table
hypercall table Hypervisor’s Hypercall Table

Xen exception table Hypervisor’s Exception Table
stext Beginning of hypervisor code
etext End of hypervisor code

sys call table Domain 0’s System Call Table
Dom0 text Beginning of Domain 0’s kernel code

etext End of Domain 0’s kernel code
idt table Kernel’s Interrupt Descriptor Table

Linux sys call table kernel’s System Call Table
text Beginning of kernel code
etext End of kernel code

Windows PCR→idt Kernel’s Interrupt Descriptor Table
KiServiceTable Kernel’s System Call Table

6.2 Detection

To verify whether HyperCheck can detect attacks against the hypervisor, we imple-
mented DMA attacks [40] on Xen hypervisor and then tested HyperCheck-I’s response
on testbed 1. We ported the HDD DMA attacks to modify the Xen hypervisor and

HyperCheck: A Hardware-Assisted Integrity Monitor 171

Domain 0. There are four attacks to Xen hypervisor and two attacks to Domain 0. We
also modified the pcnet network card in QEMU to perform the DMA attack from the
hardware directly. The modified pcnet NIC is used to attack Linux and Windows operat-
ing systems. There are three attacks to Linux 2.6.18 kernel and two attacks to Windows
XP SP2 kernel, each targeting one control table or the code. They can modify the IDT
table and other tables of the kernel. HyperCheck-I correctly detected all these attacks
by reporting the contents of memory in the target machine are changed.

6.3 Monitoring Overhead

The primary source of overhead is coming from the transmission of the memory con-
tents to the external monitoring machine. In addition, to ensure the memory contents
have not been tampered with, HyperCheck needs to remain in SMM and wait until
the NIC finished. Otherwise, the attacker may control the OS and modify the memory
contents or the transmit descriptor in the main memory while transmitting. Initially,
we measured the time to transmit a single packet varying its payload size. The packet
flushed out when the Transmit Descriptor Head register (TDH) is equal to Transmit
Descriptor Tail register (TDT). We calculated the elapsed time using the rdtsc in-
struction to read the time stamp before and after each operation. As expected, the time
linearly increases as the size of the packet increases.

Next, we measured the bandwidth by using different packet sizes to send out a fixed
amount of data: 2881 KB memory (the size of Xen code plus Domain 0 code). The result
is depicted in the Figure 3: when the packet size is less than 7 KB, the time required
to send the data similar to a constant value. When the packet size becomes 8KB, the
overhead increases dramatically and it remains high. The reason is that the internal NIC
transfer FIFO is 16KB. Therefore, when the packet size becomes 8KB or larger, the
NIC cannot hold two packets in the FIFO at the same time and this introduces delay.

Since HyperCheck can be used to monitor different sized hypervisors and OSes,
we measured the time required to send different amount of data and the results are in
Figure 4. In this set of experiments, we use 7KB as the packet size since it introduced
shortest delay in our testbed. We can see that the time also nearly linearly increased with

Fig. 3. Network overhead for variable
packet size

Fig. 4. Network overhead for variable data size

172 J. Wang, A. Stavrou, and A. Ghosh

Fig. 5. Overhead of the operations in SMM

0

200

400

600

800

1000

1 2 3 4

Data size(MB)

Ti
m
e(
M
ill
io
n
cp
u
cy
cl
es
)

Fig. 6. Overhead of the XOR data in SMM

the amount of memory. In addition to PCI scanning, HyperCheck also triggers SMI
interrupt every one second and checks the registers in SMM. To measure the overall
overhead of entering SMM, executing SMM code and return from SMM, we wrote a
kernel module running in Domain 0.

The tests were conducted on testbed 2 (HyperCheck-II) and each test is repeated
many times. Here we present the average of the results. The overall time is composed
of four parts. First, the time taken to XOR the data with the secret key. Second, the time
to access the memory. Third, the time to configure the card and switch from protected
mode to SMM and back. Finally, the time to send out the data through the NIC. To find
out how much time was spent in each part, we wrote two more test programs. One is a
dummy SMM code which does nothing but just returns from SMM to CPU protected
mode. The other one does not access the main memory but just use the registers to sim-
ulate the verification of IDTR and CR3. Then we tested the running time for these two

HyperCheck: A Hardware-Assisted Integrity Monitor 173

Table 2. Time overhead of HyperCheck and other methods

Execution Time(ms)
Code base Size(MB) HC SMM TPM

Linux 2.0 31 203 1022
Xen+Dom0 2.7 40 274 >1022
Window XP 1.8 28 183 > 972
Hyper-V 2.4 36 244 >1022
VMWare ESXi 2.2 33 223 >1022

SMM codes. From the first one, we can get the time for switching between protected
mode and SMM and then switch back. From the second one, we can get the time for
the CPU computation part of the verification of IDTR and CR3.

The results are presented in Figure 5. The most of the time is spent in sending the
data, which is 73 Million cycles. Next is the time to accessing the main memory : 5.28
Million cycles. Others took a very small portion. The total time is 80 Million cycles.
Since the CPU of the testbed 2 is 2 GHz. Therefore, the SMM code consumes 4.0% of
the CPU cycles, and takes 40 ms.

We also measured the code size of our SMM code, which is just about 300 Bytes.
On the monitor machine, the overhead for reading the memory contents and comparing
them with previous state took 230 ms, including 49 ms for only comparing the data.
Note it is possible to reduce the time for reading the memory contents from the file, if
we use pipe or other memory sharing based communication between tcpdump and the
perl script.

In contrast, previous research suggests using SMM to read the memory and hashing
it on the target machine. We call this SMM only method. To compare our approach with
SMM only method, we wrote a program to XOR the memory in SMM with different
sizes. The result is shown in Figure 6.

The time for XOR data is linearly increased with the amount of data and typically
uses hundreds of Million CPU cycles. Also, we compare our approach with a TPM based
approach [23] which can also be used to monitor the integrity of the kernels. The result
is shown in the Table 2. HC stands for HyperCheck. We can see that the overhead of
HyperCheck is one magnitude lower than SMM-only and TPM based method. For SMM-
only, it has to hash the entire data to check its integrity, while HyperCheck only hashes

Table 3. Comparison between HyperCheck and other methods

Memory Registers Overhead

HyperCheck x x Low
SMM x x High
PCI x Low

TPM x x High

174 J. Wang, A. Stavrou, and A. Ghosh

a random portion of the data and then sends the entire data out using an Ethernet card.
For TPM based method, the most expensive operation is TPM quote, which alone took
972 ms. Note that the test machine of TPM based method is better than our testbed 2. An
overall comparison between HyperCheck and other methods is shown in Table 3. We can
see that only HyperCheck can monitor both memory and registers with low overhead.

7 Security Analysis and Limitations

HyperCheck aims to detect the modifications to the control data and the codes of the
hypervisors or OS kernels. These kinds of attacks are realistic and have a significant
impact on the system. HyperCheck can detect these attacks by using an Ethernet card
to read the physical memory via DMA and then analyze it. For example, if the attackers
control the hypervisor and make some modifications, HyperCheck can detect that change
by reading the physical memory directly and compare it with previous pristine value.

In addition, HyperCheck also uses SMM to monitor CPU registers, which provides
further protection. Some previous research works only rely on the symbol table in the
symbol file to find the physical address of the kernel code and data. Nonetheless, there
is no binding between the addresses in the symbol table and the actual physical address
of these symbols [22]. For example, one potential attack is to modify the IDTR register
of CPU to point to another address. Then the malware can modify the new IDT table,
keeping the old one untouched. Another potential attack is to keep the IDTR register
untouched, but modify the page tables of the kernel so that the virtual address in the
IDTR will actually point to a different physical address. HyperCheck can detect these
cases by checking CPU registers in SMM. In SMM, HyperCheck read the content of
IDTR and CR3 registers used by the operating system. IDTR should never change after
booting. If it changed, SMM will send a warning through the Ethernet card to the mon-
itor machine. From CR3, HyperCheck can find the actual physical address given the
virtual ones. The offset between the virtual addresses and the physical addresses should
be static. If some offsets changed, HyperCheck will generate a warning too. Moreover,
PCI devices including the Ethernet card alone can be cheated to get a different view of
the physical memory [32]. With SMM, we could avoid this problem by checking the
corresponding settings in SMM.

The network card driver of HyperCheck is put into the SMM code to avoid malicious
modifications. Also, to prevent replay attacks, we use a key to hash a portion of the data
randomly and then send them out to the analysis module. Since the key is private and
locked in the SMRAM, the attacker cannot get it and cannot generate the same hash.
Attacker can still try to disable the Ethernet card or the SMM code, but we can detect it
through an out-of-band monitor, such as Dell remote access controller.

In addition, the attacker may try to launch a fake reboot attack to get a private key
from the monitor machine. It can mimic the SMM NIC driver and send a request for
a new key. For this event, we have two options: first, we could use Trusted Platform
Module (TPM) based remote attestation to verify the running state of the target machine
[23]. We only need to verify whether the OS has been started or not. If it is already
started, the monitor machine should refuse to send the key. If the target machine does
not have a TPM, the second method is to send another reliable reboot signal to the target
machine when it asks for the key to make sure the SMM code is running.

HyperCheck: A Hardware-Assisted Integrity Monitor 175

However, HyperCheck also has its limitations. It cannot detect the changes which
happen between the two consecutive memory and register scans. Although the time
window between the scans is just one second in the current prototype, malware can still
potentially make some changes in the time interval and restore it before the next scan.
To address this problem, we could randomize the scan interval to increase the chances
for detection. In addition, we could use high bandwidth devices, such as PCI Express,
which is able to reach 5GT/s transfer rate [29], to minimize the scan interval.

In addition, if the memory mappings of the hypervisor do not hold the three proper-
ties (linear mapping, persistence and static nature), the current version of HyperCheck
cannot deal with it. We will try to address these problems in the future.

8 Conclusions

In this paper, we introduced HyperCheck, a hardware-assisted tamper detection frame-
work. Hypercheck is designed to protect the code integrity of software running on com-
modity hardware. This includes VMMs and Operating Systems. To achieve that, we
rely on the CPU System Managed Mode (SMM) to securely generate and transmit the
full state of the protected machine to an external server. HyperCheck does not rely on
any software running on the target machine beyond BIOS. Moreover, HyperCheck is
robust against attacks that aim to disable or block its operation.

To demonstrate the feasibility of our approach, we implemented two prototypes one
using QEMU and another one using an Ethernet card on a commodity x86 machine.
Our experimental results indicate that we can successfully identify alterations of the
control data and the code on many existing systems. More specifically, we tested our
approach in part of the Xen hypervisor, the Domain 0 in Xen, and the control structures
of other operating systems, such as Linux and Windows. HyperCheck operation is rel-
atively lightweight: it can produce and communicate a scan of the state of the protected
software in less than 40ms.

Acknowledgements

We would like to thank the CSIS students Nelson Nazzicari, Zhaohui Wang, Quan
Jia, and MeiXing Le, for their comments on our early draft. Moreover, Spyros Pana-
giotopoulos helped us with the DMA attack code. We also thank the anonymous RAID
reviewers for their constructive comments. This material was supported in part by
DARPA contract FA8650-09-C-7956,AFOSR grant FA9550-07-1-0527, and NSF grant
CNS-TC 0915291.

References

[1] Adamyse, K.: Handling interrupt descriptor table for fun and profit. Phrack 59 (2002)
[2] Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of kernel data

structure invariants. In: ACSAC 2008: Proceedings of the 2008 Annual Computer Security
Applications Conference, Washington, DC, USA, pp. 77–86. IEEE Computer Society, Los
Alamitos (2008)

176 J. Wang, A. Stavrou, and A. Ghosh

[3] Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the USENIX
Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)

[4] Bovet, D., Cesati, M.: Understanding the Linux kernel, 3rd edn. O’Reilly Media, Sebastopol
(2005)

[5] BSDaemon, coideloko, and D0nAnd0n. System Management Mode Hack: Using SMM for
“Other Purpose”. Phrack Magazine (2008)

[6] Bulygin, Y., Samyde, D.: Chipset based approach to detect virtualization malware a.k.a.
DeepWatch. Blackhat USA (2008)

[7] Burdach, M.: Digital forensics of the physical memory. Warsaw University (2005)
[8] Carrier, B.D., Grand, J.: A hardware-based memory acquisition procedure for digital inves-

tigations. Digital Investigation 1(1), 50–60 (2004)
[9] Chisnall, D.: The definitive guide to the Xen hypervisor. Prentice Hall Press, Upper Saddle

River (2007)
[10] G. Coker. Xen security modules (xsm). Xen Summit (2006)
[11] Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., Barham, P.,

Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of the ACM Symposium
on Operating Systems Principles (2003)

[12] Duflot, L., Etiemble, D., Grumelard, O.: Using CPU System Management Mode to Circum-
vent Operating System Security Functions. In: Proceedings of the 7th CanSecWest Confer-
ence, Citeseer (2001)

[13] Duflot, L., Etiemble, D., Grumelard, O.: Security issues related to pentium system manage-
ment mode. In: Cansecwest Security Conference Core 2006 (2006)

[14] Duflot, L., Levillain, O., Morin, B., Grumelard, O.: Getting into the SMRAM: SMM
Reloaded. In: CanSecWest, Vancouver, Canada (2009)

[15] Embleton, S., Sparks, S., Zou, C.: SMM rootkits: a new breed of OS independent malware.
In: Proceedings of the 4th International Conference on Security and Privacy in Communi-
cation Netowrks, p. 11. ACM, New York (2008)

[16] Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intru-
sion detection. In: Proc. Network and Distributed Systems Security Symposium, pp. 191–
206 (2003)

[17] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. ACPI,
http://www.acpi.info/

[18] Hiremane, R.: Intel R© Virtualization Technology for Directed I/O (Intel R© VT-d).
Technology c© Intel Magazine 4(10) (2007)

[19] Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley Profes-
sional, Reading (2005)

[20] Intel. Intel R© 64 and ia-32 architectures software developer’s manual volume 1
[21] Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based out-of-the-box

semantic view reconstruction. In: Proceedings of the 14th ACM Conference on Computer
and Communications Security, p. 138. ACM, New York (2007)

[22] Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly execut-
ing binaries. In: SS 2008: Proceedings of the 17th Conference on Security Symposium,
Berkeley, CA, USA, pp. 243–258. USENIX Association (2008)

[23] McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: An execution infrastruc-
ture for TCB minimization. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pp. 315–328. ACM, New York (2008)

[24] McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: Effi-
cient TCB reduction and attestation. In: Proceedings of the IEEE Symposium on Security
and Privacy (May 2010)

[25] MITRE. Cve-2007-4993

http://www.acpi.info/

HyperCheck: A Hardware-Assisted Integrity Monitor 177

[26] Murray, D., Milos, G., Hand, S.: Improving Xen security through disaggregation. In: Pro-
ceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, pp. 151–160. ACM, New York (2008)

[27] National Institute of Standards, NIST. National vulnerability database,
http://nvd.nist.gov

[28] Payne, B., de Carbone, M., Lee, W.: Secure and flexible monitoring of virtual machines.
In: Twenty-Third Annual Computer Security Applications Conference, ACSAC 2007, pp.
385–397 (December 2007)

[29] PCI-SIG. PCI Express 2.0 Frequently Asked Questions
[30] Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a coprocessor-based kernel

runtime integrity monitor. In: SSYM 2004: Proceedings of the 13th Conference on USENIX
Security Symposium, Berkeley, CA, USA, p. 13. USENIX Association (2004)

[31] Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with vmm-
based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008.
LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

[32] Rutkowska, J.: Beyond the CPU: Defeating hardware based RAM acquisition. In: Proceed-
ings of BlackHat DC 2007 (2007)

[33] Rutkowska, J., Wojtczuk, R.: Preventing and detecting Xen hypervisor subversions. Black-
hat Briefings USA (2008)

[34] Sailer, R., Valdez, E., Jaeger, T., Perez, R., Van Doorn, L., Griffin, J., Berger, S.: sHype:
Secure hypervisor approach to trusted virtualized systems. IBM Research Report RC23511
(2005)

[35] Schreiber, S.: Undocumented Windows 2000 secrets: a programmer’s cookbook. Addison-
Wesley, Reading (2001)

[36] Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A tiny hypervisor to provide lifetime
kernel code integrity for commodity OSes. In: Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, p. 350. ACM, New York (2007)

[37] Vidas, T.: The acquisition and analysis of random access memory. Journal of Digital Foren-
sic Practice 1(4), 315–323 (2006)

[38] Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight hook pro-
tection. In: Proceedings of the 16th ACM Conference on Computer and Communications
Security, pp. 545–554. ACM, New York (2009)

[39] Wecherowski, F., collapse, c.: A Real SMM Rootkit: Reversing and Hooking BIOS SMI
Handlers. Phrack Magazine (2009)

[40] Wojtczuk, R.: Subverting the Xen hypervisor (2008)
[41] Wojtczuk, R., Rutkowska, J.: Attacking SMM Memory via Intel R© CPU Cache Poisoning

(2009)

http://nvd.nist.gov

Kernel Malware Analysis with Un-tampered and
Temporal Views of Dynamic Kernel Memory

Junghwan Rhee1, Ryan Riley2, Dongyan Xu1, and Xuxian Jiang3

1 Purdue University
{rhee,dxu}@cs.purdue.edu

2 Qatar University
ryan.riley@qu.edu.qa

3 North Carolina State University
jiang@cs.ncsu.edu

Abstract. Dynamic kernel memory has been a popular target of recent kernel
malware due to the difficulty of determining the status of volatile dynamic ker-
nel objects. Some existing approaches use kernel memory mapping to identify
dynamic kernel objects and check kernel integrity. The snapshot-based memory
maps generated by these approaches are based on the kernel memory which may
have been manipulated by kernel malware. In addition, because the snapshot only
reflects the memory status at a single time instance, its usage is limited in tempo-
ral kernel execution analysis. We introduce a new runtime kernel memory map-
ping scheme called allocation-driven mapping, which systematically identifies
dynamic kernel objects, including their types and lifetimes. The scheme works by
capturing kernel object allocation and deallocation events. Our system provides a
number of unique benefits to kernel malware analysis: (1) an un-tampered view
wherein the mapping of kernel data is unaffected by the manipulation of kernel
memory and (2) a temporal view of kernel objects to be used in temporal analysis
of kernel execution. We demonstrate the effectiveness of allocation-driven map-
ping in two usage scenarios. First, we build a hidden kernel object detector that
uses an un-tampered view to detect the data hiding attacks of 10 kernel rootkits
that directly manipulate kernel objects (DKOM). Second, we develop a temporal
malware behavior monitor that tracks and visualizes malware behavior triggered
by the manipulation of dynamic kernel objects. Allocation-driven mapping en-
ables a reliable analysis of such behavior by guiding the inspection only to the
events relevant to the attack.

Keywords: Kernel memory mapping, kernel malware analysis, virtualization.

1 Introduction

Dynamic kernel memory is where the majority of kernel data resides. Operating system
(OS) kernels frequently allocate and deallocate numerous dynamic objects of various
types. Due to the complexity of identifying such objects at runtime, dynamic kernel
memory is a source of many kernel security and reliability problems. For instance, an

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 178–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Kernel Malware Analysis with Un-tampered and Temporal Views 179

increasing amount of kernel malware targets dynamic kernel objects [4,10,18,23]; and
many kernel bugs are caused by dynamic memory errors [13,27,28].

Advanced kernel malware uses stealthy techniques such as directly manipulating
kernel data (i.e., DKOM [4]) or overwriting function pointers (i.e., KOH [10]) located
in dynamic kernel memory. This allows attacks such as process hiding and kernel-level
control flow hijacking. These anomalous kernel behaviors are difficult to analyze be-
cause they involve manipulating kernel objects that are dynamically allocated and deal-
located at runtime; unlike persistent kernel code or static kernel data that are easier to
locate, monitor, and protect.

To detect these attacks, some existing approaches use kernel memory mapping based
on the contents of runtime memory snapshots [1,5,16] or memory access traces [23,31].
These approaches commonly identify a kernel object by projecting the type and address
of a pointer onto the memory. However, such a technique may not always be accurate
– for example, when an object is type cast to a generic type or when an embedded list
structure is used as part of larger data types. In benign kernel execution, such inaccu-
racy can be corrected [5]; but it becomes a problem in malware analysis as the memory
contents may have been manipulated by kernel malware. For example, a DKOM attack
to hide a process may modify the next task and prev task pointers in the process
list. This causes the process to disappear from the OS view as well as from the kernel
memory map. To detect this attack, some existing approaches rely on data invariants
such as that the list used for process scheduling should match the process list. However,
not every data structure has an invariant. Additionally, the kernel memory map gener-
ated from a snapshot [1,5,16] reflects kernel memory status at a specific time instance.
Therefore, the map is of limited usage in analyzing the kernel execution. Some mapping
approaches are based on logging malware memory accesses [23,31] and thus provide
temporal information. However they only cover objects accessed by the malware code
and cannot properly handle certain attack patterns due to assumptions in its mapping
algorithm [21].

In this paper, we present a new kernel memory mapping scheme called allocation-
driven mapping that complements the existing approaches. Our scheme identifies dy-
namic kernel objects by capturing their allocations and does not rely on the runtime
content of kernel memory to construct the kernel object map. As such, the map is re-
sistant to attacks that manipulate the kernel memory. On top of our scheme, we build
a hidden kernel object detector that uses the un-tampered view of kernel memory to
detect DKOM data hiding attacks without requiring kernel object-specific invariants.
In addition, our scheme keeps track of each kernel object’s life time. This temporal
property is useful in the analysis of kernel/kernel malware execution. We also build a
temporal malware behavior monitor that systematically analyzes the impact of kernel
malware attacks via dynamic kernel memory using a kernel execution trace. We ad-
dress a challenge in the use of kernel memory mapping for temporal analysis of kernel
execution: A dynamic memory address may correspond to different kernel objects at
different times because of the runtime allocation and deallocation events. This problem
can be handled by allocation-driven mapping. The lifetime of a dynamic kernel object
naturally narrows the scope of a kernel malware analysis.

180 J. Rhee et al.

(a) Type-projection mapping (b) Allocation-driven mapping

Fig. 1. Illustration of kernel memory mapping approaches. a1 and a2 represent kernel memory
addresses. X and Y are data types for kernel objects.

The contributions of this paper are summarized as follows:

– We present a new kernel memory mapping scheme called allocation-driven map-
ping that has the following properties desirable for kernel malware analysis: un-
tampered identification of kernel objects and temporal status of kernel objects.

– We implement allocation-driven mapping at the virtual machine monitor (VMM)
level. The identification and tracking of kernel objects take place in the VMM with-
out modification to the guest OS.

– We develop a hidden kernel object detector that can detect DKOM data hiding at-
tacks without requiring data invariants. The detector works by comparing the status
of the un-tampered kernel map with that of kernel memory.

– We develop a malware behavior monitor that uses a temporal view of kernel objects
in the analysis of kernel execution traces. The lifetimes of dynamic kernel objects
in the view guide the analysis to the events triggered by the objects manipulated by
the malware.

We have implemented a prototype of allocation-driven mapping called LiveDM (Live
Dynamic kernel memory Map). It supports three off-the-shelf Linux distributions.
LiveDM is designed for use in non-production scenarios such as honeypot monitoring,
kernel malware profiling, and kernel debugging.

2 Background – Kernel Memory Mapping

There have been several approaches [1,5,16,23,31] that leverage kernel memory map-
ping to test the integrity of OS kernels and thereby detect kernel malware. These ap-
proaches (similar to garbage collection [3,19]) commonly identify kernel objects by
recursively traversing pointers in the kernel memory starting from static objects. A ker-
nel object is identified by projecting the address and type of a traversed pointer onto
memory; thus, we call this mechanism type-projection mapping. For example, in Fig.
1(a) the mapping process starts by evaluating the pointer fields of the static data object.
When the second field of this object is traversed, the type X of the pointer is projected
onto the memory located in the obtained address a1, identifying an instance of type X.

Kernel Malware Analysis with Un-tampered and Temporal Views 181

The underlying hypothesis of this mapping is that the traversed pointer’s type accu-
rately reflects the type of the projected object. In practice there are several cases when
this may not be true. First, if an object allocated using a specific type is later cast to a
generic type, then this mapping scheme cannot properly identify the object using that
pointer. For instance, in Fig. 1(a) the third field of the static object cannot be used to
identify the Y instance due to its generic void* type. Second, in modern OSes many
kernel objects are linked using embedded list structures which connect the objects us-
ing list types. When these pointers are traversed, the connected objects are inaccurately
identified as list objects. KOP [5] addresses these problems by generating an extended
type graph using static analysis. Some other approaches rely on manual annotations.

When type-projection mapping is used against kernel malware, these problems may
pose concerns as such inaccuracy can be deliberately introduced by kernel malware. In
type-projection mapping, the kernel memory map is based on the content of the kernel
memory, which may have been manipulated by the kernel malware. This property may
affect the detection of kernel rootkits that hide kernel objects by directly manipulating
pointers. To detect such attacks, a detector needs to rely on not only the kernel mem-
ory map but also additional knowledge that reveals the anomalous status of the hidden
objects. For this purpose, several approaches [1,5,18] use data structure invariants. For
example, KOP [5] detects a process hidden by the FU Rootkit [4] by using the invari-
ant that there are two linked lists regarding process information which are supposed to
match, and one of them is not manipulated by the attack. However, a data invariant is
specific to semantic usage of a data structure and may not be applicable to other data
structures. For type-projection mapping, it is challenging to detect data hiding attacks
that manipulate a simple list structure (such as the kernel module list in Linux) without
an accompanying invariant.

In general, we can categorize these approaches into two categories based on whether
they make use of a static snapshot or dynamic runtime memory access trace.

2.1 Static Type-Projection Mapping

This approach uses a memory snapshot to generate a kernel memory map. SBCFI [16]
constructs a map to systematically detect the violation of persistent control flow in-
tegrity. Gibraltar [1] extracts data invariants from kernel memory maps to detect kernel
rootkits. A significant advantage of this approach is the low cost to generate a memory
snapshot. A memory snapshot can be generated using an external monitor such as a
PCI interface [1], a memory dump utility [5], or a VMM [16], and the map is generated
from the snapshot later.

The memory snapshot is generated at a specific time instance (asynchronously);
therefore, its usage is limited for analyzing kernel execution traces where dynamic ker-
nel memory status varies over time. The same memory address, for example, could store
different dynamic kernel objects over a period of time (through a series of deallocations
and reallocations). The map cannot be used to properly determine what data was stored
at that address at a specific time. We call this a dynamic data identity problem, and it
occurs when an asynchronous kernel memory map is used for inspection of dynamic
memory status along the kernel execution traces.

182 J. Rhee et al.

2.2 Dynamic Type-Projection Mapping

This mapping approach also uses the type-projection mechanism to identify kernel ob-
jects, but its input is the trace of memory accesses recorded over runtime execution
instead of a snapshot. By tracking the memory accesses of malware code, this approach
can identify the list of kernel objects manipulated by the malware. PoKeR [23] and
Rkprofiler [31] use this approach to profile dynamic attack behavior of kernel rootkits
in Linux and Windows respectively.

Since a runtime trace is used for input, this approach can overcome the asynchronous
nature of static type-projection mapping. Unfortunately, current work only focuses on
the data structures accessed by malware code, and may not capture other events. For
example, many malware programs call kernel functions during the attack or exploit
various kernel bugs, and these behaviors may appear to be part of legitimate kernel exe-
cution. In these cases, this dynamic type-projection techniques need to track all memory
accesses to accurately identify the kernel objects accessed by legitimate kernel execu-
tion. Since this process is costly (though certainly possible), it is not straightforward for
this approach to expand the coverage of the mapped data to all kernel objects.

3 Design of LiveDM

In this section, we first introduce the allocation-driven mapping scheme, based on which
our LiveDM system is implemented. We then present key enabling techniques to im-
plement LiveDM.

3.1 Allocation-Driven Mapping Scheme

Allocation-driven mapping is a kernel memory mapping scheme that generates a ker-
nel object map by capturing the kernel object allocation and deallocation events of
the monitored OS kernel. LiveDM uses a VMM in order to track the execution of the
running kernel. Whenever a kernel object is allocated or deallocated, LiveDM will in-
tercede and capture its address range and the information to derive the data type of
the object subject to the event (details in Section 3.2) in order to update the kernel
object map. We first present the benefits of allocation-driven mapping over existing ap-
proaches. After that we will present the techniques used to implement this mapping
scheme.

First, this approach does not rely on any content of the kernel memory which can
potentially be manipulated by kernel malware. Therefore, the kernel object map pro-
vides an un-tampered view of kernel memory wherein the identification of kernel data
is not affected by the manipulation of memory contents by kernel malware. This tamper-
resistant property is especially effective to detect sophisticated kernel attacks that
directly manipulate kernel memory to hide kernel objects. For instance, in the type-
projection mapping example (Fig. 1(a)) if the second pointer field of the static object
is nullified, the X object cannot be identified because this object cannot be reached
by recursively scanning all pointers in the memory. In practice, there can be multiple
pointer references to a dynamic object. However, malware can completely isolate an

Kernel Malware Analysis with Un-tampered and Temporal Views 183

object to be hidden by tampering with all pointers pointing to the object. The address
of the hidden object can be safely stored in a non-pointer storage (e.g., int or char)
to avoid being discovered by the type-projection mapping algorithm while it can be
used to recover the object when necessary. Many malicious programs carefully control
their activities to avoid detection and prolong their stealthy operations, and it is a vi-
able option to suspend a data object in this way temporarily and activate it again when
needed [30].

In the allocation-driven mapping approach, however, this attack will not be effective.
As shown in Fig. 1(b), each dynamic object is recognized upon its allocation. There-
fore the identification of dynamic objects is reliably obtained and protected against the
manipulation of memory contents. The key observation is that allocation-driven map-
ping captures the liveness status of the allocated dynamic kernel objects. For malware
writers, this property makes it significantly more difficult to manipulate this view. In
Section 6.1, we show how this mapping can be used to automatically detect DKOM
data hiding attacks without using any data invariant specific to a kernel data structure.

Second, LiveDM reflects a temporal status of dynamic kernel objects since it cap-
tures their allocation and deallocation events. This property enables the use of the kernel
object map in temporal malware analysis where temporal information, such as kernel
control flow and dynamically changing data status, can be inspected to understand com-
plicated kernel malware behavior. In Section 2.1, we pointed out that a dynamic data
identity problem can occur when a snapshot-based kernel memory map is used for dy-
namic analysis. Allocation-driven mapping provides a solution to this problem by accu-
rately tracking all allocation and deallocation events. This means that even if an object
is deallocated and its memory reused for a different object, LiveDM will be able to
properly track it.

Third, allocation-driven mapping does not suffer from the casting problem that oc-
curs when an object is cast to a generic pointer because it does not evaluate pointers to
construct the kernel object map. For instance, in Fig. 1(b) the void pointer in the third
field of the static data object does not hinder the identification of the Y instance because
this object is determined by capturing its allocation. However, we note that another kind
of casting can pose a problem: If an object is allocated using a generic type and it is cast
to a specific type later, allocation-driven mapping will detect the earlier generic type.
However, our study in Section 5 shows that this behavior is unusual in Linux kernels.

There are a number of challenges in implementing the LiveDM system based on
allocation-driven mapping. For example, kernel memory allocation functions do not
provide a simple way to determine the type of the object being allocated.1 One solu-
tion is to use static analysis to rewrite the kernel code to deliver the allocation types to
the VMM, but this would require the construction of a new type-enabled kernel, which
is not readily applicable to off-the-shelf systems. Instead, we use a technique that de-
rives data types by using runtime context (i.e., call stack information). Specifically, this
technique systematically captures code positions for memory allocation calls by using
virtual machine techniques (Section 3.2) and translates them into data types so that OS
kernels can be transparently supported without any change in the source code.

1 Kernel level memory allocation functions are similar to user level ones. The function
kmalloc, for example, does not take a type but a size to allocate memory.

184 J. Rhee et al.

3.2 Techniques

We employ a number of techniques to implement allocation-driven mapping. At the
conceptual level, LiveDM works as follows. First, a set of kernel functions (such as
kmalloc) are designated as kernel memory allocation functions. If one of these func-
tions is called, we say that an allocation event has occurred. Next, whenever this event
occurs at runtime, the VMM intercedes and captures the allocated memory address
range and the code location calling the memory allocation function. This code location
is referred to as a call site and we use it as a unique identifier for the allocated object’s
type at runtime. Finally, the source code around each call site is analyzed offline to
determine the type of the kernel object being allocated.

Runtime kernel object map generation. At runtime, LiveDM captures all alloca-
tion and deallocation events by interceding whenever one of the allocation/deallocation
functions is called. There are three things that need to be determined at runtime: (1) the
call site, (2) the address of the objected allocated or deallocated, and (3) the size of the
allocated object.

To determine the call site, LiveDM uses the return address of the call to the allocation
function. In the instruction stream, the return address is the address of the instruction
after the call instruction. The captured call site is stored in the kernel object map so that
the type can be determined during offline source code analysis.

The address and size of objects being allocated or deallocated can be derived from
the arguments and return value. For an allocation function, the size is typically given
as a function argument and the memory address as the return value. For a deallocation
function, the address is typically given as a function argument. These values can be
determined by the VMM by leveraging function call conventions.2 Function arguments
are delivered through the stack or registers, and LiveDM captures them by inspecting
these locations at the entry of memory allocation/deallocation calls. To capture the re-
turn value, we need to determine where the return value is stored and when it is stored
there. Integers up to 32-bits as well as 32-bit pointers are delivered via the EAX register
and all values that we would like to capture are either of those types. The return value
is available in this register when the allocation function returns to the caller. In order
to capture the return values at the correct time the VMM uses a virtual stack. When a
memory allocation function is called, the return address is extracted and pushed on to
this stack. When the address of the code to be executed matches the return address on
the stack, the VMM intercedes and captures the return value from the EAX register.

Offline automatic data type determination. The object type information related to
kernel memory allocation events is determined using static analysis of the kernel source
code offline. Fig. 2(a) illustrates a high level view of our method. First, the allocation
call site (C) of a dynamic object is mapped to the source code fork.c:610 using de-
bugging information found in the kernel binary. This code assigns the address of the
allocated memory to a pointer variable at the left-hand side (LHS) of the assignment
statement (A). Since this variable’s type can represent the type of the allocated memory,

2 A function call convention is a scheme to pass function arguments and a return value. We use
the conventions for the x86 architecture and the gcc compiler [8].

Kernel Malware Analysis with Un-tampered and Temporal Views 185

(a) A high level view of static code analysis

(b) Case 1 (c) Case 2 (d) Case 3

Fig. 2. Static code analysis. C: a call site, A: an assignment, D: a variable declaration, T: a type
definition, R: a return, and F: a function declaration

it is derived by traversing the declaration of this pointer (D) and the definition of its type
(T). Specifically, during the compilation of kernel source code, a parser sets the depen-
dencies among the internal representations (IRs) of such code elements. Therefore, the
type can be found by following the dependencies of the generated IRs.

For type resolution, we enumerate several patterns in the allocation code as shown in
Fig. 2(b), 2(c), and 2(d). Case 1 is the typical pattern (C→A→D→T) as just explained.
In Case 2, the definition (D) and allocation (A) occur in the same line. The handling of
this case is very similar to that of Case 1. Case 3, however, is unlike the first two cases.
The pattern in Case 3 does not use a variable to handle the allocated memory address,
rather it directly returns the value generated from the allocation call. When a call site (C)
is converted to a return statement (R), we determine the type of the allocated memory
using the type of the returning function (F). In Fig. 2(d), this pattern is presented as
C→R→F→T.

Prior to static code analysis, we generate the set of information about these code el-
ements to be traversed (i.e., C, A, D, R, F, and T) by compiling the kernel source code
with the compiler that we instrumented (Section 4).

4 Implementation

Allocation-driven mapping is general enough to work with an OS that follows the stan-
dard function call conventions (e.g., Linux, Windows, etc.). Our prototype, LiveDM, sup-
ports three off-the-shelf Linux OSes of different kernel versions: Fedora Core 6 (Linux
2.6.18), Debian Sarge (Linux 2.6.8), and Redhat 8 (Linux 2.4.18).

LiveDM can be implemented on any software virtualization system, such as VMware
(Workstation and Player) [29], VirtualBox [26], and Parallels [14]. We choose the QEMU
[2] with KQEMU optimizer for implementation convenience.

In the kernel source code, many wrappers are used for kernel memory management,
some of which are defined as macros or inline functions and others as regular functions.

186 J. Rhee et al.

Macros and inline functions are resolved as the core memory function calls at compile
time by a preprocessor; thus, their call sites are captured in the same way as core func-
tions. However, in the case of regular wrapper functions, the call sites will belong to the
wrapper code.

To solve this problem, we take two approaches. If a wrapper is used only a few times,
we consider that the type from the wrapper can indirectly imply the type used in the
wrapper’s caller due to its limited use. If a wrapper is widely used in many places (e.g.,
kmem cache alloc– a slab allocator), we treat it as a memory allocation function. Com-
modity OSes, which have mature code quality, have a well defined set of memory wrap-
per functions that the kernel and driver code commonly use. In our experience, capturing
such wrappers, in addition to the core memory functions, can cover the majority of the
memory allocation and deallocation operations.

We categorize the captured functions into four classes: (1) page allocation/free func-
tions, (2) kmalloc/kfree functions, (3) kmem cache alloc/free functions (slab al-
locators), and (4) vmalloc/vfree functions (contiguous memory allocators). These
sets include the well defined wrapper functions as well as the core memory functions.
In our prototype, we capture about 20 functions in each guest kernel. The memory func-
tions of an OS kernel can be determined from its design specification (e.g., the Linux
Kernel API) or kernel source code.

Automatic translation of a call site to a data type requires a kernel binary that is com-
piled with a debugging flag (e.g.,-g to gcc) and whose symbols are not stripped. Modern
OSes, such as Ubuntu, Fedora, and Windows, generate kernel binaries of this form. Upon
distribution, typically the stripped kernel binaries are shipped; however, unstripped bina-
ries (or symbol information in Windows) are optionally provided for kernel debugging
purposes. The experimented kernels of Debian Sarge and Redhat 8 are not compiled with
this debugging flag. Therefore, we compiled the distributed source code and generated
the debug-enabled kernels. These kernels share the same source code with the distributed
kernels, but the offset of the compiled binary code can be slightly different due to the
additional debugging information.

For static analysis we use a gcc [8] compiler (version 3.2.3) that we instrumented
to generate IRs for the source code of the experimented kernels. We place hooks in the
parser to extract the abstract syntax trees for the code elements necessary in the static
code analysis.

5 Evaluation

In this section, we evaluate the basic functionality of LiveDM with respect to the identifi-
cation of kernel objects, casting code patterns, and the performance of allocation-driven
mapping. The guest systems are configured with 256MB RAM and the host machine has
a 3.2Ghz Pentium D CPU and 2GB of RAM.

Identifying dynamic kernel objects. To demonstrate the ability of LiveDM to inspect
the runtime status of an OS kernel, we present a list of important kernel data structures
captured during the execution of Debian Sarge OS in Table 1. These data structures man-
age the key OS status such as process information, memory mapping of each process,
and the status of file systems and network which are often targeted by kernel malware

Kernel Malware Analysis with Un-tampered and Temporal Views 187

Table 1. A list of core dynamic kernel objects and the source code elements used to derive their
data types in static analysis. (OS: Debian Sarge).

Call Site Declaration Data Type Case #Objects

Ta
sk

/S
ig kernel/fork.c:248 kernel/fork.c:243 task struct 1 66

kernel/fork.c:801 kernel/fork.c:795 sighand struct 1 63
fs/exec.c:601 fs/exec.c:587 sighand struct 1 1
kernel/fork.c:819 kernel/fork.c:813 signal struct 1 66

M
em

or
y

arch/i386/mm/pgtable.c:229 arch/i386/mm/pgtable.c:229 pgd t 2 54
kernel/fork.c:433 kernel/fork.c:431 mm struct 1 47
kernel/fork.c:559 kernel/fork.c:526 mm struct 1 7
kernel/fork.c:314 kernel/fork.c:271 vm area struct 1 149
mm/mmap.c:923 mm/mmap.c:748 vm area struct 1 1004
mm/mmap.c:1526 mm/mmap.c:1521 vm area struct 1 5
mm/mmap.c:1722 mm/mmap.c:1657 vm area struct 1 48
fs/exec.c:402 fs/exec.c:342 vm area struct 1 47

Fi
le

sy
st

em

kernel/fork.c:677 kernel/fork.c:654 files struct 1 54
kernel/fork.c:597 kernel/fork.c:597 fs struct 2 53
fs/file table.c:76 fs/file table.c:69 file 1 531
fs/buffer.c:3062 fs/buffer.c:3062 buffer head 2 828
fs/block dev.c:232 fs/block dev.c:232 bdev inode 2 5
fs/dcache.c:692 fs/dcache.c:689 dentry 1 4203
fs/inode.c:112 fs/inode.c:107 inode 1 1209
fs/namespace.c:55 fs/namespace.c:55 vfsmount 2 16
fs/proc/inode.c:93 fs/proc/inode.c:90 proc inode 1 237
drivers/block/ll rw blk.c:1405 drivers/block/ll rw blk.c:1405 request queue t 2 18
drivers/block/ll rw blk.c:2950 drivers/block/ll rw blk.c:2945 io context 1 10

N
et

w
or

k

net/socket.c:279 net/socket.c:278 socket alloc 1 12
net/core/sock.c:617 net/core/sock.c:613 sock 1 3
net/core/dst.c:125 net/core.dst.c:119 dst entry 1 5
net/core/neighbour.c:265 net/core/neighbour.c:254 neighbour 1 1
net/ipv4/tcp ipv4.c:134 net/ipv4/tcp ipv4.c:133 tcp bind bucket 2 4
net/ipv4/fib hash.c:586 net/ipv4/fib hash.c:461 fib node 1 9

and kernel bugs [13,15,16,17,18,23,27,28]. Kernel objects are recognized using allo-
cation call sites shown in column Call Site during runtime. Using static analysis, this
information is translated into the data types shown in column Data Type by traversing
the allocation code and the declaration of a pointer variable or a function shown in col-
umn Declaration. Column Case shows the kind of the allocation code pattern described in
Section 3.2. The number of the identified objects for each type in the inspected runtime
status is presented in column #Objects. At that time instance, LiveDM identified total
of 29488 dynamic kernel objects with their data types derived from 231 allocation code
positions.

In order to evaluate the accuracy of the identified kernel objects, we build a reference
kernel where we modify kernel memory functions to generate a log of dynamic kernel
objects and run this kernel in LiveDM. We observe that the dynamic objects from the
log accurately match the live dynamic kernel objects captured by LiveDM. To check the
type derivation accuracy, we manually translate the captured call sites to data types by
traversing kernel source code as done by related approaches [5,7]. The derived types at
the allocation code match the results from our automatic static code analysis.

Code patterns casting objects from generic types to specific types. In Section 3.1, we
discussed that allocation-driven mapping has no problem handling the situation where a
specific type is cast to a generic type, but casting from generic types to specific types can

188 J. Rhee et al.

be a problem. In order to estimate how often this type of casting occurs, we manually
checked all allocation code positions where the types of kernel objects are derived for
the inspected status. We checked for the code pattern that memory is allocated using a
generic pointer and then the address is cast to the pointer of a more specific type. Note
that this pattern does not include the use of generic pointers for generic purposes. For
example, the use of void or integer pointers for bit fields or buffers is a valid use of generic
pointers. Another valid use is kernel memory functions that internally handle pre-typed
memory using generic pointers to retail it to various types. We found 25 objects from 10
allocation code positions (e.g., tty register driver and vc allocate) exhibiting
this behavior at runtime. Such objects are not part of the core data structures shown
in Table 1, and they account for only 0.085% of all objects. Hence we consider them
as non-significant corner cases. Since the code positions where this casting occurs are
available to LiveDM, we believe that the identification of this behavior and the derivation
of a specific type can be automated by performing static analysis on the code after the
allocation code.

Performance of allocation-driven mapping. Since LiveDM is mainly targeted for non-
production environments such as honeypots and kernel debugging systems, performance
is not a primary concern. Still, we would like to provide a general idea of the cost of
allocation-driven mapping. In order to measure the overhead to generate a kernel object
map at runtime, we ran three benchmarks: compiling the kernel source code, UnixBench
(Byte Magazine Unix Benchmark 5.1.2), and nbench (BYTEmark* Native Mode Bench-
mark version 2). Compared to unmodified QEMU, our prototype incurs (in the worst
case) 41.77% overhead for Redhat 8 (Linux 2.4) and 125.47% overhead for Debian Sarge
(Linux 2.6). For CPU intensive workload such as nbench, the overhead is near zero be-
cause the VMM rarely intervenes. However, applications that use kernel services requir-
ing dynamic kernel memory have higher overhead. As a specific example, compiling the
Linux kernel exhibited an overhead of 29% for Redhat 8 and 115.69% for Debian Sarge.
It is important to note that these numbers measure overhead when compared to an un-
modified VMM. Software based virtualization will add additional overhead as well. For
the purpose of inspecting fine-grained kernel behavior in non-production environments,
we consider this overhead acceptable. The effects of overhead can even be minimized in
a production environment by using decoupled analysis [6].

6 Case Studies

We present two kernel malware analysis systems built on top of LiveDM: a hidden ker-
nel object detector and a temporal malware behavior monitor. These systems highlight
the new properties of allocation-driven mapping which are effective for detection and
analysis of kernel malware attacks.

6.1 Hidden Kernel Object Detector

One problem with static type-projection approaches is that they are not able to detect
dynamic kernel object manipulation without some sort of data invariant. In this section

Kernel Malware Analysis with Un-tampered and Temporal Views 189

(a) Temporal live status of kernel modules
based on allocation-driven mapping.

(b) Live set (L) and scanned set (S) for kernel
modules at t1, t2, and t3.

Fig. 3. Illustration of the kernel module hiding attack by cleaner rootkit. Note that the choice
of t1, t2, and t3 is for the convenience of showing data status and irrelevant to the detection. This
attack is detected based on the difference between L and S.

we present a hidden kernel object detector built on top of LiveDM that does not suffer
from this limitation.

Leveraging the un-tampered view. Some advanced DKOM-based kernel rootkits hide
kernel objects by simply removing all references to them from the kernel’s dynamic
memory. We model the behavior of this type of DKOM data hiding attack as a data
anomaly in a list. If a dynamic kernel object does not appear in a kernel object list, then it
is orphaned and hence an anomaly. As described in Section 3.1, allocation-driven map-
ping provides an un-tampered view of the kernel objects not affected by manipulation of
the actual kernel memory content. Therefore, if a kernel object appears in the LiveDM-
generated kernel object map but cannot be found by traversing the kernel memory, then
that object has been hidden. More formally, for a set of dynamic kernel objects of a given
data type, a live set L is the set of objects found in the kernel object map. A scanned set
S is the set of kernel objects found by traversing the kernel memory as in the related
approaches [1,5,16]. If L and S do not match, then a data anomaly will be reported.

This process is illustrated in the example of cleaner rootkit that hides the adore-ng
rootkit module (Fig. 3). Fig. 3(a) presents the timeline of this attack using the lifetime
of kernel modules. Fig. 3(b) illustrates the detailed status of kernel modules and cor-
responding L and S at three key moments. Kernel modules are organized as a linked
list starting from a static pointer variable. When the cleaner module is loaded after
the adore-ng module, it modifies the linked list to bypass the adore-ng module entry
(shown at t2). Therefore, when the cleaner module is unloaded, the adore-ng mod-
ule disappears from the module list (t3). At this point in time the scanned set S based
on static type-projection mapping has lost the hidden module, but the live set L keeps
the view of all kernel modules alive. Therefore, the monitor can detect a hidden kernel
module due to the condition, |L| = |S|.

Detecting DKOM data hiding attacks. There are two dynamic kernel data lists which
are favored by rootkits as attack targets: the kernel module list and the process control

190 J. Rhee et al.

Table 2. DKOM data hiding rootkit attacks that are automatically detected by comparing LiveDM-
generated view (L) and kernel memory view (S)

Rootkit
|L| - |S|

Manipulated Data Operating Attack
Name Type Field System Vector

hide lkm # of hidden modules module next Redhat 8 /dev/kmem
fuuld # of hidden PCBs task struct next task, prev task Redhat 8 /dev/kmem
cleaner # of hidden modules module next Redhat 8 LKM
modhide # of hidden modules module next Redhat 8 LKM
hp 1.0.0 # of hidden PCBs task struct next task, prev task Redhat 8 LKM
linuxfu # of hidden PCBs task struct next task, prev task Redhat 8 LKM
modhide1 1 (rootkit self-hiding) module next Redhat 8 LKM

kis 0.9 (server) 1 (rootkit self-hiding) module next Redhat 8 LKM
adore-ng-2.6 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM
ENYELKM 1.1 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM

block (PCB) list.3 However other linked list-based data structures can be similarly sup-
ported as well. The basic procedure is to generate the live set L and periodically generate
and compare with the scanned set S. We tested 8 real-world rootkits and 2 of our own
rootkits (linuxfu and fuuld) previously used in [12,21,23], and these rootkits com-
monly hide kernel objects by directly manipulating the pointers of such objects. LiveDM
successfully detected all these attacks just based on the data anomaly from kernel mem-
ory maps and the results are shown in Table 2.

In the experiments, we focus on a specific attack mechanism – data hiding via DKOM
– rather than the attack vectors – how to overwrite kernel memory – or other attack fea-
tures of rootkits for the following reason. There are various attack vectors including the
ones that existing approaches cannot handle and they can be easily utilized. Specifically,
we acknowledge that the rootkits based on loadable kernel module (LKM) can be de-
tected by code integrity approaches [22,24] with the white listing scheme of kernel mod-
ules. However, there exist alternate attack vectors such as /dev/mem, /dev/kmem de-
vices, return-oriented techniques [11,25], and unproven code in third-party kernel drivers
which can elude existing kernel rootkit detection and prevention approaches. We present
the DKOM data hiding cases of LKM-based rootkits as part of our results because these
rootkits can be easily converted to make use of these alternate attack vectors.

We also include results for two other rootkits that make use of these advanced at-
tack techniques. hide lkm and fuuld in Table 2 respectively hide kernel modules and
processes without any kernel code integrity violation (via /dev/kmem) purely based on
DKOM, and current rootkit defense approaches cannot properly detect these attacks.
However, our monitor effectively detects all DKOM data hiding attacks regardless of
attack vectors by leveraging LiveDM-generated kernel object map. Allocation-driven
mapping can uncover the hidden object even in more adversary scenarios. For example,
if a simple linked list having no data invariant is directly manipulated without violating
kernel code integrity, LiveDM will still be able to detect such an attack and uncover the
specific hidden object.

In the experiments that detect rootkit attacks, we generate and compare L and S sets
every 10 seconds. When a data anomaly occurs, the check is repeated in 1 second. (The

3 A process control block (PCB) is a kernel data structure containing administrative information
for a particular process. Its data type in Linux is task struct.

Kernel Malware Analysis with Un-tampered and Temporal Views 191

repeated check ensures that a kernel data structure was not simply in an inconsistent state
during the first scan.) If the anomaly persists, then we consider it as a true positive. With
this monitoring policy, we successfully detected all tested DKOM hiding attacks without
any false positives or false negatives.

We note that while this section focuses on data hiding attacks based on DKOM, data
hiding attacks without manipulating data (such as rootkit code that filters system call
results) may also be detected using the LiveDM system. Instead of comparing the un-
tampered LiveDM-generated view with the scanned view of kernel memory, one could
simply compare the un-tampered view with the user-level view of the system.

6.2 Temporal Malware Behavior Monitor

Kernel rootkit analysis approaches based on dynamic type-projection are able to perform
temporal analysis of a running rootkit. One problem with these approaches, however, is
that they are only able to track malware actions that occur from injected rootkit code. If
a rootkit modifies memory indirectly through other means such as legitimate kernel func-
tions or kernel bugs, these approaches are unable to follow the attack.
Allocation-driven mapping does not share this weakness. To further illustrate the
strength of allocation-driven mapping, we built a temporal malware behavior monitor
(called a temporal monitor or a monitor below for brevity) that uses a kernel object map
in temporal analysis of a kernel execution trace.

In this section, we highlight two features that allocation-driven mapping newly pro-
vides. First, allocation-driven mapping enables the use of a kernel object map covering
all kernel objects in temporal analysis; therefore for any given dynamic kernel object
we can inspect how it is being used in the dynamic kernel execution trace regardless
of the accessing code (either legitimate or malicious), which is difficult for both static
and dynamic type-projection approaches. Second, the data lifetime in allocation-driven
mapping lets the monitor avoid the dynamic data identity problem (Section 2.1) which
can be faced by an asynchronous memory map.

Systematic visualization of malware influence via dynamic kernel memory. Our
monitor systematically inspects and visualizes the influence of kernel malware attacks
targeting dynamic kernel memory. To analyze this dynamic attack behavior, we gener-
ate a full system trace including the kernel object map status, the executed code, and the
memory accesses during the experiments of kernel rootkits. When a kernel rootkit attack
is launched, if it violates kernel code integrity, the rootkit code is identified by using our
previous work, NICKLE [22]. Then the temporal monitor systematically identifies all
targets of rootkit memory writes by searching the kernel object map. If the attack does
not violate code integrity, the proposed technique in the previous section or any other ap-
proach can be used to detect the dynamic object under attack. The identified objects then
become the causes of malware behavior and their effects are systematically visualized
by searching the original and the modified kernel control flow triggered by such objects.
For each object targeted by the rootkit, there are typically multiple behaviors using its
value. Among those, this monitor samples a pair of behaviors caused by the same code,

192 J. Rhee et al.

Table 3. The list of kernel objects manipulated by adore-ng rootkit. (OS: Redhat 8).

Runtime Identification Offline Data Type Interpretation
Call Site Offset Type / Object (Static, Module object) Field
fork.c:610 0x4,12c,130 task struct (Case (1)) flags,uid,euid
fork.c:610 0x134,138,13c task struct (Case (1)) suid,fsuid,gid
fork.c:610 0x140,144,148 task struct (Case (1)) egid,sgid,fsgid
fork.c:610 0x1d0 task struct (Case (1)) cap effective
fork.c:610 0x1d4 task struct (Case (1)) cap inheritable
fork.c:610 0x1d8 task struct (Case (1)) cap permitted
generic.c:436 0x20 proc dir entry (Case (2)) get info

(Static object) proc root inode operations lookup
(Static object) proc root operations readdir
(Static object) unix dgram ops recvmsg

(Module object) ext3 dir operations readdir
(Module object) ext3 file operations write

the latest one before the attack and the earliest one after the attack, and presents them
for a comparison.

As a running example in this section, we will present the analysis of the attacks by
the adore-ng rootkit. This rootkit is chosen because of its advanced malware behavior
triggered by dynamic objects; and other rootkits can be analyzed in a similar way. Table 3
lists the kernel objects that the adore-ng rootkit tampers with. In particular, we focus on
two specific attack cases using dynamic objects: (1) The first case is the manipulation
of a PCB (T3) for privilege escalation and (2) the second case is the manipulation of
a function pointer in a dynamic proc dir entry object (P1) to hijack kernel control
flow. Fig. 4 presents a detailed view of kernel control flow and the usage of the targeted
dynamic kernel memory in the attacks. The X axis shows the execution time, and kernel
control flow is shown at top part of this figure. The space below shows the temporal usage
of dynamic memory at the addresses of T3 and P1 before and after rootkit attacks. Thick
horizontal lines represent the lifetime of kernel objects which are temporally allocated
at such addresses. + and × symbols below such lines show the read and write accesses
on corresponding objects. The aforementioned analysis process is illustrated as solid
arrows. From the times when T3 and P1 are manipulated (shown as dotted circles), the
monitor scans the execution trace backward and forward to find the code execution that
consumes the values read from such objects (i.e., + symbols).

Fig. 4. Kernel control flow (top) and the usage of dynamic memory (below) at the addresses of
T3 (Case (1)) and P1 (Case (2)) manipulated by the adore-ng rootkit. Time is in billions of
kernel instructions.

Kernel Malware Analysis with Un-tampered and Temporal Views 193

Selecting semantically relevant kernel behavior using data lifetime. Our monitor in-
spects dynamic memory states in the temporal execution trace and as such we face the
dynamic data identity problem described in Section 3.1. The core of the problem is that
one memory address may correspond with multiple objects over a period of time. This
problem can be solved if the lifetime of the inspected object is available because the
monitor can filter out irrelevant kernel behaviors triggered by other kernel objects that
share the same memory address. For example, in Fig. 4, we observe the memory for T3

is used for four other PCBs (i.e., T1, T2, T4, and T5) as well in the history of kernel ex-
ecution. Simply relying on the memory address to analyze the trace can lead to finding
kernel behavior for all five PCBs. However, the monitor limits the inspected time range
to the lifetime of T3 and select only semantically relevant behaviors to T3. Consequently
it can provide a reliable inspection of runtime behavior only relevant to attacks.

Other kernel memory mapping approaches commonly cannot handle this problem
properly. In static type-projection, when two kernel objects from different snapshots are
given we cannot determine whether they represent the same data instance or not even
though their status is identical because such objects may or may not be different data in-
stances depending on whether memory allocation/deallocation events occur between the
generation of such snapshots. Dynamic type-projection mapping is only based on mal-
ware instructions, and thus does not have information about allocation and deallocation
events which occur during legitimate kernel execution.

Case (1): Privilege escalation using direct memory manipulation. In order to demon-
strate the effectiveness of our temporal monitor we will discuss two specific attacks em-
ployed by adore-ng. The first is a privilege escalation attack that works by modifying
the user and group ID fields of the PCB. The PCB is represented by T3 in Fig. 4. To
present the changed kernel behavior due to the manipulation of T3, the temporal monitor
finds the latest use of T3 before the attack (at t2) and the earliest use of it after the attack
(at t3). The data views at such times are presented in Fig. 5(a) and 5(b) as 2-dimensional
memory maps where a kernel memory address is represented as the combination of the
address in Y axis and the offset in X axis. These views present kernel objects relevant to
this attack before and after the attack. The manipulated PCB is marked with “Case (1)”
in the views and the values of its fields are shown in the box on the right side of each view
(PCB status). These values reveal a stealthy rootkit behavior that changes the identity of

(a) The original data view at t2. (b) The manipulated data view at t3.

Fig. 5. Kernel data view before and after the adore-ng rootkit attack

194 J. Rhee et al.

a user process by directly patching its PCB (DKOM). Before the attack (Fig. 5(a)), the
PCB has the credentials of an ordinary user whose user ID is 500. However, after the
attack, Fig. 5(b) shows the credentials of the root user. This direct transition of its status
between two accounts is abnormal in conventional operating system environments. su
or sudo allow privileged operations by forking a process to retain the original identity.
Hence we determine that this is a case of privilege escalation that illegally permits the
root privilege to an ordinary user.

Case (2): Dynamic kernel object hooking. The next adore-ng attack hijacks kernel
code execution by modifying a function pointer and this attack is referred to as Kernel
Object Hooking (KOH) [10]. This behavior is observed when the influence of a manipu-
lated function pointer in P1 (see Fig. 4) is inspected. To select only the behaviors caused
by this object, the monitor guides the analysis to the lifetime of P1. The temporal mon-
itor detects several behaviors caused by reading this object and two samples are chosen
among those to illustrate the change of kernel behavior by comparison: the latest original
behavior before the attack (at t1) and the earliest changed behavior after the attack (at t4).
The monitor generates two kernel control flow graphs at these samples, each for a period
of 4000 instructions. Fig. 6(a) and 6(b) present how this manipulated function pointer
affects runtime kernel behavior. The Y axis presents kernel code; thus, the fluctuating
graphs show various code executed at the corresponding time of X axis. A hook-invoking
function (proc file read) reads the function pointer and calls the hook code pointed
to by it. Before the rootkit attack, the control flow jumps to a legitimate kernel function
tcp get info which calls sprintf after that as shown in Fig. 6(a). However, after the
hook is hijacked, the control flow is redirected to the rootkit code which calls kmalloc
to allocate its own memory, then comes back to the original function (Fig. 6(b)).

(a) The original control flow at t1. (b) The hijacked control flow at t4.

Fig. 6. Kernel control flow view before and after the adore-ng rootkit attack

7 Discussion

Since LiveDM operates in the VMM beneath the hardware interface, we assume that
kernel malware cannot directly access LiveDM code or data. However, it can exhibit po-
tentially obfuscating behavior to confuse the view seen by LiveDM. Here we describe

Kernel Malware Analysis with Un-tampered and Temporal Views 195

several scenarios in which malware can affect LiveDM and our counter-strategies to de-
tect them.

First, malware can implement its own custom memory allocators to bypass LiveDM
observation. This attack behavior can be detected based on the observation that any mem-
ory allocator must use internal kernel data structures to manage memory regions or its
memory may be accidentally re-allocated by the legitimate memory allocator. Therefore,
we can detect unverified memory allocations by comparing the resource usage described
in the kernel data structures with the amount of memory being tracked by LiveDM. Any
deviance may indicate the presence of a custom memory allocator.

In a different attack strategy, malware could manipulate valid kernel control flow and
jump into the body of a memory allocator without entering the function from the be-
ginning. This behavior can be detected by extending LiveDM to verify that the function
was entered properly. For example, the VMM can set a flag when a memory allocation
function is entered and verify the flag before the function returns by interceding before
the return instruction(s) of the function. If the flag was not set prior to the check, the
VMM detects a suspicious memory allocation.

8 Related Work

Static type-projection mapping has been widely used in the defense against kernel mal-
ware attacks. SBCFI [16] detects persistent manipulations to the kernel control flow
graph by using kernel memory maps. Gibraltar [1] derives data invariants based on a
kernel memory map to detect kernel malware. KOP [5] improves the accuracy of map-
ping using extended type graph based on static analysis in addition to memory analysis.
Complementing these approaches, allocation-driven mapping provides an un-tampered
view of kernel objects where their identification is not affected by kernel malware’s ma-
nipulation of the kernel memory content. It also accurately reflects the temporal status of
dynamic kernel memory, which makes it applicable to temporal analysis of kernel/kernel
malware execution.

PoKeR [23] and Rkprofiler [31] use dynamic type-projection mapping generated from
rootkit instructions to understand the rootkit behavior. Since only rootkit activity is used
as the input to generate a kernel memory map, this approach can only cover the kernel
objects directly manipulated by rootkit code. Moreover, there exist the attacks that are
difficult to be analyzed by these profilers because rootkits can use various resource such
as hardware registers to find the attack targets [21].

KernelGuard (KG) [20] is a system that prevents DKOM-based kernel rootkits by
monitoring and shepherding kernel memory accesses. It identifies kernel objects to be
monitored by scanning the kernel memory using data structure-specific policies enforced
at the VMM level. Similar to type-projection mapping, KG’s view of kernel memory is
based on the runtime kernel memory content which is subject to malware manipulation.
As such, KG’s reliability can be improved by adopting LiveDM as the underlying kernel
memory mapping mechanism.

LiveDM involves techniques to capture the location, type, and lifetime of individ-
ual dynamic kernel objects, which can be described as belonging to the area of virtual
machine introspection [9].

196 J. Rhee et al.

9 Conclusion

We have presented allocation-driven mapping, a kernel memory mapping scheme, and
LiveDM, its implementation. By capturing the kernel objects’ allocation and dealloca-
tion events, our scheme provides an un-tampered view of kernel objects that will not
be affected by kernel malware’s manipulation of kernel memory content. The LiveDM-
generated kernel object map accurately reflects the status of dynamic kernel memory and
tracks the lifetimes of all dynamic kernel objects. This temporal property is highly desir-
able in temporal kernel execution analysis where both kernel control flow and dynamic
memory status can be analyzed in an integrated fashion. We demonstrate the effective-
ness of the LiveDM system by developing a hidden kernel object detector and a temporal
malware behavior monitor and applying them to a corpus of kernel rootkits.

Acknowledgements. We thank the anonymous reviewers for their insightful comments.
This research was supported, in part, by the Air Force Research Laboratory (AFRL) un-
der contract FA8750-09-1-0224 and by the National Science Foundation (NSF) under
grants 0716444, 0852131, 0855036 and 0855141. Any opinions, findings, and conclu-
sions in this paper are those of the authors and do not necessarily reflect the views of the
AFRL or NSF.

References

1. Baliga, A., Ganapathy, V., Iftode, L.: Automatic Inference and Enforcement of Kernel Data
Structure Invariants. In: Proceedings of the 24th Annual Computer Security Applications
Conference (ACSAC 2008), pp. 77–86 (2008)

2. Bellard, F.: QEMU: A Fast and Portable Dynamic Translator. In: Proceedings of the USENIX
Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)

3. Boehm, H.J., Weiser, M.: Garbage Collection in an Uncooperative Environment. Software,
Practice and Experience (1988)

4. Butler, J.: DKOM (Direct Kernel Object Manipulation),
http://www.blackhat.com/presentations/win-usa-04/
bh-win-04-butler.pdf

5. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping Kernel Objects
to Enable Systematic Integrity Checking. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS 2009 (2009)

6. Chow, J., Garfinkel, T., Chen, P.M.: Decoupling Dynamic Program Analysis from Execution
in Virtual Environments. In: Proceedings of 2008 USENIX Annual Technical Conference,
USENIX 2008 (2008)

7. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging For Data Structures. In: Proceedings
of the 8th USENIX Symposium on Operating Systems Design and Implementation (2008)

8. Free Software Foundation: The GNU Compiler Collection, http://gcc.gnu.org/
9. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for Intru-

sion Detection. In: Proceedings of the 10th Annual Network and Distributed Systems Security
Symposium, NDSS 2003 (2003)

10. Hoglund, G.: Kernel Object Hooking Rootkits (KOH Rootkits),
http://www.rootkit.com/newsread.php?newsid=501

11. Hund, R., Holz, T., Freiling, F.C.: Return-Oriented Rootkits: Bypassing Kernel Code Integrity
Protection Mechanisms. In: Proceedings for the 18th USENIX Security Symposium (2009)

http://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
http://gcc.gnu.org/
http://www.rootkit.com/newsread.php?newsid=501

Kernel Malware Analysis with Un-tampered and Temporal Views 197

12. Lin, Z., Riley, R.D., Xu, D.: Polymorphing Software by Randomizing Data Structure Layout.
In: Flegel, U., Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 107–126. Springer,
Heidelberg (2009)

13. MITRE Corp.: Common Vulnerabilities and Exposures, http://cve.mitre.org/
14. Parallels: Parallels, http://www.parallels.com/
15. Petroni, N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - A Coprocessor-based Ker-

nel Runtime Integrity Monitor. In: Proceedings for the 13th USENIX Security Symposium
(August 2004)

16. Petroni, N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-Flow Attacks.
In: Proceedings of the 14th ACM Conference on Computer and Communications Security,
CCS 2007 (2007)

17. Petroni, N.L., Walters, A., Fraser, T., Arbaugh, W.A.: FATKit: A Framework for the Extrac-
tion and Analysis of Digital Forensic Data from Volatile System Memory. Digital Investiga-
tion Journal 3(4), 197–210 (2006)

18. Petroni, Jr. N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An Architecture for Specification-
Based Detection of Semantic Integrity Violations in Kernel Dynamic Data. In: Proceedings
of the 15th Conference on USENIX Security Symposium, USENIX-SS 2006 (2006)

19. Polishchuk, M., Liblit, B., Schulze, C.W.: Dynamic Heap Type Inference for Program Un-
derstanding and Debugging. In: Proceedings of the 34th Annual Symposium on Principles
of Programming Languages. ACM, New York (2007)

20. Rhee, J., Riley, R., Xu, D., Jiang, X.: Defeating Dynamic Data Kernel Rootkit Attacks via
VMM-Based Guest-Transparent Monitoring. In: International Conference on Availability,
Reliability and Security, ARES 2009 (2009)

21. Rhee, J., Xu, D.: LiveDM: Temporal Mapping of Dynamic Kernel Memory for Dynamic
Kernel Malware Analysis and Debugging. Tech. Rep. 2010-02, CERIAS (2010)

22. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits with VMM-
based Memory Shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008.
LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

23. Riley, R., Jiang, X., Xu, D.: Multi-Aspect Profiling of Kernel Rootkit Behavior. In: Proceed-
ings of the 4th European Conference on Computer Systems (Eurosys 2009) (April 2009)

24. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Provide Lifetime
Kernel Code Integrity for Commodity OSes. In: Proceedings of 21st Symposium on Operating
Systems Principles (SOSP 2007). ACM, New York (2007)

25. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc without Func-
tion Calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security (CCS 2007), pp. 552–561. ACM, New York (2007)

26. Sun Microsystems, Inc: VirtualBox, http://www.virtualbox.org/
27. The Month of Kernel Bugs archive, http://projects.info-pull.com/mokb/
28. US-CERT: Vulnerability Notes Database, http://www.kb.cert.org/vuls/
29. VMware, Inc.: VMware Virtual Machine Technology, http://www.vmware.com/
30. Wei, J., Payne, B.D., Giffin, J., Pu, C.: Soft-Timer Driven Transient Kernel Control Flow

Attacks and Defense. In: Proceedings of the 24th Annual Computer Security Applications
Conference, ACSAC 2008 (December 2008)

31. Xuan, C., Copeland, J.A., Beyah, R.A.: Toward Revealing Kernel Malware Behavior in Vir-
tual Execution Environments. In: Proceedings of 12th International Symposium on Recent
Advances in Intrusion Detection (RAID 2009), pp. 304–325 (2009)

http://cve.mitre.org/
http://www.parallels.com/
http://www.virtualbox.org/
http://projects.info-pull.com/mokb/
http://www.kb.cert.org/vuls/
http://www.vmware.com/

Bait Your Hook: A Novel Detection Technique

for Keyloggers�

Stefano Ortolani1, Cristiano Giuffrida1, and Bruno Crispo2

1 Vrije Universiteit, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands

{ortolani,giuffrida}@cs.vu.nl
2 University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy

crispo@disi.unitn.it

Abstract. Software keyloggers are a fast growing class of malware of-

ten used to harvest confidential information. One of the main reasons for

this rapid growth is the possibility for unprivileged programs running

in user space to eavesdrop and record all the keystrokes of the users of

the system. Such an ability to run in unprivileged mode facilitates their

implementation and distribution, but, at the same time, allows to un-

derstand and model their behavior in detail. Leveraging this property,

we propose a new detection technique that simulates carefully crafted

keystroke sequences (the bait) in input and observes the behavior of the

keylogger in output to univocally identify it among all the running pro-

cesses. We have prototyped and evaluated this technique with some of

the most common free keyloggers. Experimental results are encouraging

and confirm the viability of our approach in practical scenarios.

Keywords: Keylogger, Malware, Detection, Black-box.

1 Introduction

Keyloggers are implanted on a machine to intentionally monitor the user activ-
ity by logging keystrokes and eventually sending them to a third party. While
they are sometimes used for legitimate purposes (i.e. child computer monitor-
ing), keyloggers are often maliciously exploited by attackers to steal confidential
information. Many credit card numbers and passwords have been stolen us-
ing keyloggers [17,19], which makes them one of the most dangerous types of
spyware. Keyloggers can be implemented as tiny hardware devices or more con-
veniently in software. A software acting as a keylogger can be implemented by
means of two different techniques: as a kernel module or as a user-space process.
It is important to notice that, while a kernel keylogger requires a privileged ac-
cess to the system, a user-space keylogger can easily rely on documented sets of
unprivileged API commonly available on modern operating systems. A user can

� This work has been partially funded by the EU FP7 IP Project MASTER (contract

no. 216917) and by the PRIN project “Paradigmi di progettazione completamente

decentralizzati per algoritmi autonomici”.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 198–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bait Your Hook: A Novel Detection Technique for Keyloggers 199

be easily deceived in installing it, and, since no special permission is required,
the user can erroneously regard it as a harmless piece of software. On the con-
trary, kernel-level keyloggers require a considerable effort and knowledge for an
effective and bug-free implementation. It is therefore no surprise that 95% of the
existing keyloggers are user-space keyloggers [9]. Despite the number of frauds
exploiting keyloggers (i.e. identity theft, password leakage, etc.) has increased
rapidly in recent years, not many effective and efficient solutions have been pro-
posed to address this problem. Preventing keyloggers to be implanted without
limiting the behavior of the user is hardly an option in real-world scenarios.
Traditional defensive mechanisms use fingerprinting or heuristic-based strate-
gies similar to those used to detect viruses and worms. Unfortunately, results
have been poor due to keyloggers’ small footprint and their ability to hide.

In this paper, we propose a new approach to detect keyloggers running as
unprivileged user-space processes. Our technique is entirely implemented in an
unprivileged process. As a result, our solution is portable, unintrusive, easy to
install, and yet very effective. Moreover, the proposed detection technique does
not depend on the internal structure of the keylogger or the particular set of
APIs used to capture the keystrokes. On the contrary, our solution is of gen-
eral applicability, since it is based on behavioral characteristics common to all
the keyloggers. We have prototyped our approach and evaluated it against the
most common free keyloggers [15]. Our approach has proven effective in all the
cases. We have also evaluated the impact of false positives and false negatives in
practical scenarios.

The structure of the paper is as follows. We first present our approach and
compare it to analogous solutions (Sec. 2). We then detail the architecture of
our solution in Sec. 3 and evaluate the resulting prototype in Sec. 4. Sec. 5
discusses how a keylogger may counter our approach, and why our underlying
model would still be valid. We conclude with related work in Sec. 6 and final
remarks in Sec. 7.

2 Our Approach

Common misuse-based approaches rely on the ability to build a profile of the ma-
licious system activity. Once the profile is available, any behavior that matches
any known malicious patterns is reported as anomalous. However, applying anal-
ogous approaches to malware detection is not a trivial task. Building a malicious
profile requires the ability to identify what a malicious behavior is. Unfortu-
nately, such a behavior is normally triggered by factors that are neither easy to
analyze nor feasible to control. In our approach, we explore the opposite direc-
tion. Rather than targeting the general case, we focus on designing a detection
technique for a very peculiar category of malware, the keyloggers. In contrast
to many other malicious programs, a keylogger has a very well defined behavior
that is easy to model. In its simplest form, a keylogger eavesdrops each keystroke
issued by the user and logs the content on a file on the disk. In this scenario,
the events triggering the malicious activities are always known in advance and
could be reproduced and controlled to some extent.

200 S. Ortolani, C. Giuffrida, and B. Crispo

Our model is based on these observations and investigates the possibility to
isolate the keylogger in a controlled environment, where its behavior is directly
exposed to the detection system. Our technique involves controlling the key-
stroke events that the keylogger receives in input, and constantly monitoring
the I/O activities generated by the keylogger in output. To detect malicious
behavior, we leverage the intuition that the relationship between the input and
output of the controlled environment can be modeled for most keyloggers with
very good approximation. Whatever transformations the keylogger performs, a
characteristic pattern observed in the keystroke events in input shall somehow
be reproduced in the I/O activity in output. When the input and the output are
controlled, there is potential to identify common patterns and trigger a detec-
tion. Furthermore, if we can select and enforce the input pattern preventively, we
can better avoid possible evasion attempts. The key advantage of our approach
is that it is centered around a black-box model that completely ignores the in-
ternals of a keylogger. As a result, our technique can deal with a large number
of keyloggers transparently and has the potential to realize a fully-unprivileged
detection system.

Our approach completely ignores the content of the input and the output data,
and focuses exclusively on their distribution. Limiting the approach to a quan-
titative analysis enables the ability to implement the detection technique with
only unprivileged mechanisms, as we will better illustrate later. The underlying
model adopted, however, presents additional challenges. First, we must carefully
deal with possible data transformations that may introduce quantitative differ-
ences between the input and the output patterns. Second, the technique should
be robust with respect to quantitative similarities identified in the output pat-
terns of other legitimate system processes. In the following, we discuss how our
approach deals with these challenges.

3 Architecture

Our design is based on five different components as depicted in Fig. 1: injector,
monitor, pattern translator, detector, pattern generator. The operating system
at the bottom deals with the details of I/O and event handling. The OS Do-
main does not expose all the details to the upper levels without using privileged
API calls. As a result, the injector and the monitor operate at another level of
abstraction, the Stream Domain. At this level, keystroke events and the bytes
output by a process appear as a stream emitted at a particular rate.

The task of the injector is to inject a keystroke stream to simulate the behav-
ior of a user typing keystrokes on the keyboard. Similarly, the monitor records a
stream of bytes to constantly capture the output behavior of a particular process.
A stream representation is only concerned with the distribution of keystrokes or
bytes emitted over a given window of observation, without entailing any addi-
tional qualitative information. The injector receives the input stream from the
pattern translator, that acts as bridge between the Stream Domain and the Pat-
tern Domain. Similarly, the monitor delivers the output stream recorded to the

Bait Your Hook: A Novel Detection Technique for Keyloggers 201

Monitor

DetectorPattern Generator

Injector

(1a) Provides a
I/O pattern

(2) Inject a
keystroke stream

(4a) Reports the
I/O stream

(3) Report the I/O
stream of each process

(1) Reports the
I/O pattern

Pattern Translator

P
at

te
rn

 D
o

m
ai

n
S

tr
ea

m
 D

o
m

ai
n

(1b) Provides a
I/O stream

(4b) Reports the
I/O pattern

O
S

 D
o

m
ai

n

Operating System

Fig. 1. The prototype’s architecture divided in components and domains

pattern translator for further analysis. In the Pattern Domain, the input stream
and the output stream are both represented in a more abstract form, termed
Abstract Keystroke Pattern (AKP). A pattern in the AKP form is a discretized
and normalized representation of a stream. Adopting a compact and uniform
representation is advantageous for several reasons. First, we allow the pattern
generator to exclusively focus on generating an input pattern that follows a de-
sired distribution of values. Details on how to inject a particular distribution of
keystrokes into the system are offloaded to the pattern translator and the injec-
tor. Second, the same input pattern can be reused to produce and inject several
input streams with different properties but following the same underlying distri-
bution. Finally, the ability to reason over abstract representations simplifies the
role of the detector that only receives an input pattern and an output pattern
and makes the final decision whether detection should be triggered.

3.1 Injector

The role of the injector is to inject the input stream into the system, mimicking
the behavior of a simulated user at the keyboard. By design, the injector must
satisfy several requirements. First, it should only rely on unprivileged API calls.
Second, it should be capable of injecting keystrokes at variable rates to match the
distribution of the input stream. Finally, the resulting series of keystroke events
produced should be no different than those generated by a user at the keyboard.
In other words, no user-space keylogger should be somehow able to distinguish
the two types of events. To address all these issues, we leverage the same tech-
nique employed in automated testing. On Windows-based operating systems,

202 S. Ortolani, C. Giuffrida, and B. Crispo

for example, this functionality is provided by the API call SendInput, available
for several versions of the OS. All the other OSes supporting the X11 window
server, the same functionality is available via the API call XTestFakeKeyEvent,
part of the XTEST extension library.

3.2 Monitor

The monitor is responsible to record the output stream of all the running pro-
cesses. As done for the injector, we allow only unprivileged API calls. In addition,
we favor strategies to perform realtime monitoring with minimal overhead and
the best level of resolution possible. Finally, we are interested in application-
level statistics of I/O activities, to avoid dealing with filesystem-level caching
or other potential nuisances. Fortunately, most modern operating systems pro-
vide unprivileged API calls to access performance counters on a per-process
basis. On all the versions of Windows since Windows NT 4.0, this functionality
is provided by the Windows Management Instrumentation (WMI). In particu-
lar, the performance counters of each process are made available via the class
Win32 Process, that supports an efficient query-based interface. All the per-
formance counters are constantly maintained up-to-date by the kernel. In WMI,
the counter WriteTransferCount contains the total number of bytes the process
wrote since its creation. To construct the output stream of a given process, the
monitor queries this piece of information at regular time intervals, and records
the number of bytes written since the last query every time. The proposed tech-
nique is obviously tailored to Windows-based operating systems. Nonetheless,
we point out that similar strategies can be realized in other OSes. Linux, for
instance, supports analogous performance counters since the 2.6.19 version.

3.3 Pattern Translator

The role of the pattern translator is to transform an AKP into a stream and vice-
versa, given a set of target configuration parameters. A pattern in the AKP form
can be modeled as a sequence of samples originated from a stream sampled with
a uniform time interval. A sample Pi of a pattern P is an abstract representation
of the number of keystrokes emitted during the time interval i. Each sample is
stored in a normalized form rescaled in the interval [0, 1], where 0 and 1 reflect
the predefined minimum and maximum number of keystrokes in a given time
interval, respectively. To transform an input pattern into a keystroke stream,
the pattern translator considers the following configuration parameters:

N – the number of samples in the pattern.

T – the constant time interval between any two successive samples.

Kmin – the minimum predefined number of keystrokes per sample allowed.

Kmax – the maximum predefined number of keystrokes per sample allowed.

When transforming an input pattern in the AKP form into an input stream,
the pattern translator generates, for each time interval i, a keystroke stream

Bait Your Hook: A Novel Detection Technique for Keyloggers 203

with an average keystroke rate Ri = Pi·(Kmax−Kmin)+Kmin

T . The iteration is
repeated N times to cover all the samples in the original pattern. A similar
strategy is adopted when transforming an output byte stream into a pattern
in the AKP form. The pattern translator reuses the same parameters employed
in the generation phase and similarly assigns Pi = Ri·T−Kmin

Kmax−Kmin
where Ri is the

average keystroke rate measured in the time interval i.
The translator assumes a correspondence between keystrokes and bytes and

treats them equally as base units of the input and output stream, respectively.
This assumption does not always hold in practice and the detection algorithm
has to consider any possible scale transformation between the input and the
output pattern. We discuss this and other potential transformations in more
detail in Sec. 3.4.

3.4 Detector

The success of our detection algorithm lies in the ability to infer a cause-effect
relationship between the keystroke stream injected in the system and the I/O
behavior of a keylogger process, or, more specifically, between the respective
patterns in AKP form. While one must examine every candidate process in the
system, the detection algorithm operates on a single process at a time, iden-
tifying whether there is a strong similarity between the input pattern and the
output pattern obtained from the analysis of the I/O behavior of the target pro-
cess. Specifically, given a predefined input pattern and an output pattern of a
particular process, the goal of the detection algorithm is to determine whether
there is a match in the patterns and the target process can be identified as a
keylogger with good probability.

The first step in the construction of a detection algorithm comes down to
the adoption of a suitable metric to measure the similarity between two given
patterns. In principle, the AKP representation allows for several possible mea-
sures of dependence that compare two discrete sequences and quantify their
relationship. In practice, we rely on a single correlation measure motivated by
the properties of the two patterns. The proposed detection algorithm is based
on the Pearson product-moment correlation coefficient (PCC), the first formally
defined correlation measure and still one of the most widely used [18]. Given two
discrete sequences described by two patterns P and Q with N samples, the PCC
is defined as [18]:

r =
cov(P, Q)

σp · σq
=

∑N
i=1(Pi − P)(Qi − Q)

√∑N
i=1(Pi − P)2

√∑N
i=1(Qi − Q)2

(1)

where cov(P, Q) is the sample covariance, σp and σq are sample standard devi-
ations, and P and Q are sample means. The PCC has been widely used as an
index to measure bivariate association for different distributions in several ap-
plications including pattern recognition, data analysis, and signal processing [5].
The values given by the PCC are always symmetric and ranging between −1
and 1, with 0 indicating no correlation and 1 or −1 indicating complete direct
(or inverse) correlation. To measure the degree of association between two given

204 S. Ortolani, C. Giuffrida, and B. Crispo

patterns we are here only interested in positive values of correlation. Hereafter,
we will always refer to its absolute value.

Our interest in the PCC lies in its appealing mathematical properties. In con-
trast to many other correlation metrics, the PCC measures the strength of a
linear relationship between two series of samples, ignoring any non-linear as-
sociation. In the context of our detection algorithm, a linear dependence well
approximates the relationship between the input pattern and an output pattern
produced by a keylogger. The basic intuition is that a keylogger can only make
local decisions on a per-keystroke basis with no knowledge about the global dis-
tribution. Thus, in principle, whatever the decisions, the resulting behavior will
linearly approximate the original input stream injected into the system.

In detail, the PCC is resilient to any change in location and scale, namely no
difference can be observed in the correlation coefficient if every sample Pi of any
of the two patterns is transformed into a ·Pi +b, where a and b are arbitrary con-
stants. This is important for a number of reasons. Ideally, the input pattern and
an output pattern will be an exact copy of each other if every keystroke injected
is replicated as it is in the output of a keylogger process. In practice, different
data transformations performed by the keylogger can alter the original structure
in several ways. First, a keylogger may encode each keystroke in a sequence of one
or more bytes. Consider, for example, a keylogger encoding each keystroke using
8-bit ASCII codes. The output pattern will be generated examining a stream of
raw bytes produced by the keylogger as it stores keystrokes one byte at a time.
Now consider the exact same case but with keystrokes stored using a different
encoding, e.g. 2 bytes per keystroke. In the latter case, the pattern will have the
same shape as the former one, but its scale will be twice as much. Fortunately, as
explained earlier, the transformation in scale will not affect the correlation coef-
ficient and the PCC will report the same value in both cases. Similar arguments
are valid for keyloggers using a variable-length representation to store keystrokes.
This scenario occurs, for instance, when a keylogger uses special byte sequences
to encode particular classes of keystrokes or encrypts keystrokes with a variable
number of bytes. Even under these circumstances, the resulting data transfor-
mation can still be approximated as linear. The scale invariance property makes
also the approach robust to keyloggers that drop a limited number of keystrokes
while logging. For example, many keyloggers refuse to record keystrokes that do
not directly translate into alphanumeric characters. In this case, under the as-
sumption that keystrokes in the input stream are uniformly distributed by type,
the resulting output pattern will only contain each generated keystroke with a
certain probability p. This can be again approximated as rescaling the original
pattern by p, with no significant effect on the original value of the PCC.

An interesting application of the location invariance property is the ability
to mitigate the effect of buffering. When the keylogger uses a fixed-size buffer
whose size is comparable to the number of keystrokes injected at each time in-
terval, it is easy to show that the PCC is not significantly affected. Consider,
for example, the case when the buffer size is smaller than the minimum number
of keystrokes Kmin. Under this assumption, the buffer is completely flushed out

Bait Your Hook: A Novel Detection Technique for Keyloggers 205

at least once per time interval. The number of keystrokes left in the buffer at
each time interval determines the number of keystrokes missing in the output
pattern. Depending on the distribution of samples in the input pattern, this
number would be centered around a particular value z. The statistical meaning
of the value z is the average number of keystrokes dropped per time interval.
This transformation can be again approximated by a location transformation of
the original pattern by a factor of −z, which again does not affect the value of
the PCC. The last example shows the importance of choosing an appropriate
Kmin when the effect of fixed-size buffers must also be taken into account. As
evident from the examples discussed, the PCC is robust when not completely
resilient to several possible data transformations. Nevertheless, there are other
known fundamental factors that may affect the size of the PCC and could pos-
sibly complicate the interpretation of the results. A taxonomy of these factors is
proposed and thoroughly discussed in [8]. We will briefly discuss some of these
factors here to analyze how they affect our design. This is crucial to avoid com-
mon pitfalls and unexpectedly low correlation values that underestimate the true
relationship between two patterns possibly generating false negatives.

A first important factor to consider is the possible lack of linearity. Although
the several cases presented only involve linear or pseudo-linear transformations,
non-linearity might still affect our detection system in the extreme case of a
keylogger performing aggressive buffering. A representative example in this cat-
egory is a keylogger flushing out to disk an indefinite-size buffer at regular time
intervals. While we experimented this circumstance to rarely occur in practice,
we have also adopted standard strategies to deal with this scenario effectively.
In our design, we exploit the observation that the non-linear behavior is known
in advance and can be modeled with good approximation.

Following the solution suggested in [8], we transform both patterns to elimi-
nate the source of non-linearity before computing the PCC. To this end, assum-
ing a sufficiently large number of samples N is available, we examine peaks in
the output pattern and eliminate non-informative samples when we expect to
see the effect of buffering in action. At the same time, we aggregate the corre-
sponding samples in the input pattern accordingly and gain back the ability to
perform a significative linear analysis using the PCC over the two normalized
patterns. The advantage of this approach is that it makes the resulting value
of the PCC practically resilient to buffering. The only potential shortcoming is
that we may have to use larger windows of observation to collect a sufficient
number of samples N for our analysis.

Another fundamental factor to consider is the number of samples collected.
While we would like to shorten the duration of the detection algorithm as much
as possible, there is a clear tension between the length of the patterns examined
and the reliability of the resulting value of the PCC. A very small number of
samples can lead to unstable or inaccurate results. A larger number of samples
is beneficial especially whenever one or more other disturbing factors are to
be expected. As reported in [8], selecting a larger number of samples could,
for example, reduce the adverse effect of outliers or measurement errors. The

206 S. Ortolani, C. Giuffrida, and B. Crispo

detection algorithm we have implemented in our detector, relies entirely on the
PCC to estimate the correlation between an input and an output pattern. To
determine whether a given PCC value should trigger a detection, a thresholding
mechanism is used. We discuss how to select a suitable threshold empirically in
Sec. 4. Our detection algorithm is conceived to infer a causal relationship between
two patterns by analyzing their correlation. Admittedly, experience shows that
correlation cannot be used to imply causation in the general case, unless valid
assumptions are made on the context under investigation [2]. In other words, to
avoid false positives in our detection strategy, strong evidence shall be collected
to infer with good probability that a given process is a keylogger. The next
section discusses in detail how to select a robust input pattern and minimize the
probability of false detections.

3.5 Pattern Generator

Our pattern generator is designed to support several possible pattern generation
algorithms. More specifically, the pattern generator can leverage any algorithm
producing a valid input pattern in AKP form. In this section, we present a
number of pattern generation algorithms and discuss their properties.

First important issue to consider is the effect of variability in the input pat-
tern. Experience shows that correlations tend to be stronger when samples are
distributed over a wider range of values [8]. In other words, the more the variabil-
ity in the given distributions, the more stable and accurate the resulting PCC
computed. This suggests that a robust input pattern should contain samples
spanning the entire target interval [0, 1]. The level of variability in the resulting
input stream is also similarly influenced by the range of keystroke rates used in
the pattern translation process. The higher the range delimited by the minimum
keystroke rate and maximum keystroke rate, the more reliable the results.

The adverse effect of low variability in the input pattern can be best under-
stood when analyzing the mathematical properties of the PCC. The correlation
coefficient reports high values of correlation when the two patterns tend to grow
apart from their respective means on the same side with proportional intensity.
As a consequence, the more closely to their respective means the patterns are
distributed, the less stable and accurate the resulting PCC.

In the extreme case of no variability, that is when a constant distribution is
considered, the standard deviation is 0 and the PCC is not even defined. This
suggests that a robust pattern generation algorithm should never consider con-
stant or low-variability patterns. Moreover, when a constant pattern is generated
from the output stream, our detection algorithm assigns an arbitrary correlation
score of 0. This is still coherent under the assumption that the selected input
pattern presents a reasonable level of variability, and poor correlation should
naturally be expected when comparing with other low-variability patterns. A
robust pattern generation algorithm should allow for a minimum number of
false positives and false negatives at detection time. As far as false negatives are

Bait Your Hook: A Novel Detection Technique for Keyloggers 207

concerned, we have already discussed some of the factors that affect the PCC
and may increase the number of false detections in Sec. 3.4.

About false positives, when the chosen input pattern happens to closely re-
semble the I/O behavior of some benign process in the system, the PCC may
report a high value of correlation for that process and trigger a false detection.
For this reason, it is important to focus on input patterns that have little chances
of being confused with output patterns generated by regular system processes.
Fortunately, studies show that the correlation between different realistic I/O
workloads for PC users is generally considerably low different I/O workloads for
PC users is generally considerably low over small time intervals [11]. The results
presented in [11] are derived from 14 traces collected over a number of months
in realistic environments used by different categories of users. The authors show
that the value of correlation given by the PCC over 1 minute of I/O activity is
only 0.0462 on average and never exceeds 0.0708 for any two given traces. These
results suggest that the I/O behavior of one or more given processes is in general
very poorly correlated with other different I/O distributions.

Another property of interest concerning the characteristics of common I/O
workloads is self-similarity. Experience shows that the I/O traffic is typically
self-similar, namely that its distribution and variability are relatively insensitive
to the size of the sampling interval [11]. For our analysis, this suggests that vari-
ations in the time interval T will not heavily affect the sample distribution in the
output pattern and thereby the values of the resulting PCC. This scale-invariant
property is crucial to allow for changes in the parameter T with no considerable
variations in the number of potential false positives generated at detection time.
While most pattern generation algorithms with the properties discussed so far
should produce a relatively small number of false positives in common usage sce-
narios, we are also interested in investigating pattern generation algorithms that
attempt to minimize the number of false positives for a given target workload.

The problem of designing a pattern generation algorithm that minimizes the
number of false positives under a given known workload can be modeled as
follows. We assume that traces for the target workload can be collected and
converted into a series of patterns (one for each process running on the system) of
the same length N . All the patterns are generated to build a valid training set for
the algorithm. Under the assumption that the traces collected are representative
of the real workload available at detection time, our goal is to design an algorithm
that learns the characteristics of the training data and generates a maximally
uncorrelated input pattern. Concretely, the goal of our algorithm is to produce an
input pattern of length N that minimizes the average PCC measured against all
the patterns in the training set. Without any further constraints on the samples
of the target input pattern, it can be shown that this problem is a non-trivial
non-linear optimization problem. In practice, we can relax the original problem
by leveraging some of the assumptions discussed earlier. As motivated before,
a robust input pattern should present samples distributed over a wide range of
values. To assume the widest range possible, we can arbitrarily constraint the

208 S. Ortolani, C. Giuffrida, and B. Crispo

series of samples to be uniformly distributed over the target interval [0, 1]. This
is equivalent to consider a set of N samples of the form:

S =

{

0,
1

N − 1
,

2

N − 1
, . . . ,

N − 2

N − 1
, 1

}

. (2)

When the N samples are constrained to assume all the values from the set S,
the optimization problem comes down to finding the particular permutation of
values that minimizes the average PCC. This problem is a variant of the standard
assignment problem for N objects and N tasks, where each particular pairwise
assignment yields a known cost and the ultimate goal is to minimize the sum of
all the costs involved [14].

In our scenario, the objects can be modeled by the samples in the target set
S and the tasks reflect the N slots in the input pattern each sample has to be
assigned to. In addition, the cost of assigning a sample Si from the set S to a

particular slot j is c(i, j) =
∑

t

(Si−S)(Ptj
−P t)

σs·σpt
, where Pt are the patterns in the

training set, and S and σs are the constant mean and standard distribution of
the samples in S, respectively. The cost value c(i, j) reflects the value of a single
addendum in the resulting expression of the average PCC we want to minimize.
The formulation of the cost value has been simplified assuming constant number
of samples N and constant number of patterns in the training set. Unfortunately,
this problem cannot be easily addressed by leveraging well-known algorithms
that solve the linear assignment problem in polynomial time [14]. In contrast
to the standard formulation, we are not interested in the global minimum of
the sum of the cost values. Such an approach would indeed attempt to find a
pattern that results in an average PCC maximally close to −1. In contrast, the
ultimate goal of our analysis is to produce a maximally uncorrelated pattern,
thereby aiming at an average PCC as close to 0 as possible. This problem can
be modeled as an assignment problem with side constraints.

Prior research has shown how to transform this particular problem into an
equivalent quadratic assignment problem (QAP) that can be very efficiently
solved with a standard QAP solver when the global minimum is known in ad-
vance [13]. In our solution, we have implemented a similar approach limiting
the approach to a maximum number of iterations to guarantee convergence in
bounded time since the minimum value of the PCC is not known in advance. In
practice, for a reasonable number of samples N and a modest training set, we
found that this is rarely a concern. The algorithm can usually identify the opti-
mal pattern in a bearable amount of time. To conclude, we now more formally
propose two classes of pattern generation algorithms for our generator. First, we
are interested in workload-aware generation algorithms. For this class, we focus
on the optimization algorithm we have just introduced, assuming a number of
representative traces have been made available for the target workload.

Moreover, we are interested in workload-agnostic pattern generation algo-
rithms. With no assumption made on the nature of the workload, they are more

Bait Your Hook: A Novel Detection Technique for Keyloggers 209

generic and easier to implement. In this class, we propose the following
algorithms:

Random (RND). Every sample is generated at random with no additional con-

straints. This is the simplest pattern generation algorithm.

Random with fixed range (RFR). The pattern is a random permutation of a se-

ries of samples uniformly distributed over the interval [0, 1]. This algorithm at-

tempts to maximize the amount of variability in the input pattern.

Impulse (IMP). Every sample 2i is assigned the value of 0 and every sample 2i + 1

is assigned the value of 1. This algorithm attempts to produce an input pattern

with maximum variance while minimizing the duration of idle periods.

Sine Wave (SIN). The pattern generated is a discrete sine wave distribution oscil-

lating between 0 and 1 with the first sample having the value of 1. The sine wave

grows or drops with a fixed step of 0.1 at every sample. This algorithm explores

the effect of constant increments (and decrements) in the input pattern.

4 Evaluation

To demonstrate the viability of our approach and evaluate the proposed detection
technique, we implemented a prototype system based on the ideas described in
the paper. Our prototype is entirely written in C# and runs as an unprivileged
application for the Windows operating system.

In the following, we present several experiments to evaluate our approach. The
ultimate goal is to understand the effectiveness of our technique and whether it
can be used in realistic settings. We experimented our prototype with many pub-
licly available keyloggers. We have also developed our own keylogger to evaluate
the effect of special features or particular conditions more throughly. Finally, we
have collected traces for different realistic PC workloads to evaluate the strength
of our approach in real-life scenarios. We ran all of our experiments on PCs with
a 2.53 GHz Core 2 Duo processor, 4 GB memory, and 7200 rpm SATA II hard
drives. Every test was performed under Windows XP Professional SP3, while the
workload traces were gathered from a number of PCs running several different
versions of Windows.

4.1 Keylogger Detection

To evaluate the ability to detect real-world keyloggers, we experimented all the
keyloggers from the top monitoring free software list [15], an online repository
continuously updated with reviews and latest developments in the area. At the
moment of writing, eight keyloggers were listed in the free software list. To
carry out the experiments, we manually installed each keylogger, launched our
detection system for N · T ms, and recorded the results.

In the experiments, we used arbitrary settings for the threshold and the pa-
rameters N , T , Kmin, Kmax. The reason is that we observed the same results
for several reasonable combinations of parameters in most cases. We have also
solely selected the RFR algorithm as the pattern generation algorithm for the
experiments. More details on how to select a pattern generation algorithm and

210 S. Ortolani, C. Giuffrida, and B. Crispo

Table 1. Detection results for the keyloggers used in the evaluation. PCC’s threshold

set to 0.80.

Keylogger Detection Notes
Refog Keylogger Free 5.4.1 ✔ uses focus-based buffering
Best Free Keylogger (BFK) 1.1 ✔
Iwantsoft Free Keylogger 3.0 ✔
Actual Keylogger 2.3 ✔ uses focus-based buffering
Revealer Keylogger Free 1.4 ✔ uses focus-based buffering
Virtuoza Free Keylogger 2.0 ✔ uses time-based buffering
Quick Keylogger 3.0.031 N/A unable to test it properly
Tesline KidLogger 1.4 N/A unable to test it properly

tune parameters and threshold in the general case are given in Sec. 4.2 and
Sec. 4.3. Table 1 shows the keyloggers used in the evaluation and summarizes
the detection results. All the keyloggers were detected without generating any
false positives. For the last two keyloggers in the list, we were not able to pro-
vide any detection result since no consistent log file was ever generated in the
two cases even after repeated experiments1. In every other case, our detection
system was able to detect the keylogger correctly within a few seconds.

Virtuoza Free Keylogger required a longer window of observation to be de-
tected. The Virtuoza Free Keylogger was indeed the only keylogger to use some
form of aggressive buffering, with keystrokes stored in memory and flushed out
to disk at regular time intervals. Nevertheless, we were still able to collect con-
sistent samples from buffer flush events and report high values of PCC with the
normalized version of the input pattern.

In a few other cases, keystrokes were kept in memory but flushed out to disk
as soon as the keylogger detected a change of focus. This was the case for Actual
Keylogger, Revealer Keylogger Free, and Refog Keylogger Free. To deal with this
common buffering strategy efficiently, our detection system enforces a change of
focus every time a sample is injected into the system. Other buffering strategies
and possible evasion techniques are discussed in detail in Sec. 5.

Furthermore, some of the keyloggers examined included support for encryp-
tion and most of them used variable-length encoding to store special keys. As
Sec. 4.2 demonstrates with experimental results, our algorithm can deal with
these nuisances transparently with no effect on the resulting PCC measured.

Another potential issue arises from most keyloggers dumping a fixed-format
header on the disk every time a change of focus is detected. The header typically
contains the date and the name of the target application. Nonetheless, as we
designed our detection system to change focus at every sample, the header is
flushed out to disk at each time interval along with all the keystrokes injected.
As a result, the output pattern monitored is simply a location transformation
of the original, with a shift given by size of the header itself. Thanks to the
location invariance property, our detection algorithm is naturally resilient to
this transformation, regardless of the particular header size used.

1 Both keyloggers were installed on Windows XP SP3 and instructed to output their

log in a specific directory. However, since no logs have been subsequently produced,

we assumed they were not fully compatible with the underlying environment.

Bait Your Hook: A Novel Detection Technique for Keyloggers 211

4.2 False Negatives

In our approach, false negatives may occur when the output pattern of a key-
logger scores an unexpectedly low PCC value. To test the robustness of our
approach with respect to false negatives, we made several experiments with our
own artificial keylogger. In its basic version, our prototype keylogger merely logs
each keystroke on a text file on the disk.

Our evaluation starts with the impact of the maximum number of keystrokes
per time interval Kmax. High Kmax values are expected to increase the level
of variability, reduce the amount of noise, and reproduce a more distinct distri-
bution in the output stream of a keylogger. Nevertheless, the keystroke rate is
clearly bound by the size of the time interval T . Figure 2(a) depicts this sce-
nario with N = 50 and T = 1000 ms. For each pattern generation algorithm, we
plot the PCC measured with our prototype keylogger. This graph shows very
high values of PCC for Kmax < 50. For Kmax > 50, regardless of the pattern
generation algorithm, the PCC linearly decreases. The effect observed is due to
the inability of the system to absorb more than Kmax ≈ 50 in the given time
interval. We observe analogous results whether we plot the PCC against differ-
ent values of T . Our results (hereby not reported) shows that the PCC value
becomes steady for T ≥ 150.

We conducted further experiments to analyze the impact of the number of
samples N . As expected, the PCC is steady regardless of the value of N . This
behavior should not suggest, however, that N has no effect on the production
of false negatives. When noise in the output stream is to be expected, higher
values of N are indeed desirable to produce more accurate measures of the PCC
and avoid potential false negatives.

We have also simulated the effect of several possible input-output transforma-
tions. First, we experimented with a keylogger using a non-trivial fixed-length
encoding for keystrokes. Figure 2(b) depicts the results for different values of
padding 100 < p < 10000000. A value of p = 100 simulates a keylogger writing
100 bytes on the disk for each eavesdropped keystroke. As discussed in Sec. 3.4,
the PCC should be unaffected in this case and presumably exhibit a constant
behavior. The graph confirms this basic intuition, but shows the PCC dropping
linearly after around p = 100000 bytes. This behavior is due to the limited
I/O throughput that can be achieved within a single time interval. Let us now

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

P
C

C

Kmax

 RND
 RFR
 IMP
 SIN

(a) PCC in function of Kmax.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000 1e+06 1e+07

P
C

C

Padding p

 RND
 RFR
 IMP
 SIN

(b) Effect of constant padding.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000 1e+06 1e+07

P
C

C

Padding randomly distributed in [0,p]

 RND
 RFR
 IMP
 SIN

(c) Effect of random padding.

Fig. 2. The effect of the parameters on the PCC measured with our keylogger

212 S. Ortolani, C. Giuffrida, and B. Crispo

consider a scenario where the keylogger writes a random amount of characters
r, with 0 ≤ r ≤ p, for each eavesdropped keystroke. This is interesting to eval-
uate the impact of several different conditions. First, the experiment simulates
a keylogger randomly dropping keystrokes with a certain probability. Second,
the experiment simulates a keylogger encoding a number of keystrokes with spe-
cial sequences, e.g. CTRL logged as [Ctrl]. Finally, this scenario investigates the
impact of a keylogger performing variable-length encryption or other variable-
length transformations. Results for different values of p are depicted in Fig. 2(c).
As observed in Fig. 2(b), the PCC only drops at saturation. The graph still
reveals a steady behavior with the stable value of the PCC only slightly af-
fected (PCC ≈ 0.95), despite the extreme level of noise introduced. Experiments
with non-uniform distributions of r in the same interval yield similar results. We
believe these results are very encouraging to demonstrate the strength of our
detection technique with to respect to false negatives, even in presence of severe
data transformations.

4.3 False Positives

In our approach, false positives may occur when the output pattern of some
benign process accidentally scores a significant PCC value. If the value happens
to be greater than the particular threshold selected, a false detection is triggered.
In this section, we evaluate our prototype system to understand how often such
circumstances may occur in practice.

To generate representative synthetic workloads for the PC user, we relied on
the widely-used SYSmark 2004 SE suite [4]. The suite leverages common Win-
dows interactive applications2 to generate realistic workloads that mimic com-
mon user scenarios with input and think time. In its 2004 SE version, SYSmark
supports two individual workload scenarios: Internet Content Creation (Internet
workload from now on), and Office Productivity (Office workload from now on).
In addition to the workload scenarios supported by SYSmark, we have also ex-
perimented with another workload that simulates an idle Windows system with
common user applications3 running in the background. In the Idle workload sce-
nario, we allow no user input and focus on the I/O behavior of a number of
typical background processes.

For each scenario, we repeatedly reproduced the synthetic workload on a num-
ber of machines and collected I/O traces of all the running processes for several
possible sampling intervals T . Each trace was stored as a set of output patterns
and broken down into k consecutive chunks with N samples. Every experiment
was repeated over k/2 rounds, once for each pair of consecutive chunks. At each
round, the output patterns from the first chunk were used to train our workload-
aware pattern generation algorithm, while the second chunk was used for testing.

2 The set of user programs is available at the following web site

http://www.bapco.com/products/sysmark2004se/applications.php .
3 Skype 4.1, Pidgin 2.6.3, Dropbox 0.6.556, Firefox 3.5.7, Google Chrome 5.0.307,

Avira Antivir Personal 9.0, Comodo Firewall 3.13, and VideoLAN 1.0.5.

http://www.bapco.com/products/sysmark2004se/applications.php

Bait Your Hook: A Novel Detection Technique for Keyloggers 213

In the testing phase, we measured the maximum absolute PCC between every
generated input pattern of length N and every output pattern in the testing set.
At the end of each experiment, we averaged all the results. We tested all the
workload-agnostic and workload-aware pattern generation algorithms introduced
earlier.

We start with an analysis of the pattern length N , evaluating its effect while
fixing T to 1000 ms. Similar results can be obtained with other values of T .
Figures 3(a), 3(b), 3(c) depict the results of the experiments for the Idle, Internet,
and Office workload. As aforementioned, the behavior observed is very similar
in all the workload scenarios examined. The only noticeable difference is that
the Office workload presents a slightly more unstable PCC distribution. This is
probably due to the more irregular I/O workload monitored.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

M
ax

 P
C

C

N

 RND
 RFR
 IMP
 SIN

 WLD

(a) Effect of N for the Idle wld.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

M
ax

 P
C

C

N

 RND
 RFR
 IMP
 SIN

 WLD

(b) Effect of N for the Internet wld.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

M
ax

 P
C

C

N

 RND
 RFR
 IMP
 SIN

 WLD

(c) Effect of N for the Office wld.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500

M
ax

 P
C

C

T

 RND
 RFR
 IMP
 SIN

 WLD

(d) Effect of T for the Idle wld.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500

M
ax

 P
C

C

T

 RND
 RFR
 IMP
 SIN

 WLD

(e) Effect of T for the Internet wld.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500

M
ax

 P
C

C

T

 RND
 RFR
 IMP
 SIN

 WLD

(f) Effect of T for the Office wld.

Fig. 3. The effect of the parameters and the workload on the maximum PCC measured

with regular system processes.

As shown in the graphs, the maximum PCC value decreases exponentially as
N increases. This confirms the intuition that for small N , the PCC may yield
unstable and inaccurate results, possibly assigning very high correlation values
to regular system processes. For example, using input patterns of length N < 10
typically results in misleading PCC values in the range of 0.5-0.8 for one or more
regular system process. Fortunately, the maximum PCC decreases very rapidly
and, for example, for N > 30, its value is constantly below 0.35. As far as the
pattern generation algorithms are concerned, they all behave very similarly. No-
tably, RFR yields the most stable PCC distribution. This is especially evident
for the Office workload. In addition, our workload-aware algorithm WLD does
not perform significantly better than any other workload-agnostic pattern gen-
eration algorithm. This strongly suggests that, independently of the value of

214 S. Ortolani, C. Giuffrida, and B. Crispo

N , the output pattern of a process at any given time is not in general a good
predictor of the output pattern that will be monitored next. This observation
generally reflects the low level of predictability in the I/O behavior of a process.

From Figures 3(d), 3(e), 3(f) we can observe the effect of the parameter T on
input patterns generated by the IMP algorithm. The experiments shown here
have been conducted by fixing the pattern length to an arbitrary stable value
of N = 50. For small values of T , IMP constantly outperforms all the other
algorithms by producing extremely anomalous I/O patterns for the given T in
any workload scenario. As T increases, the irregularity becomes less evident and
IMP matches more closely the behavior of the other algorithms.

In general, for reasonable values of T , all the pattern generation algorithms
reveal a similar and constant distribution of the PCC. This confirms the property
of self-similarity of the I/O traffic. As expected, the PCC measured is generally
independent of the interval T . Notably, RFR and WLD reveal a more steady
distribution of the PCC. This is probably due to the use of a fixed range of
values in both algorithms. This also confirms the intuition that more variability
in the input pattern leads to more accurate and stable results.

For very small values of T , we also note that WLD performs significantly bet-
ter than the average. This is a hint that predicting the I/O behavior of a generic
process in a fairly accurate way is only realistic for small windows of observa-
tion. In all the other cases, we believe that the complexity of implementing a
workload-aware algorithm largely outweighs its benefits. For small values of T ,
we also found the SIN algorithm to be more prone to generation of false posi-
tives. In our analysis, we found that similar PCC distributions can be obtained
with very different types of workload. This suggests that it is possible to select
the same threshold for many different settings. For reasonable values of N and
T , we found that a threshold of 0.5−0.6 is usually sufficient to rule out the pos-
sibility of false positives, while being able to detect most keyloggers effectively.
In addition, the use of a stable pattern generation algorithm like RFR could also
help minimize the level of unpredictability across many different settings.

5 Evasion Techniques

Despite we were able to detect all the existing keyloggers, there are some eva-
sion techniques that keyloggers may employ to make detection more difficult.
For instance, a keylogger may rely on some kind of aggressive buffering, namely
flushing its buffer every 12 hours. In this case, since we would need 12 hours to
collect a single sample, increasing the amount of samples is not desired solution.
We point out that the model underlying our detection technique is not account-
able for this limitation. In fact, monitoring the memory accesses of the running
processes would promptly make the detection process immune to such behav-
ior. However, since monitoring the memory accesses is not available by means
of unprivileged APIs, we reckon that such benefits are mitigated by the need
of running the OS in a virtualized environment. A more complex behavior is a
keylogger actively performing I/O activities. Although this class of keylogger is

Bait Your Hook: A Novel Detection Technique for Keyloggers 215

hypothetical, our model can easily be augmented to handle this type of keylog-
gers. The solution is to inject rates of keystrokes higher than the I/O generated
by the disguisement activities. In this scenario the component able to inject most
of the keystrokes would make its pattern to emerge. Further research is advised
to assess the viability of such a countermeasure against this evasion technique.

6 Related Work

Despite our approach is the first and only technique to solely rely on unprivi-
leged execution environments, several works recently dealt with the detection of
privacy-breaching malware.

The technique of detecting malware by means of modeling their behavior has
been previously proposed by Kirda et al. [12]. Their approach is tailored to
detect malware running as Internet Explorer loadable modules. Modules both
monitoring the user’s activity and disclosing such data to other processes are
flagged as malware. Their analysis in fact defines a malware behavior in terms
of API calls invoked in response to browser events. However, as we previously
discussed, the API calls a keylogger leverages are commonly used by legitimate
components. Their approach is therefore prone to false positives that only a
continuously updated white-list may be able to counter.

Slightly more sophisticated approaches are the ones detecting when known APIs
are exploited. Since user-space keyloggers are known to target a little set of APIs,
this approach perfectly fits our case. Aslam et al. [3] adopt the approach to disas-
semble executable in order to look for the mentioned API calls. Unfortunately, all
these calls are commonly used by legitimate applications; detecting keyloggers by
such means would produce a remarkable amount of false positives. Xu et al. [20]
push this technique a little further. They interpose a function between the API
and any program calling it; this function denies the delivering of the keystroke to
the keylogger by means of altering its type (from WM KEYDOWN to WM CHAR). How-
ever, since they rely on the ability to interpose the function before the keylogger,
a malware aware of this countermeasure can easily elude it.

A step a little closer to our approach is discussed by AlHammadi et al. in [1].
Their approach defines a malware behavior in terms of the invoked API functions.
To be more precise, they collect the frequency of API calls invoked to (i) intercept
keystrokes, (ii) writing to a file, and (iii) sending bytes over the network. A
malware is then flagged as such whether two frequencies are found to be highly
correlated. Since no bogus events are sent to the system (no injection of crafted
input), the correlation may be not be as strong as expected. The correlation value
would be even more impaired in case of any delay introduced by the malware.
Moreover, since the whole analysis is focused on a specific bot, it lacks a proper
discussion on both false positive and false negatives of their quantitative analysis.
In our approach we focus on the actual written bytes and consequently adopt a
different correlation metric, i.e. PCC, that instead is linear. Due to its linearity,
any data transformation (such as encryption) would not help the malware in
evading our detection. Our approach is also immune to malware reasonably

216 S. Ortolani, C. Giuffrida, and B. Crispo

buffering the collected data: as long as the minimum rate of injected keystrokes
flushes the buffer in question, our approach preserves its effectiveness. In case
such a requirement can not be met, our technique can be easily extended by
means of aggregating consecutive samples as we explain in Sec. 5.

A similar technique comprising of both quantitative analysis and injection
routine is sketched by Han et al. in [10]. However, besides being a privileged
approach like [1] and [6], it merely relies on the amount of API calls triggered
in response to a certain amount of keystrokes. However, the assumption that a
certain amount of keystrokes implies a fixed amount of API calls is not always
true. It is how a program is implemented that determines in how many chunks
a stream of data is written to disk. In our approach we rely on more precise
measurements that are also available by means of unprivileged APIs, namely
the amount of bytes a process writes.

In conclusion, notable approaches recently attempted to generalize the be-
havior deemed malicious. In particular, in [16,7] the authors attempt to identify
trigger-based behavior by means of mixing concrete and symbolic execution. In
such a way they aim to explore all the possible execution paths that a mal-
ware may reproduce during execution. As the authors in [16] admit, however,
automating the detection of trigger-based behavior is an extremely challenging
task requiring advanced privileged tools. The problem is also undecidable in the
general case.

7 Conclusions

In this paper we presented an unprivileged black-box approach for accurate de-
tection of the most common keyloggers, i.e. user-space keyloggers. We modeled
the behavior of a keylogger by means of correlating the input, i.e. the keystrokes,
to the I/O pattern produced by the keylogger. Moreover, since the input to the
system was known, we augmented our model by introducing the ability to ar-
tificially inject keystrokes. We then discussed the problem of choosing the best
input pattern to improve our detection rate. Subsequently we implemented our
architecture on the operating system most vulnerable to the threat of keyloggers,
i.e. Windows. We also gave implementation details to accommodate different op-
erating systems, thus obtaining an OS independent architecture. We then tested
the prototype against a real case scenario; the results met our expectations:
given a proper threshold, we were able to detect 100% of the most common free
keyloggers [15] completely avoiding any false positive.

As future works, we will investigate the tradeoff of giving up the constraint of
an unprivileged execution environment; accessing privileged APIs would allow
our detector to monitor memory accesses of running processes.

References

1. Al-Hammadi, Y., Aickelin, U.: Detecting bots based on keylogging activities. In:

Proceedings of the Third International Conference on Availability, Reliability and

Security, pp. 896–902 (2008)

Bait Your Hook: A Novel Detection Technique for Keyloggers 217

2. Aldrich, J.: Correlations genuine and spurious in pearson and yule. Statistical

Science 10(4), 364–376 (1995)

3. Aslam, M., Idrees, R., Baig, M., Arshad, M.: Anti-Hook Shield against the Soft-

ware Key Loggers. In: Proceedings of the 2004 National Conference on Emerging

Technologies, p. 189 (2004)

4. BAPCO: SYSmark 2004 SE (2004),

http://www.bapco.com/products/sysmark2004se/

5. Benesty, J., Chen, J., Huang, Y.: On the importance of the pearson correlation

coefficient in noise reduction. IEEE Transactions on Audio, Speech, and Language

Processing 16(4), 757–765 (2008)

6. Borders, K., Zhao, X., Prakash, A.: Siren: Catching evasive malware (short paper).

In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 76–85 (2006)

7. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automati-

cally identifying trigger-based behavior in malware. Advances in Information Se-

curity 36, 65–88 (2008)

8. Goodwin, L., Leech, N.: Understanding correlation: Factors that affect the size of

r. The Journal of Experimental Education 74(3), 249–266 (2006)

9. Grebennikov, N.: Keyloggers: How they work and how to detect them,

http://www.viruslist.com/en/analysis?pubid=204791931

10. Han, J., Kwon, J., Lee, H.: Honeyid: Unveiling hidden spywares by generating

bogus events. In: Proceedings of The Ifip Tc 11 23rd International Information

Security Conference, pp. 669–673 (2008)

11. Hsu, W., Smith, A.: Characteristics of I/O traffic in personal computer and server

workloads. IBM System Journal 42(2), 347–372 (2003)

12. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based

spyware detection. In: Proceedings of the 15th USENIX Security Symposium

(USENIX Security 2006) (2006)

13. Kochenberger, G., Glover, F., Alidaee, B.: An effective approach for solving the bi-

nary assignment problem with side constraints. Internation Journal of Information

Technology and Decision Making 1, 121–129 (2002)

14. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research

Logistics Quarterly 2, 83–97 (1955)

15. Security Technology Ltd.: Testing and reviews of keyloggers, monitoring products

and spy software (spyware) (2009),

http://www.keylogger.org/monitoring-free-software-review/

16. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware

analysis. In: Proceeding of the 28th IEEE Symposium on Security and Privacy (SP

2007), pp. 231–245 (May 2007)

17. San Jose Mercury News: Kinkois spyware case highlights risk of public internet

terminals (2009),

http://www.siliconvalley.com/mld/siliconvalley/news/6359407.htm

18. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coeffi-

cient. The American Statistician 42(1), 59–66 (1988)

19. Strahija, N.: Student charged after college computers hacked (2003),

http://www.xatrix.org/article2641.html

20. Xu, M., Salami, B., Obimbo, C.: How to protect personal information against

keyloggers. In: Proceedings of the 9th International Conference on Internet and

Multimedia Systems and Applications, IASTED 2005 (2005)

http://www.bapco.com/products/sysmark2004se/
http://www.viruslist.com/en/analysis?pubid=204791931
http://www.keylogger.org/monitoring-free-software-review/
http://www.siliconvalley.com/mld/siliconvalley/news/6359407.htm
http://www.xatrix.org/article2641.html

Generating Client Workloads and High-Fidelity

Network Traffic for Controllable, Repeatable
Experiments in Computer Security�

Charles V. Wright, Christopher Connelly, Timothy Braje,
Jesse C. Rabek��, Lee M. Rossey, and Robert K. Cunningham

Information Systems Technology Group

MIT Lincoln Laboratory

Lexington, MA 02420

{cvwright,connelly,tbraje,lee,rkc}@ll.mit.edu, jesrab@alum.mit.edu

Abstract. Rigorous scientific experimentation in system and network

security remains an elusive goal. Recent work has outlined three basic

requirements for experiments, namely that hypotheses must be falsifi-
able, experiments must be controllable, and experiments must be repeat-
able and reproducible. Despite their simplicity, these goals are difficult

to achieve, especially when dealing with client-side threats and defenses,

where often user input is required as part of the experiment. In this

paper, we present techniques for making experiments involving security

and client-side desktop applications like web browsers, PDF readers, or

host-based firewalls or intrusion detection systems more controllable and

more easily repeatable. First, we present techniques for using statistical

models of user behavior to drive real, binary, GUI-enabled application

programs in place of a human user. Second, we present techniques based

on adaptive replay of application dialog that allow us to quickly and ef-

ficiently reproduce reasonable mock-ups of remotely-hosted applications

to give the illusion of Internet connectedness on an isolated testbed. We

demonstrate the utility of these techniques in an example experiment

comparing the system resource consumption of a Windows machine run-

ning anti-virus protection versus an unprotected system.

Keywords: Network Testbeds, Assessment and Benchmarking, Traffic

Generation.

1 Introduction

The goal of conducting disciplined, reproducible, “bench style” laboratory re-
search in system and network security has been widely acknowledged [1,2], but
remains difficult to achieve. In particular, Peisert and Bishop [2] outline three
� This work was supported by the US Air Force under Air Force contract FA8721-05-

C-0002. The opinions, interpretations, conclusions, and recommendations are those

of the authors and are not necessarily endorsed by the United States Government.
�� Work performed as a student at MIT. The author is now with Palm, Inc.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 218–237, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Generating Client Workloads and High-Fidelity Network Traffic 219

basic requirements for performing good experiments in security: (i) Hypotheses
must be falsifiable—that is, it must be possible to design an experiment to ei-
ther support or refute the hypothesis. Therefore, the hypothesis must pertain
to properties that are both observable and measurable. (ii) Experiments must
be controllable; the experimenter should be able to change only one variable at
a time and measure the change in results. (iii) Finally, experiments should be
both repeatable, meaning that the researcher can perform them several times
and get similar results, and reproducible, meaning that others can recreate the
experiment and obtain similar results.

Unfortunately, designing an experiment in system or network security that
meets these requirements remains challenging. Current practices for measur-
ing security properties have recently been described as “ad-hoc,” “subjective,”
or “procedural” [3]. Experiments that deal primarily with hardware and soft-
ware may be extremely controllable, and recent work [4,5,6,7,8] has explored
techniques for deploying and configuring entire networks of servers, PCs, and
networking equipment on isolated testbeds, disconnected from the Internet or
other networks, where malicious code may safely be allowed to run with low risk
of infecting the rest of the world. However, the recent shift in attacks from the
server side to the client side [9,10,11,12] means that an experiment involving any
one of many current threats, such as drive-by downloads [13] cross-site scripting,
or techniques for detecting and mitigating such intrusions, must account for the
behavior of not only the hardware and software of the computing infrastructure
itself, but also the behavior of the human users of this infrastructure. Humans
remain notoriously difficult to control, and experiments using human subjects
are often expensive, time consuming, and may require extensive interaction with
internal review boards.

Repeatability of experiments on the Internet is difficult due to the global
network’s scale and its constant state of change and evolution. Even on an iso-
lated testbed, repeatability is hampered by the sheer complexity of modern com-
puter systems. Even relatively simple components like hard disks and Ethernet
switches maintain state internally (in cache buffers and ARP tables, respec-
tively), and many components perform differently under varying environmental
conditions e.g. temperature. Many recent CPUs dynamically adjust their clock
frequency in reaction to changes in temperature, and studies by Google suggest
that temperature plays an important role in the failure rates of hard disk drives
[14]. Reproducibility is even harder. It is unclear what level of detail is sufficient
for describing the hardware and software used in a test, but current practices in
the community likely fall short of the standards for publication in the physical
sciences.

The contributions of this paper address two of the above requirements
for performing scientific experiments in security. Specifically, we describe tech-
niques that enable controllable, repeatable experiments with client-side attacks
and defenses on isolated testbed networks. First, we present techniques for using
statistical models of human behavior to drive real, binary, GUI-enabled appli-
cation programs running on client machines on the testbed, so that tests can be

220 C.V. Wright et al.

performed without the randomness or privacy concerns inherent to using human
subjects. Second, we present adaptive replay techniques for producing convincing
facsimiles of remotely-hosted applications (e.g. those on the World Wide Web)
that cannot themselves be installed in an isolated testbed network, so that the
client-side applications have something to talk to. In doing so, we generate work-
loads on the hosts and traffic on the network that are both highly controllable
and repeatable in a laboratory testbed setting.

On the client side, our approach is to construct a Markov chain model for
the way real users interact with each application. Then, during the experiment,
we use the Markov chains to generate new event streams similar in distribution
to those generated by the real users, and use these to drive the applications on
the testbed. This provides a realistic model of measured human behavior, offers
variability from trial to trial, and provides an experimenter with the ability to
change model parameters to explore new user classes. It also generates a reason-
ably realistic set of workloads on the host, in terms of running processes, files
and directories accessed, open network ports, system call sequences, and system
resource consumption (e.g. CPU, memory, disk). Many of these properties of
the system are important for experiments involving defensive tools like firewalls,
virus scanners, or other intrusion detection systems because they are used by
such systems to detect or prevent malicious behavior. Furthermore, because we
run unmodified application program binaries on the testbed hosts, we can closely
replicate the attack surface of a real network and use the testbed to judge the
effectiveness of various real attacks and defenses against one another.

Using real applications also allows us to generate valid traffic on the testbed
network, even for complicated protocols that are proprietary, undocumented,
or otherwise poorly understood. We discuss related work in more detail in the
following section, but for now it suffices to say that almost all existing work on
synthetically generating network traffic focuses on achieving realism at only one
or two layers of the protocol stack. In contrast, our approach provides realistic
traffic all the way from the link layer up to and including the contents of the
application layer sessions.

For example, by emulating a user replying to an email, with just a few mouse
click events, we can generate valid application-layer traffic in open protocols like
DNS, IMAP, and LDAP, proprietary protocols including SMB/CIFS, DCOM,
and MAPI/RPC (Exchange mail). This is, of course, in addition to the SMTP
connection used to send the actual message. Each of these connections will ex-
hibit the correct TCP dynamics for the given operating system and will generate
the proper set of interactions at lower layers of the stack, including DNS look-
ups, ARP requests, and possibly Ethernet collisions and exponential backoff.
Moreover, if a message in the user’s inbox contains an exploit for his mail client
(like the mass-mailing viruses of the late 1990s and early 2000s), simply inject-
ing a mouse click event to open the mail client may launch a wave of infections
across the testbed network.

For the case where the actual applications cannot be installed on the isolated
test network, we present techniques based on adaptive replay of application

Generating Client Workloads and High-Fidelity Network Traffic 221

dialog that allow us to quickly and efficiently reproduce reasonable mock-ups
that make it appear across the network as if the real applications were actually
running on the testbed. These techniques are particularly useful for creating a
superficially realistic version of the modern World Wide Web, giving the illusion
of connectedness on an isolated network.

To illustrate the utility of these techniques, we perform a simple experiment
that would be labor intensive and time consuming to conduct without such
tools. Specifically, we investigate the performance impact of open source anti-
virus (AV) software on client machines. Conventional folk wisdom in the security
community has been that AV products incur a significant performance penalty,
and this has been used to explain the difficulty of convincing end users to employ
such protection. Surprisingly, relatively little effort has been put in to quantifying
the drop in performance incurred, perhaps due to the difficulty of performing
such a test in a controllable and repeatable manner.

The remainder of the paper is organized as follows. In Section 2, we review re-
lated work in network testbeds, automation of GUI applications, modeling user
behavior, and network traffic generation. In Section 3, we present our techniques
for driving real binary applications and for crafting reasonable facsimiles of net-
worked applications that we cannot actually install on the testbed. In Section 4,
we walk through a simple experiment to demonstrate the utility of these tech-
niques and to highlight some challenges in obtaining repeatable results. Finally,
we conclude in Section 5 with some thoughts on future directions for research in
this area.

2 Related Work

Several approaches for configuring, automating, and managing network labora-
tory testbeds have recently been proposed, including Emulab [4], FlexLab [5],
ModelNet [6], and VINI [7]. Our group’s LARIAT testbed platform [8] grew out
of earlier work in the DARPA intrusion detection evaluations [15,16] and was
designed specifically for tests of network security applications. More recently,
along with others in our group, two of the current authors developed a graphical
user interface for testbed management and situational awareness [17] for use with
LARIAT. The DETER testbed [18] is built on Emulab [4] and, like LARIAT,
is also geared toward network security experiments. The primary contribution
of this paper, which is complementary to the above approaches, is to generate
client-side workloads and network traffic for experiments on such testbeds. The
techniques in Section 3.1 were first described in the fourth author’s (unpublished)
MIT Master’s thesis [19]. USim, by Garg et al. [20], uses similar techniques for
building profiles of user behavior, and uses scripted templates to generate data
sets for testing intrusion detection systems.

Our server-side approach for emulating the Web is similar to the dynamic ap-
plication layer replay techniques of Cui et al. [21,22] and Small et al. [23]. Like
our client-side approach, the MITRE HoneyClient [24] and Strider HoneyMon-
keys from Microsoft Research [25] drive real GUI applications, but that work

222 C.V. Wright et al.

focuses narrowly on automating web browsers to discover new vulnerabilities
and does not attempt to model the behavior of a real human at the controls.
Software frameworks exist for the general-purpose automation of GUI applica-
tions, including autopy [26] and SIKULI [27], but these also require higher-level
logic for deciding which commands to inject. PLUM [28] is a system for learning
models of user behavior from an instrumented desktop environment. Simpson et
al. [29] and Kurz et al. [30] present techniques for deriving empirical models of
user behavior from network logs.

There is a large body of existing work on generating network traffic for use
on testbeds or in simulations, but unfortunately most of these techniques were
not designed for security experiments. Simply replaying real traffic [31,32] does
not allow for controllable experiments. Other techniques for generating synthetic
traffic based on models learned from real traffic [33,34,35,36,37] can match sev-
eral important statistical properties of the input trace at the Network and Trans-
port layers. However, because these approaches do not generate application layer
traffic, they are not compatible with many security tools like content-based filters
and intrusion detection or prevention systems, and they cannot interact with real
applications on a testbed. Sommers et al. [38] present a hybrid replay-synthesis
approach that may be more appropriate for some experiments in security. Mutz
et al. [39], Kayacik and Zincir-Heywood [40], and other work by Sommers et al.
[41] generate traffic specifically for the evaluation of defensive tools.

Commercial products from companies including Ixia, BreakingPoint, and
Spirent can generate application-layer traffic, but their focus is on achieving
high data rates rather than realistic models of individual user behavior, and
their implementations do not necessarily exhibit the same attack surface as the
real applications.

3 Traffic and Workload Generation Techniques

Although our techniques could potentially be applied using any of the exist-
ing network testbeds [4,5,6,7,8,18], our current implementation is built as an
extension of own testbed platform, LARIAT [8], which provides a centralized
database for experiment configuration and logging and a graphical user interface
for launching automated tasks to configure the testbed and for controlling and
monitoring experiments. Since the publication of [8], the scope of the project
has expanded significantly. LARIAT has been used to run distributed experi-
ments on testbeds of more than a thousand hosts. In addition to the user model-
driven actuation capabilities and internet reproduction described in this paper,
components have been added for automatically configuring client and server
software, controlling hosts across a testbed, visualizing the configuration and
logged data [17], and for distributing control across remote physical locations.
The current version can drive user-model behavior on a number of different op-
erating system and physical device platforms including smart phones and router
consoles.

Generating Client Workloads and High-Fidelity Network Traffic 223

3.1 Client-Side Workload Generation

Our approach is to emulate a human user by injecting input events to applica-
tions via the operating system. In principle, we could use any number of possible
techniques to determine what events to inject and when. One simple approach
would be to simply record the sequence of events generated by a real user,
and replay them verbatim to the applications on the testbed. While this “cap-
ture/replay” approach offers a level of realism that is difficult to match with
synthetic workloads, it fails the requirement that experiments be controllable.

Our techniques strike a careful balance between realism of the workloads and
controllability of the experiment. We record the inputs generated by real human
users and then train a hierarchical Markov chain model for the events sent to
each application. Then, during the experiment, we simulate from the Markov
chains to generate new event streams similar in distribution to those generated
by the real users, and use these to drive the applications on the testbed.

Application User State Machines. We call these models Application User
State Machines, or AUSMs, because the Markov chain models describe a finite
state machine model of a human user of the application. Formally, an AUSM is
defined as a 4-tuple (n, A, M, X), where n is the number of states in the finite
state machine model, A = {aij : i, j < n} is the Markov chain state transition
matrix, M = {mi : i < n} is a set of second-level models for the outputs
produced by each state, and X = {Xij : i, j < n} is a set of models describing
the interarrival time distribution when an event of type i is immediately followed
by an event of type j. We describe the training and event generation processes
for these models in greater detail in the following paragraphs.

Setting AUSM Parameters. To collect training data for the AUSM’s, we use
the DETOURS framework [42] from Microsoft Research to instrument a set of
Windows desktop machines as they are driven by real human users. During the
training interval, we record the event ID, process ID, and arrival time of each
COM (Component Object Model) event on these instrumented systems for some
length of time. We then use the sub-sequence of events corresponding to each
application to set the parameters for a hierarchical Markov chain model that we
then use to drive the given application on the testbed.

To create an AUSM, we begin by creating one state for each event ID. We
count the number of times in the training data where event i was immediately
followed by event j, and store this count as cij . We then compute the probability
of a transition from state i to state j, and store this in the Markov model’s state
transition matrix as:

aij =
cij∑
k cik

Modeling State Output Distributions. To allow for flexibility in the level of detail
provided by the AUSMs, the outputs of each state are represented using a second
level of models. Some states may always produce the same output, e.g. a state
that generates a mouse click on the “Start” button. Others, like the state that

224 C.V. Wright et al.

generates input for a text box in Internet Explorer, or the word processor input
model, use an n-gram word model of English to produce blocks of text at a time.

If we have no other source of data, these output models can be trained using
the values observed during the training data collection. In other cases, where we
have some expert knowledge of the application, the output models can be trained
using other, larger external data sources. For example, the model that generates
text for the body of an email could be trained using the contents of real emails
in the Enron corpus [43]. In our experiments, we use a locally-collected corpus
of real emails from the authors’ inboxes to train a bigram word model of English
text.

Modeling Event Interarrival Times. Each state transition edge (i, j) in the
AUSM also has an associated interarrival time distribution Xij , which charac-
terizes the delay between events when event i is immediately followed by event
j. Typically, waiting time distributions are well described by the exponential
distribution (e.g. time between buses arriving at a bus stop, time between ma-
jor hurricanes, etc.). However, the data collected from our users’ workstations
exhibits a heavier tail than the exponential distribution, with more wait times
that are much longer than the mean. Some so-called “heavy-tailed” distributions
that occur as a result of user interaction have been shown to be well described
by a power-law or Pareto distribution in the past [44], although the Pareto
distribution also does not appear to be a good fit for our event interarrivals.
Figure 1 shows the observed empirical distribution of COM event interarrival
times for one state transition, together with the best-fit exponential and Pareto
distributions.

Our hypothesis for the poor fit of these two distributions is that there are
actually two sub-populations of event interarrival times. In the first case, the
user is actively engaged with the application, generating events at shorter and
more regular intervals. In the second case, the user may switch to another appli-
cation or disengage from the system entirely to perform some other task, such

Fig. 1. Empirical distribution of event interarrival times, with best-fit Exponential and

Pareto distributions

Generating Client Workloads and High-Fidelity Network Traffic 225

as answering the telephone, reading a paper, going to a meeting, going home for
the night, or even going on vacation while leaving the system up and running.
To capture this bimodal distribution, we use a mixture model with one Expo-
nential component to represent the periods of active engagement and one Pareto
component to represent the longer periods of inactivity.

Generating Client Workloads. In this section we explain how the state ma-
chine models developed above can be used to feed input to application programs
on a client machine to generate workloads on the host and traffic on the testbed
network. Figure 2 shows at a high level how our modules interface with the Win-
dows OS and applications on the client-side system under test (SUT) to achieve
the illusion of a human user at the controls.

Regarding Repeatability. We note that, in order to achieve repeatable experi-
mental results, the entire testbed needs to be started from a fixed state at the
beginning of each run. While we believe the approach we describe here is a nec-
essary condition for obtaining repeatable experimental results, this alone is not
sufficient. We elaborate on other techniques for improving the repeatability of
an example experiment in Section 4.

To enable repeatable outputs from our state machines, we store a master ran-
dom seed in the LARIAT database for each experiment. As part of setting up
the testbed for the experiment, each host generates its own unique random seed
as a hash of the master random seed and a unique host identifier assigned to
it by the LARIAT testbed management system. At the beginning of an exper-
iment, each host instantiates a Mersenne Twister [45] pseudo-random number
generator, seeded with its host seed. This PRNG is then used to drive the state
machines as explained above. Thus, by keeping the master seed unchanged for
several runs of the experiment, we can repeat a test many times and get the
same sequence of actions from the state machines in each run. Conversely, by
varying the master seed, we can explore the space of possible user actions and
the corresponding experimental outcomes.

Fig. 2. Client-side traffic generation overview

226 C.V. Wright et al.

To simulate the user arriving at the machine and logging in, the master LAR-
IAT server sends a message to the client host’s login module over the control
interface, instructing it to log in the given user. On Windows NT, 2000, and
XP systems, the login module is implemented as a GINA, a dynamic-link li-
brary used by the Windows Winlogon process for Graphical Identification and
Authentication [46]. On Windows Vista and newer versions, it runs as a service.
In either case, the module provides login credentials to the OS to start up a
desktop session for the given user. It also launches the user agent module, which
generates user input to drive the Windows desktop and applications from that
point forward.

Upon login, the user agent module starts with a pseudorandomly-selected
AUSM and, if necessary, launches the corresponding application. Then, until
the user agent process receives a signal instructing it to log the user out, it
generates input for the applications by driving the state machines as follows.

In state i, the user agent first samples from state i’s output model mi to
generate an input to the application. It injects the input events using the Mi-
crosoft COM APIs or as keyboard events so that, from the applications’ point of
view, these events are delivered by the operating system just as if they had been
generated by a real human user. Then, the user agent selects the next state j
by pseudorandomly sampling from row i of the Markov model’s state transition
matrix A. The user agent samples a pseudorandom delay x from the AUSM’s
event interarrival time distribution Xij . It then sleeps for x seconds, resets the
current state to j, and repeats the process. In some cases, the output of state j
may be to launch a new application or switch to another running application.
In such cases, the user agent also switches to using the new application’s AUSM
in the next iteration.

3.2 Server Side Techniques

For our client-side workload generation techniques to truly be useful on an iso-
lated testbed network, there must be something for the client side applications
to talk to. Sometimes this is relatively straightforward. For example, simply in-
stalling and configuring a Microsoft Exchange email and calendaring server on
the client’s local area network is mostly sufficient to enable the MS Outlook
AUSM to function normally. Our previous work [8] presents techniques for gen-
erating emails for the virtual users to receive, and of course the Domain Name
Service and IP layer routing must be properly configured on the testbed so that
clients can discover one another’s SMTP servers and transmit the actual mail.
Some testbed management systems [47,8,18] handle part or all of this setup
process.

For some other network applications, most notably the world-wide web, set-
ting up a realistic environment on an isolated network is much more challenging.
Although installing a server for the underlying HTTP protocol is not especially
difficult, getting realistic content is. In the early days of the web, most pages
consisted solely of static content, which could easily be downloaded and “mir-
rored” on another server to easily replicate the page. While some web pages

Generating Client Workloads and High-Fidelity Network Traffic 227

still use this model, for example many researchers’ profile pages, the majority
of the most popular web sites are currently powered by special-purpose, propri-
etary programs that dynamically generate page content and are only accessible
as a service. Some web applications for dynamically generating page content are
available for installation on the testbed, either as software packages, or as a hard-
ware appliance such as the Google Search Appliance [48], and we do make use of
several such products, including the open source osCommerce [49] e-commerce
engine, the GreyMatter weblog software, and Microsoft Exchange’s webmail
interface.

However, to make it appear on the surface as if the isolated testbed network is
actually connected to the Internet, more sophisticated techniques are required.
Our approach is to use dynamic application-layer replay techniques like those
developed by Cui et al. [22,21] and Small et al. [23] for creating lightweight
server-side honeypots. We elaborate on our approach in the following sections.

Collecting Data. We begin by downloading a large number of web pages using
what is essentially a client-side honeypot [25,24]. That is, we run a web browser
(in our case Microsoft Internet Explorer) on a Windows operating system in a
virtual machine, and we script it to automatically download a list of URLs via
a consumer-grade cable modem connection to the Internet. For each URL in
the list, we retrieve the page using the honeyclient and record the full contents
of each packet that is generated. We revert the VM to a clean state after each
page retrieval. For broad coverage of the Web, we begin with a list of over ten
thousand URLs from a categorized directory of links such as Mozilla’s Open
Directory Project [50] or Yahoo!’s directory [51], as well as lists of the most
popular URLs from the Alexa.com rankings [52]. For increased realism, we can
script the honey client to “crawl” more links to provide increased depth for a
given interactive site.

Then, we perform TCP stream reassembly on the captured packets to recon-
struct the application-layer conversations for each URL and all of the associated
HTTP sessions. For each HTTP request in the collected traces, we store the full
text of the resulting HTTP response, including both the headers and the body,
in a database, keyed based on the hostname used in the request and the URL
requested, as well as some meta-information from the headers such as transport
and content encoding parameters.

Emulating the Web. On the testbed network, we deploy a very simple web
server program to emulate the Web using the data collected above. Upon re-
ceiving an HTTP request, it first parses out the hostname, URL, and other pa-
rameters, then looks up the corresponding HTTP response text in the database,
and finally sends this response back to the client. The content from the database
can be distributed across several web servers to provide the ability to handle
large traffic loads as well as provide more realistic network characteristics for
the traffic.

To give the impression of a much larger network than can be realistically
installed on a testbed, we typically deploy this web server on several Linux

228 C.V. Wright et al.

machines, each configured with hundreds or even thousands of virtual network
interfaces for each physical interface. Each machine can thus respond to HTTP
requests sent to any one of thousands of IP addresses. Each instance of the
web server application listens on a designated subset of the host’s IP addresses
and serves content for a designated set of web sites. This flexibility enables
us to emulate both very simple sites hosted at a single IP address as well as
dynamic, world-wide content distribution networks. We store the mapping from
hostnames to IP addresses and Linux hosts in the testbed’s central LARIAT
database. There, this information is also used to configure the testbed’s DNS
servers, so that client nodes can resolve hostnames to the proper virtual IP
addresses. We also provide artificial Root DNS servers as well as a core BGP
routing infrastructure to redistribute all of the routing information for these IP
addresses.

Discussion and Limitations. This combination of lightweight application-level
replay on the server side with automation of heavyweight GUI applications
on the client side allows us to generate very high-fidelity network traffic for
many use cases. It requires no parsing or understanding of JavaScript, but many
JavaScript-heavy sites can be emulated using this method and appear fully func-
tional from the client’s perspective, limited only by the extent of the data col-
lection. One notable example of such a site is Google Maps.

However, the focus on light weight and efficiency in our server-side replay
techniques leads to some important limitations of the current implementation.
First, because the server is stateless, it cannot do HTTP authorization or any
customization of page content based on cookies. Second, because it only looks
for exact matches in the URLs, some pages that dynamically generate links may
fail to find a matching page when run on the testbed. Pages that dynamically
choose IP addresses or hostnames for links may need to be fetched tens or even
hundreds of times during the data collection step in order to find all IP addresses
or hostnames that should occur in the linked pages’ URLs. Otherwise, any client-
side JavaScript code that uses random numbers to control its actions (e.g. client-
side load balancing) will fail to function given that previously unrequested URLs
will not be found in the new closed environment. Finally, while our approach
could be almost trivially extended to support the concurrent use of multiple
browsers or multiple operating systems, it does not do so currently.

Despite these limitations, the current techniques are sufficient for many kinds
of experiments involving network traffic. They are also valuable for tests that
focus primarily on host behavior, as they enable a wider range of applications
to be run on the host, most notably the web browser. In the next section, we
walk through a simple experiment with a host-based security system where use
of the browser makes up a significant fraction of the client machine’s workload.

4 An Example Experiment

In this section we walk through a simple experiment as an example of the kind
of test our system enables a researcher to perform. Although the underlying

Generating Client Workloads and High-Fidelity Network Traffic 229

LARIAT test range automation tool and the AUSM-based workload generators
are capable of scaling to hundreds or even thousands of nodes, for ease of expo-
sition, we will limit ourselves to a much more limited test scenario in this paper.
Despite its small scale and relative simplicity, we believe this experiment is still
complex enough to illustrate the difficulties in applying the scientific method to
problems in computer security.

Specifically, the goal of our example experiment is to measure and quantify
the performance penalty incurred by running anti-virus protection on desktop
computers. In principle, very nearly the same experiment could be used to mea-
sure the performance impact of many other security tools, including other kinds
of intrusion detection systems such as content-based filters, or many types of
malware like rootkits, adware, spyware, or key loggers. We chose to measure the
impact of AV systems because (1) they are ubiquitous on Internet-connected
machines, and (2) because although users have long complained that AV nega-
tively impacts system performance, very little hard data has been presented to
either refute or support this claim.

Hypothesis. We begin by defining a falsifiable hypothesis. A simple statement
such as “anti-virus makes the system slow” is not a good hypothesis because
slowness is subjective and is therefore not measurable without a substantial user
study; it depends not only on the performance of the system but also on the
perception of the user. Instead, we use a similar hypothesis that we hope will
be a good predictor of perceived slowness, namely that “anti-virus increases the
system’s resource consumption.” In related work, others have tested a similar
hypothesis, namely that “anti-virus increases the time required to complete a
suite of computational tasks” [53,54].

4.1 Testbed Setup

We use a very simple experimental testbed comprised of two physical machines.
One of these machines is a server-class machine (HOST) which we use to pro-
vide the LARIAT infrastructure. HOST is a Dell PowerEdge 2650 with dual
Intel Xeon 2.60GHz processors and 2GB of RAM. On HOST, we deploy two vir-
tual servers using VMWare Server. One of these is the LARIAT control server
(CONTROL) and the other (INTERNET) provides email, DNS, and world-wide
web services (Section 3.2) on the testbed for use by the system under test. The
second machine in our setup is a Dell Latitude D610 laptop (SUT, for “system
under test”) with a 1.7GHz Pentium M processor and 1GB of RAM. We par-
tition the hard disk of the SUT into two pieces. On one partition, we install
Ubuntu Linux 9.10. On the other, we install Windows XP with Service Pack
2, Microsoft Office XP, and our client-side workload generation tools, includ-
ing the login module, the user agent, and the AUSMs for Internet Explorer,
Word, Excel, PowerPoint, and Outlook. To enable the collection of performance
measurements from the system under test, we install components of SGI’s Per-
formance Co-Pilot (PCP) software [55] on the Windows partition of the SUT,

230 C.V. Wright et al.

Fig. 3. Test Network Physical Topology

where it can collect performance information, and on HOST, where it can log
these measurements for future analysis. We also install the winexe remote ad-
ministration tool on HOST so that we can automatically reboot the laptop when
it is in Windows.

Then, from the SUT’s Linux installation, we use the Unix tool dd to make a
byte-level image of the Windows partition and store this as a file in the Linux
system. We then re-boot into the Windows system and install an open source
anti-virus product, reboot back into the Linux system and make another byte-
level copy of the Windows partition with the open source AV product installed.
At the completion of this process, we have two Windows disk images on the Linux
filesystem: (1) a clean snapshot of the Windows system, with no AV software
installed and (2) a snapshot of the clean image with the open source product
installed.

4.2 Experimental Methods

In Section 3.1, we explained how we use pseudorandom number generators to
drive the AUSMs to deliver repeatable user inputs to the application programs
on the testbed. However, more steps are necessary to achieve repeatable results
from a system as complex as a modern computer or network. In this section,
we discuss the steps we take to improve the repeatability of our very small,
simple example experiment. First, we note that we intentionally deploy the SUT
on a physical machine instead of using virtualization because of difficulty in
obtaining repeatable timing measurements on current VM platforms [56]. Our
experimental procedure is outlined in Figure 4; we describe the process in more
detail below.

Generating Client Workloads and High-Fidelity Network Traffic 231

1. Prepare Systems for Test Run
(a) Revert disk images on SUT and INTERNET

(b) Revert system clocks on SUT and INTERNET

(c) Reboot SUT laptop into Windows environment

(d) Seed PRNGs using master experiment seed

(e) Start PCP performance logging service

2. Execute Test Run
(a) Start AUSM-based client workload generation

(b) Let workload generation run for 2 hours

(c) Stop AUSM-based client workload generation

3. Collect Results
(a) Stop PCP performance logging service

(b) Archive performance logs

(c) Reboot SUT laptop into Linux environment

Fig. 4. Experimental Procedure

When running a test, we begin with the SUT booted into its Linux environ-
ment, HOST powered up, and the INTERNET and CONTROL virtual machines
running. We revert the disk images on INTERNET and SUT’s Windows par-
tition to clean states, using VMWare’s snapshot feature and the Unix dd tool,
respectively. This is necessary to ensure that SUT’s filesystem is unchanged from
run to run, and that its view of the Internet, including queued email in the user’s
inbox, is consistent in each run. Next, we set the system clocks on SUT and IN-
TERNET to a constant value. Setting the clocks before each run is important
because many application programs also use pseudorandom number generators,
and many of them seed their PRNG with the current value of the clock when
they start up. Finally, we set the GRUB boot loader on the SUT to load Windows
on its next invocation, and we reboot the laptop. While the laptop performs
its power-on self test and boots into Windows, we start the PCP performance
logger on HOST so that it is ready to begin recording performance metrics from
SUT when it comes on line. To maximize repeatability, all of these actions are
performed automatically by a set of three shell scripts. One script, the master,
runs on HOST and executes the other two scripts to re-set the SUT and the
INTERNET VM before launching each run of the experiment.

In each run, the master script sends a command to CONTROL to start the
experiment, then sleeps for a specified length of time in order to let the test run.
Meanwhile, CONTROL sends the command to SUT, which logs in the virtual
user and starts the AUSMs to drive the client-side applications on the testbed.
When the master script wakes up, it sends another command to CONTROL,
stopping the test and logging the user out. It archives the PCP performance
logs and then uses winexe to reboot the laptop into its Linux environment in
preparation for the next run.

4.3 Experimental Results

Using the above procedure, we select a master experiment seed at random and
repeatedly execute a 2-hour test on our testbed with this seed. We run the test

232 C.V. Wright et al.

Fig. 5. CPU Utilization

under two distinct scenarios: (1) the baseline, with no anti-virus protection on
the SUT and (2) with the open source anti-virus product. These experiments
serve two purposes. First, they allow us to test whether there is any measurable
difference in system resource consumption between the two scenarios. They also
serve to demonstrate the repeatability of results enabled by our techniques.

With the experiment seed that we selected, the user agent launches both
Outlook and Word soon after logging in. It spends several minutes reading and
writing email and writing Word documents, then launches Internet Explorer and
browses to several sites on the emulated web. It keeps these three applications
open for the duration of the experiment and frequently switches back and forth
between them every few minutes.

For each of the two scenarios, we take all of the runs, and show the average
and standard deviation of the CPU utilization (Fig. 5), memory consumption

Fig. 6. Memory Consumption

Generating Client Workloads and High-Fidelity Network Traffic 233

Fig. 7. Disk I/O

(Fig. 6), and disk input/output volume (Fig. 7) for the first hour of the experi-
mental runs. The data was gathered in one second intervals using PCP. In order
to make these plots more readable, we have performed a Gaussian smoothing
over the data with a 5 second radius. In effect, this smooths out some of the
jagged edges in the plot, making them more readable without changing them in
any significant way.

Discussion. We see consistent spikes in both CPU load and disk I/O starting
near 0 seconds when the user agent launches Outlook and Word, and again
near 600 seconds when Internet Explorer is started. In Fig. 5, we see that the
open source AV product consistently causes near 100% CPU use for a period
of nearly 10 minutes. During this same period, the standard deviation of the
CPU utilization is near zero, indicating that this behavior is very repeatable.
Throughout Fig. 5 and Fig. 7, spikes in the average measurements are typically
accompanied by smaller spikes in the standard deviations. However, we note
that during periods of sustained activity, the standard deviation only spikes at
the beginning and the end of the plateau in the mean. This pattern occurs in
Fig. 5 at 600-1000 seconds, 1200-1400 seconds, and 1500-2500 seconds for the
open source product and to a lesser extent from 1800-2000 and 2300-2500 seconds
for the baseline case. This leads us to believe that much of the variance in these
graphs is due to the inexact timing of our automation scripts.

Figures 5 and 6 show clear evidence of the system with open source anti-
virus protection consuming more resources than the same system with no anti-
virus, and formal statistical tests confirm our hypothesis with high confidence
for these data series. In Fig. 7, overall, the anti-virus system does not appear
to cause a statistically significantly increase in disk I/O loads relative to the
baseline system. We are interested in whether these same results would hold for
commercial anti-virus products, which may be developed with a greater focus
on efficiency and performance. In the near future, we may expand the coverage
of our test to include one or more commercial tools as well.

234 C.V. Wright et al.

5 Conclusions and Future Work

We presented new techniques for driving ubiquitous, commercial-off-the-shelf
Windows GUI applications in place of a human user on an isolated testbed
network. Using statistical models of user behavior to generate workloads on the
testbed hosts, together with dynamic application-level protocol replay techniques
to emulate remote services like the World Wide Web, we can generate traffic on
the testbed network that resembles real traffic to a very high degree of fidelity.

We demonstrated a small-scale experiment to show how these techniques help
to enable configurable, repeatable tests involving client-side security tools, and
we highlighted some challenges in achieving repeatable experimental results with
such complex systems.

In the future, we plan to improve on our current techniques in a number of
ways. First, we will collect data from a larger set of users and develop techniques
for validating that the workloads and traffic induced on a testbed faithfully
represent the environments they were modeled after. Second, we will develop
actuators that require a smaller software footprint on the system under test,
to further reduce the risk of test artifacts in experimental results. Finally, we
plan to develop more robust techniques for dynamic application-level replay of
web sites that make heavy use of JavaScript or other active content generation
techniques.

Acknowledgments

The authors extend our sincerest thanks to the members of the MIT-LL Cyber
Testing team who implemented much of the software described here and provided
much helpful feedback on the experiments and the paper.

References

1. Barford, P., Landweber, L.: Bench-style network research in an Internet Instance

Laboratory. ACM SIGCOMM Computer Communication Review 33(3), 21–26

(2003)

2. Peisert, S., Bishop, M.: How to Design Computer Security Experiments. In: Pro-

ceedings of the 5th World Conference on Information Security Education (WISE),

pp. 141–148 (2007)

3. US Department of Homeland Security: A Roadmap for Cybersecurity Research.

Technical report (November 2009),

www.cyber.st.dhs.gov/docs/DHS-Cybersecurity-Roadmap.pdf

4. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,

M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed

systems and networks. In: Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (December 2002)

5. Ricci, R., Duerig, J., Sanaga, P., Gebhardt, D., Hibler, M., Atkinson, K., Zhang, J.,

Kasera, S., Lepreau, J.: The Flexlab approach to realistic evaluation of networked

systems. In: Proceedings of the 4th USENIX Symposium on Networked Systems

Design & Implementation, pp. 201–214 (April 2007)

www.cyber.st.dhs.gov/docs/DHS-Cybersecurity-Roadmap.pdf

Generating Client Workloads and High-Fidelity Network Traffic 235

6. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker,

D.: Scalability and Accuracy in a Large-Scale Network Emulator. In: Proceedings of

the 5th Symposium on Operating Systems Design and Implementation (December

2002)

7. Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J.: VINI veritas: Real-

istic and controlled network experimentation. In: Proceedings of ACM SIGCOMM

(September 2006)

8. Rossey, L.M., Cunningham, R.K., Fried, D.J., Rabek, J.C., Lippmann, R.P.,

Haines, J.W., Zissman, M.A.: LARIAT: Lincoln Adaptable Real-time Information

Assurance Testbed. In: Proceedings of the IEEE Aerospace Conference (2002)

9. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The Ghost

in the Browser: Analysis of Web-based Malware. In: Proceedings of the First Work-

shop on Hot Topics in Understanding Botnets (HotBots 2007) (April 2007)

10. Fossi, M.: Symantec Internet Security Threat Report: Trends for 2008 (April 2009)

11. Deibert, R., Rohozinski, R.: Tracking GhostNet: Investigating a Cyber Espionage

Network. Technical Report JR02-2009, Information Warfare Monitor (March 2009)

12. Nagaraja, S., Anderson, R.: The Snooping Dragon: Social-Malware Surveillance of

the Tibetan Movement. Technical Report UCAM-CL-TR-746, University of Cam-

bridge Computer Laboratory (March 2009)

13. Provos, N., Mavrommatis, P., Rajab, M., Monrose, F.: All Your iFrames Point to

Us. In: Proceedings of the 17th USENIX Security Symposium (July 2008)

14. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure Trends in a Large Disk Drive

Population. In: Proceedings of the 5th USENIX Conference on File and Storage

Technologies (February 2007)

15. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,

Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A.:

Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion De-

tection Evaluation. In: Proceedings of the 2000 DARPA Information Survivability

Conference and Exposition (2000)

16. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA

Off-line Intrusion Detection Evaluation. Computer Networks 34(4), 279–595 (2000)

17. Yu, T., Fuller, B., Bannick, J., Rossey, L., Cunningham, R.: Integrated Environ-

ment Management for Information Operations Testbeds. In: Proceedings of the

2007 Workshop on Visualization for Computer Security (October 2007)

18. Benzel, T., Braden, R., Kim, D., Neuman, C., Joseph, A., Sklower, K., Ostrenga,

R., Schwab, S.: Experience with DETER: A Testbed for Security Research. In:

Proceedings of the 2nd International Conference on Testbeds and Research Infras-

tructures for the Development of Networks and Communities (TRIDENTCOM)

(March 2006)

19. Boothe-Rabek, J.C.: WinNTGen: Creation of a Windows NT 5.0+ network traffic

generator. Master’s thesis, Massachusetts Institute of Technology (2003)

20. Garg, A., Vidyaraman, S., Upadhyaya, S., Kwiat, K.: USim: A User Behavior Simu-

lation Framework for Training and Testing IDSes in GUI Based Systems. In: ANSS

2006: Proceedings of the 39th Annual Symposium on Simulation, Washington, DC,

USA, pp. 196–203. IEEE Computer Society, Los Alamitos (2006)

21. Cui, W., Paxson, V., Weaver, N.C.: GQ: Realizing a System to Catch Worms in

a Quarter Million Places. Technical Report TR-06-004, International Computer

Science Institute (September 2006)

22. Cui, W., Paxson, V., Weaver, N.C., Katz, R.H.: Protocol-Independent Adaptive

Replay of Application Dialog. In: Proceedings of the 13th Annual Symposium on

Network and Distributed System Security (NDSS 2006) (February 2006)

236 C.V. Wright et al.

23. Small, S., Mason, J., Monrose, F., Provos, N., Stubblefield, A.: To catch a predator:

A natural language approach for eliciting malicious payloads. In: Proceedings of

the 17th USENIX Security Symposium (August 2008)

24. Wang, K.: Using HoneyClients to Detect New Attacks. In: RECON Conference

(June 2005)

25. Wang, Y.M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,

S.: Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That

Exploit Browser Vulnerabilities. In: Proceedings of the 13th Annual Symposium

on Network and Distributed System Security (NDSS 2006) (February 2006)

26. Sanders, M.: autopy: A simple, cross-platform GUI automation toolkit for Python,

http://github.com/msanders/autopy
27. Yeh, T., Chang, T.H., Miller, R.C.: Sikuli: Using GUI Screenshots for Search and

Automation. In: Proceedings of the 22nd Symposium on User Interface Software

and Technology (October 2009)

28. Kleek, M.V., Bernstein, M., Karger, D., Schraefel, M.C.: Getting to Know You

Gradually: Personal Lifetime User Modeling (PLUM). Technical report, MIT

CSAIL (April 2007)

29. Simpson, C.R., Reddy, D., Riley, G.F.: Empirical Models of TCP and UDP En-

dUser Network Trafc from NETI@home Data Analysis. In: 20th International

Workshop on Principles of Advanced and Distributed Simulation (May 2006)

30. Kurz, C., Hlavacs, H., Kotsis, G.: Workload Generation by Modelling User Behavior

in an ISP Subnet. In: Proceedings of the International Symposium on Telecommu-

nications (August 2001)

31. tcpreplay by Aaron Turner, http://tcpreplay.synfin.net/
32. Hong, S.S., Wu, S.F.: On Interactive Internet Traffic Replay. In: Proceedings of the

9th International Symposium on Recent Advances in Intrusion Detection (Septem-

ber 2006)

33. Sommers, J., Barford, P.: Self-configuring network traffic generation. In: Proceed-

ings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 68–81

(2004)

34. Cao, J., Cleveland, W.S., Gao, Y., Jeffay, K., Smith, F.D., Weigle, M.C.: Stochastic

models for generating synthetic HTTP source traffic. In: INFOCOM (2004)

35. Weigle, M.C., Adurthi, P., Hernández-Campos, F., Jeffay, K., Smith, F.D.: Tmix: a

tool for generating realistic TCP application workloads in ns-2. ACM SIGCOMM

Computer Communication Review 36(3), 65–76 (2006)

36. Lan, K.C., Heidemann, J.: Rapid model parameterization from traffic

measurements. ACM Transactions on Modeling and Computer Simulation

(TOMACS) 12(3), 201–229 (2002)

37. Vishwanath, K.V., Vahdat, A.: Realistic and Responsive Network Traffic Genera-

tion. In: Proceedings of ACM SIGCOMM (September 2006)

38. Sommers, J., Yegneswaran, V., Barford, P.: Toward Comprehensive Trafc Genera-

tion for Online IDS Evaluation. Technical report, University of Wisconsin (2005)

39. Mutz, D., Vigna, G., Kemmerer, R.: An Experience Developing an IDS Stimulator

for the Black-Box Testing of Network Intrusion Detection Systems. In: Proceedings

of the Annual Computer Security Applications Conference (December 2003)

40. Kayacik, H.G., Zincir-Heywood, N.: Generating Representative Traffic for Intrusion

Detection System Benchmarking. In: Proceedings of the 3rd Annual Communica-

tion Networks and Services Research Conference, pp. 112–117 (May 2005)

41. Sommers, J., Yegneswaran, V., Barford, P.: A framework for malicious workload

generation. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet

Measurement, pp. 82–87 (2004)

http://github.com/msanders/autopy
http://tcpreplay.synfin.net/

Generating Client Workloads and High-Fidelity Network Traffic 237

42. Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In:

Third USENIX Windows NT Symposium (July 1999)

43. Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: Proceedings of the First

Conference on Email and Anti-Spam (CEAS) (July 2004)

44. Paxson, V., Floyd, S.: Wide Area Traffic: The Failure of Poisson Modeling.

IEEE/ACM Transactions on Networking 3(3) (June 1995)

45. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Mod-

elling and Computer Simulation 8(1), 3–30 (1998)

46. GINA: MSDN Windows Developer Center,

http://msdn.microsoft.com/en-us/library/aa375457VS.85.aspx

47. Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb,

K., Lepreau, J.: Large-scale Virtualization in the Emulab Network Testbed. In:

Proceedings of the 2008 USENIX Annual Technical Conference (June 2008)

48. Google, Inc.: Google search appliance,

http://www.google.com/enterprise/search/gsa.html

49. osCommerce: Open Source E-Commerce Solutions, http://www.oscommerce.com/

50. DMOZ Open Directory Project, http://www.dmoz.org/

51. Yahoo! Directory, http://dir.yahoo.com/

52. Alexa Top Sites, http://www.alexa.com/topsites

53. AV-Comparatives e.V.: Anti-Virus Comparative Performance Test: Impact of Anti-

Virus Software on System Performance (December 2009),

http://www.av-comparatives.org/comparativesreviews/performance-tests

54. Warner, O.: What Really Slows Windows Down (September 2006),

http://www.thepcspy.com/read/what_really_slows_windows_down

55. Chatterton, D., Gigante, M., Goodwin, M., Kavadias, T., Keronen, S., Knispel, J.,

McDonell, K., Matveev, M., Milewska, A., Moore, D., Muehlebach, H., Rayner, I.,

Scott, N., Shimmin, T., Schultz, T., Tuthill, B.: Performance Co-Pilot for IRIX

Advanced User’s and Administrator’s Guide. 2.3 edn. SGI Technical Publications

(2002), http://oss.sgi.com/projects/pcp/index.html

56. Timekeeping in VMware Virtual Machines,

http://www.vmware.com/pdf/vmware_timekeeping.pdf

http://msdn.microsoft.com/en-us/library/aa375457VS.85.aspx
http://www.google.com/enterprise/search/gsa.html
http://www.oscommerce.com/
http://www.dmoz.org/
http://dir.yahoo.com/
http://www.alexa.com/topsites
http://www.av-comparatives.org/comparativesreviews/performance-tests
http://www.thepcspy.com/read/what_really_slows_windows_down
http://oss.sgi.com/projects/pcp/index.html
http://www.vmware.com/pdf/vmware_timekeeping.pdf

On Challenges in Evaluating Malware Clustering

Peng Li1, Limin Liu2, Debin Gao3, and Michael K. Reiter1

1 Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
2 State Key Lab of Information Security, Graduate School of Chinese Academy of Sciences

3 School of Information Systems, Singapore Management University, Singapore

Abstract. Malware clustering and classification are important tools that enable
analysts to prioritize their malware analysis efforts. The recent emergence of fully
automated methods for malware clustering and classification that report high ac-
curacy suggests that this problem may largely be solved. In this paper, we report
the results of our attempt to confirm our conjecture that the method of selecting
ground-truth data in prior evaluations biases their results toward high accuracy.
To examine this conjecture, we apply clustering algorithms from a different do-
main (plagiarism detection), first to the dataset used in a prior work’s evaluation
and then to a wholly new malware dataset, to see if clustering algorithms de-
veloped without attention to subtleties of malware obfuscation are nevertheless
successful. While these studies provide conflicting signals as to the correctness
of our conjecture, our investigation of possible reasons uncovers, we believe, a
cautionary note regarding the significance of highly accurate clustering results,
as can be impacted by testing on a dataset with a biased cluster-size distribution.

Keywords: malware clustering and classification, plagiarism detection.

1 Introduction

The dramatic growth of the number of malware variants has motivated methods to clas-
sify and group them, enabling analysts to focus on the truly new ones. The need for such
classification and pruning of the space of all malware variants is underlined by, e.g., the
Bagle/Beagle malware, for which roughly 30,000 distinct variants were observed be-
tween January 9 and March 6, 2007 [8]. While initial attempts at malware classification
were performed manually, in recent years numerous automated methods have been de-
veloped to perform malware classification (e.g., [11,6,5,16,9,13,15]). Some of these
malware classifiers have claimed very good accuracy in classifying malware, leading
perhaps to the conclusion that malware classification is more-or-less solved.

In this paper, we show that this may not be the case, and that evaluating automated
malware classifiers poses substantial challenges that we believe require renewed at-
tention from the research community. A central challenge is that with the dearth of a
well-defined notion of when two malware instances are the “same” or “different”, it is
difficult to obtain ground truth to which to compare the results of a proposed classifier.
Indeed, even manually encoded rules to classify malware seems not to be enough —
a previous study [6] found that a majority of six commercial anti-virus scanners con-
curred on the classification of 14,212 malware instances in only 2,658 cases. However,
in the absence of better alternatives for determining ground truth, such instances and

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 238–255, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Challenges in Evaluating Malware Clustering 239

their corresponding classifications are increasingly used to evaluate automated meth-
ods of malware clustering. For example, a state-of-the-art malware clustering algorithm
due to Bayer et al. [6] achieved excellent results using these 2,658 malware instances
as ground truth; i.e., the tool obtained results that largely agreed with the clustering of
these 2,658 malware instances by the six anti-virus tools.

The starting point of the present paper is the possibility, we conjectured, that one
factor contributing to these strong results might be that these 2,658 instances are simply
easy to classify, by any of a variety of techniques. We report on our efforts to exam-
ine this possibility, first by repeating the clustering of these instances using algorithms
from an ostensibly different domain, namely plagiarism detectors that employ dynamic
analysis. Intuitively, since plagiarism detectors are developed without attention to the
specifics of malware obfuscation, highly accurate clustering results by these tools might
suggest that this method of selecting ground-truth data biases the data toward easy-to-
classify instances. We describe the results of this analysis, which indicate that plagia-
rism detectors have nearly the same success in clustering these malware instances, thus
providing tentative support for this conjecture.

To more thoroughly examine this possibility, we then attempted to repeat the evalua-
tion methodology of Bayer et al. on a new set of malware instances. By drawing from a
database of malware instances, we assembled a set for which four anti-virus tools con-
sistently labeled each member. We detail this study and report on its results that, much
to our surprise, find that neither the Bayer et al. technique nor the plagiarism detectors
we employed were particularly accurate in clustering these instances. Due to certain
caveats of this evaluation that we will discuss, this evaluation is materially different
from that for the previous dataset, causing us to be somewhat tentative in the conclu-
sions we draw from it. Nevertheless, these results temper the confidence with which
we caution that the selection of ground-truth data based on the concurrence of multiple
anti-virus tools biases the data toward easy-to-classify instances.

But this leaves the intriguing question: Why the different results on the two datasets?
We complete our paper with an analysis of a factor that, we believe, contributes to
(though does not entirely explain) this discrepancy, and that we believe offers a cau-
tionary note for the evaluation of malware clustering results. This factor is the makeup
of the ground-truth dataset, in terms of the distribution of the sizes of the malware
families it contains. We observe that the original dataset, on which the algorithms we
consider perform well, is dominated by two large families, but the second dataset is
more evenly distributed among many families. We show that this factor alone biases
the measures used in comparing the malware clustering output to the dataset families,
specifically precision and recall, in that it increases the likelihood of good precision
and recall numbers occurring by chance. As such, the biased cluster-size distribution in
the original dataset erodes the significance (c.f., [22, Section 8.5.8]) of the high preci-
sion and recall reported by Bayer et al. [6]. This observation, we believe, identifies an
important factor for which to control when measuring the effectiveness of a malware
clustering technique.

While we focus on a single malware classifier for our analysis [6], we do so because
very good accuracy has been reported for this algorithm and because the authors of that
technique were very helpful in enabling us to compare with their technique. We hasten

240 P. Li et al.

to emphasize, moreover, that our comparisons to plagiarism detectors are not intended
to suggest that plagiarism detectors are the equal of this technique. For one, we believe
the technique of Bayer et al. is far more scalable than any of the plagiarism detectors
that we consider here, an important consideration when clustering potentially tens of
thousands of malware instances. In addition, the similar accuracy of the technique of
Bayer et al. to the plagiarism detectors does not rule out the possibility that the plagia-
rism detectors are more easily evaded (in the sense of diminishing clustering accuracy);
rather, it simply indicates that malware today does not seem to do so. We stress that the
issues we identify are not a criticism of the Bayer et al. technique, but rather are issues
worth considering for any evaluation of malware clustering and classification.

To summarize, the contributions of this paper are as follows. First, we explore the
possibility that existing approaches to obtaining ground-truth data for malware cluster-
ing evaluation biases results by isolating those instances that are simple to cluster or
classify. In the end, we believe our study is inconclusive on this topic, but that reporting
our experiences will nevertheless raise awareness of this possibility and will underline
the importance of finding methods to validate the ground-truth data employed in this
domain. Second, we highlight the importance of the significance of positive cluster-
ing results when reporting them. This has implications for the datasets used to evalu-
ate malware clustering algorithms, in that it requires that datasets exhibiting a biased
cluster-size distribution not be used as the sole vehicle for evaluating a technique.

2 Classification and Clustering of Malware

To hinder static analysis of binaries, the majority of current malware makes use of ob-
fuscation techniques, notably binary packers. As such, dynamic analysis of such mal-
ware is often far more effective than static analysis. Monitoring the behavior of the
binary during its execution enables collecting a profile of the operations that the binary
performs and offers potentially greater insight into the code itself if obfuscation is re-
moved (e.g., the binary is unpacked) in the course of running it. While this technique
has its limitations — e.g., it may be difficult to induce certain behaviors of the malware,
some of which may require certain environmental conditions to occur [10,14,19,20] —
it nevertheless is more effective than purely static approaches. For this reason, dynamic
analysis of malware has received much attention in the research community. Analysis
systems such as CWSandbox [25], Anubis [7], BitBlaze [18], Norman [2] and Threat-
Expert [1] execute malware samples within an instrumented environment and monitor
their behaviors for analysis and development of defense mechanisms.

A common application for dynamic analysis of malware is to group malware in-
stances, so as to more easily identify the emergence of new strains of malware, for
example. Such grouping is often performed using machine learning, either by cluster-
ing (e.g., [6,17,15]) or by classification (e.g., [13,5,16,11]), which are unsupervised and
supervised techniques, respectively.

Of primary interest in this paper are the methodologies that these works employ to
evaluate the results of learning, and specifically the measures of quality for the clus-
tering or classification results. Let M denote a collection of m malware instances to
be clustered, or the “test data” in the case of classification. Let C = {Ci}1≤i≤c and

On Challenges in Evaluating Malware Clustering 241

D = {Di}1≤i≤d be two partitions of M , and let f : {1 . . . c} → {1 . . . d} and
g : {1 . . . d} → {1 . . . c} be functions. Many prior techniques evaluated their results
using two measures:

prec(C,D) =
1
m

c∑

i=1

|Ci ∩Df(i)|

recall(C,D) =
1
m

d∑

i=1

|Cg(i) ∩Di|

where C is the set of clusters resulting from the technique being evaluated and D is the
clustering that represents the “right answer”.

More specifically, in the case of classification, Ci is all test instances classified as
class i, and Di is all test instances that are “actually” of class i. As such, in the case of
classification, c = d and f and g are the identity functions. As a result prec(C,D) =
recall(C,D), and this measure is often simply referred to as accuracy. This is the mea-
sure used by Rieck et al. [16] to evaluate their malware classifier, and Lee et al. [13]
similarly uses error rate, or one minus the accuracy.

In the clustering case, there is no explicit label to define the cluster in D that corre-
sponds to a specific cluster in C, and so one approach is to define

f(i) = arg max
i′
|Ci ∩Di′ |

g(i) = arg max
i′
|Ci′ ∩Di|

In this case, f and g will not generally be the identity function (or even bijections),
and so precision and recall are different. This approach is used by Rieck et al. [17]
and Bayer et al. [6] in evaluating their clustering techniques. In this case, when it is
desirable to reduce these two measures into one, a common approach (e.g., [17]) is to
use the F-measure:

F-measure(C,D) =
2 · prec(C,D) · recall(C,D)
prec(C,D) + recall(C,D)

This background is sufficient to highlight the issues on which we focus in the paper:

Production of D: A central question in the measurement of precision and recall is how
the reference clusteringD is determined. A common practice is to use an existing anti-
virus tool to label the malware instances M (e.g., [16,13,11]), the presumption being
that anti-virus tools embody hand-coded rules to label malware instances and so are a
good source of “manually verified” ground truth. Unfortunately, existing evidence sug-
gests otherwise, in that it has been shown that anti-virus engines often disagree on their
labeling (and clustering) of malware instances [5]. To compensate for this, another prac-
tice has been to restrict attention to malware instances M on which multiple anti-virus
tools agree (e.g., [6]). Aside from substantially reducing the number of instances, we
conjecture that this practice might contribute to more favorable evaluations of malware
classifiers, essentially by limiting evaluations to easy-to-cluster instances. To demon-
strate this possibility, in Section 3 we consider malware instances selected in this way

242 P. Li et al.

and show that they can be classified by plagiarism detectors (designed without attention
to the subtleties of malware obfuscation) with precision and recall comparable to that
offered by a state-of-the-art malware clustering tool.

Distribution of cluster sizes in C and D: In order to maximize both precision and
recall (and hence the F-measure), it is necessary for C and D to exhibit similar cluster-
size distributions; i.e., if one of them is highly biased (i.e., has few, large clusters) and
the other is more evenly distributed, then one of precision or recall will suffer. Even
when they exhibit similar cluster-size distributions, however, the degree to which that
distribution is biased has an effect on the significance (e.g., [22, Section 8.5.8]) that
one can ascribe to high values of these measures. Informally, the significance of a given
precision or recall is related to the probability that this value could have occurred by
random chance; the higher the probability, the less the significance. We will explore the
effect of cluster-size distribution on significance, and specifically the impact of cluster-
size distribution on the sensitivity of the F-measure to perturbations in the distance
matrix from which the clustering C is derived. We will see that all other factors held
constant, good precision and recall when the reference clusters in D are of similar size
is more significant than if the cluster sizes are biased. That is, small perturbations in the
distance matrix yielding C tends to decay precision and recall more than if D and C are
highly biased.

We will demonstrate this phenomenon using the malware clustering results obtained
from the state-of-the-art malware clustering tool due to Bayer et al., which obtains
very different results on two malware datasets, one with a highly biased clustering and
one with a more even clustering. While this is not the only source of variation in the
datasets, and so the different results cannot be attributed solely to differences in cluster
size distributions, we believe that the cluster size distribution is a factor that must be
taken into account when reporting malware clustering results.

3 A Potential Hazard of Anti-virus Voting

As discussed in Section 2, a common practice to produce the ground-truth reference
clustering D for evaluating malware clustering algorithms is to use existing anti-virus
tools to label the malware instances and to restrict attention to malware instances M
on which multiple anti-virus tools agree. The starting point of our study is one such
ground-truth dataset, here denoted BCHKK-data, that was used by Bayer et al. for eval-
uating their malware clustering technique [6]. Using this dataset, their algorithm, here
denoted BCHKK-algo, yielded a very good precision and recall (of 0.984 and 0.930,
respectively). BCHKK-data consists of 2, 658 malware instances, which is a subset of
14, 212 malware instances contributed between October 27, 2007 and January 31, 2008
by a number of security organizations and individuals, spanning a wide range of sources
(such as web infections, honeypots, botnet monitoring, and other malware analysis ser-
vices). Bayer et al. ran six different anti-virus programs on these 14, 212 instances,
and a subset of 2, 658 instances on which results from the majority of these anti-virus
programs agree were chosen to form BCHKK-data for evaluation of their clustering
technique BCHKK-algo. Bayer et al. explained that such a subset was chosen because

On Challenges in Evaluating Malware Clustering 243

they are the instances on which ground truth can be obtained (due to agreement by a
majority of the anti-virus programs they used).

This seems to be a natural way to pick M for evaluation, as they are the only ones
for which the ground-truth clustering (i.e., D) could be obtained with good confidence.
However, this also raises the possibility that the instances on which multiple anti-virus
tools agree are just the malware instances that are relatively easy to cluster, while the
difficult-to-cluster instances are filtered out of M . If this were the case, then this could
contribute to the high precision and recall observed for the BCHKK-data dataset, in
particular.

Unfortunately, we are unaware of any accepted methodology for testing this possi-
bility directly. So, we instead turn to another class of clustering tools derived without
attention to malware clustering, in order to see if they are able to cluster the malware
instances in BCHKK-data equally well. Specifically, we apply plagiarism detectors to
the BCHKK-data to see if they can obtain good precision and recall.

3.1 Plagiarism Detectors

Plagiarism detection is the process of detecting that portions within a work are not orig-
inal to the author of that work. One of the most common uses of software plagiarism
detection is to detect plagiarism in student submissions in programming classes (e.g.,
Moss [4], Plaque [24], and YAP [26]). Software plagiarism detection and malware clus-
tering are related to one another in that they both attempt to detect some degree of sim-
ilarity in software programs among a large number of instances. However, due to the
uniqueness of malware samples compared to software programs in general (e.g., in us-
ing privileged system resources) and due to the degree of obfuscation typically applied
to malware instances, we did not expect plagiarism detectors to produce good results
when clustering malware samples.

Here we focus on three plagiarism detectors that monitor dynamic executions of
a program. We do not include those applying static analysis techniques as they are
obviously not suitable for analyzing (potentially packed) malware instances.

– APISeq: This detector, proposed by Tamada et al. [21], computes the similarity
of the sequences of API calls produced by two programs to determine if one is
plagiarized from the other. Similarity is measured by using string matching tools
such as diff and CCFinder [12].

– SYS3Gram: In this detector, due to Wang et al. [23], short sequences (specifically,
triples) of system calls are used as “birthmarks” of programs. Similarity is mea-
sured as the Jacaard similarity of the birthmarks of the programs being compared,
i.e., as the ratio between the sizes of two sets: (i) the intersection of the birthmarks
from the two programs, and (ii) the union of the birthmarks from the two programs.

– API3Gram: We use the same idea as in SYS3Gram and apply it to API calls to
obtain this plagiarism detector.

We emphasize that the features on which these algorithms detect plagiarism are distinct
from those employed by BCHKK-algo. Generally, the features adopted in BCHKK-algo
are the operating system objects accessed by a malware instance, the operations that

244 P. Li et al.

were performed on the objects, and data flows between accesses to objects. In contrast,
the features utilized by the plagiarism detectors we adopted here are system/API call
sequences (without specified argument values).

3.2 Results

We implemented these three plagiarism detectors by following the descriptions in the
corresponding papers and then applied the detectors to BCHKK-data (instances used
by Bayer et al. [6] on which multiple anti-virus tools agree). More specifically, each de-
tection technique produced a distance matrix; we then used single-linkage hierarchical
clustering, as is used by BCHKK-algo, to build a clustering C, stopping the hierarchical
clustering at the point that maximizes the p-value of a chi-squared test between the dis-
tribution of sizes of the clusters in C and the cluster-size distribution that BCHKK-algo
induced on BCHKK-data.1 We then evaluated the resulting clustering C by calculating
the precision and recall with respect to a reference clusteringD that is one of

– AV: clustering produced by multiple anti-virus tools, i.e., D in the evaluation clus-
tering (“ground truth”) in Bayer et al.’s paper [6];

– BCHKK-algo: clustering produced by the technique of Bayer et al., i.e., C in the
evaluation in Bayer et al.’s paper [6].

To make a fair comparison, the three plagiarism detectors and BCHKK-algo obtain
system information (e.g., API call, system call, and system object information) from
the same dynamic traces produced by Anubis [7]. Results of the precision and recall are
shown in Table 1.

Table 1. Applying plagiarism detectors and malware clustering on BCHKK-data

C D prec(C, D) recall(C, D) F-measure(C, D)

BCHKK-algo

AV

0.984 0.930 0.956
APISeq 0.965 0.922 0.943

API3Gram 0.978 0.927 0.952
SYS3Gram 0.982 0.938 0.960

APISeq
BCHKK-algo

0.988 0.939 0.963
API3Gram 0.989 0.941 0.964
SYS3Gram 0.988 0.938 0.963

One set of experiments, shown where D is set to the clustering results of BCHKK-
algo in Table 1, compares these plagiarism detectors with BCHKK-algo directly. The
high (especially) precisions and recalls show that the clusterings produced by these
plagiarism detectors are very similar to that produced by BCHKK-algo. A second set of

1 More specifically, this chi-squared test was performed between the cluster-size distribution of
C and a parameterized distribution that best fit the cluster-size distribution that BCHKK-algo
induced on BCHKK-data. The parameterized distribution was Weibull with shape parameter
k = 0.4492 and scale parameter λ = 5.1084 (p-value = 0.8763).

On Challenges in Evaluating Malware Clustering 245

experiments, shown whereD is set to AV, compares the precisions and recalls of all four
techniques to the “ground truth” clustering of BCHKK-data. It is perhaps surprising that
SYS3Gram performed as well as it did, since a system-call-based malware clustering
algorithm [13] tested by Bayer et al. performed relatively poorly; the difference may
arise because the tested clustering algorithm employs system-call arguments, whereas
SYS3Gram does not (and so is immune to their manipulation). That issue aside, we
believe that the high precisions and recalls reported in Table 1 provide support for the
conjecture that the malware instances in the BCHKK-data dataset are likely relatively
simple ones to cluster, since plagiarism detectors, which are designed without attention
to the specific challenges presented by malware, also perform very well on them.

4 Replicating Our Analysis on a New Dataset

Emboldened by the results in Section 3, we decided to attempt to replicate the anal-
ysis of the previous section on a new dataset. Our goal was to see if another analysis
would also support the notion that selecting malware instances for which ground-truth
evidence is inferred by “voting” by anti-virus tools yields a ground-truth dataset that
all the tools we considered (BCHKK-algo and plagiarism detectors alike) could cluster
well.

4.1 The New Dataset and BCHKK-algo Clustering

To obtain another dataset, we randomly chose 5, 121 instances from the collection of
malware instances from VX heavens [3]. We selected the number of instances to be
roughly twice the 2, 568 instances in BCHKK-data. We submitted this set of instances
to Bayer et al., who kindly processed these instances using Anubis and then applied
BCHKK-algo to the resulting execution traces and returned to us the corresponding
distance matrix. This distance matrix covered 4, 234 of the 5, 121 samples; Anubis had
presumably failed to produce meaningful execution traces for the remainder.

In order to apply the plagiarism detectors implemented in Section 3 to this data, we
needed to obtain the information that each of those techniques requires, specifically the
sequences of system calls and API calls for each malware instance. As mentioned in
Section 3, we obtained this information for the BCHKK-data dataset via Anubis; more
specifically, it was already available in the BCHKK-data data files that those authors
provided to us. After submitting this new dataset to the Anubis web interface, however,
we realized that this information is not kept in the Anubis output by default. Given that
obtaining it would then require additional imposition on the Anubis operators to cus-
tomize its output and then re-submitting the dataset to obtain analysis results (a lengthy
process), we decided to seek out a method of extracting this information locally. For
this purpose, we turned to an alternative tool that we could employ locally to gener-
ate API call traces from the malware instances, namely CWSandbox [25]. CWSandbox
successfully processed (generated non-empty API call traces) for 4, 468 of the 5, 121
samples, including 3, 841 of the 4, 234 for which we had results for the BCHKK-algo
algorithm.

246 P. Li et al.

We then scanned each of these 3, 841 instances with four anti-virus programs (Ac-
tivescan 2.0, Nod32 update 4956, Avira 7.10.06.140 and Kaspersky 6.0.2.690). Ana-
lyzing the results from these anti-virus programs, we finally obtained 1, 114 malware
instances for which the four anti-virus programs reported the same family for each;
we denote these 1, 114 as VXH-data in the remainder of this paper. More specifically,
each instance is given a label (e.g, Win32.Acidoor.b, BDS/Acidoor.B) when scanned by
an anti-virus program. The family name is the generalized label extracted from the in-
stance label based on the portion that is intended to be human-readable (e.g., the labels
listed would be in the “Acidoor” family). We defined a reference clustering D for this
dataset so that two instances are in the same cluster D ∈ D if and only if all of the four
anti-virus programs concurred that these instances are in the same family.2 Our method
for assembling the reference clustering for VXH-data is similar to that used to obtain
the reference clustering of BCHKK-data [6], but is more conservative.3

We obtained the BCHKK-algo clustering of VXH-data by applying single linkage
hierarchical clustering to the subset of the distance matrix provided by Bayer et al.
corresponding to these instances. In this clustering step, we used the same parameters
as in the original paper [6]. To ensure a fair comparison with other alternatives, we
confirmed that this clustering offered the best F-measure value relative to the reference
VXH-data clustering based on the anti-virus classifications, in comparison to stopping
the hierarchical clustering at selected points sooner or later.

4.2 Validation on BCHKK-Data

As discussed above, we resorted to a new tool, CWSandbox (vs. Anubis), to extract
API call sequences for VXH-data. In order to gain confidence that this change would
not greatly influence our results, we first performed a validation test, specifically to
see whether our plagiarism detectors would perform comparably on the BCHKK-data
dataset when processed using CWSandbox. In the validation test, we submitted
BCHKK-data to CWSandbox to obtain execution traces for each instance. Out of the
2, 658 instances in BCHKK-data, CWSandbox successfully produced traces for 2, 099
of them. Comparing the API3Gram and APISeq clusterings on these 2, 099 samples,
first with reference clustering AV and then with the clustering produced using BCHKK-
algo (which, again, uses Anubis) as reference, yields the results in Table 2. Note that
due to the elimination of some instances, the reference clusterings have fewer clus-
ters than before (e.g., AV now has 68 families instead of 84 originally). Also note that
SYS3Gram results are missing in Table 2 since CWSandbox does not provide system
call information. However, high F-measure values for the other comparisons suggest
that our plagiarism detectors still work reasonably well using CWSandbox outputs.

2 The VX heavens labels for malware instances are the same as Kaspersky’s, suggesting this is
the anti-virus engine they used to label.

3 The method by which Bayer et al. selected BCHKK-data and produced a reference cluster-
ing for it was only sketched in their paper [6], but their clarifications enabled us to perform a
comparable data selection and reference clustering process, starting from the 3, 841 instances
from VX heavens successfully processed by both CWSandbox and the BCHKK-algo algo-
rithm (based on Anubis). This process retained a superset of the 1,114 instances in VXH-data
and produced a clustering of which every cluster of VXH-data is a subset of a unique cluster.

On Challenges in Evaluating Malware Clustering 247

Table 2. Applying plagiarism detectors and malware clustering on BCHKK-data. API3Gram and
APISeq are based on CWSandbox traces.

C D prec(C, D) recall(C,D) F-measure(C, D)

API3Gram
AV

0.948 0.918 0.933
APISeq 0.958 0.934 0.946

API3Gram
BCHKK-algo

0.921 0.931 0.926
APISeq 0.937 0.939 0.938

4.3 Results on VXH-Data

In Section 4.1 we described how we assembled the VXH-data dataset and applied
BCHKK-algo and the anti-virus tools to cluster it. We now compare the results of the
four clustering techniques run on VXH-data: AV from the anti-virus tools, API3Gram
(based on CWSandbox), APISeq (based on CWSandbox) and BCHKK-algo (based on
Anubis). Results are shown in Table 3. These results again show that the plagiarism
detectors produce comparable clustering results to BCHKK-algo when AV is the refer-
ence, offering generally greater precision, worse recall, and a similar F-measure.

Table 3. Applying plagiarism detectors and malware clustering on VXH-data

C D prec(C, D) recall(C, D) F-measure(C, D)

BCHKK-algo
AV

0.604 0.659 0.630
API3Gram 0.788 0.502 0.613

APISeq 0.704 0.536 0.609
API3Gram

BCHKK-algo
0.790 0.826 0.808

APISeq 0.770 0.798 0.784

Surprisingly, however, these measures indicate that both BCHKK-algo and our pla-
giarism detectors perform more poorly on VXH-data than they did on BCHKK-data.
On the face of it, the results in Table 3 do not support the conjecture of Section 3,
i.e., that determining a reference clustering of malware instances based on the concur-
rence of anti-virus engines might bias the reference clustering toward easy-to-cluster
instances. After all, were this the case, we would think that some method (if not all
methods) would do well when AV is used as the reference clustering. Instead, it may
simply be the case that the plagiarism detectors and malware clustering tools leverage
features for clustering that are more prevalent in BCHKK-data than in VXH-data. In
that case, one might thus conclude that these features are not sufficiently reliable for
use across a broad range of malware.

Of course, the results of this section must be taken as a bit more speculative, owing
to the different systems (CWSandbox and Anubis) from which the malware traces were
gathered before being consumed by the clustering techniques we consider. It is true that
there is substantial variability in the length and composition of the API sequences gath-
ered by the different tools, in some cases. For example, Figure 1 shows the CDFs of the

248 P. Li et al.

100 101 102 103 104 1050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of API call sequence

C
D

F

Anubis/BCHKK−data
CWSandbox/VXH−data
CWSandbox/BCHKK−data

Fig. 1. Lengths of API call sequences extracted from BCHKK-data or VXH-data datasets using
CWSandbox or Anubis. Note that x-axis is log-scale.

API call sequence lengths elicited by the different tools. As can be seen in Figure 1, no
tool was uniformly better than the other in extracting long API call sequences, though
it is apparent that the sequences they induced are very different in length.

Another viewpoint is given in Figure 2, which shows the fraction of malware in-
stances
in each dataset in which certain activities are present. While some noteworthy dif-
ferences exist, particularly in behaviors related to network activity, it is evident that
both tools elicited a range of activities from large portions of the malware datasets.
We suspect that some of the differences in frequencies of network activities (partic-
ularly “send data” and “receive data”) result from the dearth of other malware in-
stances with which to communicate at the time the malware was run in CWSandbox.
Again, and despite these differences, our validation tests reported in Table 2 suggest
that the sequences induced by each tool are similarly effective in supporting clustering
of BCHKK-data.

Activity Searched Strings
BCHKK-data BCHKK-data VXH-data

(Anubis) (CWSandbox) (CWSandbox)
create new process “CreateProcess” 100% 87.40% 70.80%
open reg key “RegOpenKey” 100% 95.00% 92.90%
query reg value “RegQueryValue” 100% 94.80% 89.00%
create reg key “RegCreateKey” 98.70% 98.20% 94.20%
set reg value “RegSetValue” 98.30% 97.10% 80.40%
create file “CreateFile” 100% 98.10% 80.60%
send ICMP packet “IcmpSendEcho” 82.10% 82.60% 0.71%
try to connect “connect”, “WSASocket” 85.10% 89.80% 34.70%
found no host “WSAHOST NOT FOUND” N/A 72.30% 9.06%
send data “AFD SEND”, “socket send” 83.10% 1.50% 14.40%
receive data “AFD RECV”, “socket recv” 83.20% 1.40% 14.90%

Fig. 2. Percentage of malware instances in which listed behavior is observed

On Challenges in Evaluating Malware Clustering 249

The evidence above suggests to us that a different reason for the relatively poor ac-
curacy of BCHKK-algo and our plagiarism detectors on VXH-data is at work. One pos-
sible contributing factor is that BCHKK-data samples within the same reference cluster
tended to produce API-call sequences of more uniform length than did VXH-data sam-
ples in the same reference cluster. For example, the relative standard deviation of the
API sequence lengths per cluster in BCHKK-data, averaged over all clusters, is 23.5%
and 6.9% for traces produced by Anubis and CWSandbox, respectively, while this num-
ber is 130.5% for CWSandbox traces of VXH-data. However, in the following section
we focus our attention on another explanation for the poorer clustering performance on
VXH-data versus BCHKK-data, and that we believe is more generally instructive.

5 Effects of Cluster-Size Distribution

In seeking to understand the discrepancy between the precision and recall of the BCHKK-
algo (and plagiarism-detection) clustering on the BCHKK-data (Section 3) and VXH-
data datasets (Section 4), one attribute of these datasets that stood out to us is the dis-
tribution of cluster sizes in each. Specifically, the reference clustering for the BCHKK-
data is highly biased, in that it contains two large clusters comprising 48.5% and 27%
of the malware instances, respectively, and remaining clusters of size at most 6.7%. In
contrast, the VXH-data reference dataset is more evenly distributed; the largest cluster
in that dataset comprises only 14% of the instances. Figure 3 shows the cluster size
distribution of the reference clustering of each dataset; note that the x-axis is log-scale.

The reason that cluster size distribution matters can be seen from an example of
clustering 8 points in one of two extreme ways. If when clustering these 8 points, the
reference clustering D comprises two clusters, one of size 7 and one of size 1, then
any other clustering C of these 8 points into two clusters of size 7 and 1 is guaranteed to
yield prec(C,D) and recall(C,D) of at least 7/8. If, on the other hand,D comprises two
clusters of size 4 each, then another clustering C could yield prec(C,D) and recall(C,D)
as low as 4/8, and in fact

(
4
2

)(
4
2

)
/
(
8
4

)
= 36/70 of such clusterings do so. In this sense,

100 101 102 103 1040.5

0.6

0.7

0.8

0.9

1

number of instances in one cluster

C
D

F

BCHKK−data
VXH−data

Fig. 3. Reference cluster-size distribution of BCHKK-data and VXH-data. Note that x-axis is
log-scale.

250 P. Li et al.

it is considerably “harder” to produce a clustering yielding good precision and recall
in the latter case, and a good precision and recall in the latter case is thus much more
significant than in the former.

While providing insight, this combinatorial argument is too simplistic to illustrate
the effect that cluster size distribution plays in the BCHKK-algo clustering of the VXH-
data and BCHKK-data datasets. A more direct, but still coarse, indication of this effect
can be seen by downsampling the large clusters in the BCHKK-data dataset. Specif-
ically, we randomly removed malware instances from the two largest families in the
BCHKK-data reference clustering until they were each of size 200. After re-clustering
the remaining malware instances using BCHKK-algo with the same parameters, the re-
sulting F-measure averaged over 10 downsampling runs was only 0.815 (versus 0.956
before downsampling).

An alternative and more refined view of the effects of significance to the cluster-
ing results of BCHKK-algo for the VXH-data and BCHKK-data datasets can be seen
by illustrating the resilience of the clustering results to perturbations in the underly-
ing distance matrix. The heart of the BCHKK-algo clustering technique is the distance
measure that it develops, which is tuned to measure the activities of malware. As such,
one strategy in examining the potential for bias due to cluster-size distribution is to
introduce perturbations into the original BCHKK-algo distance matrices for the VXH-
data and BCHKK-data up to some limit, re-cluster the resulting distance matrix into the
same cluster-size distribution, and evaluate the rate at which the precision and recall
drop. Intuitively, if the precision and recall drop more quickly for the VXH-data than
for the BCHKK-data, then this supports the idea that minor errors in the BCHKK-algo
distance are more amplified (in terms of the effects on precision and recall) when the
clusters are distributed as in the VXH-data than when they are distributed as in the
BCHKK-data dataset. By the contrapositive, this will show that a high precision and
recall in the VXH-data case is more significant.

In attempting to perform this analysis, however, some difficulties arise.

– The BCHKK-algo distance matrices for the VXH-data and BCHKK-data datasets
are different in that the VXH-data matrix results in precision and recall far below
that yielded by BCHKK-data. As such, the VXH-data matrix is already “decayed”
more from the best possible precision and recall than is that for the BCHKK-data;
introducing perturbations in an already decayed distance matrix will do little to
demonstrate the sensitivity of a highly accurate distance matrix to perturbations.
In order to start from good precision and recall, then, we adopt the testing VXH-
data matrix and BCHKK-data matrix (i.e., resulting from BCHKK-algo) as the
reference matrices, i.e., so that we start from precision and recall of 1.0. We then
measure the rate of degradation from this ideal as the perturbations are introduced
into the distance matrices, compared to these references.

– When re-clustering a perturbed distance matrix, the cluster-size distribution might
be altered, in that hierarchical clustering simply might not produce an identical
cluster-size distribution as the original from the perturbed distance matrix. For this
reason, we fit a parameterized distribution to the reference cluster-size distribu-
tion and stop hierarchical clustering at the point that maximizes the p-value of a
chi-squared test between the test cluster-size distribution and the fitted reference

On Challenges in Evaluating Malware Clustering 251

distribution. In general, we find that a Weibull distribution with shape parameter
k = 0.7373 and scale parameter λ = 1.9887 is a good fit for the reference cluster-
ing (i.e., the initial test clustering resulting from BCHKK-algo, as described above)
of the VXH-data dataset (p-value of 0.8817), and that the corresponding values for
the BCHKK-data are k = 0.4492 and λ = 5.1084 (p-value of 0.8763).

– Given that we have only a distance matrix, a method of perturbing it so that its
entries maintain properties of a distance (notably, satisfying the triangle inequality)
is necessary. To do this, we map the distance matrix into a d-dimensional space,
i.e., creating d-dimensional points to represent the malware instances, separated
according to the distances in the matrix. To then perturb the distances, we simply
move each point to a random spot in the ball of radius r centered at that point.
We can then produce the corresponding distance matrix for these perturbed points,
and re-cluster. By increasing r, we then increase the maximum perturbation to the
distances.

The results of this analysis are shown in Figure 4. In this figure, the x-axis shows the ra-
dius r within which we perturbed each point from its original position in d-dimensional
space. The y-axis shows the F-measure that resulted for each radius r, averaged over
five runs; standard deviations were negligible. As this figure shows, the cluster-size dis-
tributions characteristic of the VXH-data were indeed more sensitive to perturbations
in the underlying data than were those characteristic of the BCHKK-data. In addition,
in Figure 5 we show the p-values of chi-squared tests comparing the cluster-size distri-
bution of the clustering after perturbation and the fitted (Weibull) reference cluster-size
distribution. The fact that these p-values are not significantly decreasing indicates that
the cause of degradation in the F-measure was not primarily due to deviation from the
intended cluster-size distributions.

We also plot a “Downsized BCHKK-data” line in Figure 4 to control for the discrep-
ancy in the number of malware instances represented in the BCHKK-data and VXH-
data datasets. To do this, we randomly removed instances from BCHKK-data (irrespec-
tive of the reference clusters in which they fall) until the size of the data set is the
same as that of VXH-data, i.e., 1, 114 instances. Using the correspondingly downsized

0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 .44 .48 .52 .56 .60 .64 .68 .72 .76 .80
0.75

0.8

0.85

0.9

0.95

1

perturbation limit (r)

F−
m

ea
su

re

BCHKK−data
VXH−data
Downsized BCHKK−data

Fig. 4. Tolerance to perturbations

252 P. Li et al.

0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 .44 .48 .52 .56 .60 .64 .68 .72 .76 .80
0.5

0.6

0.7

0.8

0.9

1

perturbation limit (r)

p−
va

lu
e

BCHKK−data
VXH−data

Fig. 5. p-values for perturbation tests

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

k

F−
m

ea
su

re

λ = 2
λ = 3
λ = 4
λ = 5

Fig. 6. F-measure of random test and reference clusterings with cluster sizes drawn from a
Weibull distribution with scale parameter λ ∈ [2, 5] and shape parameter k ∈ [0.2, 0.9], av-
eraged over 10 trials. Error bars show standard deviation. Note that the best-fit (k, λ) value for
the BCHKK-data reference clustering is (0.4488, 4.8175) and for the VXH-data reference clus-
tering is (0.7803, 2.5151).

distance matrix, we applied hierarchical clustering using the same threshold to stop
clustering as reported in [6], resulting in a clustering whose cluster-size distribution has
corresponding estimated Weibull parameters k = 0.4307 and λ = 2.0399. We took this
clustering as the starting point for “Downsized” perturbation test and show the results
(averaged over 5 runs) in Figure 4. And as we can see, “Downsized” BCHKK-data is
still more immune to perturbation than VXH-data.

To further examine the effects of cluster size distributions on precision and recall,
in Figure 6 we plot the average F-measure for reference clusters D and test clusters C
whose cluster sizes are chosen from a Weibull distribution with the shape parameter

On Challenges in Evaluating Malware Clustering 253

k shown on the x-axis. Once the reference and test cluster sizes are chosen (indepen-
dently), the reference and test clusters are then populated independently at random (i.e.,
each point is assigned to a cluster in D and a cluster in C independently). As Figure 6
shows, the F-measure that results simply from different values of k provides further
insight into the bias that cluster size distribution can introduce.

We do not mean to suggest that the complete discrepancy between the results of the
BCHKK-algo clustering technique on the VXH-data and BCHKK-data is due solely to
the cluster size distributions underlying the two datasets. However, we do believe that
this case and our analysis of it offers sufficient evidence to recommend that evaluation
of future clustering techniques be done on datasets with a variety of cluster size distri-
butions. It is also possible that measures of cluster accuracy other than precision and
recall better avoid this source of bias. For example, Perdisci et al [15] employed an
approach based on the compactness of each cluster and the separation among different
clusters, which may be preferable.

6 Conclusion

In this paper we have reported on our investigation of the impact that ground-truth se-
lection might have on the accuracy reported for malware clustering techniques. Our
starting point was investigating the possibility that a common method of determining
ground truth, namely utilizing the concurrence of multiple anti-virus tools in classifying
malware instances, may bias the dataset toward easy-to-cluster instances. Our investi-
gation of this possibility was based on clustering using a different set of tools developed
without attention to the subtleties of malware, namely plagiarism detectors. While our
application of these tools, first to a dataset used in the evaluation of a state-of-the-art
malware clustering technique and second to a whole new malware dataset, arguably
leaves our conjecture unresolved, we believe that highlighting this possibility is impor-
tant to facilitate discussion of this issue in the community.

It has also led us to examine an issue that we believe to be important for future
analyses of malware clustering, namely the impact of the ground-truth cluster-size dis-
tribution on the significance of results suggesting high accuracy. In particular, we have
shown that the highly accurate results reported for a state-of-the-art malware classifier
(BCHKK-algo) are tempered by a reduced significance owing to having tested on a
dataset with a biased cluster-size distribution. We consequently recommend that future
evaluations employ data with a cluster-size distribution that is more even.

We caution the reader from drawing more conclusions from our study than is war-
ranted, however. In particular, despite the similar performance of the BCHKK-algo
algorithm and the plagiarism detectors in clustering on the malware datasets we con-
sidered, it is not justified to conclude that these algorithms are equally effective for
malware clustering. The design of the BCHKK-algo algorithm should make it more
difficult to evade, not to mention more scalable. It is evident, however, from our results
in Section 3 that either malware today is not designed to exploit differences in the clus-
tering abilities of BCHKK-algo and plagiarism detectors, or else that the ground-truth
selection of the test datasets eliminated malware instances that do so.

We recognize that our paper has perhaps introduced more questions than it has defini-
tively answered. Nevertheless, we believe that in addition to the observations above,

254 P. Li et al.

multiple opportunities for future research can be drawn from our investigation. In par-
ticular, we believe our investigation underlines the importance of further research in
malware clustering, specifically in better methods for establishing ground truth, in iden-
tifying more reliable features for malware clustering, or in both.

Acknowledgements. We are deeply grateful to Ulrich Bayer, Engin Kirda, Paolo Milani
Comparetti, and Christopher Kruegel for helpful assistance, for providing access to the
BCHKK-data dataset, for applying BCHKK-algo to our VXH-data dataset, for helpful
discussions, and for useful comments on drafts of this paper. This work was supported in
part by NSF award CT-0756998 and by DRTech Singapore under grant POD0814140.

References

1. Threatexpert3, http://www.threatexpert.com/
2. Norman sandbox center (2008),

http://www.norman.com/security_center/security_tools/en
3. VX Heavens (2010), http://vx.netlux.org/
4. Aiken, A.: Moss: a system for detecting software plagiarism,

http://theory.stanford.edu/˜aiken/moss/
5. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated

classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A.
(eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

6. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based
malware clustering. In: Proceedings of the Network and Distributed System Security Sym-
posium (2009)

7. Bayer, U., Kruegel, C., Kirda, E.: Ttanalyze: A tool for analyzing malware. In: 15th European
Institute for Computer Antivirus Research (EICAR 2006) Annual Conference (2006)

8. Commtouch, Inc. Malware outbreak trend report: Bagle/beagle (March 2007),
http://www.commtouch.com/documents/Bagle-Worm_MOTR.pdf

9. Gheorghescu, M.: An automated virus classification system. In: Proceedings of the Virus
Bulletin Conference, VB (1994)

10. Ha, K.: Keylogger.stawin,
http://www.symantec.com/security response/
writeup.jsp?docid=2004-012915-2315-99

11. Hu, X., Chiueh, T., Shin, K.G.: Large-scale malware indexing using function-call graphs. In:
Proceedings of 16th ACM Conference on Computer and Communications Security (2009)

12. Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: A multi-linguistic token-based code clone
detection system for large scale source code. IEEE Trans. on Software Engineering, 654–
670 (2002)

13. Lee, T., Mody, J.J.: Behavioral classification. In: 15th European Institute for Computer An-
tivirus Research (EICAR 2006) Annual Conference (2006)

14. McAfee. W97m/opey.c, http://vil.nai.com/vil/content/v_10290.htm
15. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware and sig-

nature generation using malicious network traces. In: USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2010 (2010)

16. Rieck, K., Holz, T., Willems, C., Dussel, P., Laskov, P.: Learning and classification of mal-
ware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer,
Heidelberg (2008)

http://www.threatexpert.com/
http://www.norman.com/security_center/security_tools/en
http://vx.netlux.org/
http://theory.stanford.edu/~aiken/moss/
http://www.commtouch.com/documents/Bagle-Worm_MOTR.pdf
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012915-2315-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012915-2315-99
http://vil.nai.com/vil/content/v_10290.htm

On Challenges in Evaluating Malware Clustering 255

17. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using
machine learning. Technical Report 18-2009, Berlin Institute of Technology (2009)

18. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome, J.,
Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer security via binary anal-
ysis. In: Proceedings of the 4th International Conference on Information Systems Security
(December 2008)

19. Symantec. Spyware.e2give,
http://www.symantec.com/security response/
writeup.jsp?docid=2004-102614-1006-99

20. Symantec. Xeram.1664,
http://www.symantec.com/security response/
writeup.jsp?docid=2000-121913-2839-99

21. Tamada, H., Okamoto, K., Nakamura, M., Monden, A., Matsumoto, K.: Dynamic software
birthmarks to detect the theft of windows applications. In: International Symposium on Fu-
ture Software Technology (2004)

22. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading
(2006)

23. Wang, X., Jhi, Y., Zhu, S., Liu, P.: Detecting software theft via system call based birthmarks.
In: Proceedings of 25th Annual Computer Security Applications Conference (2009)

24. Whale, G.: Identification of program similarity in large populations. Computer Journal, Spe-
cial Issue on Procedural Programming, 140–146 (1990)

25. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis using
cwsandbox. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy (S&P
2007), pp. 32–39 (2007)

26. Wise, M.J.: Detection of similarities in student programs: Yaping may be preferable to
plagueing. In: Proceedings of the 23rd SIGCSE Technical Symposium (1992)

http://www.symantec.com/security_response/writeup.jsp?docid=2004-102614-1006-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-102614-1006-99
http://www.symantec.com/security_response/writeup.jsp?docid=2000-121913-2839-99
http://www.symantec.com/security_response/writeup.jsp?docid=2000-121913-2839-99

Why Did My Detector Do That?!

Predicting Keystroke-Dynamics Error Rates

Kevin Killourhy and Roy Maxion

Dependable Systems Laboratory

Computer Science Department

Carnegie Mellon University

5000 Forbes Ave,

Pittsburgh, PA 15213

{ksk,maxion}@cs.cmu.edu

Abstract. A major challenge in anomaly-detection studies lies in iden-

tifying the myriad factors that influence error rates. In keystroke dynam-

ics, where detectors distinguish the typing rhythms of genuine users and

impostors, influential factors may include the algorithm itself, amount

of training, choice of features, use of updating, impostor practice, and

typist-to-typist variation.

In this work, we consider two problems. (1) Which of these factors in-

fluence keystroke-dynamics error rates and how? (2) What methodology

should we use to establish the effects of multiple factors on detector error

rates? Our approach is simple: experimentation using a benchmark data

set, statistical analysis using linear mixed-effects models, and validation

of the model’s predictions using new data.

The algorithm, amount of training, and use of updating were strongly

influential while, contrary to intuition, impostor practice and feature set

had minor effect. Some typists were substantially easier to distinguish

than others. The validation was successful, giving unprecedented confi-

dence in these results, and establishing the methodology as a powerful

tool for future anomaly-detection studies.

Keywords: anomaly detection; keystroke dynamics; experimental

methodology.

1 Introduction

Anomaly detectors have great potential for increasing computer security (e.g.,
detecting novel attacks and insider-type behavior [6]). Unfortunately, the error
rates of detection algorithms are sensitive to many factors including changes in
environmental conditions, detector configuration, and the adversary’s behavior.
With so many factors that might affect a detector’s error rates, how do we find
those that do? For anomaly detectors to become a dependable computer-security
technology, we must be able to explain what factors influence their error rates
and how.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 256–276, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

{ksk,maxion}@cs.cmu.edu

Why Did My Detector Do That?! 257

Consider keystroke dynamics: an application of anomaly detection in which
the normal typing rhythms of a genuine user are distinguished from those of an
impostor. We might discover an impostor, even though he has compromised the
password of a genuine user, because he does not type it with the same rhythm.
Like all applications of anomaly detection, various factors might influence the
error rates of keystroke-dynamics detectors. We have identified six from the
literature:

1. Algorithm: The anomaly-detection algorithm itself is an obvious factor. Dif-
ferent algorithms will have different error rates. However, it can be difficult
to predict error rates from the algorithm alone. In earlier work, we bench-
marked 14 existing algorithms on a single data set [12]. The error rates for
each algorithm were different from those reported when the algorithm was
first proposed; other factors must influence the error rates.

2. Training amount: Some researchers have trained their detectors with as
few as 5 repetitions of a password, while others have used over 200. Re-
searchers have found that increasing the number of training repetitions even
from 5 to 10 can reduce error [10].

3. Feature set: A variety of timing features, including hold times, keydown-
keydown times, and keyup-keydown times have been tried. Different re-
searchers use different combinations of these features in their evaluation.
One study found that every combination had a different error rate [1].

4. Updating: Most research has focused on detectors that build a genuine
user’s typing profile during a training phase, after which the profile is fixed.
Recent research suggests that regularly updating the profile may reduce error
because the profile evolves with changing typing behavior [1,11].

5. Impostor practice: An impostor is an intelligent adversary and will pre-
sumably try to evade detection. Since the typing rhythms of a practiced pass-
word may be more similar to the genuine user’s rhythms, some researchers
have given some of their impostor subjects the opportunity to practice. Pre-
liminary results suggest that impostor practice may raise miss rates [1,13].

6. Typist-to-typist variation: Some genuine users may be easy to discrimi-
nate from impostors while others may be more difficult. When researchers
report per-subject error rates, the results do suggest that a detector’s error
is higher for some subjects than others, but typist-to-typist variation has
never been explicitly quantified [5].

Any of these six factors might explain different keystroke-dynamics error rates.
However, earlier work on the effects of these factors is inconclusive. Usually,

only one factor at a time is tested, ignoring the possibility of interactions (e.g.,
that increased training affects different detectors differently). Evaluation results
are almost always presented with no statistical analysis. For instance, a detector’s
empirically measured false-alarm rate using one set of features may be 1.45%
while it is 1.63% with another set of features [1]. Without further analysis (e.g.,
a test of statistical significance), we should not conclude that the first feature
set is better than the second, yet such analysis is rarely conducted.

258 K. Killourhy and R. Maxion

In keystroke dynamics, as in other applications of anomaly detection, listing a
multitude of factors that might explain different error rates is easy. The challenge
is establishing which factors actually do have an effect.

2 Problem and Approach

In this work, two problems concern us. First, what influence do each of the
factors listed above—algorithm, training amount, feature set, updating, impostor
practice, and typist-to-typist variation—have on keystroke-dynamics error rates?
Second, what methodology should we use to establish the effects of these various
factors?

We propose a methodology and demonstrate that it can identify and mea-
sure the effects of these six factors. The details of the methodology, which are
described in the next three sections, can be summarized as follows:

1. Experiment: We design and conduct an experiment in which anomaly detec-
tors are repeatedly evaluated on a benchmark data set. Between evaluations,
the six factors of interest are systematically varied, and the effect on the eval-
uation results (i.e., the error rates of the detectors) is observed. (Section 3)

2. Statistical analysis: The experimental results are incorporated into a sta-
tistical model that describes the six factors’ influence. In particular, we use
a linear mixed-effects model to estimate the effect of each factor along with
any interactions between the factors. Roughly, the mixed-effects model al-
lows us to express both the effects of some factors we can control, such as
the algorithm, and also the effects of some factors we cannot, such as the
typist. (Section 4)

3. Validation: We collect a new data set, comprised of 15 new typists, and we
validate the statistical model. We demonstrate that the model predicts eval-
uation results using the new data, giving us high confidence in its predictive
power. (Section 5)

With such a model, we can predict what different environmental changes, recon-
figurations, or adversarial behavior will do to a detector. We can make better
choices when designing and conducting future evaluations, and practitioners can
make more informed decisions when selecting and configuring detectors.

Fundamentally, the proposed methodology—experimentation, statistical anal-
ysis, and validation—enumerates several steps of the classical scientific method.
Others have advocated that computer-security research would benefit from a
stricter application of this method [15]. The current work explores the specific
benefit for anomaly-detection research.

3 Experiment

The experiment is designed so that we can observe the effects of each of the
six factors on detector error rates. In this section, we lay out the experimental
method, and we present the empirical results.

Why Did My Detector Do That?! 259

3.1 Experimental method

The method itself is comprised of three steps: (1) obtain a benchmark data set,
(2) select values of interest for each of the six factors, and (3) repeatedly run an
evaluation, while systematically varying the factors among the selected values.

Data. For our evaluation data, we used an extant data set wherein 51 subjects
typed a 10-character password (.tie5Roanl). Each subject typed 400 repetitions
of the password over 8 sessions of 50 repetitions each (spread over different days).
For each repetition of the password, 31 timing features were extracted: 11 hold
times (including the hold for the Return key at the end of the password), 10
keydown-keydown times (one for each digram), and 10 keyup-keydown times (also
for eachdigram).As a result, eachpassword has been converted to a 31-dimensional
password-timing vector. The data are a sensible benchmark since they are publicly
available and the collection methods have been laid out in detail [12].

Selecting Factor Values. The six factors of interest in this study—algorithm,
training amount, feature set, updating, impostor practice, and typist-to-typist
variation—can take many different values (e.g., amount of training can range
from 1 repetition to over 200). For this study, we need to choose a subset of
values to test.

1. Algorithms: We selected three detectors for our current evaluation. The
Manhattan (scaled) detector, first described by Araújo et al. [1], calculates
the “city block” distance between a test vector and the mean of the training
vectors. The Outlier-count (z-score) detector, proposed by Haider et al. [8],
counts the number of features in the test vector which deviate significantly
from the mean of the training vectors. The Nearest Neighbor (Mahalanobis)
detector, described by Cho et al. [5], finds the distance between the test vec-
tor and the nearest vector in the training data (using a measure called the
Mahalanobis distance). We focus on these three for pragmatic reasons. All
three were top performers in an earlier evaluation [12]; their error rates were
indistinguishable according to a statistical test. Finding factors that differ-
entiate these detectors will have practical significance, establishing when one
outperforms the others.

2. Amount of training: We train with 5 repetitions, 50 repetitions, 100 repe-
titions, and 200 repetitions. Prior researchers have trained anomaly detectors
with varying amounts of data, spanning the range of 5–200 repetitions. Our
values were chosen to broadly map the contours of this range.

3. Feature sets: We test with three different sets of feature: (1) the full set
of 31 hold, keydown-keydown, and keyup-keydown times for all keys includ-
ing the Return key; (2) the set of 19 hold and keydown-keydown times for
all keys except the Return key; (3) the distinct set of 19 hold and keyup-
keydown times for all keys except the Return key. Prior work has shown that
combining hold times with either keydown-keydown times or keyup-keydown
times improves accuracy. The three feature sets we test should remove re-
maining ambiguity about whether the particular combination matters, and
whether the Return-key timing features should be included.

260 K. Killourhy and R. Maxion

4. Updating: We test with and without updating. Specifically, we compare
detectors given a fixed set of training data to those which are retrained after
every few repetitions. We call these two modes of updating None and Sliding
Window. Two levels are all that are necessary to establish whether updating
has an effect.

5. Impostor practice: We test using two levels of impostor practice: None and
Very High. With no practice, impostor data are comprised of the first five
password-timing vectors from the impostors. With very high practice, the
last five vectors are used, by which point the impostor has had 395 practice
repetitions. To explore whether practice has a detrimental effect, only these
two extremes are necessary.

6. Typist-to-typist variation: By designating each subject as the genuine
user in separate evaluation runs, we can observe how much variation in
detector performance arises because some subjects are easier to distinguish
than others. Since there are 51 subjects in the benchmark data set, we have
51 instances with which to observe typist-to-typist variation.

These selected values enable us to identify which factors are influential and to
quantify their effect.

Evaluation procedure. Having chosen values for these six factors, we need
an evaluation procedure that can be run for all the different combinations. The
designed procedure has seven inputs: the data set (D); the algorithm (A); the
number of training repetitions (T); the feature set (F); the updating strategy
(U); the level of impostor practice (I); and the genuine-user subject (S).

For clarity, we first describe the evaluation procedure for the no-updating case
(i.e., U is set to None):

1. Unnecessary features are removed from the data set. Based on the setting
of F , keydown-keydown, keyup-keydown, and/or Return-key features are
dropped.

2. The detector is trained on the training data for the genuine user. Specifically,
repetitions 1 through T for subject S are extracted and used to train the
detection algorithm A.

3. Anomaly scores are calculated for the genuine-user test data. Specifically,
repetitions (T + 1) through (T + 200) for subject S are extracted (i.e., the
next 200 repetitions). The trained detector processes each repetition and cal-
culates an anomaly score. These 200 anomaly scores are designated genuine-
user scores.

4. Anomaly scores are calculated for the impostor test data. If I is set to None
(unpracticed impostors), repetitions 1 through 5 are extracted from every
impostor subject (i.e. all those in the data set except S). If I is set to
Very High (practiced impostors), repetitions 396 through 400 are extracted
instead. The trained detector processes each repetition and calculates an
anomaly score. If there are 50 impostor subjects, this step produces 250
(50× 5) anomaly scores. These scores are designated impostor scores.

Why Did My Detector Do That?! 261

5. The genuine-user and impostor scores are used to generate an ROC curve
for the detector [19]. From the ROC curve, the equal-error rate is calculated
(i.e., the false-alarm and/or miss rate when the detector has been tuned so
that both are equal). It is a common overall measure of detector performance
in keystroke-dynamics research [14].

The evaluation procedure for the sliding-window-updating case is more compli-
cated (i.e., when U is set to Sliding Window). The intuition is that we slide a
window of size T over the genuine user’s typing data (advancing the window
in increments of five repetitions for computational efficiency). For each window,
the detector is trained on the repetitions in that window and then tested using
the next five repetitions. We increment the window and repeat. In total, since
there are 200 repetitions of genuine-user test data (see Step 3 above), we iterate
through 40 such cycles of training and testing (200/5). In our actual evaluation,
each of these 40 training-testing cycles is handled in parallel using 40 separate
copies of the detector. Each copy is put through its own version of steps 2, 3,
and 4 of the evaluation procedure:

2′. Forty different sets of training data are used to train 40 different copies
of the detection algorithm A. The first set of training data is comprised
of repetitions 1 through T for subject S; the second set is comprised of
repetitions 6 through (T + 5); the 40th set is comprised of repetitions 196
through (T + 195). For each of the 40 sets, a separate copy of the detector
is trained.

3′. Anomaly scores are calculated for each of 40 different sets of genuine-user
test data. Each set corresponds to the genuine-user test data for one of the
trained detectors. In particular, the first set includes repetitions (T + 1)
through (T + 5); the second set includes (T + 6) through (T + 10); the 40th
set includes (T + 196) through (T + 200). The first trained detector scores
the 5 repetitions in the first set; the second trained detector scores the 5
repetitions in the second set, and so on. The scores from every detector are
pooled together. Since each set contains 5 repetitions and there are 40 sets,
there are 200 (5× 40) genuine-user scores in total.

4′. Anomaly scores are calculated for the impostor test data by every one of the
40 different trained detectors. Specifically, the impostor test data are selected
according to the setting of I (i.e., either the first 5 or the last 5 repetitions
from every subject except S). Each of the 40 trained detectors scores the
repetitions in the impostor test data. If there are 50 impostor subjects and
5 repetitions per subject, this step produces 10,000 (50 × 5 × 40) anomaly
scores. All of these scores are pooled into a single set of impostor scores.

As in the case of no updating, the genuine-user and impostor scores are used
to generate a single ROC curve and calculate a single equal-error rate for the
sliding-window evaluation.

A few decisions in the design of the sliding-window procedure are worth high-
lighting. In Step 2′, we make the simplifying assumption that the detector will
only retrain on the genuine user’s data (i.e., impostor poisoning of the training

262 K. Killourhy and R. Maxion

is not considered). In Step 4′, we score each repetition of impostor test data mul-
tiple times, once with each trained detector. An impostor’s anomaly scores will
change whenever the detector is retrained. By scoring at each detector window
and pooling, we effectively aggregate over these variations and find the average.

We ran this evaluation procedure 7,344 times (3 × 4 × 3 × 2 × 2 × 51), once
for each combination of algorithm, amount of training, feature set, updating,
impostor practice, and subject in the data set. We recorded the equal-error rate
from each evaluation. By looking at all the combinations of the six factors, we
will be able to find interactions between factors, not just the effect of each factor
individually.

3.2 Results

To visually explore the 7,344 equal-error rates that comprise the raw results of
our experiment, we calculated the average equal-error rate across all subjects
for each combination of the other five factors. These averages are presented
across the 12 panels in Figure 1. Each panel contains three curves, depicting how
the error rates of each of the three detectors changes with increased amounts
of training. The strips above each panel explain what combination of factors
produced the results in the panel. Updating is either None or Sliding Window;
Feature Set is one of the combinations of hold times (H), keydown-keydown times
(DD), keyup-keydown times (UD), and Return-key features (Ret); Impostor
Practice is either None or Very High.

Looking within any panel, we see that the error rates for all three detectors
decrease as training increases. In particular, the Nearest Neighbor (Mahalanobis)
error is much higher with only 5 repetitions, but improves and is competitive
with the others with 100–200 repetitions. With few training repetitions, a practi-
tioner might want to use either the Manhattan (scaled) or Outlier-score (z-count)
detector.

If we look beyond the individual panels to the four quadrants, the three panels
in a quadrant correspond to the use of the three different feature sets. The curves
in the three panels in each quadrant look nearly identical. It would appear that,
so long as hold times and one of keydown-keydown or keyup-keydown times are
used, the particular combination does not matter.

The six panels on the left correspond to unpracticed-impostor error rates, and
the six on the right correspond to very-practiced-impostor error rates. The curves
in the right-hand panels are slightly higher. Consequently, impostor practice may
represent a minor threat to the accuracy of keystroke-dynamics detectors.

Finally, the six panels on the top correspond to non-updating detectors and
the six on the bottom correspond to a sliding-window updating strategy. In
particular, at 5 and 50 repetitions, the error-rate curves are much lower in the
lower panels. An updating strategy seems to improve performance, especially if
operating with only a few training repetitions.

Overall, the lowest average equal-error rate was 7.1%, observed for the Man-
hattan (scaled) detector with 100 repetitions of training, hold and keydown-
keydown features, sliding-window updating, and unpracticed impostors. Among

Why Did My Detector Do That?! 263

Number of Training Repetitions

E
qu

al
−

E
rr

or
 R

at
e

0.10
0.20
0.30

0 50 100 150 200

 : Impostor Practice None
 : Feature Set H+DD+UD+Ret

 : Updating Sliding Window

 : Impostor Practice Very High
 : Feature Set H+DD+UD+Ret

 : Updating Sliding Window

 : Impostor Practice None
 : Feature Set H+DD

 : Updating Sliding Window

0.10
0.20
0.30

 : Impostor Practice Very High
 : Feature Set H+DD

 : Updating Sliding Window

0.10
0.20
0.30

 : Impostor Practice None
 : Feature Set H+UD

 : Updating Sliding Window

 : Impostor Practice Very High
 : Feature Set H+UD

 : Updating Sliding Window

 : Impostor Practice None
 : Feature Set H+DD+UD+Ret

 : Updating None

0.10
0.20
0.30

 : Impostor Practice Very High
 : Feature Set H+DD+UD+Ret

 : Updating None

0.10
0.20
0.30

 : Impostor Practice None
 : Feature Set H+DD

 : Updating None

 : Impostor Practice Very High
 : Feature Set H+DD

 : Updating None

 : Impostor Practice None
 : Feature Set H+UD

 : Updating None

0 50 100 150 200

0.10
0.20
0.30

 : Impostor Practice Very High
 : Feature Set H+UD

 : Updating None

Detectors
Nearest Neighbor (Mahalanobis)
Outlier Count (z−score)
Manhattan (scaled)

Fig. 1. The average equal-error rates for each detector in the experiment as a function

of training amount, feature set, updating strategy, and impostor practice. Each curve

shows the effect of training on one of the three detectors. Each panel displays the

results for one combination of updating (None/Sliding Window), feature set (H:hold

times, DD:keydown-keydown times, UD:keyup-keydown times, Ret:Return-key times),

and impostor practice (None/Very High). Comparisons can be made across panels

because the scales are the same. For instance, the error-rate curves in the upper six

panels (no updating) are higher than the curves in the lower six panels (sliding-window

updating). This comparison suggests updating reduces error rates.

264 K. Killourhy and R. Maxion

the very-practiced impostor results, the lowest average equal-error rate was 9.7%,
observed for the same combination of algorithm, training amount, feature set,
and updating. The empirical results would seem to recommend this combina-
tion of detector, training amount, and feature set, but we would withhold a
recommendation without further statistical analysis.

4 Statistical Analysis

The empirical results and visualization in Section 3 provide some insight into
what factors might be important, but to make predictions about an anomaly
detector’s future performance we need a statistical model. In this section, we
describe the statistical analysis that we performed, and we present the model
that it produced.

4.1 Procedure

The analysis is described in stages. First, we explain what a linear mixed-effects
model is. Then, we describe how we estimate the model parameters. Finally, we
lay out the procedure for selecting a particular linear mixed-effects model.

Linear mixed-effects models. In statistical language, we intend to model the
effect of six factors—algorithm, training amount, feature set, updating strategy,
impostor practice, and typist (or subject)—on a response variable: the detector’s
equal-error rate. Fixed and random are terms used by statisticians to describe
two different kinds of effect. When a model has both fixed and random effects,
it is called a mixed-effects model.

The difference between fixed and random effects is sometimes subtle, but the
following rule of thumb is typically applied. If we care about the effect of each
value of a factor, the factor is a fixed effect. If we only care about the variation
among the values of a factor, the factor is a random effect.

For instance, we treat the algorithm as a fixed effect and the subject (or
typist) as a random effect. Practitioners want to know which algorithm’s equal-
error rate is lower: Manhattan (scaled) or Nearest Neighbor (Mahalanobis). We
care about the effect of each value of the factor, so algorithm is a fixed effect. In
contrast, practitioners do not want to know which subject’s equal-error rate is
lower: Subject 1 or Subject 2. Neither subject will be a typist on their system.
What we care about is how much variation there is between typists, and so the
subject is a random effect.

The following example of a mixed-effects model for keystroke-dynamics data
may further elucidate the difference:

Y = μ + Ah + Ti + Fj + Uk + Il + S + ε
S ∼ N(0, σ2

s)
ε ∼ N(0, σ2

ε)
(1)

The notation in model equation (1) may seem daunting at first. On the first
line of the model, Y is the response (i.e., the equal-error rate); μ is a baseline

Why Did My Detector Do That?! 265

equal-error rate; Ah, Ti, Fj , Uk, and Il are the fixed effects of the algorithm,
training amount, feature set, updating strategy, and impostor practice, respec-
tively; S is the random effect of the typist (or subject); and, ε is the noise term.
On the second line, the distribution of the random effect (S) is assumed to be
Normal with zero mean and an unknown variance, denoted σ2

s . On the third line,
the distribution of the noise (ε) is Normally distributed with zero mean and a
different unknown variance, denoted σ2

ε .
The first term in the model equation (μ) denotes the average equal-error rate

for one particular combination of fixed-effect factor values, called the baseline
values. For instance, the baseline values might be the Manhattan (scaled) de-
tector, 5 training repetitions, hold and keyup-keydown times, no updating, and
unpracticed impostors. The average equal-error rate for that combination is μ
(e.g., μ = 17.6%).

For each of the five fixed effects, there is a separate term in the model equation
(Ah, Ti, Fj , Uk, Il). These terms denote the effect on the equal-error rate of
departing from the baseline values. For instance, Ah is a placeholder for either
of two departures from the Manhattan (scaled) baseline algorithm : A1 denotes
the change to Outlier-count (z-score) and A2 denotes the change to Nearest
Neighbor (Mahalanobis) detector. If the detector in the baseline combination
were replaced with the Outlier-count (z-score) detector, the equal-error rate
would be calculated as μ + A1 (e.g., 17.6% + 2.7 = 20.3%).

For the random effect, there is both a term in the model equation (S) and a
distributional assumption (S ∼ N(0, σ2

s)). Like the fixed-effects terms, S repre-
sents the effect of a departure. Specifically, it introduces a per-subject effect that
is negative (S < 0) for easy-to-discriminate subjects and positive (S > 0) for
hard-to-discriminate subjects. Unlike the fixed-effects term, S is a random vari-
able centered at zero. Its variance (σ2

s) expresses a measure of the typist-to-typist
variation in the model.

The final term in the model equation (ε) is the noise term representing the
unknown influences of additional factors on the equal-error rate. Like the random
effect (S), ε is a Normally distributed random variable. Its variance, σ2

ε expresses
a measure of the residual uncertainty in our equal-error predictions.

Parameter estimation. When fitting a linear mixed-effects model, the un-
known parameters (e.g., μ, Ah, Ti, Fj , Uk, Il, σ2

s , and σ2
ε) are estimated from the

data. There are a variety of accepted parameter-estimation methods; a popular
one is the method of maximum-likelihood. From any estimate of the parame-
ters, it is possible to derive a probability density function. Among all estimates,
the maximum-likelihood estimates are those which give the greatest probability
density to the observed data [18].

However, the maximum-likelihood methods have been shown to produce bi-
ased estimates of the variance parameters (e.g., σ2

s). The favored method is a
slight elaboration called REML estimation (for restricted or residual maximum
likelihood) which corrects for the bias in maximum-likelihood estimation [16,18].
We adopt the REML estimates.

266 K. Killourhy and R. Maxion

Model selection. In the discussion so far, we have explained how to interpret
model equation (1) and how to do parameter estimation given such an equation.
We have not explained how to select that model equation in the first place. For
instance, consider the following alternative:

Y = μ + Ah + Ti + AThi + S + ε
S ∼ N(0, σ2

s)
ε ∼ N(0, σ2

ε)
(2)

In model equation (2), the terms corresponding to feature set (Fj), updating
(Uk), and impostor practice (Il) do not appear, so they are assumed to have no
effect. An interaction term between algorithm and training (AThi) appears, so
the effect of training is assumed to depend on the algorithm.

The interaction term denotes the effect on the equal-error rate of a departure
from the baseline values in both algorithm and training amount. Without an
interaction term, the effect would be additive (Ah + Ti). With an interaction
term, the additive effect can be adjusted (Ah+Ti+AThi), increased or decreased
as fits the data. Interaction effects can be estimated with REML estimation just
like the other parameters.

Looking at the relationship between the algorithm and training in Figure 1,
we would expect to see a model with an AThi interaction. The Nearest Neighbor
(Mahalanobis) has a much steeper slope from 5–50 training repetitions than the
other two detectors. If the effects of the algorithm and training were additive
(i.e., no interaction effect), the slopes of the three curves would be parallel.
Consequently, model equation (2) might describe our data better.

Model equations (1) and (2) are but two members of a whole family of pos-
sible models that we might use to describe our data. We need a method to
search through this family of models and find the one that is most appropriate.
Specifically, we need a way to compare two models and decide which one better
explains the data.

Of the various model-comparison strategies, one often employed is Schwartz’s
Bayesian Information Criterion (BIC). The details are beyond the scope of this
paper, but in brief a model’s BIC score is a summary combining both how well
the model fits the data (i.e., the likelihood of the model) and also the number of
parameters used to obtain the fit (i.e., the number of terms in the model). Having
more parameters leads to a better fitting model, and having fewer parameters
leads to a simpler model. BIC captures the trade-off between fit and simplicity.
When comparing two models, we calculate and compare their BIC scores. Of the
two, we adopt the one with the lower score [9].

Let us note one procedural issue when performing BIC-based model selection
using mixed-effects models. REML estimation is incompatible with this heuris-
tic, and so when comparing two models using BIC, the maximum-likelihood
estimates are used. Once a model is selected, the parameters are re-estimated
using REML. Intuitively, we use the maximum-likelihood estimates because, de-
spite their bias, they allow us to do model selection. Then, once we have chosen
a model, we can switch to the better REML estimates.

Why Did My Detector Do That?! 267

For the analysis of our experimental results, we begin with a model contain-
ing all the fixed effects, all interactions between those effects, and no per-subject
random effect. We estimate the parameters of the model using maximum like-
lihood. Then, we add a per-subject random effect, estimate the parameters of
the new model, and compare the BIC scores of the two. If the one with the
per-subject random effect has a lower BIC (and it does), we adopt it. Then, in
a stepwise fashion, we omit each term in the model, re-estimate the parameters,
and recalculate the BIC. If we obtain a lower BIC by omitting any of the terms
of the model, we drop the term which lowers the BIC the most and repeat the
process. When no more terms can be dropped in this way, we adopt the current
model as final and estimate the parameters using REML. This procedure is quite
typical for mixed-effects model selection [7,16].

As another procedural note, we do not drop terms if they are involved in
higher-order interactions that are still part of the model. For instance, we would
not drop feature set (Fj) as a factor if the interaction between algorithm and
feature set (AFhj) is still in the model. This so-called principle of hierarchy
enables us to more easily interpret the resulting model [7]. For the statistical
analysis, we used the R statistical programming language (version 2.10.0) [17].
To fit linear mixed-effects models, we used the lme4 mixed-effects modeling
package (version 0.999375-32) [3].

4.2 Results

We begin by describing the equation obtained through model selection since it
informs us of the broad relationships between the factors. Then, we present the
parameter estimates which quantify the effects of each factor and enable us to
make predictions about a detector’s future error rates.

Selected model. We arrived at the following model equation to describe the
experimental data:

Y = μ + Ah + Ti + Uk + Il

+ AThi + AUhk + TU ik + UIkl + ATUhik

+ S + ε
S ∼ N(0, σ2

s)
ε ∼ N(0, σ2

ε)

(3)

The equation has been split over multiple lines to make it easier to describe.
The first line shows the main effects in the model. Note that the algorithm (Ah),
training amount (Ti), updating (Uk), and impostor practice (Il) are all terms
retained in the model, but the feature set (Fj) has been dropped. During model
selection, it did not substantially improve the fit of the model. This result is not
surprising given how little change there was in any single quadrant of Figure 1.

The second line shows the two-way and three-way interaction effects in the
model. The interactions between the algorithm, training, and updating (AThi,
AUhk, TU ik, and ATUhik) suggest a complex relationship between these three

268 K. Killourhy and R. Maxion

factors. The two-way interaction between updating and impostor practice (UIkl)
suggests that updating may mitigate the impostor-practice threat. We will ex-
plore the nature of these interactions in greater detail when we look at the
parameter estimates.

The third line of model equation (3) includes a per-subject random-effect (S)
along with the residual error term (ε). From the presence of this per-subject term
in the model, we conclude that there is substantial typist-to-typist variation.
Some typists are easier to distinguish from impostors than others.

Parameter estimates. Table 1 compiles the REML estimates of the parame-
ters. Part (a) provides estimates of all the fixed effects, while Part (b) provides
estimates of the random effects. The table is admittedly complex, but we include
it for completeness. It contains all the information necessary to make predictions
and to approximate the uncertainty of those predictions.

In Part (a), row 1 is the estimate of μ, the equal-error rate for the baseline
combination of factor values. The estimate, 17.6%, is the equal-error rate we
would predict when operating the Manhattan (scaled) detector with 5 repetitions
of training, no updating, and unpracticed impostors.

Rows 2–26 describe how our prediction should change when we depart from
the baseline factor values. Each row lists one or more departures along with
the estimated change in the predicted equal-error rate. To predict the effect
of a change from the baseline values to new values, one would first identify
every row in which the new values are listed. Then, one would add the change
estimates from each of those rows to the baseline to get a new predicted equal-
error rate.

For example, we can predict the equal-error rate for the Nearest Neighbor (Ma-
halanobis) detector with 200 training repetitions, no updating, and unpracticed
impostors. The detector and training amount depart from the baseline configu-
ration. Row 3 lists the effect of switching to Nearest Neighbor (Mahalanobis) as
+19.2. Row 6 lists the effect of increasing to 200 training repetitions as −7.2.
Row 15 lists the effect of doing both as −18.8 (i.e., an interaction effect). Since
the baseline equal-error rate is 17.6%, we would predict the equal-error rate of
this new setup to be 10.8% (17.6 + 19.2− 7.2− 18.8).

As another example, we can quantify the effect of impostor practice. If no
updating strategy is used, according to row 8, impostor practice is predicted to
add +1.1 percentage points to a detector’s equal-error rate. If a sliding-window
updating strategy is used, according to rows 7, 8, and 20, impostor practice
is predicted to add +0.7 percentage points (−2.2 + 1.1 + 1.8). Consequently,
impostor practice only increases an impostor’s chance of success by a percentage
point, and the risk is somewhat mitigated by updating.

While the aim of the statistical analysis is to predict what effect each factor
has, it would be natural for a practitioner to use these predictions to choose
the combination of factor values that give the lowest error. A systematic search
of Table 1(a) reveals the lowest predicted equal-error rate to be 7.2%, using
the Manhattan (scaled) detector with 100 training repetitions, sliding-window
updating, and unpracticed impostors. For very-practiced impostors, the lowest

Why Did My Detector Do That?! 269

Table 1. Estimated values for all of the parameters in the model. The estimates

are all in percentage points. Part (a) presents the fixed-effects estimates. The first

row lists the combination of factor values which comprise the baseline along with

the predicted equal-error rate. The remaining 25 rows list changes to the algorithm,

amount of training, updating, and impostor practice, along with the predicted change

to the equal-error rate. Part (b) presents the estimated typist-to-typist variation and

the residual error. Both estimates are expressed as standard deviations rather than

variances (i.e., by taking the square-root of the variance estimates) to make them

easier to interpret. This table enables us to predict the error rates of a detector under

different operating conditions, and also to estimate the uncertainty of those predictions.

Algorithm Training Updating Impostor Estimates
1 μ Manhattan (scaled) 5 reps None None 17.6
2 Ah Outlier-count (z-score) +2.7
3 Nearest-neighbor (Mahalanobis) +19.2
4 Ti 50 reps −4.9
5 100 reps −6.9
6 200 reps −7.2
7 Uk Sliding −2.2
8 Il Very High +1.1
9 AThi Outlier-count (z-score) 50 reps −1.7
10 Nearest-neighbor (Mahalanobis) 50 reps −17.0
11 Outlier-count (z-score) 100 reps −1.3
12 Nearest-neighbor (Mahalanobis) 100 reps −17.9
13 Outlier-count (z-score) 200 reps −1.2
14 Nearest-neighbor (Mahalanobis) 200 reps −18.8
15 AUhk Outlier-count (z-score) Sliding −3.7
16 Nearest-neighbor (Mahalanobis) Sliding −7.7
17 TUik 50 reps Sliding −0.8
18 100 reps Sliding −1.3
19 200 reps Sliding +0.3

20 UIkl Sliding Very High +1.8
21 ATUhik Outlier-count (z-score) 50 reps Sliding +2.3
22 Nearest-neighbor (Mahalanobis) 50 reps Sliding +8.1
23 Outlier-count (z-score) 100 reps Sliding +4.0
24 Nearest-neighbor (Mahalanobis) 100 reps Sliding +7.9
25 Outlier-count (z-score) 200 reps Sliding +3.0
26 Nearest-neighbor (Mahalanobis) 200 reps Sliding +8.4

(a): Estimates of the fixed-effects parameters of the model (in percentage points).

Estimates of
Standard Deviation

σs (Typist-to-typist) 6.0
σε (Residual) 6.6

(b): Estimates of the random-effects parameters (as standard deviations).

270 K. Killourhy and R. Maxion

predicted equal-error rate is 10.1% for the same detector, training amount, and
updating strategy.

In Part (b) of Table 1, the typist-to-typist standard deviation (σs) is estimated
to be 6.0. Since the model assumes the typist-to-typist effect to be Normally
distributed, we would predict that about 95% of typists’ average equal-error
rates will lie withing 2 standard deviations of the values predicted from Part
(a). For instance, suppose a new typist were added to a system operating with
the baseline factor values. The overall average equal-error rate is predicted to be
17.6%, and with 95% confidence, we would predict that the average equal-error
rate for the new typist will be between 5.6% and 29.6% (i.e., 17.6± 2× 6.0).

Likewise, there will be some day-to-day variation in a detector’s performance
due to unidentified sources of variation. Table 1(b) provides an estimate of 6.6
percentage points for this residual standard deviation (σε). Calculations similar
to those with the typist-to-typist standard deviation can be used to bound the
day-to-day change in detector performance. Note that these confidence intervals
are quite large compared to the fixed effects in Part (a). Future research might
try to identify the source of the uncertainty and what makes a typist easy or
hard to distinguish.

A reader might ask what has really been learned from this statistical analy-
sis. Based on the empirical results in Section 3, it seemed that the Manhattan
(scaled) detector with 100 training repetitions and updating had the lowest er-
ror. It seemed that the feature set did not matter, and that impostor practice
had only a minor effect. To answer, we would say that the statistical analysis has
not only supported these observations but explained and enriched them. We now
know which factors and interactions are responsible for the low error rate, and
we can predict how much that low error rate will change as the typists change
and the days progress.

5 Validation

The predictions in the previous section depend on the validity of the model.
While the model assumptions can be checked using additional statistical analysis
(e.g., residual plots to check Normality), the true test of a model’s predictive
validity is whether its predictions are accurate. In this section, we describe such
a test of validity and the outcome.

5.1 Procedure

We began by replicating the data-collection effort that was used to collect the
data described in Section 3. The same apparatus was used to prompt subjects
to type the password (.tie5Roanl) and to monitor their keystrokes for typ-
ing errors. The same high-precision timing device was used to ensure that the
keystroke timestamps were collected accurately.

From among the faculty, staff, and students of our university, 15 new subjects
were recruited. As before, these subjects typed the password 400 times over 8

Why Did My Detector Do That?! 271

sessions of 50 repetitions each. Each session occurred on separate days to capture
the natural day-to-day variation in typing rhythms. Their keystroke timestamps
were recorded and converted to password-timing vectors, comprised of 11 hold
times, 10 keydown-keydown times, and 10 keyup-keydown times.

The evaluation procedure described in Section 3 was replicated using this
new data set, for each algorithm, each amount of training data, each feature
set, and so on. Each subject was designated as the genuine user in separate
evaluations, with the other 14 subjects acting as impostors. We obtained 2,160
(3× 4× 3× 2× 2× 15) new empirical equal-error rates from these evaluations.

To claim that our model is a useful predictor of detector error rates, two
properties should hold. First, the difference between the predicted equal-error
rate and each subject’s average equal-error rate should be Normally distributed
with zero mean and variance predicted by the model (σ2

s). A zero mean indicates
that the predicted equal-error rates are correct on average. A Normal distribution
of the points around that mean confirms that the typist-to-typist variability has
been accurately captured by the model. Second, the residual errors, after the per-
subject effects have been taken into account, should also be Normally distributed
with zero mean and variance predicted by the model (σ2

ε). This property confirms
that the residual variability has also been captured by the model.

To test these properties, we calculate the difference between each empirical
equal-error rate and the predicted equal-error rate from the model. This calcu-
lation produces 2,160 prediction errors, 144 for each user. The per-typist effect
for each user is calculated as the average of these 144 errors. The residual errors
are calculated by subtracting the per-typist effect from each prediction error.

5.2 Results

Figure 2 contains two panels, the left one showing the distribution of the per-
typist effects, and the right one showing the distribution of the residual errors.

Per−Typist Effects (n = 15)

D
en

si
ty

−0.10 −0.05 0.00 0.05 0.10 0.15

0
1

2
3

4
5

6

Residuals (n = 2160)

D
en

si
ty

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

Fig. 2. The distribution of the per-typist effects and the residual errors compared to

their predicted Normal distributions. The histogram on the left shows the per-typist

effect for the 15 subjects. The histogram on the right depicts the residual errors. Both

histograms closely match the Normal distributions predicted by the model. The match

between the predicted and the observed distributions validates the model.

272 K. Killourhy and R. Maxion

Overlaid on each histogram is the Normal distribution predicted by the model.
Both the per-typist-effects histogram and the residual-error histogram closely
match the predicted Normal distributions.

It is difficult to ascertain Normality from only 15 observations (one per sub-
ject), but the per-typist effects appear to be clustered around a mean of zero
with the predicted variation about the mean. The residuals appear to be dis-
tributed as a bell-shaped curve with a mean of zero and the predicted variance.
The tails of the distribution are slightly thicker than Normal, but the overall
fit is still very close. Based on these graphs, we conclude that the model can
accurately predict the detectors’ error rates on a new data set.

6 Related Work

Having demonstrated that we can explain detector’s error rates using influential
factors from the evaluation, we should put our findings in the context of other
keystroke-dynamics research. We cannot review the entire 30 year history of
keystroke dynamics, but Peacock et al. [14] provide a concise summary of many
of the developments during that time. In this section, we compare our findings
to prior research into the influences of the same six factors.

1. Algorithm: Several researchers have compared different classification algo-
rithms on a single data set, but few have compared anomaly detectors in
this way. Cho et al. [5] compared the Nearest Neighbor (Mahalanobis) de-
tector to an auto-associative neural network. Haider et al. [8] evaluated an
Outlier-count (z-score) detector, a different neural network, and a fuzzy-logic
detector. In earlier work, we tried to reimplement 14 detectors and replicate
the results of earlier evaluations [12]. Our results differed wildly from the
earlier ones (e.g., 85.9% vs. 1% error). In fact, the validation we report in
Section 5 is one of the few successful replications of error rates from an earlier
study using new data.

2. Amount of training: Joyce and Gupta [10] used only 8 password repeti-
tions to train their detector, but they found that the same accuracy was ob-
served with as few as 6 repetitions. Araújo et al. [1] considered training sets
ranging from 6 to 10 repetitions. To our knowledge, while other researchers
have published evaluations using as many as 200 training repetitions [5], no
prior work has examined the error rates of detectors trained from as few as
5 to as many as 200 repetitions. In addition, earlier researchers have consid-
ered the effect of training on a single algorithm. We found that the effect of
training cannot be separated from the effect of the algorithm.

3. Feature set: Araújo et al. [1] ran evaluations of a Manhattan (scaled) de-
tector with seven different feature sets, including the three we used. They
found that using all three types of feature (e.g., hold times, keydown-keydown
times, and keyup-keydown times) produced the best results. In contrast, we
found that, so long as hold times and either keydown-keydown times or keyup-
keydown times are included, the particular combination has negligible effect.

Why Did My Detector Do That?! 273

Our findings benefit from the statistical analysis we used to check whether
small effects are substantial enough to be included in the model.

4. Updating strategy: Araújo et al. [1] also compared a Manhattan (scaled)
detector using updating to one with no updating. Kang et al. [11] compared
a k-means detector trained with no updating to ones trained with grow-
ing and sliding windows. Both sets of researchers found that an updating
strategy lowered error rates. Their results for individual detectors, coupled
with our results for three detectors (backed by a validated statistical model),
strongly support the claim that updating reduces detector error rates. Our
results further demonstrate that window size (i.e., training amount) has an
important effect on the error rate of a sliding-window detector.

5. Impostor practice: Lee and Cho [13] gave their impostors the opportunity
to practice, but they did not describe how many repetitions of practice were
taken by each impostor. Araújo et al. [1] split their impostor subjects into
two groups. One group observed the genuine user typing the password, and
one group did not. The observers seemed to be more successful at mimicking
the typing style of the genuine user, but no statistical test was performed.
In contrast, our work operationalized practice in terms of the number of
repetitions and then quantified the effect of practice on error rates.

6. Typist-to-typist variation: To our knowledge, no prior work has substan-
tially investigated whether some typists are easier to distinguish than others
(i.e., the typist’s effect on detector error rates). Cho et al. [5] implicitly as-
sumed a per-typist effect when they conducted a paired t-test in comparing
two detectors. Often, standard deviations are reported along with error rates,
but the current work may be the first to explicitly try to understand and
quantify the substantial typist-to-typist effect.

Based on our review of the related work, we can make two observations. First,
even among those studies that have tried to explain the effects of various factors
on detector error rates, interaction effects have not been considered. The present
work reveals several complex interactions between algorithm, training, updating,
and impostor practice. In the future, we should bear in mind the possibility of
interactions between influential factors.

Second, there have been few attempts to generalize from empirical results
using statistical analysis. Some researchers have used hypothesis testing (e.g.,
t-tests) to establish whether there is a statistically significant difference between
two sets of error rates [2,5], but such analysis is the rare exception rather than
the rule. The current work demonstrates the additional insight and predictive
capability that can be gained through statistical analysis. These insights and
predictions would be missing if only the raw, empirical error rates were reported.

7 Discussion and Future Work

We initiated the current work to try to explain why different researchers, using
the same detectors, were getting wildly different evaluation results. This work
has shown that it is possible to replicate earlier results, but great care was taken

274 K. Killourhy and R. Maxion

to make sure that the details of the replication matched those of the original.
We recruited new subjects, but tightly controlled many other factors of the
evaluation (e.g., the password, keyboard, and timing mechanism). Showing that
results can be replicated is a critical but often under-appreciated part of any
scientific discipline. Fortunately, having succeeded, we can begin to vary some
of these tightly controlled factors (using the very methodology proposed in this
paper), and we can identify which ones threaten replication.

The statistical model presented in this paper is certainly not the last word on
which factors influence keystroke-dynamics anomaly detectors. There are factors
we did not consider (e.g., the password), and for factors we did consider, there
are values we did not (e.g., other anomaly detectors). For the factors and values
we did investigate, the rigor of our methodology enables us to make claims with
comparatively high confidence. Even knowing that our model is incomplete, and
possibly wrong in some respects, it represents a useful guideline which future
work can use, test, and refine.1

This work is exceptional, as explained in Section 6, for its statistical analy-
sis and validation. Although many anomaly detectors are built upon statistical
machine-learning algorithms, statistical analysis is rarely used in the evaluations
of those detectors. Often a research paper will propose a new anomaly-detection
technique and report the results of a preliminary evaluation. Such evaluations
typically show a technique’s promise, but rarely provide conclusive evidence of
it. As Peisert and Bishop [15] have advocated, researchers must follow prelim-
inary, exploratory evaluations with more rigorous experiments that adhere to
the scientific method. Our methodology offers a clear procedure for conduct-
ing more rigorous anomaly-detection experiments. We hope it is useful to other
researchers.

8 Conclusion

In this work, we aimed to answer two questions. First, what influence do each of
six factors—algorithm, training amount, feature set, updating, impostor prac-
tice, and typist-to-typist variation—have on keystroke-dynamics error rates? Sec-
ond, what methodology should we use to establish the effects of these various
factors?

In answer to the first question, the detection algorithm, training amount,
and updating were found to strongly influence the error rates. We found no
difference among our three feature sets, and impostor practice had only a minor
effect. Typist-to-typist differences were found to introduce substantial variation;
some subjects were much easier to distinguish than others.

In answer to the second question, we proposed a methodology rooted in the sci-
entific method: experimentation, statistical analysis, and validation. This method-
ology produced a useful, predictive, explanatory model of anomaly-detector error
rates. Consequently, we believe that the proposed methodology would add valu-
able predictive and explanatory power to future anomaly-detection studies.

1 As George Box notes, “All models are wrong, but some models are useful” [4].

Why Did My Detector Do That?! 275

Acknowledgments

The authors are indebted to Howard Seltman and David Banks for sharing their
statistical expertise, and to Patricia Loring for running the experiments that
provided the data for this paper. We are grateful both to Shing-hon Lau for his
helpful comments and also to the anonymous reviewers for theirs.

This work was supported by National Science Foundation grant number CNS-
0716677, and by CyLab at Carnegie Mellon under grants DAAD19-02-1-0389 and
W911NF-09-1-0273 from the Army Research Office.

References

1. Araújo, L.C.F., Sucupira, L.H.R., Lizárraga, M.G., Ling, L.L., Yabu-uti, J.B.T.:

User authentication through typing biometrics features. IEEE Transactions on Sig-

nal Processing 53(2), 851–855 (2005)

2. Bartlow, N., Cukic, B.: Evaluating the reliability of credential hardening through

keystroke dynamics. In: Proceedings of the 17th International Symposium on Soft-

ware Reliability Engineering (ISSRE 2006), pp. 117–126. IEEE Press, Los Alamitos

(2006)

3. Bates, D.: Fitting linear mixed models in R. R. News 5(1), 27–30 (2005)

4. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design,

Innovation, and Discovery, 2nd edn. Wiley, New York (2005)

5. Cho, S., Han, C., Han, D.H., Kim, H.I.: Web-based keystroke dynamics identity

verification using neural network. Journal of Organizational Computing and Elec-

tronic Commerce 10(4), 295–307 (2000)

6. Denning, D.E.: An intrusion-detection model. IEEE Transactions on Software En-

gineering 13(2) (1987)

7. Faraway, J.J.: Extending Linear Models with R: Generalized Linear, Mixed Effects

and Nonparametric Regression Models. Chapman & Hall/CRC (2006)

8. Haider, S., Abbas, A., Zaidi, A.K.: A multi-technique approach for user identifica-

tion through keystroke dynamics. In: IEEE International Conference on Systems,

Man and Cybernetics, pp. 1336–1341 (2000)

9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York

(2001)

10. Joyce, R., Gupta, G.: Identity authentication based on keystroke latencies. Com-

munications of the ACM 33(2), 168–176 (1990)

11. Kang, P., Hwang, S.-s., Cho, S.: Continual retraining of keystroke dynamics based

authenticator. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 1203–

1211. Springer, Heidelberg (2007)

12. Killourhy, K.S., Maxion, R.A.: Comparing anomaly detectors for keystroke dynam-

ics. In: Proceedings of the 39th Annual International Conference on Dependable

Systems and Networks (DSN 2009), June 29-July 2, pp. 125–134. IEEE Computer

Society Press, Los Alamitos (2009)

13. Lee, H.j., Cho, S.: Retraining a keystroke dynamics-based authenticator with im-

postor patterns. Computers & Security 26(4), 300–310 (2007)

14. Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A key to user identification.

IEEE Security and Privacy 2(5), 40–47 (2004)

276 K. Killourhy and R. Maxion

15. Peisert, S., Bishop, M.: How to design computer security experiments. In: Proceed-

ings of the 5th World Conference on Information Security Education (WISE), pp.

141–148. Springer, New York (2007)

16. Pinheiro, J.C., Bates, D.M.: Mixed-effects Models in S and S-Plus. Statistics and

Computing Series. Springer, New York (2000)

17. R Development Core Team: R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria (2008),

http://www.R-project.org

18. Searle, S.R., Casella, G., McCulloch, C.E.: Variance Components. John Wiley &

Sons, Inc., Hoboken (2006)

19. Swets, J.A., Pickett, R.M.: Evaluation of Diagnostic Systems: Methods from Signal

Detection Theory. Academic Press, New York (1982)

http://www.R-project.org

NetStore: An Efficient Storage Infrastructure for

Network Forensics and Monitoring

Paul Giura and Nasir Memon

Polytechnic Intitute of NYU, Six MetroTech Center, Brooklyn, NY

Abstract. With the increasing sophistication of attacks, there is a need

for network security monitoring systems that store and examine very

large amounts of historical network flow data. An efficient storage in-

frastructure should provide both high insertion rates and fast data ac-

cess. Traditional row-oriented Relational Database Management Systems

(RDBMS) provide satisfactory query performance for network flow data

collected only over a period of several hours. In many cases, such as the

detection of sophisticated coordinated attacks, it is crucial to query days,

weeks or even months worth of disk resident historical data rapidly. For

such monitoring and forensics queries, row oriented databases become

I/O bound due to long disk access times. Furthermore, their data inser-

tion rate is proportional to the number of indexes used, and query pro-

cessing time is increased when it is necessary to load unused attributes

along with the used ones. To overcome these problems we propose a new

column oriented storage infrastructure for network flow records, called

NetStore. NetStore is aware of network data semantics and access pat-

terns, and benefits from the simple column oriented layout without the

need to meet general purpose RDBMS requirements. The prototype im-

plementation of NetStore can potentially achieve more than ten times

query speedup and ninety times less storage size compared to traditional

row-stores, while it performs better than existing open source column-

stores for network flow data.

1 Introduction

Traditionally intrusion detection systems were designed to detect and flag mali-
cious or suspicious activity in real time. However, such systems are increasingly
providing the ability to identify the root cause of a security breach. This may
involve checking a suspected host’s past network activity, looking up any services
run by a host, protocols used, the connection records to other hosts that may or
may not be compromised, etc. This requires flexible and fast access to network
flow historical data. In this paper we present the design, implementation details
and the evaluation of a column-oriented storage infrastructure called NetStore,
designed to store and analyze very large amounts of network flow data. Through-
out this paper we refer to a flow as an unidirectional data stream between two
endpoints, to a flow record as a quantitative description of a flow, and to a flow
ID as the key that uniquely identifies a flow. In our research the flow ID is

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 277–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

278 P. Giura and N. Memon

Fig. 1. Flow traffic distribution for one day and one month. In a typical day the busiest

time interval is 1PM - 2PM with 4,381,876 flows, and the slowest time interval is 5AM

- 6AM with 978,888 flows. For a typical month we noticed the slow down in week-ends

and the peek traffic in weekdays. Days marked with * correspond to a break week.

composed of five attributes: source IP, source port, destination IP, destination
port and protocol. We assume that each flow record has associated a start time
and an end time representing the time interval when the flow was active in the
network.

Challenges. Network flow data can grow very large in the number of records
and storage footprint. Figure 1 shows network flow distribution of traffic cap-
tured from edge routers in a moderate sized campus network. This network with
about 3,000 hosts, commonly reaches up to 1,300 flows/second, an average 53
million flows daily and roughly 1.7 billion flows in a month. We consider records
with the average size of 200 Bytes. Besides CISCO NetFlow data [18] there may
be other specific information that a sensor can capture from the network such as
the IP, transport and application headers information. Hence, in this example,
the storage requirement is roughly 10 GB of data per day which adds up to
at least 310 GB per month. When working with large amounts of disk resident
data, the main challenge is no longer to ensure the necessary storage space, but
to minimize the time it takes to process and access the data. An efficient stor-
age and querying infrastructure for network records has to cope with two main
technical challenges: keep the insertion rate high, and provide fast access to the
desired flow records. When using a traditional row-oriented Relational Database
Management Systems (RDBMS), the relevant flow attributes are inserted as a
row into a table as they are captured from the network, and are indexed using
various techniques [6]. On the one hand, such a system has to establish a trade
off between the insertion rate desired and the storage and processing overhead
employed by the use of auxiliary indexing data structures. On the other hand,
enabling indexing for more attributes ultimately improves query performance
but also increases the storage requirements and decreases insertion rates. At
query time, all the columns of the table have to be loaded in memory even if
only a subset of the attributes are relevant for the query, adding a significant
I/O penalty for the overall query processing time by loading unused columns.

NetStore: An Efficient Storage Infrastructure 279

When querying disk resident data, an important problem to overcome is the I/O
bottleneck caused by large disk to memory data transfers. One potential solu-
tion would be to load only data that is relevant to the query. For example, to
answer the query “What is the list of all IPs that contacted IP X between dates
d1 and d2?”, the system should load only the source and destination IPs as well
as the timestamps of the flows that fall between dates d1 and d2. The I/O time
can also be decreased if the accessed data is compressed since less data traverses
the disk-memory boundary. Further, the overall query response time can be im-
proved if data is processed in compressed format by saving decompression time.
Finally, since the system has to insert records at line speed, all the preprocessing
algorithms used should add negligible overhead while writing to disk. The above
requirements can be met quite well by utilizing a column oriented database as
described below.

Column Store. The basic idea of column orientation is to store the data by
columns rather than by rows, where each column holds data for a single attribute
of the flow and is stored sequentially on disk. Such a strategy makes the system
I/O efficient for read queries since only the required attributes related to a query
can be read from the disk. The performance benefits of column partitioning
were previously analyzed in [9,2], and some of the ideas were confirmed by the
results in the databases academic research community [16, 1, 21] as well as in
industry [19, 11, 10, 3]. However, most of commercial and open-source column
stores were conceived to follow general purpose RDBMSs requirements, and do
not fully use the semantics of the data carried and do not take advantage of
the specific types and data access patterns of network forensic and monitoring
queries. In this paper we present the design, implementation details and the
evaluation of NetStore, a column-oriented storage infrastructure for network
records that, unlike the other systems, is intended to provide good performance
for network records flow data.

Contribution. The key contributions in this paper include the following:

– Simple and efficient column oriented design of NetStore, a network flow
historical storage system that enables quick access to large amounts of data
for monitoring and forensic analysis.

– Efficient compression methods and selection strategies to facilitate the best
compression for network flow data, that permit accessing and querying data
in compressed format.

– Implementation and deployment of NetStore using commodity hardware and
open source software as well as analysis and comparison with other open
source storage systems used currently in practice.

The rest of this paper is organized as follows: we present related work in Sec-
tion 2, our system architecture and the details of each component in Section 3.
Experimental results and evaluation are presented in Section 4 and we conclude
in Section 5.

280 P. Giura and N. Memon

2 Related Work

The problem of discovering network security incidents has received significant
attention over the past years. Most of the work done has focused on near-real
time security event detection, by improving existing security mechanisms that
monitor traffic at a network perimeter and block known attacks, detect suspicious
network behavior such as network scans, or malicious binary transfers [12, 14].
Other systems such as Tribeca [17] and Gigascope [4], use stream databases
and process network data as it arrives but do not store the date for retroactive
analysis. There has been some work done to store network flow records using a
traditional RDBMS such as PostgreSQL [6]. Using this approach, when a NIDS
triggers an alarm, the database system builds indexes and materialized views for
the attributes that are the subject of the alarm, and could potentially be used by
forensics queries in the investigation of the alarm. The system works reasonably
well for small networks and is able to help forensic analysis for events that
happened over the last few hours. However, queries for traffic spanning more
than a few hours become I/O bound and the auxiliary data used to speed up
the queries slows down the record insertion process. Therefore, such a solution is
not feasible for medium to large networks and not even for small networks in the
future, if we consider the accelerated growth of internet traffic. Additionally, a
time window of several hours is not a realistic assumption when trying to detect
the behavior of a complex botnet engaged in stealthy malicious activity over
prolonged periods of time.

In the database community, many researchers have proposed the physical
organization of database storage by columns in order to cope with poor read
query performance of traditional row-based RDBMS [16,21,11,15,3]. As shown
in [16, 2, 9, 8], a column store provides many times better performance than a
row store for read intensive workloads. In [21] the focus is on optimizing the
cache-RAM access time by decompressing data in the cache rather than in the
RAM. This system assumes the working columns are RAM resident, and shows
a performance penalty if data has to be read from the disk and processed in the
same run. The solution in [16] relies on processing parallelism by partitioning
data into sets of columns, called projections, indexed and sorted together, inde-
pendent of other projections. This layout has the benefit of rapid loading of the
attributes belonging to the same projection and referred to by the same query
without the use of auxiliary data structure for tuple reconstruction. However,
when attributes from different projections are accessed, the tuple reconstruction
process adds significant overhead to the data access pattern. The system pre-
sented in [15] emphasizes the use of an auxiliary metadata layer on top of the
column partitioning that is shown to be an efficient alternative to the indexing
approach. However, the metadata overhead is sizable and the design does not
take into account the correlation between various attributes.

Finally, in [9] authors present several factors that should be considered when
one has to decide to use a column store versus a row store for a read intensive
workload. The relative large number of network flow attributes and the workloads

NetStore: An Efficient Storage Infrastructure 281

with the predominant set of queries with large selectivity and few predicates favor
the use of a column store system for historical network flow records storage.

NetStore is a column oriented storage infrastructure that shares some of the
features with the other systems, and is designed to provide the best perfor-
mance for large amounts of disk resident network flow records. It avoids tuple
reconstruction overhead by keeping at all times the same order of elements in
all columns. It provides fast data insertion and quick querying by dynamically
choosing the most suitable compression method available and using a simple and
efficient design with a negligible meta data layer overhead.

3 Architecture

In this section we describe the architecture and the key components of NetStore.
We first present the characteristics of network data and query types that guide
our design. We then describe the technical design details: how the data is par-
titioned into columns, how columns are partitioned into segments, what are the
compression methods used and how a compression method is selected for each
segment. We finally present the metadata associated with each segment, the in-
dex nodes, and the internal IPs inverted index structure, as well as the basic set
of operators.

3.1 Network Flow Data

Network flow records and the queries made on them show some special char-
acteristics compared to other time sequential data, and we tried to apply this
knowledge as early as possible in the design of the system. First, flow attributes
tend to exhibit temporal clustering, that is, the range of values is small within
short time intervals. Second, the attributes of the flows with the same source IP
and destination IP tend to have the same values (e.g. port numbers, protocols,
packets sizes etc.). Third, columns of some attributes can be efficiently encoded
when partitioned into time based segments that are encoded independently. Fi-
nally, most attributes that are of interest for monitoring and forensics can be
encoded using basic integer data types.

The records insertion operation is represented by bulk loads of time sequen-
tial data that will not be updated after writing. Having the attributes stored
in the same order across the columns makes the join operation become trivial
when attributes from more than one column are used together. Network data
analysis does not require fast random access on all the attributes. Most of the
monitoring queries need fast sequential access to large number of records and
the ability to aggregate and summarize the data over a time window. Forensic
queries access specific predictable attributes but collected over longer periods of
time. To observe their specific characteristics we first compiled a comprehensive
list of forensic and monitoring queries used in practice in various scenarios [5].
Based on the data access pattern, we identified five types among the initial list.
Spot queries (S) that target a single key (usually an IP address or port number)

282 P. Giura and N. Memon

and return a list with the values associated with that key. Range queries (R)
that return a list with results for multiple keys (usually attributes corresponding
to the IPs of a subnet). Aggregation queries (A) that aggregate the data for the
entire network and return the result of the aggregation (e.g. traffic sent out for
network). Spot Aggregation queries (SA) that aggregate the values found for one
key in a single value. Range Aggregation queries (RA) that aggregate data for
multiple keys into a single value. Examples of these types of queries expressed
in plain words:

(S) “What applications are observed on host X between dates d1 and d2?”
(R) “What is the list of destination IPs that have source IPs in a subnet between

dates d1 and d2?”
(A) “What is the total number of connections for the entire network between

dates d1 and d2?”
(SA) “What is the number of bytes that host X sent between dates d1 and d2?”
(RA) “What is the number of hosts that each of the hosts in a subnet contacted

between dates d1 and d2?”

3.2 Column Oriented Storage

Columns. In NetStore, we consider that flow records with n attributes are
stored in the logical table with n columns and an increasing number of rows
(tuples) one for each flow record. The values of each attribute are stored in one
column and have the same data type. By default almost all of the values of
a column are not sorted. Having the data sorted in a column might help get
better compression and faster retrieval, but changing the initial order of the el-
ements requires the use of auxiliary data structure for tuple reconstruction at
query time. We investigated several techniques to ease tuple reconstruction and
all methods added much more overhead at query time than the benefit of bet-
ter compression and faster data access. Therefore, we decided to maintain the
same order of elements across columns to avoid any tuple reconstruction penalty
when querying. However, since we can afford one column to be sorted without
the need to use any reconstruction auxiliary data, we choose to first sort only
one column and partially sort the rest of the columns. We call the first sorted
column the anchor column. Note that after sorting, given our storage architec-
ture, each segment can still be processed independently. The main purpose of the
anchor column choosing algorithm is to select the ordering that facilitates the
best compression and fast data access. Network flow data express strong correla-
tion between several attributes and we exploit this characteristic by keeping the
strongly correlated columns in consecutive sorting order as much as possible for
better compression results. Additionally, based on previous queries data access
pattern, columns are arranged by taking into account the probability of each
column to be accessed by future queries. The columns with higher probabilities
are arranged at the beginning of the sorting order. As such, we maintain the
counting probabilities associated with each of the columns given by the formula
P (ci) = ai

t , where ci is the i-th column, ai the number of queries that accessed
ci and t the total number of queries.

NetStore: An Efficient Storage Infrastructure 283

Segments. Each column is further partitioned into fixed sets of values called
segments. Segments partitioning enables physical storage and processing at a
smaller granularity than simple column based partitioning. These design deci-
sions provide more flexibility for compression strategies and data access. At query
time only used segments will be read from disk and processed based on the in-
formation collected from segments metadata structures called index nodes. Each
segment has associated a unique identifier called segment ID. For each column, a
segment ID represents an auto incremental number, started at the installation of
the system. The segment sizes are dependent of the hardware configuration and
can be set in such a way to use the most of available main memory. For better
control over data structures used, the segments have the same number of values
across all the columns. In this way there is no need to store a record ID for each
value of a segment, and this is one major difference compared to some existing
column stores [11]. As we will show in Section 4 the performance of the system
is related to the segment size used. The larger the segment size, the better the
compression performance and query processing times. However, we notice that
records insertion speed decreases with the increase of segment size, so, there is a
trade off between the query performance desired and the insertion speed needed.
Most of the columns store segments in compressed format and, in a later section
we present the compression algorithms used. Column segmentation design is an
important difference compared to traditional row oriented systems that process
data a tuple at a time, whereas NetStore processes data segment at a time, which
translates to many tuples at a time. Figure 3 shows the processing steps for the
three processing phases: buffering, segmenting and query processing.

Fig. 2. NetStore main components:

Processing Engine and Column-Store.
Fig. 3. NetStore processing phases: buffer-

ing, segmenting and query processing.

Column Index. For each column we store the meta data associated with each of
the segments in an index node corresponding to the segment. The set of all index
nodes for the segments of a column represent the column index. The information
in each index node includes statistics about data and different features that are
used in the decision about the compression method to use and optimal data

284 P. Giura and N. Memon

access, as well as the time interval associated with the segment in the format
[min start time, max end time]. Figure 4 presents an intuitive representation
of the columns, segments and index for each column. Each column index is
implemented using a time interval tree. Every query is relative to a time window
T. At query time, the index of every column accessed is looked up and only
the segments that have the time interval overlapping window T are considered
for processing. In the next step, the statistics on segment values are checked
to decide if the segment should be loaded in memory and decompressed. This
two-phase index processing helps in early filtering out unused data in query
processing similar to what is done in [15]. Note that the index nodes do not
hold data values, but statistics about the segments such as the minimum and
the maximum values, the time interval of the segment, the compression method
used, the number of distinct values, etc. Therefore, index usage adds negligible
storage and processing overhead.

From the list of initial queries we observed that the column for the source IP
attribute is most frequently accessed. Therefore, we choose this column as our
first sorted anchor column, and used it as a clustered index for each source IP
segment. However, for workloads where the predominant query types are spot
queries targeting a specific column other than the anchor column, the use of
indexes for values inside the column segments is beneficial at a cost of increased
storage and slowdown in insertion rate. Thus, this situation can be acceptable
for slow networks were the insertion rate requirements are not too high. When
the insertion rate is high then it is best not to use any index but rely on the
meta-data from the index nodes.

Internal IPs Index. Besides the column index, NetStore maintains another
indexing data structure for the network internal IP addresses called the Internal
IPs index. Essentially the IPs index is an inverted index for the internal IPs. That
is, for each internal IP address the index stores in a list the absolute positions
where the IP address occurs in the column, sourceIP or destIP , as if the column
is not partitioned into segments. Figure 5 shows an intuitive representation of the
IPs index. For each internal IP address the positions list represents an array of
increasing integer values that are compressed and stored on disk on a daily basis.
Because IP addresses tend to occur in consecutive positions in a column, we chose
to compress the positions list by applying run-length-encoding on differences
between adjacent values.

3.3 Compression

Each of the segments in NetStore is compressed independently. We observed that
segments within a column did not have the same distribution due to the temporal
variation of network activity in working hours, days, nights, weekends, breaks
etc. Hence segments of the same column were best compressed using different
methods. We explored different compression methods. We investigated methods
that allow data processing in compressed format and do not need decompression
of all the segment values if only one value is requested. We also looked at methods

NetStore: An Efficient Storage Infrastructure 285

Fig. 4. Schematic representation of columns,

segments, index nodes and column indexes

Fig. 5. Intuitive representation of the

IPs inverted index

that provide fast decompression and reasonable compression ratio and speed.
The decision on which compression algorithm to use is done automatically for
each segment, and is based on the data features of the segment such as data type,
the number of distinct values, range of the values and number of switches between
adjacent values. We tested a wide range of compression methods, including some
we designed for the purpose or currently used by similar systems in [1,16,21,11],
with needed variations if any. Below we list the techniques that emerged effective
based on our experimentation:

– Run-Length Encoding (RLE): is used for segments that have few distinct
repetitive values. If value v appears consecutively r times, and r > 1, we
compress it as the pair (v, r). It provides fast compression as well as the
ability to process data in compressed format.

– Variable Byte Encoding: is a byte-oriented encoding method used for
positive integers. It uses a variable number of bytes to encode each integer
value as follows: if value < 128 use one byte (set highest bit to 0), for
value < 128 ∗ 128 use 2 bytes (first byte has highest bit set to 1 and second
to 0) and so on. This method can be used in conjunction with RLE for
both values and runs. It provides reasonable compression ratio and good
decompression speed allowing the decompression of only the requested value
without the need to decompress the whole segment.

– Dictionary Encoding: is used for columns with few distinct values and
sometimes before RLE is applied (e.g. to encode “protocol” attribute).

– Frame Of Reference: considers the interval bounded by the minimum
and maximum values as the frame of reference for the values to be com-
pressed [7]. We use it to compress non-empty timestamp attributes within a
segment (e.g. start time, end time, etc.) that are integer values representing
the number of seconds from the epoch. Typically the time difference be-
tween minimum and maximum timestamp values in a segment is less than
few hours, therefore the encoding of the difference is possible using short
values of 2 bytes instead of integers of 4 bytes. It allows processing data
in compressed format by decompressing each timestamp value individually
without the need to decompress the whole segment.

286 P. Giura and N. Memon

– Generic Compression: we use the DEFLATE algorithm from the zlib
library that is a variation of the LZ77 [20]. This method provides compression
at the binary level, and does not allow values to be individually accessed
unless the whole segment is decompressed. It is chosen if it enables faster
data insertion and access than the value-based methods presented earlier.

– No Compression: is listed as a compression method since it will represent
the base case for our compression selection algorithm.

Method Selection. The selection of a compression method is done based on
the statistics collected in one pass over the data of each segment. As mentioned
earlier, the two major requirements of our system are to keep records insertion
rates high and to provide fast data access. Data compression does not always
provide better insertion and better query performance compared to “No com-
pression”, and for this we developed a model to decide on when compression is
suitable and if so, what method to choose. Essentially, we compute a score for
each candidate compression method and we select the one that has the best score.
More formally, we assume we have k + 1 compression methods m0, m1, . . . , mk,
with m0 being the “No Compression” method. We then compute the insertion
time as the time to compress and write to disk, and the access time, to read from
disk and decompress, as functions of each compression method. For value-based
compression methods, we estimate the compression, write, read and decompres-
sion times based on the statistics collected for each segment. For the generic
compression we estimate the parameters based on the average results obtained
when processing sample segments. For each segment we evaluate:

insertion (mi) = c (mi) + w (mi) , i = 1, . . . , k
access (mi) = r (mi) + d (mi) , i = 1, . . . , k

As the base case for each method evaluation we consider the “No Compression”
method. We take I0 to represent the time to insert an uncompressed segment
which is represented by only the writing time since there is no time spent for
compression and, similarly A0 to represent the time to access the segment which
is represented by only the time to read the segment from disk since there is no
decompression. Formally, following the above equations we have:

insertion (m0) = w (m0) = I0 and access (m0) = r (m0) = A0

We then choose the candidate compression methods mi only if we have both:

insertion (mi) < I0 and access (mi) < A0

Next, among the candidate compression methods we choose the one that pro-
vides the lowest access time. Note that we primarily consider the access time
as the main differentiator factor and not the insertion time. The disk read is
the most frequent and time consuming operation and it is many times slower
than disk write of the same size file for commodity hard drives. Additionally,
insertion time can be improved by bulk loading or by other ways that take into
account that the network traffic rate is not steady and varies greatly over time,

NetStore: An Efficient Storage Infrastructure 287

whereas the access mechanism should provide the same level of performance at
all times.

The model presented above does not take into account if the data can be
processed in compressed format and the assumption is that decompression is
necessary at all times. However, for a more accurate compression method selec-
tion we should include the probability of a query processing the data in com-
pressed format in the access time equation. Since forensic and monitoring queries
are usually predictable, we can assume without affecting the generality of our
system, that we have a total number of t queries, each query qj having the proba-

bility of occurrence pj with
t∑

j=1

pj = 1. We consider the probability of a segment

s being processed in compressed format as the probability of occurrence of the
queries that process the segment in compressed format. Let CF be the set of all
the queries that process s in compressed format, we then get:

P (s) =
∑

qj∈CF

pj, CF = {qj |qj processes s in compressed format}

Now, a more accurate access time equation can be rewritten taking into account
the possibility of not decompressing the segment for each access:

access (mi) = r (mi) + d (mi) · (1− P (s)) , i = 1, . . . , k (1)

Note that the compression selection model can accommodate any compression,
not only the ones mentioned in this paper, and is also valid in the cases when
the probability of processing the data in compressed format is 0.

3.4 Query Processing

Figure 3 illustrates NetStore data flow, from network flow record insertion to
the query result output. Data is written only once in bulk, and read many times
for processing. NetStore does not support transaction processing queries such
as record updates or deletes, it is suitable for analytical queries in general and
network forensics and monitoring queries in special.

Data Insertion. Network data is processed in several phases before being de-
livered to permanent storage. First, raw flow data is collected from the network
sensors and is then preprocessed. Preprocessing includes the buffering and seg-
menting phases. Each flow is identified by a flow ID represented by the 5-tuple
[sourceIP, sourcePort, destIP, destPort, protocol]. In the buffering phase, raw
network flow information is collected until the buffer is filled. The flow records
in the buffer are aggregated and then sorted. As mentioned in Section 3.3, the
purpose of sorting is twofold: better compression and faster data access. All the
columns are sorted following the sorting order determined based on access prob-
abilities and correlation between columns using the first sorted column as anchor.

288 P. Giura and N. Memon

In the segmenting phase, all the columns are partitioned into segments, that is,
once the number of flow records reach the buffer capacity the column data in
the buffer is considered a full segment and is processed. Each of the segments is
then compressed using the appropriate compression method based on the data
it carries. The information about the compression method used and statistics
about the data is collected and stored in the index node associated with the
segment. Note that once the segments are created, the statistics collection and
compression of each segment is done independent of the rest of the segments in
the same column or in other columns. By doing so, the system takes advantage of
the increasing number of cores in a machine and provides good record insertion
rates in multi threaded environments.

After preprocessing all the data is sent to permanent storage. As monitoring
queries tend to access the most recent data, some data is also kept in memory
for a predefined length of time. NetStore uses a small active window of size W
and all the requests from queries accessing the data in the time interval [NOW
- W, NOW] are served from memory, where NOW represents the actual time of
the query.

Query Execution. For flexibility NetStore supports limited SQL syntax and
implements a basic set of segment operators related to the query types presented
in Section 3.1. Each SQL query statement is translated into a statement in terms
of the basic set of segment operators. Below we briefly present each general
operator:

– filter segs (d1, d2): Returns the set with segment IDs of the segments that
overlap with the time interval [d1, d2]. This operator is used by all queries.

– filter atts(segIDs, pred1(att1), . . . , predk(attk)): Returns the list of pairs
(segID, pos list), where pos list represents the intersection of attribute po-
sition lists in the corresponding segment with id segID, for which the at-
tribute atti satisfies the predicate predi, with i = 1, . . . , k.

– aggregate (segIDs, pred1(att1), . . . , predk(attk)): Returns the result of ag-
gregating values of attribute attk by attk−1 by . . . att1 that satisfy their
corresponding predicates predk, . . . , pred1 in segments with ids in segIDs.
The aggregation can be summation, counting, min or max.

The queries considered in section 3.1 can all be expressed in terms of the above
operators. For example the query: “What is the number of unique hosts that each
of the hosts in the network contacted in the interval [d1, d2]?” can be expressed
as follows: aggregate(filter segs(d1, d2), sourceIP = 128.238.0.0/16, destIP).
After the operator filter segs is applied, only the sourceIP and destIP seg-
ments that overlap with the time interval [d1, d2] are considered for process-
ing and their corresponding index nodes are read from disk. Since this is a
range aggregation query, all the considered segments will be loaded and pro-
cessed. If we consider the query “What is the number of unique hosts that host
X contacted in the interval [d1, d2]?” it can be expressed as follows: aggre-
gate(filter segs(d1, d2), sourceIP = X, destIP). For this query the number
of relevant segments can be reduced even more by discarding the ones that do

NetStore: An Efficient Storage Infrastructure 289

not overlap with the time interval [d1, d2], as well as the ones that don’t hold
the value X for sourceIP by checking corresponding index nodes statistics. If
the value X represents the IP address of an internal node, then the internal IPs
index will be used to retrieve all the positions where the value X occurs in the
sourceIP column. Then a count operation is performed of all the unique destIP
addresses corresponding to the positions. Note that by using internal IPs index,
the data of sourceIP column is not touched. The only information loaded in
memory is the positions list of IP X as well as the segments in column destIP
that correspond to those positions.

4 Evaluation

In this section we present an evaluation of NetStore. We designed and imple-
mented NetStore using the Java programming language on the FreeBSD 7.2-
RELEASE platform. For all the experiments we used a single machine with 6
GB DDR2 RAM, two Quad-Core 2.3 Ghz CPUs, 1TB SATA-300 32 MB Buffer
7200 rpm disk with a RAID-Z configuration. We consider this machine represen-
tative of what a medium scale enterprise will use as a storage server for network
flow records.

For experiments we used the network flow data captured over a 24 hour period
of one weekday at our campus border router. The size of raw text file data was
about 8 GB, 62,397,593 network flow records. For our experiments we considered
only 12 attributes for each network flow record, that is only the ones that were
meaningful for the queries presented in this paper. Table 1 shows the attributes
used as well as the types and the size for each attribute. We compared NetStore’s
performance with two open source RDBMS, a row-store, PostgreSQL [13] and a
column-store, LucidDB [11]. We chose PostgreSQL over other open source sys-
tems because we intended to follow the example in [6] which uses it for similar
tasks. Additionally we intended to make use of the partial index support for in-
ternal IPs that other systems don’t offer in order to compare the performance of
our inverted IPs index. We chose LucidDB as the column-store to compare with
as it is, to the best of our knowledge, the only stable open source column-store
that yields good performance for disk resident data and provides reasonable in-
sertion speed. We chose only data captured over one day, with size slightly larger
than the available memory, because we wanted to maintain reasonable running
times for the other systems that we compared NetStore to. These systems be-
come very slow for larger data sets and performance gap compared to NetStore
increases with the size of the data.

4.1 Parameters

Figure 6 shows the influence that the segment size has over the insertion rate.
We observe that the insertion rate drops with the increase of segment size. This
trend is expected and is caused by the delay in preprocessing phase, mostly
because of the larger segment array sorting. As Figure 7 shows, the segment

290 P. Giura and N. Memon

Table 1. NetStore flow

attributes.

Column Type Bytes

sourceIP int 4

destIP int 4

sourcePort short 2

destPort short 2

protocol byte 1

startTime short 2

endTime short 2

tcpSyns byte 1

tcpAcks byte 1

tcpFins byte 1

tcpRsts byte 1

numBytes int 4

Table 2. NetStore properties and network rates supported

based on 24 hour flow records data and the 12 attributes

Property Value Unit

records insertion rate 10,000 records/second

number of records 62,397,594 records

number of bytes transported 1.17 Terabytes

bytes transported per record 20,616.64 Bytes/record

bits rate supported 1.54 Gbit/s

number of packets transported 2,028,392,356 packets

packets transported per record 32.51 packets/record

packets rate supported 325,075.41 packets/second

size also affects the compression ratio of each segment, the larger the segment
size the larger the compression ratio achieved. But high compression ratio is
not a critical requirement. The size of the segments is more critically related
to the available memory, the desired insertion rate for the network and the
number of attributes used for each record. We set the insertion rate goal at
10,000 records/second, and for this goal we set a segment size of 2 million records
given the above hardware specification and records sizes. Table 2 shows the
insertion performance of NetStore. The numbers presented are computed based
on average bytes per record and average packets per record given the insertion
rate of 10,000 records/second. When installed on a machine with the above
specification, NetStore can keep up with traffic rates up to 1.5 Gbit/s for the
current experimental implementation. For a constant memory size, this rate
decreases with the increase in segment size and the increase in the number of
attributes for each flow record.

Fig. 6. Insertion rate for different segment

sizes

Fig. 7. Compression ratio with and without

aggregation

NetStore: An Efficient Storage Infrastructure 291

4.2 Queries

Having described the NetStore architecture and it’s design details, in this section
we consider the queries described in [5], but taking into account data collected
over the 24 hours for internal network 128.238.0.0/16. We consider both the
queries and methodology in [5] meaningful for how an investigator will perform
security analysis on network flow data. We assume all the flow attributes used
are inserted into a table flow and we use standard SQL to describe all our
examples.

Scanning. Scanning attack refers to the activity of sending a large number of
TCP SYN packets to a wide range of IP addresses. Based on the received an-
swer the attacker can determine if a particular vulnerable service is running on
the victim’s host. As such, we want to identify any TCP SYN scanning activity
initiated by an external hosts, with no TCP ACK or TCP FIN flags set and
targeted against a large number of internal IP destinations, larger than a preset
limit. We use the following range aggregation query (Q1):

SELECT sourceIP, destPort, count(distinct destIP), startTime
FROM flow
WHERE sourceIP <> 128.238.0.0/16 AND destIP = 128.238.0.0/16
AND protocol = tcp AND tcpSyns = 1 AND tcpAcks = 0 AND tcpFins = 0
GROUP BY sourceIP
HAVING count(distinct destIP) > limit;

External IP address 61.139.105.163 was found scanning starting at time t1. We
check if there were any valid responses after time t1 from the internal hosts,
where no packet had the TCP RST flag set, and we use the following query (Q2):

SELECT sourceIP, sourcePort, destIP
FROM flow
WHERE startTime > t1 AND sourceIP = 128.238.0.0/16
AND destIP = 61.139.105.163 AND protocol = tcp AND tcpRsts = 0;

Worm Infected Hosts. Internal host with the IP address 128.238.1.100 was
discovered to have been responded to a scanning initiated by a host infected
with the Conficker worm and we want to check if the internal host is compro-
mised. Typically, after a host is infected, the worm copies itself into memory
and begins propagating to random IP addresses across a network by exploiting
the same vulnerability. The worm opens a random port and starts scanning ran-
dom IPs on port 445. We use the following query to check the internal host (Q3):

SELECT sourceIP, destPort, count(distinct destIP)
FROM flow
WHERE startTime > t1 AND sourceIP = 128.238.1.100 AND destPort = 445;

292 P. Giura and N. Memon

SYN Flooding. It is a network based-denial of service attack in which the
attacker sends an unusual large number of SYN request, over a threshold t, to a
specific target over a small time window W. To detect such an attack we filter all
the incoming traffic and count the number of flows with TCP SYN bit set and no
TCP ACK or TCP FIN for all the internal hosts. We use the following query(Q4):

SELECT destIP, count(distinct sourceP), startTime
FROM flow
WHERE startTime > ’NOW - W’ AND destIP = 128.238.0.0/16
AND protocol = tcp AND tcpSyns = 1 AND tcpAcks = 0 AND tcpFins = 0
GROUP BY destIP
HAVING count(sourceIP) > t;

Network Statistics. Besides security analysis, network statistics and perfor-
mance monitoring is another important usage for network flow data. To get this
information we use aggregation queries for all collected data over a large time
window, both incoming and outgoing. Aggregation operation can be number of
bytes or packets summation, number of unique hosts contacted or some other
meaningful aggregation statistics. For example we use the following simple ag-
gregation query to find the number of bytes transported in the last 24 hours (Q5):

SELECT sum(numBytes)
FROM flow WHERE startTime > ’NOW - 24h’;

General Queries. The sample queries described above are complex and be-
long to more than one basic type described in Section 3.1. However, each of
them can be separated into several basic types such that the result of one query
becomes the input for the next one. We build a more general set of queries start-
ing from the ones described above by varying the parameters in such a way to
achieve different level of data selectivity form low to high. Then, for each type
we reported the average performance for all the queries of that type. Figure 8
shows the average running times of selected queries for increasing segment sizes.
We observe that for S type queries that don’t use IPs index (e.g. for attributes
other than internal sourceIP or destIP), the performance decreases when the
segment size increases. This is an expected result since for larger segments there
is more unused data loaded as part of the segment where the spotted value re-
sides. When using the IPs index the performance benefit comes from skipping
the irrelevant segments whose positions are not found in the positions list. How-
ever, for internal busy servers that have corresponding flow records in all the
segments, all corresponding segments of attributes have to be read but not the
IPs segments. This is an advantage since an IP segment is several times larger in
general than the other attributes segments. Hence, except for spot queries that
use non-indexed attributes, queries tend to be faster for larger segment sizes.

4.3 Compression

Our goal with using compression is not to achieve the best compression ratio nor
the best compression or decompression speed, but to obtain the highest records

NetStore: An Efficient Storage Infrastructure 293

insertion rate and the best query performance. We evaluated our compression
selection model by comparing performance when using a single method for all
the segments in the column, with the performance when using the compression
selection algorithm for each segment. To select the method for a column we com-
pressed first all the segments of the columns with all the six methods presented.
We then measured the access performance for each column compressed with each
method. Finally, we selected the compression method of a column, the method
that provides the best access times for the majority of the segments.

For the variable segments compression,we activated the methods selection mech-
anism for all columns and then we inserted the data, compressing each segment
based on the statistics of its own data rather than the entire column. In both cases
we did not change anything in the statistic collection process since all the statistics
were used in the query process for both approaches. We obtained on an average
10 to 15 percent improvement per query using the segment based compression
method selection model with no penalty for the insertion rate. However, we con-
sider the overall performance of compression methods selection model is satisfac-
tory and the true value resides in the framework implementation, being limited
only by the individual methods used not by the general model design. If the data
changes and other compression methods are more efficient for the new data, only
the compression algorithm and the operators that work on this compressed data
should be changed, with the overall architecture remaining the same. Some com-
mercial systems [19] apply on top of the value-based compressed columns another
layer of general binary compression for increased performance. We investigated
the same possibility and compared four different approaches to compression on
top of the implemented column oriented architecture: no compression, value-based
compression only, binary compression only and value-based plus binary compres-
sion on top of that. For the no compression case, we processed the data using the
same indexing structure and column oriented layout but with the compression
disabled for all the segments. For the binary compression only we compress each
segment using the generic binary compression. In the case of value-based com-
pression we compress all the segments having the dynamic selection mechanism
enabled, and for the last approach we apply another layer of generic compression
on top of already value-based compressed segments.

The results of our experiment for the four cases are shown in Figure 9. We can
see that compression is a determining factor in performance metrics. Using value-
based compression achieves the best average running time for the queries while
the uncompressed segments scenario yields the worst performance.We also see
that adding another compression layer does not help in query performance nor
in the insertion rate even though it provides better compression ratio. However,
the general compression method can be used for data aging, to compress and
archive older data that is not actively used.

Figure 7 shows the compression performance for different segment sizes and
how flow aggregation affects storage footprint. As expected, compression perfor-
mance is better for larger segment sizes in both cases, with and without aggrega-
tion. That is the case because of the compression methods used. The larger the

294 P. Giura and N. Memon

Fig. 8. Average query times for different

segment sizes and different query types

Fig. 9. Average query times for the com-

pression strategies implemented

segment, the longer the runs for column with few distinct values, the smaller the
dictionary size for each segment. The overall compression ratio of raw network
flow data for the segment size of 2 million records is 4.5 with no aggregation and
8.4 with aggregation enabled. Note that the size of compressed data includes also
the size of both indexing structures: column indexes and IPs index.

4.4 Comparison with Other Systems

For comparison we used the same data and performed a system-specific tuning
for each of the systems parameters. To maintain the insertion rate above our
target of 10,000 records/second we created three indexes for each Postgres and
Luciddb: one clustered index on startTime and two un-clustered indexes, one
on sourceIP and one on destIP attributes. Although we believe we chose good
values for the other tuning parameters we cannot guarantee they are optimal
and we only present the performance we observed. We show the performance for
using the data and the example queries presented in Section 4.2.

Table 3 shows the relative performance of NetStore compared to PostgresSQL
for the same data. Since our main goal is to improve disk resident data access,
we ran each query once for each system to minimize the use of cached data. The
numbers presented show how many times NetStore is better.

To maintain a fair overall comparison we created a PostgresSQL table for each
column of Netstore. As mentioned in [2], row-stores with columnar design provide
better performance for queries that access a small number of columns such as
the sample queries in Section 4.2. We observe that Netstore clearly outperforms

Table 3. Relative performance of NetStore versus columns only PostgreSQL and Lu-

cidDB for query running times and total storage needed

Q1 Q2 Q3 Q4 Q5 Storage

Postgres/NetStore 10.98 7.98 2.21 15.46 1.67 93.6

LucidDB/NetStore 5.14 1.10 2.25 2.58 1.53 6.04

NetStore: An Efficient Storage Infrastructure 295

PostgreSQL for all the query types providing the best results for queries access-
ing more attributes (e.g. Q1 and Q4) even though it uses 90 times more disk
space including all the auxiliary data. The poor PostgreSQL performance can
be explained by the absence of more clustered indexes, the lack of compression,
and the unnecessary tuple overhead.

Table 3 also shows the relative performance compared to LucidDB. We observe
that the performance gap is not at the same order of magnitude compared to
that of PostgreSQL even when more attributes are accessed. However, NetStore
performs clearly better when storing about 6 times less data. The performance
penalty of LucidDB can be explain by the lack of column segmentation design
and by early materialization in the processing phase specific to general-purpose
column stores. However we noticed that LucidDB achieves a significant perfor-
mance improvement for the subsequent runs of the same query by efficiently
using memory resident data.

5 Conclusion and Future Work

With the growth of network traffic, there is an increasing demand for solutions
to better manage and take advantage of the wealth of network flow information
recorded for monitoring and forensic investigations. The problem is no longer the
availability and the storage capacity of the data, but the ability to quickly extract
the relevant information about potential malicious activities that can affect net-
work security and resources. In this paper we have presented the design, implemen-
tation and evaluation of anovel working architecture, calledNetStore, that is useful
in the network monitoring tasks and assists in network forensics investigations.

The simple column oriented design of NetStore helps in reducing query pro-
cessing time by spending less time for disk I/O and loading only needed data.
The column partitioning facilitates the use of efficient compression methods for
network flow attributes that allow data processing in compressed format, there-
fore boosting query runtime performance. NetStore clearly outperforms existing
row-based DBMSs systems and provides better results that the general purpose
column oriented systems because of simple design decisions tailored for network
flow records. Experiments show that NetStore can provide more than ten times
faster query response compared to other storage systems while maintaining much
smaller storage size. In future work we seek to explore the use of NetStore for
new types of time sequential data, such as host log analysis, and the possibility
to release it as an open source system.

References

1. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in

column-oriented database systems. In: SIGMOD 2006: Proceedings of the 2006

ACM SIGMOD International Conference on Management of Data, pp. 671–682.

ACM, New York (2006)

296 P. Giura and N. Memon

2. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how differ-

ent are they really? In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, pp. 967–980. ACM, New York

(2008)

3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for

structured data. In: Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2006 (2006)

4. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream

database for network applications. In: SIGMOD 2003: Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data, pp. 647–651.

ACM, New York (2003)

5. Gates, C., Collins, M., Duggan, M., Kompanek, A., Thomas, M.: More netflow

tools for performance and security. In: LISA 2004: Proceedings of the 18th USENIX

Conference on System Administration, pp. 121–132. USENIX Association, Berke-

ley (2004)

6. Geambasu, R., Bragin, T., Jung, J., Balazinska, M.: On-demand view material-

ization and indexing for network forensic analysis. In: NETB 2007: Proceedings

of the 3rd USENIX International Workshop on Networking Meets Databases, pp.

1–7. USENIX Association, Berkeley (2007)

7. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:

Proceedings of IEEE International Conference on Data Engineering, pp. 370–379

(1998)

8. Halverson, A., Beckmann, J.L., Naughton, J.F., Dewitt, D.J.: A comparison of c-

store and row-store in a common framework. Technical Report TR1570, University

of Wisconsin-Madison (2006)

9. Holloway, A.L., DeWitt, D.J.: Read-optimized databases, in depth. Proc. VLDB

Endow. 1(1), 502–513 (2008)

10. Infobright Inc. Infobright, http://www.infobright.com
11. LucidEra. Luciddb, http://www.luciddb.org
12. Paxson, V.: Bro: A system for detecting network intruders in real-time. Computer

Networks, 2435–2463 (1998)

13. PostgreSQL. Postgresql, http://www.postgresql.org
14. Roesch, M.: Snort - lightweight intrusion detection for networks. In: LISA 1999:

Proceedings of the 13th USENIX Conference on System Administration, pp. 229–

238. USENIX Association, Berkeley (1999)

15. Ślȩzak, D., Wróblewski, J., Eastwood, V., Synak, P.: Brighthouse: an analytic data

warehouse for ad-hoc queries. Proc. VLDB Endow. 1(2), 1337–1345 (2008)

16. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,

Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.:

C-store: a column-oriented dbms. In: VLDB 2005: Proceedings of the 31st Inter-

national Conference on Very Large Data Bases, VLDB Endowment, pp. 553–564

(2005)

17. Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of net-

work traffic. In: USENIX, pp. 13–24 (1998)

18. Cisco Systems. Cisco ios netflow, http://www.cisco.com
19. Vertica Systems. Vertica, http://www.vertica.com
20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23, 337–343 (1977)

21. Zukowski, M., Boncz, P.A., Nes, N., Héman, S.: Monetdb/x100 - a dbms in the

cpu cache. IEEE Data Eng. Bull. 28(2), 17–22 (2005)

http://www.infobright.com
http://www.luciddb.org
http://www.postgresql.org
http://www.cisco.com
http://www.vertica.com

Live and Trustworthy Forensic Analysis of
Commodity Production Systems

Lorenzo Martignoni1, Aristide Fattori2,
Roberto Paleari2, and Lorenzo Cavallaro3

1 Università degli Studi di Udine, Italy

lorenzo.martignoni@uniud.it
2 Università degli Studi di Milano, Italy

{aristide,roberto}@security.dico.unimi.it
3 Vrije Universiteit Amsterdam, The Netherlands

sullivan@few.vu.nl

Abstract. We present HyperSleuth, a framework that leverages the vir-

tualization extensions provided by commodity hardware to securely per-

form live forensic analysis of potentially compromised production

systems. HyperSleuth provides a trusted execution environment that guar-

antees four fundamental properties. First, an attacker controlling the

system cannot interfere with the analysis and cannot tamper the results.

Second, the framework can be installed as the system runs, without a

reboot and without loosing any volatile data. Third, the analysis per-

formed is completely transparent to the OS and to an attacker. Finally,

the analysis can be periodically and safely interrupted to resume nor-

mal execution of the system. On top of HyperSleuth we implemented

three forensic analysis applications: a lazy physical memory dumper, a

lie detector, and a system call tracer. The experimental evaluation we

conducted demonstrated that even time consuming analysis, such as the

dump of the content of the physical memory, can be securely performed

without interrupting the services offered by the system.

1 Introduction

Kernel-level malware, which compromise the kernel of an operating system (OS),
are one of the most important concerns systems security experts have to fight
with, nowadays [1]. Being executed at the same privilege level of the OS, such
a malware can easily fool traditional analysis and detection techniques. For in-
stance, Shadow Walker exploits kernel-level privileges to defeat memory content
scanners by providing a de-synchronized view of the memory used by the mal-
ware and the one perceived by the detector [2].

To address the problem of kernel-level malware and of attackers that are able
to obtain kernel-level privileges, researchers proposed to run out-of-the-box anal-
yses by exploiting virtual machine monitor (VMM), or hypervisor, technology.
In such a context, the analysis is executed in a trusted environment, the VMM,
while the monitored OS and users’ applications, are run as a guest of the virtual
machine. Recently, this research direction has been strongly encouraged by the
introduction of hardware extensions for the x86 architecture that simplify the

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 297–316, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

298 L. Martignoni et al.

development of virtual machine monitors [3,4]. Since the hypervisor operates at a
higher privilege level than the guest OS, it has complete control of the hardware,
it can preemptively intercept events, it cannot be tampered by a compromised
OS, and therefore it can be used to enforce stronger protection [5,6,7,8, 9]. Ad-
vanced techniques, like the one used by Shadow Walker to hide malicious code,
are defeated using out-of-the-box memory content scanners. Unfortunately, all
the VMM-based solutions proposed in literature are based on the same assump-
tion: they operate proactively. In other words, the hypervisor must be started
before the guest OS and it must run until the guest terminates. Therefore, post-
infection analysis of systems that were not running such VMM-based protections
before an infection continues to be unsafe, because the malware and the tools
used for the analysis run at the same privilege level.

In this paper we propose HyperSleuth, a tool that exploits the VMM extensions
available nowadays (and typically unused) in commodity hardware, to securely
perform live forensic analyses of potentially compromised production systems.
HyperSleuth is executed on systems that are believed to be compromised, and
obtains complete and tamper-resistant control over the OS, by running at “ring
minus-one” (i.e., the hypervisor privilege level). HyperSleuth consists in (i) a
tiny hypervisor that performs the analysis and (ii) a secure loader that installs
the hypervisor and verifies that its code is not tampered during installation.
Like in virtualization-based malware, the hypervisor is installed on-the-fly: the
alleged compromised host OS is transformed into a guest as it runs [10]. Since
the hardware guarantees that the hypervisor is not accessible from the guest
code, HyperSleuth remains persistent in the system for all the time necessary to
perform the live analysis. On the contrary, other solutions proposed in literature
for executing verified code in untrusted environments are not persistent and thus
cannot guarantee that the verified code is not tampered when the execution
of the untrusted code is resumed [11, 12, 13]. By providing a persistent trusted
execution environment, HyperSleuth opens new opportunities for live and trusted
forensic analyses, including the possibility to perform analyses that require to
monitor the run-time behavior of the system. When the live analysis is concluded
positively (e.g., no malicious program is found), HyperSleuth can be removed
from the system and the OS, which was temporarily transformed into a guest
OS, becomes again the host OS. As for the installation, the hypervisor is removed
on-the-fly.

We developed a memory acquisition tool, a lie detector [6], and a system call
tracer on top of HyperSleuth, to show how our hardware-supported VMM-based
framework can be successfully used to gather volatile data even from production
systems whose services cannot be interrupted. To experimentally demonstrate
our claims about the effectiveness of HyperSleuth, we simulated two scenarios:
a compromised production system running a heavy-loaded DNS server and a
system infected by several kernel-level malware. We used HyperSleuth to dump
the content of the physical memory of the former and to detect the malware in
the latter. In the first case, HyperSleuth was able to dump the entire content of
the physical memory, without interrupting the services offered by the server. In
the second case, HyperSleuth detected all the infections.

Live and Trustworthy Forensic Analysis of Commodity Production Systems 299

Potentially
compromised host

Trusted host

1.
Load

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

Fig. 1. Overview of HyperSleuth execution

2 Overview

HyperSleuth should not be considered merely as a forensic tool, but rather as a
framework for constructing forensic tools. Indeed, its goal is to provide a trusted
execution environment for performing any live forensic analysis on production
systems. More precisely, the execution environment in which a forensic analysis
should be performed must guarantee four fundamental properties. First, the en-
vironment must guarantee a tamper-proof execution of the analysis code. That
is, an attacker controlling the system cannot interfere with the analysis and can-
not tamper the results. Second, it must be possible to perform an a-posteriori
bootstrap of the trusted execution environment, even after the system has been
compromised, and the bootstrap process itself must require no specific support
from the system. Third, the trusted execution environment must be completely
transparent to the system and to the attacker. Fourth, the trusted execution
environment must be persistent. That is, the analysis performed in the trusted
environment can be periodically interrupted, and the normal execution of the
system resumed. Practically speaking, that allows to analyze an alleged com-
promised system without freezing it and without interrupting the services it
provides. Moreover, such a property would allow to perform forensic analyses
that require to monitor the run-time behavior of the system. As we will briefly
see in the next sections, HyperSleuth fulfills all the aforementioned properties
and can thus be used to safely analyze any compromised system that meets the
requirements described in Section 2.3.

Figure 1 depicts the execution of HyperSleuth. HyperSleuth is installed and
executed on demand (step 1 in Figure 1), only when there is a suspect that the
host has been compromised, or in general when there is the necessity to perform
a live forensic analysis. The execution is characterized by two phases. In the first
phase (step 2 in Figure 1), HyperSleuth assumes complete control of the host
and establishes a Dynamic Root of Trust (DRT). That is accomplished with the
collaboration of a trusted host (located in the same local network). The trusted
host is responsible for attesting that the DRT has been correctly established. In
the second phase (steps 3–4 in Figure 1), HyperSleuth performs a specific live
forensic analysis and transmits the results of the analysis to the trusted host.
Since the trusted host has a proof that the DRT has been correctly established
and since, in turn, the DRT guarantees that the analysis code executes in the

300 L. Martignoni et al.

untrusted host untampered, the results of the analysis can be transitively con-
sidered authentic.

In the following, we briefly describe the architecture of HyperSleuth and how
it manages to assume and maintain complete control of the untrusted host.
Then, we describe the mechanism we use to bootstrap the dynamic root of
trust, and, finally, we describe the assumptions and the threat model under
which HyperSleuth runs.

2.1 HyperSleuth Architecture

HyperSleuth needs to be isolated from the host OS, to prevent any attack po-
tentially originating from a compromised system. Simultaneously, HyperSleuth
must be able to access certain resources of the host, to perform the requested
forensic analysis, and to access the network to transmit the result to the trusted
machine.

Figure 2 shows the position where HyperSleuth resides in the host. Since Hy-
perSleuth needs to obtain and maintain complete control of the host and needs
to operate with more privileges than the attacker, it resides at the lowest level:
between the hardware and the host OS. HyperSleuth exploits hardware virtu-
alization support available in commodity x86 CPUs [3, 4] (which is typically
unused). In other words, it executes at the privilege level of a Virtual Machine
Monitor (VMM) and thus it has direct access to the hardware and its isolation
from the host OS is facilitated by the CPU.

One of the peculiar features of HyperSleuth is the possibility to load and unload
the VMM as the host runs. This hot-plug capability is indeed a very important
feature: it allows to transparently take over an allegedly compromised system,
turning, on-the-fly, its host OS into a guest one, and vice-versa at will. This is
done without rebooting the system and thus preserving all those valuable run-
time information that can allow to discover a malware infection or an intrusion.
To do that, HyperSleuth leverages a characteristic of the hardware virtualization
support available in x86 CPUs that allows to launch a VMM at any time, even
when the host OS and users’ applications are already running. Once the VMM
is launched, the host becomes a guest of the VMM and the attacker loses her
monopoly of the system and any possibility to tamper the execution of the VMM
and the results of the forensic analysis.

The greyed portions in Figure 2 represent the trusted components in our sys-
tem. During the launch, HyperSleuth assumes complete control of virtual memory
management, to ensure that the host OS cannot access any of its private memory
locations. Moreover, HyperSleuth does not trust any existing software component
of the host. Rather, it contains all the necessary primitives to inspect directly
the state of the guest and to dialog with the network card to transmit data to
the trusted party.

Depending on the type of forensic analysis, the analysis might be performed
immediately after the launch, or it might be executed in multiple rounds, in-
terleaved with the execution of the OS and users’ applications. The advantage
of the latter approach over the former is that the host can continue its normal

Live and Trustworthy Forensic Analysis of Commodity Production Systems 301

Operating system kernel

User
process

User
process

User
process

Operating system kernel

User
process

User
process

User
process

HyperSleuth VMM

Load

Unload

Fig. 2. Overview of HyperSleuth architecture

activity while the analysis is being performed. Thus, the analysis does not result
in a denial of service and can also target run-time evolving characteristics of
the system. In both cases, when the analysis is completed, HyperSleuth can be
disabled and even unloaded.

2.2 HyperSleuth Trusted Launch

HyperSleuth’s launch process consists in enabling the VMM privilege level, in
configuring the CPU to execute HyperSleuth code at this level, and in configuring
the CPU such that all virtual memory management operations can be intercepted
and supervised by the VMM. Unfortunately, an attacker could easily tamper the
launch. For example, she could simulate a successful installation of the VMM and
then transmit fake analysis results to the trusted host. This weakness stems from
the fact that the launch process just described lacks an initial trusted component
on which we can rely to establish the DRT.

The approach we use to establish the DRT is based on a primitive for tamper
proof code execution. This primitive allows to create and to prove the establish-
ment of a minimalistic trusted execution environment that guarantees that the
code executed in this environment runs with maximum available privileges and
that no attacker can manipulate the code before and during the execution. We
use this primitive to create the environment to launch HyperSleuth and to prove
to the trusted host that we have established the missing trusted component and
that all subsequent operations are secured.

We currently rely on a pure software primitive that is based on a challenge
and response protocol and involves an external trusted host [14]. Alternatively,
a TPM-based hardware attestation primitive can be used for this purpose (e.g.,
Intel senter and AMD skinit primitives [3, 15]).

2.3 Requirements and Threat Model

Since HyperSleuth leverages hardware support for virtualization available in com-
modity CPUs, such support must be available on the system that must be

302 L. Martignoni et al.

analyzed1. To maximize the portability of HyperSleuth, we have designed it to
only require first generation of hardware facilities for virtualization (i.e., Hyper-
Sleuth does not require extensions for MMU and I/O virtualization). Clearly,
HyperSleuth cannot be used on systems on which virtualization support is al-
ready in use [16]. If a trusted VMM were already running on the host, the VMM
could be used directly to perform the analysis. On the other side, if a malicious
VMM were running on the host, HyperSleuth’s trusted launch would fail.

In order to launch HyperSleuth some privileged instructions must be executed.
That can be accomplished by installing a kernel driver in the target host. Note
that, in the unlikely case of a damaged system that does not allow to load any
kernel driver, alternative solutions for executing code in the kernel can be used
(e.g., the page-file attack [10]).

The threat model under which HyperSleuth operates takes into consideration
a very powerful attacker, e.g., an attacker with kernel-level privileges. Nonethe-
less, some assumptions were made while designing HyperSleuth. In particular, the
attacker does not operate in system management mode, the attacker does not
perform hardware-based attacks (e.g., a DMA-based attack), and the attacker
does not leverage an external and more powerful host to simulate the bootstrap
of the DRT. Some of these assumptions could indeed be relaxed by virtualizing
completely I/O devices using either a pure-software approach or recent hardware
support for devices virtualization (e.g., Intel VT-d), and by employing an hard-
ware trusted platform for code attestation (e.g., TPM), keeping HyperSleuth a
secure and powerful framework for performing forensic analysis of live data.

3 Implementation

The core of HyperSleuth is a minimalistic virtual machine monitor that is in-
stalled on the host while the OS and users’ applications are already running.
We achieve this goal by exploiting hardware support for virtualization available
in modern x86 CPUs. In this Section we describe how we have implemented
HyperSleuth on a system with an Intel x86 CPU with VT-x extensions.

3.1 Intel VT-x

Before presenting the details of HyperSleuth VMM implementation, we give a
brief overview of the hardware virtualization technology available in Intel x86
CPUs, called VT-x. AMD technology, named SVM, is very similar and differs
mostly in terms of terminology.

Intel VT-x separates the CPU execution into two modes of operation: VMX
root mode and VMX non-root mode. The VMM and the guest (OS and appli-
cations) execute respectively in root and non-root modes. Software executing in
both modes can operate in any of the four privilege levels that are supported
1 Although nowadays all consumer CPUs come with hardware support for virtual-

ization, in order to be usable, the support must be enabled via the BIOS. At the

moment we do not know how many manufactures enable the support by default.

Live and Trustworthy Forensic Analysis of Commodity Production Systems 303

by the CPU. Thus, the guest OS can execute at the highest CPU privilege and
the VMM can supervise the execution of the guest without any modification of
the guest. When a VMM is installed, the CPU switches back and forth between
non-root and root mode: the execution of the guest might be interrupted by
an exit to root mode and subsequently resumed by an enter to non-root mode.
After the launch, the VMM execution is never scheduled and exits to root-mode
are the only mechanism for the VMM to regain the control of the execution.
Like hardware exceptions, exits are events that block the execution of the guest,
switch from non-root mode to root mode, and transfer the control to the VMM.
However, differently from exceptions, the set of events triggering exits to root
mode can be configured dynamically by the VMM. Examples of exiting events
are exceptions, interrupts, I/O operations, and the execution of privileged in-
structions that access control registers or descriptor tables. Exits can also be
requested explicitly by the guest through a VMM call. Exits are handled by a
specific VMM routine that eventually executes an enter to resume the execution
of the guest. The state of the CPU at the time of an exit and of an enter is
stored in a data structure called Virtual Machine Control Structure, or VMCS.
This structure also controls the set of events triggering exists and the state of
the CPU for executing in root-mode.

In the typical deployment, the launch of the VMM consists of three steps.
First, the VMX root-mode is enabled. Second, the CPU is configured to execute
the VMM in root-mode. Third, the guests are booted in non-root mode. However,
Intel VT-x allows to launch a VMM at any time, thus giving the ability to
transform a running host into a guest of a VMM. The procedure for such a
delayed launch is the same as the one just described, with the exception of the
third step. The state of the CPU for non-root mode is set to the exact same state
of the CPU preceding the launch, such that, when the launch is completed, the
execution of the OS and its applications resumes in non-root mode. The inverse
procedure can be used to unload the VMM, disable VMX root-mode, and give
back full control of the system to the OS.

3.2 HyperSleuth VMM

HyperSleuth can be loaded at any time by exploiting the delayed launch feature
offered by the CPU. Figure 3 shows a simplified memory layout after the launch
of HyperSleuth. The environment for non-root mode, in which the OS and users’
application are executed, is left intact. The environment for root mode instead
is created during the launch and maintained isolated by the VMM. The VMCS
controls the execution contexts of both root and non-root modes. In the following
paragraphs we describe in details the steps required to launch the VMM, to
recreate the environment for running the OS and users’ applications, and to
enforce the isolation of root-mode from non-root mode.

VMM Launch. To launch HyperSleuth VMM in a running host we perform
the following operations. First, we allocate a fixed-size chunk of memory to hold
the data and code of the VMM. Second, we enable VMX root-mode. Third, we

304 L. Martignoni et al.

Physical memory

GDT/LDT

Page
table
Page
table
Page
table
Page
table

IDT

Data &
Code
Data &
Code

Data &
Code
Data &
Code

VMCS

Guest state
area

Host state
area

Control
fields

GDT/LDT

Page
table

IDT

Data &
Code

Non-root mode Root mode

Fig. 3. Memory layout after the launch of HyperSleuth; ��� denotes the CPU con-

texts stored in the VMCS, −→ denotes physical memory mappings, and denotes the

physical memory locations of the VMM that must not be made accessible to the guest.

create and initialize the VMCS. Fourth, we resume the normal execution of the
guest by entering non-root mode.

When, at the end of the launch, the CPU enters non-root mode, it loads
the context for executing the guest from the guest-state area of the VMCS.
The trick to load the VMM without interrupting the execution of the OS and
users’ applications is to set, in the VMCS, the context for non-root mode to the
same context in which the launch was initiated. The context in which the VMM
executes is instead defined by the host-state area of the VMCS. Like during an
enter, the CPU loads the context from the VMCS during an exit. The context
is created from scratch during the launch and the host-state area is configured
accordingly. In particular, we create and register a dummy Interrupt Descriptor
Table (to ignore interrupts that might occur during switches between the two
VMX modes), we register the Global and Local Descriptor Tables (we use the
same tables used in non-root mode), we register the address of the VMM entry
point (i.e., the address of the routine for handling exits), and we assign the stack.

The set of events that trigger exits to root-mode are defined in the execution
control fields of the VMCS. The configuration of these fields depends on the type
of the forensic analysis we want to perform and can be changed dynamically.

VMM Trusted Launch. Although on the paper the launch of the VMM
appears a very simple process, it requires to perform several operations. Such
operations must be performed atomically, otherwise a skilled attacker may in-
terfere with the whole bootstrap process and tamper VMM code and data. To
maximize HyperSleuth portability, we decided to address this problem using a
software-based primitive for tamper-proof code execution. The primitive we rely
on is thoroughly described in [14]. In a few words, the primitive is based on a
challenge-response protocol and a checksum function. The trusted host issues
a challenge for the untrusted system and the challenge consists in computing a

Live and Trustworthy Forensic Analysis of Commodity Production Systems 305

checksum. The result of the checksum is sent back to the trusted host. A valid
checksum received within a predefined time is the proof that a Trusted Comput-
ing Base (TCB) has been established on the untrusted system. The checksum
function is constructed such that the correct checksum value can be computed
in time only if the checksum function and the code for launching the VMM are
not tampered, and if the environment in which the checksum is computed and in
which the VMM launch will be performed guarantees that no attacker can inter-
rupt the execution and regain the control of the execution before the launch is
completed. Practically speaking, the correct checksum will be computed in time
only if the computation and the launch are performed with kernel privileges,
with interrupts disabled, and no VMM is running.

MMU Virtualization. In order to guarantee complete isolation of the VMM
from the guest, it is essential to ensure that the guest cannot access any of the
memory pages in use by the VMM (i.e., the crosshatched regions in Figure 3).
However, to perform any useful analysis, we need the opposite to be possible.

Although modern x86 CPUs provide hardware support for MMU virtualiza-
tion, we have opted for a software-based approach to maximize the portability
of HyperSleuth. The approach we use is based on the assumption that the direct
access to physical memory locations is not allowed by the CPU (with paging
enabled) and that physical memory locations are referenced through virtual ad-
dresses. The CPU maintains a mapping between virtual and physical memory
locations and manages the permissions of these locations through page tables.
By assuming the complete control of the page tables, the VMM can decide which
physical locations the guest can access. To do that, the VMM maintains a shadow
page table for each page table used by the guest, and tricks the guest into using
the shadow page table instead of the real one [17].

A shadow page table is a clone of the original page table and is used to
maintain a different mapping between virtual and host physical addresses and to
enforce stricter memory protections. In our particular scenario, where the VMM
manages a single guest and the OS has already filled the page tables (because
the VMM launch is delayed), the specific duty of the shadow page table is to
maintain as much as possible the original mapping between virtual and physical
addresses and to ensure that none of the pages assigned to the VMM is mapped
into a virtual page accessible to the guest. As described in Section 4, we also
rely on the shadow page table to restrict and trap certain memory accesses to
perform the live forensic analysis. The algorithm we currently use to maintain
the shadow page tables trades off performance for simplicity and is based on
tracing and simulating all accesses to tables.

Unrestricted Guest Access to I/O Devices. In the typical deployment,
physical I/O devices connected to the host are shared between the VMM and
one or more guests. In our particular scenario, instead, there is no need to share
any I/O device between the guest and the VMM: HyperSleuth executes batch and
interacts only with the trusted host via network. Thus, the guest can be given
direct and unrestricted access to I/O devices. Since the OS runs in non-root
mode, unmodified, and at the highest privilege level, it is authorized to perform

306 L. Martignoni et al.

I/O operations, unless the VMM configures the execution control fields of the
VMCS such that I/O operations cause exits to root-mode. By not doing so, the
VMM allows the guest OS to perform unrestricted and direct I/O. This approach
simplifies drastically the architecture of the VMM and, most importantly, allows
the OS to continue to perform I/O activities exactly as before, without any
additional overhead.

Direct Network Access. HyperSleuth relies on a trusted host to bootstrap
the dynamic root of trust and to store the result of the analysis. Since we are
assuming that no existing software component of the host can be trusted, the
only viable approach to communicate securely over the network is to dialog
directly with the network card. For this reason, HyperSleuth contains a mini-
malistic network driver that supports the card available on the host. All the
data transmitted over the network is encapsulated in UDP packets. Packets are
signed and encrypted automatically by the driver using a pre-shared key, which
we hardcode in HyperSleuth just before the launch.

As described in the previous paragraph, HyperSleuth does not virtualize hard-
ware peripherals, but it lets the guest to access them directly. Thus, the network
card must be shared transparently with the guest. In other words, to avoid in-
terferences with the network activity of the guest, HyperSleuth must save and
restore the original state of the card (i.e., the content of PCI registers), respec-
tively before and after using the network. To transmit a packet the driver writes
the physical address and the size of the packet to the appropriate control reg-
isters of the device. The driver then polls the status register of the device until
the transmission is completed. Polling is used because, for simplicity, we execute
all VMM code with interrupts disabled. Packets reception is implemented in the
same way.

VMM Removal. HyperSleuth can be completely removed from the system at
the end of the analysis. The removal essentially is the opposite process of the
launch. First, we disable VMX root-mode. Second, we deallocate the memory
regions assigned to the VMM (e.g., the Interrupt Descriptor Table, the stack,
and the code). Third, we update the context of the CPU such that the OS and
users’ applications can resume their normal execution. More precisely, we set the
context to that stored in the guest-state area of the VMCS, which reflects the
context of the CPU in non-root mode when the last exit occurred. Fourth, we
transfer the execution to a small snippet of code that deallocates the VMCS and
then transfers the control to where the execution was interrupted in non-root
mode.

4 Live Forensic Analysis

HyperSleuth operates completely in batch mode. The only user action required
is to copy an executable on the system to be analyzed and to fire its execution.
This executable is a loader that establishes the dynamic root of trust by creating
a tamper-proof execution environment and by using this environment to launch

Live and Trustworthy Forensic Analysis of Commodity Production Systems 307

the VMM. Note that, the loader is removed from the memory and the disk
to prevent malicious software to detect its presence. Once launched, the VMM
performs the forensic analysis, transmits the results to the trusted hosts and
then removes itself.

Although HyperSleuth VMM is completely transparent to the OS and users’
applications and it is removed after the end of the analysis, the launch of the
VMM is a slightly invasive process. Indeed, it requires to execute the loader
that in turn loads a kernel driver (to launch the VMM) and might start other
additional in-guest utilities. Our claim is that, considered the valuable volatile
information HyperSleuth can gather from the system, the little modifications its
installation produces to the state of the system are an acceptable compromise.
After all, no zero invasive solution for a posteriori forensic analysis exists.

Currently, HyperSleuth supports three live forensic applications: a lazy phys-
ical memory dumper, a lie detector, and a system call tracer. Clearly, all these
analyses could be performed also without the need of a dynamic root of trust and
the VMM. Indeed, there are several commercial and open source applications
with the same capabilities available, but, by operating at the same privilege level
of the OS kernel to analyze, they can easily be tampered by an attacker (with
the same privileges), and cannot thus provide the safety guarantees offered by
HyperSleuth.

4.1 Physical Memory Dumper

Traditional approaches for dumping the content of the physical memory are
typically based on kernel drivers or on FireWire devices. Unfortunately, both
approaches have a major drawback that limits their applicability to non pro-
duction systems. Dumping the content of the physical memory is an operation
that should be performed atomically, to guarantee the integrity of the dumped
data. Failing to achieve this would, in fact, enable an attacker to make arbitrary
modification to the content of the memory, potentially hampering any forensic
analysis of live data. On the other side, if the dump is performed atomically,
the system, and the services the system provides, will be blocked for the en-
tire duration of the dump. That is not desirable, especially if there is only a
marginal evidence that the system has been compromised. Being the dump very
time consuming, the downtime might be economically very expensive and even
dangerous.

To address this problem, we exploit HyperSleuth’s persistent trusted execu-
tion environment to implement a new approach for dumping lazily the content
of the physical memory. This approach guarantees that the state of the physical
memory dumped corresponds to the state of the memory at the time the dump
is requested. That is, no malicious process can “clean” the memory after Hy-
perSleuth has been installed. Moreover, being performed lazily, the dump of the
state of the memory does not monopolize the CPU and does not interrupt the
execution of the processes running in the system. In other words, HyperSleuth
allows to dump the content of the physical memory even of a production system
without causing any outage of the services offered by the system.

308 L. Martignoni et al.

1 switch (VMM exit reason)
2 case CR3 write:
3 Sync PT and SPT
4 for (v = 0; v < sizeof(SPT); v++)
5 if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])
6 SPT[v].Writable = 0;
7

8 case Page fault: // ’v’ is the faulty address
9 if (PT/SPT access)

10 Sync PT and SPT and protect SPTEs if necessary
11 else if (write access && PT[v].Writable)
12 if (!DUMPED[PT[v].PhysicalAddress])
13 DUMP(PT[v].PhysicalAddress);
14 SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;
15 else
16 Pass the exception to the OS
17

18 case Hlt:
19 for (p = 0; p < sizeof(DUMPED); p++)
20 if (!DUMPED[p])
21 DUMP(p); DUMPED[p] = 1;
22 break;

Fig. 4. Algorithm for lazy dump of the physical memory

The dump of the memory is transmitted via network to the trusted host. Each
page is fragmented, to fit the MTU of the channel, and labelled. The receiver
reassembles the fragments and reorders the pages to reconstruct the original bit-
stream image of the physical memory. To ease further analysis, the image pro-
duced by HyperSleuth is compatible with off-the-shelf tools for memory forensic
analysis (e.g., Volatility [18]).

The algorithm we developed for dumping lazily the content of the physical
memory is partially inspired by the technique used by operating systems for
handling shared memory and known as copy-on-write. The rationale of the algo-
rithm is that the dump of a physical memory page can be safely postponed until
the page is accessed for writing. More precisely, the algorithm adopts a com-
bination of two strategies to dump the memory: dump-on-write (DOW), and
dump-on-idle (DOI). The former permits to dump a page before it is modified
by the guest; the latter permits to dump a page when the guest is idle. Note
that the algorithm assumes that the guest cannot access directly the physical
memory. However, an attacker could still program a hardware device to alter the
content of the memory by performing a DMA operation. In our current threat
model we do not consider DMA-based attacks.

Figure 4 shows the pseudo-code of our memory dumper. Essentially the VMM
intercepts three types of events: updates of the page table address, page-fault
exceptions, and CPU idle loops. The algorithm maintains a map of the physical
pages that have already been dumped (DUMPED) and leverages the shadow page
table (SPT) to enforce stricter permissions than the ones specified in the real page
table (PT) currently used by the system. When the page table address (stored
in the CR3 register) is updated, typically during a context switch, the algorithm
synchronizes the shadow page table and the page table (line 3). Subsequently,
all the entries of the shadow page table mapping physical not yet dumped pages

Live and Trustworthy Forensic Analysis of Commodity Production Systems 309

are granted read-only permissions (lines 4–6). Such a protection ensures that
all the memory accesses performed by the guest OS for writing to any virtual
page mapped into a physical page that has not been dumped yet results in
a page fault exception. The VMM intercepts all the page fault exceptions for
keeping the shadow page table and the real page table in sync, for reinforcing
our write protection after every update of the page table (lines 9–10), and also
for intercepting all write accesses to pages not yet dumped (lines 11–14). The
latter type of faults are characterized by a write access to a non-writable virtual
page that is marked as writable in the real page table. If the accessed physical
page has not been dumped yet, the algorithm dumps the page and flags it as
such. All other types of page fault exceptions are delivered to the guest OS that
will manage them accordingly. Finally, the VMM detects CPU idle loops by
intercepting all occurrences of the hlt instruction. This instruction is executed
by the OS when there is no immediate work to be done, and it halts the CPU
until an interrupt is delivered. We exploit these short idle periods to dump the
pending pages (lines 19–22). It is worth noting that a loaded system might enter
very few idle loops. For this reason, at every context switch we check whether
the CPU has recently entered the idle loop and, if not, we force a dump of a
small subset of the pending pages (not shown in the figure).

4.2 Lie Detector

Kernel-level malware are particularly insidious as they operate at a very high
privilege level and can, in principle, hide any resource an attacker wants to
protect from being discovered (e.g., processes, network communications, files).
Different techniques exist to achieve such a goal (see [1]), but all of them aim at
forcing the OS to lie about its state, eventually. Therefore, the only effective way
to discover such liars is to compare the state of the system perceived from the
system itself with the state of the system perceived by a VMM. Unfortunately,
so far lie detection has been possible only using a traditional VMM and thus it
has not been applicable on production systems not already deployed in virtual
machine environments. On the other hand, HyperSleuth’s hot-plug capability of
securely migrating a host OS into a guest one (and vice-versa) on-the-fly makes
it a perfect candidate for detecting liars in production systems that had not been
deployed in virtual machine environments since the beginning.

To this end, besides launching the VMM, HyperSleuth loader runs a simple
in-guest utility that collects detailed information about the state of the system
and transmits its output to the trusted host. This utility performs the oper-
ations typically performed by system tools to display information about the
state of the system and intentionally relies on the untrusted code of the OS.
The intent is to trigger the malicious code installed by the attacker to hide any
malicious software component or activity. For example, this utility collects the
list of running processes, active networks connections, loaded drivers, open files
and registry keys, and so on. At the end of its execution, the utility performs a
VMM call to transfer the execution to the HyperSleuth VMM. At this point the
VMM collects the same information through OS-aware inspection. That is, the

310 L. Martignoni et al.

VMM does not rely on any untrusted code of the system, but rather implements
its own primitives for inspecting the state of the guest and, when possible, offers
multiple primitives to inspect the state of the same resource. For example it
offers primitives to retrieve the list of running processes/threads, each of which
relies on a different data structure available in the kernel. Finally, the trusted
host compares the views provided by the in-guest utility and the VMM.

Since the state of the system changes dynamically and since the in-guest utility
and the VMM does not run simultaneously, we repeat the procedure multiple
times, with a variable delay between each run to limit any measurement error.

4.3 System Call Tracer

System calls tracing has been widely recognized as a way to infer, observe, and
understand the behavior of processes [19]. Traditionally, system calls were in-
voked by executing software interrupt instructions causing a transition from
user-space to kernel-space. Such user-/kernel-space interactions can be inter-
cepted by HyperSleuth, as interrupt instructions executed by the guest OS in
VMX non-root mode cause an exit to VMX root mode, i.e., to the VMM.

Alternative and more efficient mechanisms for user-/kernel-space interactions
have been introduced by CPU developers, recently. Unfortunately, Intel VT-x
does not support natively the tracing of system calls invoked through the
sysenter/sysexit fast invocation interface used by modern operating systems.
The approach we use to trace system calls is thus inspired by Ether [5]. System
calls are intercepted through another type of exits: synthetic page fault excep-
tions. All system calls invocations go through a common gate, whose address
is defined in the SYSENTER EIP register. We shadow the value of this register
and set the value of the shadow copy to the address of a non-existent memory
location, such that all system calls invocations result in a page fault exception
and in an exit to root mode. The VMM can easily detect the reason of the fault
by inspecting the faulty address. When a system call invocation is trapped by
the VMM, it logs the system call and then resumes the execution of the guest
from the real address of SYSENTER EIP. To intercept returns from system calls
we mark the page containing the return address as not accessible in the shadow
page table. The log is transmitted via network to the trusted host.

5 Experimental Evaluation

We implemented a prototype of the VMM and of the routines for the three
analyses described in Section 4. Our current implementation of HyperSleuth is
specific for the Microsoft Windows XP (32-bit) operating system. While the core
of HyperSleuth is mostly OS-independent, the routines for the analysis (e.g.,
the enumeration of running processes and of active network connections) are
OS-dependent and may require to be slightly adapted to provide support for
different operating systems.

In this section we discuss the experimental results concerning the launch of
HyperSleuth, the lazy physical memory dumper, and the lie detector. To this

Live and Trustworthy Forensic Analysis of Commodity Production Systems 311

Fig. 5. Round-trip time of the queries performed against the compromised production

DNS server before (1) and after (2) the launch of HyperSleuth and (3–5) during the

lazy dump of the physical memory (the scale of the ordinate is logarithmic).

end, we simulated the compromised production system using an Intel Core i7,
with 3GB RAM, and a Realtek RTL8139 100Mbps network card. Note that we
disabled all cores of the CPU but one, since the VMM currently supports a single
core. We simulated the trusted host using a laptop. We used the trusted host to
attest the correct establishment of the dynamic root of trust and to collect and
subsequently analyze the results of the analysis.

5.1 HyperSleuth Launch and Lazy Dump of the Physical Memory

To evaluate the cost of launching HyperSleuth, the base overhead of the VMM,
and the cost of the lazy physical memory dumper we simulated the following
scenario. A production DNS server was compromised and we used HyperSleuth
to dump the entire content of the physical memory when the server was under
the heaviest possible load. We used an additional laptop, located on the same
network, to flood the DNS server with queries and to measure the instantaneous
round-trip time of the queries. About 20 seconds after we started the flood, we
launched HyperSleuth; 25 seconds later we started to dump the content of the
memory.

Figure 5 summarizes the results of our experiments. The graph shows the
round-trip time of the queries sent to the compromised DNS server over time.
For the duration of the experiment, the compromised machine was able to han-
dle all the incoming DNS queries, and no query timed out. Before launching
HyperSleuth the average round-trip time was ∼ 0.34ms (mark 1 in Figure 5).
Just after the launch, we observed an initial increase of the round-trip time to
about 0.19s (mark 2 in Figure 5). This increase was caused by the bootstrap
of the dynamic root of trust and then by the launch of the VMM, which must

312 L. Martignoni et al.

be performed atomically. After the launch, the round-trip time quickly stabi-
lized around 1.6ms, less than five times the round-trip time without the VMM.
The overhead introduced by the VMM was mostly caused by the handling of
the shadow page table. When we started the dump of the physical memory we
observed another and steeper peak (mark 3 in Figure 5). We were expecting
this behavior since there are a lot of writable memory pages that are frequently
accessed (e.g., the stack of the kernel and of the user-space processes and the
global variables of the kernel) and that, most likely, are written each time the
corresponding process is scheduled. Thus, the peak was caused by the massive
number of write accesses to pages not yet dumped. A dozen of seconds later the
round-trip time stabilized again around 1.6ms (mark 4 in Figure 5). That cor-
responds to the round-trip time observed before we started the dump. Indeed,
the most frequently written pages were written immediately after the dump was
started, and the cost of the dump of a single page was much less than the round-
trip time and was thus unnoticeable. The regular peaks around 32ms about
every second (mark 5 in Figure 5) were instead caused by the periodic dump of
non-written pages. Since the system was under heavy load, it never entered an
idle loop. Thus, the dump was forced after every second of uninterrupted CPU
activity. More precisely, the dumper was configured to dump 64 physical pages
about every second. Clearly, the number of non-written pages to be dumped
when either the system enters the idle loop, or the duration of uninterrupted
CPU activity hits a certain threshold, is a parameter that can be tuned accord-
ingly to the urgency of the analysis, to how critical the system is, and to the
throughput of the network.

In conclusion, the dump of the whole physical memory of the system (3GB of
RAM), in the setting just described, required about 180 minutes and the result-
ing dump could be analyzed using an off-the-shelf tool, such as Volatility [18].
The total time could be further decreased by increasing the number of physical
pages dumped periodically, at the cost of a higher average round-trip time. It
should also be pointed out that, on a 1Gbps network, we could increase the
number of physical pages dumped every second to 640, without incurring in any
additional performance penalty. In this case, the whole physical memory (3GB)
would be dumped in just ∼ 18 minutes. It is important to remark that although
HyperSleuth, and in particular the algorithm for dumping lazily the memory,
introduces a non-negligible overhead, we were able to dump the entire content
of the memory without interrupting the service (i.e., no DNS query timed out).
On the other hand, if the memory were dumped with traditional (atomic) ap-
proaches the dump would require, in the ideal case, about 24 seconds, 50 seconds,
and 4 minutes respectively on a 1Gbps network, on a 480Mbps FireWire chan-
nel, and on a 100Mbps network (these estimations are computed by dividing the
maximum throughout of the media by the amount of data to transmit). In these
cases, the production system would have not been able to handle any incoming
request, for the entire duration of the dump.

Live and Trustworthy Forensic Analysis of Commodity Production Systems 313

Table 1. Results of the evaluation of HyperSleuth’s lie detector with seven different

malware (all equipped with a root-kit component)

Sample Characteristics Detected?

FU DKOM �
FUTo DKOM �
HaxDoor DKOM, SSDT hooking, API hooking �
HE4Hook SSDT hooking �
NtIllusion DLL injection �
NucleRoot API hooking �
Sinowal MBR infection, Run-time patching �

5.2 Lie Detection

Table 1 summarizes the results of the experiments we performed to assess the
efficacy of the lie detection module. To this end, we used seven malware sam-
ples, each of which included a root-kit component to hide the malicious activity
performed on the infected system. We used HyperSleuth’s lie detector to detect
the hidden activities. The results testify that our approach can be used to detect
both user- and kernel-level root-kits.

For each malware sample we proceeded as follows. First, we let the malware
infect the untrusted system. Then, we launched HyperSleuth on the compromised
host and triggered the execution of the lie detector. The module performed the
analysis, first by leveraging the in-guest utility, and then by collecting the same
information directly from the VMM through OS-aware inspection. The results
were sent separately to the trusted host. On the trusted host we compared
the two views of the state of the system and, in all cases, we detected some
discrepancies between the two. These discrepancies were all caused by lies. That
is, the state visible to the in-guest utility was altered by the root-kit, while the
state visible to HyperSleuth VMM was not.

As an example, consider the FUTo root-kit. This sample leverages direct ker-
nel object manipulation (DKOM) techniques to hide certain kernel objects cre-
ated by the malware (e.g., processes) [1]. Our current implementation of the lie
detector counteracts DKOM through a series of analyses similar to those imple-
mented in RAIDE [20]. Briefly, those analyses consist in scanning some internal
structures of the Windows kernel that the malware must leave intact in order to
preserve its functionalities. Thus, when we compared the trusted with the un-
trusted view of the state of the system we noticed a process that was not present
in the untrusted view produced by the in-guest utility. Another interesting ex-
ample is NucleRoot, a root-kit that hooks Windows’ System Service Descriptor
Table (SSDT) to intercept the execution of several system calls and to filter out
their results, in order to hide certain files, processes, and registry keys. In this
case, by comparing the two views of the state of the system, we observed that
some registry keys related to the malware were missing in the untrusted view.
Although we have not yet any empirical proof, we speculate the even rootkits
like Shadow Walker [2] would be detected by our lie detector since our approach

314 L. Martignoni et al.

allows to inspect the memory directly, bypassing a malicious page-fault handler
and bogus TLBs’ entries.

6 Discussion

We presented HyperSleuth from a technical prospective. The decisions we made
in designing and implementing HyperSleuth were mostly motivated by the intent
of minimizing the dependencies on the hardware and of maximizing the porta-
bility. Therefore, we always opted for pure software-based approaches (e.g., to
secure the launch of the VMM and to virtualize the MMU), whenever possible.
However, since HyperSleuth is a framework for performing live forensic analyses,
it is important to reason about its probatory value. From such a prospective,
we must take into account that the trustworthiness of the results of the analy-
ses depends on the trust people have in the tool that generated the results. To
strengthen its probatory value, all HyperSleuth’s components should be verified
in order to prove that their code meets all the expectations [21]. At this aim,
in the future we plan to further decrease the size of HyperSleuth’s code base
in order to ease its verifiability (e.g., by leveraging hardware-based attestation
solutions, such as the TPM).

HyperSleuth’s effectiveness depends on the impossibility to detect its pres-
ence from the guest. Although the VMM is completely isolated from the guest,
the malware might attempt to detect HyperSleuth by trying to install another
VMM. One approach to contrast such attempts is to let the malware believe
that virtualization support is not available at all.

7 Related Work

The idea of leveraging a virtual machine monitor to perform sophisticated run-
time analyses, with the guarantee that the results cannot be tampered by a mali-
cious attacker, has already been widely explored in the literature. Garfinkel et al.
were the first to propose to use a VMM to perform OS-aware introspection [6],
and subsequently the idea was further elaborated [22, 5]. Other researchers in-
stead proposed to use a VMM to protect the guest OS from attacks by supervis-
ing its execution, both with a software-based VMM [8] and by leveraging hard-
ware support for virtualization [9]. Similar ideas were also suggested by other
authors [7, 23]. In [24] Chen et al. proposed a solution to protect applications’
data even in the presence of a compromised operating system. More recently, Va-
sudevan et al. proposed XTREC, a lightweight framework to record securely the
execution control flow of all code running in an untrusted system [25]. Unfortu-
nately, in order to guarantee that the analyses they perform cannot be tampered
by an attacker, all the aforementioned solutions must take control of the system
before the guest is booted, and cannot be removed until the guest is shut down.
On the contrary, HyperSleuth can be installed as the compromised system runs,
and, when the analyses are completed, it can be removed on-the-fly. The idea to
take advantage of the possibility to install a VMM on a running system was also

Live and Trustworthy Forensic Analysis of Commodity Production Systems 315

sketched in [26], and later investigated in our previous research work to realize
HyperDbg, a transparent kernel-level debugger [27].

Several researchers proposed to use VMMs to implement malware that are
particularly hard to detect and to eradicate. SubVirt was one of the first pro-
totypes that employed this technique [28]. However, being implemented using a
software-based VMM, the installation of Subvirt required to reboot the machine,
and the malware also introduced a noticeable run-time overhead in the infected
target. Later, the Blue Pill malware started to exploit the hardware-assisted sup-
ports for virtualization to implement an efficient VMM-based malware that is
able to infect a machine as it runs, without the need for reboot [10]. HyperSleuth
was inspired by this malware.

8 Conclusion

We presented HyperSleuth, a framework for constructing forensic tools that lever-
ages the virtualization extensions provided by commodity hardware to guaran-
tee that the results of the analyses cannot be altered, even by an attacker with
kernel-level privileges. HyperSleuth consists in a tiny hypervisor that is installed
on a potentially compromised system as it runs, and a secure loader that installs
the hypervisor and verifies its integrity. We developed a proof-of-concept pro-
totype of HyperSleuth and, on top of it, we implemented three forensic analysis
applications: a lazy physical memory dumper, a lie detector, and a system call
tracer. Our experimental evaluation testified the effectiveness of the proposed
approach.

References

1. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley

Professional, Reading (2005)

2. Sparks, S., Butler, J.: Shadow Walker. Raising The Bar For Windows Rootkit

Detection. Phrack Magazine 11(63) (2005)

3. AMD, Inc.: AMD Virtualization, www.amd.com/virtualization

4. Intel Corporation: Intel Virtualization Technology,

http://www.intel.com/technology/virtualization/

5. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware Analysis via Hard-

ware Virtualization Extensions. In: Proceedings of the 15th ACM Conference on

Computer and Communications Security (2008)

6. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture

for Intrusion Detection. In: Proceedings of the Network and Distributed Systems

Security Symposium. The Internet Society, San Diego (2003)

7. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An Architecture for Secure

Active Monitoring Using Virtualization. In: Proceedings of the IEEE Symposium

on Security and Privacy (2008)

8. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits

with VMM-Based Memory Shadowing. In: Proceedings of the 11th International

Symposium on Recent Advances in Intrusion Detection (2008)

www.amd.com/virtualization
http://www.intel.com/technology/virtualization/

316 L. Martignoni et al.

9. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Provide

Lifetime Kernel Code Integrity for Commodity OSes. In: Proccedings of the ACM

Symposium on Operating Systems Principles. ACM, New York (2007)

10. Rutkowska, J.: Subverting Vista Kernel For Fun And Profit. Black Hat USA (2006)

11. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An exe-

cution infrastructure for tcb minimization. In: Proceedings of the ACM European

Conference in Computer Systems (2008)

12. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:

Verifying integrity and guaranteeing execution of code on legacy platforms. In:

Proceedings of ACM Symposium on Operating Systems Principles (2005)

13. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: Swatt: Software-based attes-

tation for embedded devices. In: Proceedings of the IEEE Symposium on Security

and Privacy (2004)

14. Martignoni, L., Paleari, R., Bruschi, D.: Conqueror: tamper-proof code execution

on legacy systems. In: Proceedings of the Conference on Detection of Intrusions

and Malware and Vulnerability Assessment. LNCS. Springer, Heidelberg (2010)

15. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel

Press, Hillsboro (2009)

16. Carbone, M., Zamboni, D., Lee, W.: Taming virtualization. IEEE Security and

Privacy 6(1) (2008)

17. Smith, J.E., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Pro-

cesses. Morgan Kaufmann, San Francisco (2005)

18. Volatile Systems LLC: Volatility, http://www.volatilesystems.com/

19. Forrest, S., Hofmeyr, S.R., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix

Processes. In: Proceedings of the IEEE Symposium on Security and Privacy (1996)

20. Butler, J., Silberman, P.: RAIDE: Rookit analysis identification elimination. In:

Black Hat USA (2006)

21. Franklin, J., Seshadri, A., Qu, N., Datta, A., Chaki, S.: Attacking, Repairing, and

Verifying SecVisor: A Retrospective on the Security of a Hypervisor. Technical

Report, Carnegie Mellon University (2008)

22. Jiang, X., Wang, X.: “out-of-the-box” monitoring of VM-based high-interaction

honeypots. In: Proceedings of the International Symposium on Recent Advances

in Intrusion Detection (2007)

23. Sharif, M., Lee, W., Cui, W., Lanzi, A.: Secure In-VM Monitoring Using Hard-

ware Virtualization. In: Proceedings of the ACM Conference on Computer and

Communications Security (2009)

24. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,

Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: a virtualization-based ap-

proach to retrofitting protection in commodity operating systems. Operating Sys-

tems Review 42(2) (2008)

25. Perrig, A., Gligor, V., Vasudevan, A.: XTREC: secure real-time execution trace

recording and analysis on commodity platforms. Technical Report, Carnegie Mellon

University (2010)

26. Sahita, R., Warrier, U., Dewan, P.: Dynamic software application protection. Tech-

nical Report, Intel Corporation (2009)

27. Fattori, A., Paleari, R., Martignoni, L., Monga, M.: HyperDbg: a fully transparent

kernel-level debugger, http://code.google.com/p/hyperdbg/

28. King, S.T., Chen, P.M., Wang, Y.M., Verbowski, C., Wang, H.J., Lorch, J.R.:

SubVirt: Implementing malware with virtual machines. In: Proceedings of IEEE

Symposium on Security and Privacy (2006)

http://www.volatilesystems.com/
http://code.google.com/p/hyperdbg/

Hybrid Analysis and Control of Malware

Kevin A. Roundy and Barton P. Miller

Computer Sciences Department

University of Wisconsin

{roundy,bart}@cs.wisc.edu

Abstract. Malware attacks necessitate extensive forensic analysis ef-

forts that are manual-labor intensive because of the analysis-resistance

techniques that malware authors employ. The most prevalent of these

techniques are code unpacking, code overwriting, and control transfer

obfuscations. We simplify the analyst’s task by analyzing the code prior

to its execution and by providing the ability to selectively monitor its

execution. We achieve pre-execution analysis by combining static and

dynamic techniques to construct control- and data-flow analyses. These

analyses form the interface by which the analyst instruments the code.

This interface simplifies the instrumentation task, allowing us to reduce

the number of instrumented program locations by a hundred-fold relative

to existing instrumentation-based methods of identifying unpacked code.

We implement our techniques in SD-Dyninst and apply them to a large

corpus of malware, performing analysis tasks such as code coverage tests

and call-stack traversals that are greatly simplified by hybrid analysis.

Keywords: malware analysis, forensics, hybrid, de-obfuscation, packed

code, self-modifying code, obfuscated code.

1 Introduction

Malicious software infects computer systems at an alarming rate, causing eco-
nomic damages that are estimated at more than ten billion dollars per year [1].
Immediately upon discovering a new threat, analysts begin studying its code to
determine damage done and information extracted, and ways to curtail its im-
pact; analysts also study the malware so they can recover infected systems and
construct defenses. Thus, a primary goal of malware authors is to make these
tasks as difficult and resource intensive as possible. This explains why 90% of
malware binaries employ analysis-resistance techniques [9], the most prevalent of
which are the run-time unpacking of compressed and encrypted code, run-time
modifications to existing code, and obfuscations of control transfers in the code.
Security companies detect thousands of new malware samples each day [45], yet
despite the importance and scale of this problem, analysts continue to resort to
manual-labor intensive methods.

Analysts accomplish their tasks by studying the malware’s overall structure
to identify the relevant code and then analyzing it thoroughly. Unfortunately,
analysis-resistance techniques force the analyst out of the usual mode of binary

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 317–338, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

318 K.A. Roundy and B.P. Miller

analysis, which involves statically analyzing the binary prior to instrumenting
regions of interest and performing a controlled execution of the program. Instead,
the analyst must execute the malicious code to analyze it, as static analysis
can fail to analyze dynamically generated, modified, and obfuscated code. The
analyst must therefore construct a virtual environment that allows the malware
to interact with other hosts and that is sufficiently convincing that the malware
will display its normal behavior while executing in isolation from the outside
world. Many analysts prefer the analyze-then-execute model and therefore resort
to expending considerable manual effort to strip analysis-resistance features from
malicious binaries [12,40].

The goal of our research is to simplify malware analysis by enabling a return to
the traditional analyze-then-execute model, which has the benefit of bringing the
malicious code under the analyst’s control before it executes. We address these
goals by combining static and dynamic techniques to construct and maintain
the control- and data-flow analyses that form the interface through which the
analyst understands and instruments the code. A key feature of our approach
is its ability to update these analyses to include dynamically unpacked and
modified code before it executes. Our work makes the following contributions:

– Pre-execution analysis and instrumentation makes it possible for the analyst
to control the execution of malicious code. For example, our work allows
interactions with other infected hosts to be simulated through instrumenta-
tion’s ability to patch the program, removing the need for complex virtual
environments involving multiple hosts. Additionally, our work can comple-
ment a virtualization strategy by identifying and disabling the malware’s
attempts to detect its virtual-machine environment [36].

– We give the analyst the ability to instrument malware intuitively and effi-
ciently by providing data-flow analysis capabilities and a control flow graph
(CFG) as an interface to the code. For example, the CFG allows us to find
transitions to dynamically unpacked code by instrumenting the program’s
statically unresolved control transfers (see Section 5). By contrast, prior
instrumentation-based unpacking tools did not maintain a CFG and there-
fore had to monitor all of the program’s control transfers and memory writes
to detect the execution of code that is written at run-time [23,41]. We achieve
a hundred-fold reduction in the number of monitored program locations.

– Our structural analysis allows analysts to be selective in the components
they monitor, the operations in those components that they select, and in
the granularity of data they collect. Current tools that can monitor analysis-
resistant malware do not provide flexible instrumentation mechanisms; they
trace the program’s execution at a uniform granularity, either providing fine-
grained traces at the instruction or basic-block level [17,36], or coarse grained
traces (e.g., at interactions with the OS) [52]. These tools either bog the
analyst down with irrelevant information (a significant problem for inexpe-
rienced analysts [42]), or can only give a sketch of the program’s behavior.

– By combining static and dynamic techniques we allow the analyst to find and
analyze code that is beyond the reach of either static or dynamic analysis

Hybrid Analysis and Control of Malware 319

alone, thereby providing a fuller understanding of the malware’s possible
behavior. Prior combinations of static and dynamic analysis only operate on
non-defensive code, and only find and disassemble the code [34] or produce
their analysis results only after the program has fully executed [28].

Analysts have controlled and monitored malicious code either by executing the
malware in a process that they control through the debugger interface [44], or by
executing the malware in a virtual machine [36]. There are advantages to both
approaches. The debugger approach makes it easy to collect process information
and intercept events, and allows for the creation of lightweight tools that do
not have to worry about anti-emulation techniques [36]. Among the benefits of
virtual machines are that they isolate the underlying system from the malware’s
effects, they provide the ability to revert the machine to a clean state or to
a decision point, and allow for stealthy monitoring of the program’s execution
[17,36]. While in this paper we demonstrate an instrumentation and analysis tool
that executes malicious processes through the debugger interface, our techniques
are orthogonal to this choice and benefit both scenarios. For example, in the
former case, pre-execution analysis and control allows the analyst to limit the
damage done to the system, while the latter case benefits from the ability to
detect and disable anti-emulation techniques.

Our analysis and instrumentation tool is not the first to analyze code prior to
its execution (e.g., Dyninst [22], Vulcan [48]), but existing tools rely exclusively
on static analysis, which can produce incomplete information even for binaries
that are generated by standard compilers. Despite recent advances in identi-
fying functions in stripped compiler-generated binaries, on the average, 10% of
the functions generated by some compilers cannot be recognized by current tech-
niques [43], and even costly dataflow analyses such as pointer aliasing may be
insufficient to predict the targets of pointer-based control transfers [5,21].

Most malware binaries make analysis and control harder by employing the
analysis-resistance techniques of code packing, code overwriting, and control
transfer obfuscations. Code packing techniques, wherein all or part of the bi-
nary’s malicious code is compressed (or encrypted) and packaged with code that
decompresses the malicious payload into the program’s address space at run-
time, are present in 75% of all malware binaries [8,50]. Dealing with dynamic
code unpacking is complicated by programs that unpack code in stages, by the
application of multiple code-packing tools to a single malicious binary, and by
a recent trend away from well-known packing tools, so that most new packed
binaries use custom packing techniques [9,10].

To further complicate matters, many packing tools and malicious programs
overwrite code at run-time. While code unpacking impacts static analysis by
making it incomplete, code overwriting makes the analysis invalid and incom-
plete. A static analysis may yield little information on a self-modifying program,
as potentially little of the code is exposed to analysis at any point in time [2].

Malware often uses control-transfer obfuscations to cause static analysis algo-
rithms to miss and incorrectly analyze large swaths of binary code. In addition to
the heavy use of indirect control transfers, obfuscated binaries commonly include

320 K.A. Roundy and B.P. Miller

non-conventional control transfer sequences (such as the use of the return instruc-
tion as an indirect jump), and signal- and exception-based control transfers [18].
Additionally, malicious binaries and packers often contain hand-written assem-
bly code that by its nature contains more variability than compiler-generated
code, causing problems for most existing code-identification strategies, as they
depend on the presence of compiler-generated instruction patterns [24,43].

We analyze binaries by first building a CFG of the binary through static pars-
ing techniques. As the binary executes, we rely on dynamic instrumentation and
analysis techniques to discover code that is dynamically generated, hidden by ob-
fuscations, and dynamically modified. We then re-invoke our parsing techniques
to update our CFG of the program, identifying the new code and presenting
the updated CFG to the analyst. The structural information provided by our
analysis allows us to discover new code by instrumenting the program lightly,
only at control transfer instructions whose targets cannot be resolved through
static analysis, making our tool’s execution time comparable to that of existing
unpacking tools despite the additional cost that we incur to provide an updated
CFG. (see Section 8).

Other analysis resistance techniques that can be employed by malicious
program binaries include anti-debugging checks, anti-emulation checks, timing
checks, and anti-tampering (e.g., self-checksumming) techniques. Since our cur-
rent implementation uses the debugger interface, we have neutralized the com-
mon anti-debugging checks [18]. In practice, anti-debugging and timing checks
leave footprints that are evident in our pre-execution analysis of the code and
that the analyst can disable with the instrumentation capabilities that we pro-
vide. Our research is investigating multiple alternatives for neutralizing the effect
of anti-tampering techniques, but this work is beyond the scope of this paper.

We proceed by discussing related work in Section 2 and we give an overview
of our techniques and algorithm in Section 3. Our code-discovery techniques
are described in Sections 4-7. In Section 8 we show the utility of our approach
by applying our tool to analysis-resistant malware, and to synthetic samples
produced by the most prevalent binary packing tools. We conclude in section 9.

2 Related Work

Our work is rooted in the research areas of program binary analysis, instrumen-
tation, and unpacking.

Analysis. Static parsing techniques can accurately identify 90% or more of the
functions in compiler-generated binaries despite the lack of symbol information
[43], but are much worse at analyzing arbitrarily obfuscated code [24,51], and
cannot analyze the packed code that exists in most malicious binaries [9]. Thus,
most malware analysis is dynamic and begins by obtaining a trace of the pro-
gram’s executed instructions through single-step execution [17], dynamic instru-
mentation [41], or the instrumentation capabilities of a whole-system emulator
[32]. The resulting trace is used to construct an analysis artifact such as a vi-
sualization of the program’s unpacking behavior [42], a report of its operating

Hybrid Analysis and Control of Malware 321

system interactions [6], or a representation that captures the evolving CFG of
a self-modifying program [4]. As these analysis artifacts are all produced after
monitoring the program’s execution, they are potential clients of our analysis-
guided instrumentation techniques rather than competitors to them.

Madou et al. [28] and Cifuentes and Emmerik [13] combine static and dynamic
techniques to identify more code than is possible through either technique alone.
Madou et al. start from an execution trace and use control-flow traversal parsing
techniques to find additional code, whereas Cifuentes and Emmerik start with
speculative static parsing and use an instruction trace to reject incorrect parse
information. Their hybrid approaches to CFG-building are similar to ours in
spirit, but they analyze only code that is statically present in the binary as they
lack the ability to capture dynamically unpacked and overwritten code.

Instrumentation. Existing tools that provide analysis-guided binary instru-
mentation [22,49,48] cannot instrument code that is obfuscated, packed, or self-
modifying, as their code identification relies exclusively on static analysis. Our
tool uses Dyninst’s [22] dynamic instrumentation and analysis capabilities, up-
dating its analysis of the code through both static and dynamic code-capture
techniques, prior to the code’s execution.

The BIRD dynamic instrumenter [34] identifies binary code by augmenting
its static parse with a run-time analysis that finds code by instrumenting control
transfers that could lead to unknown code areas. BIRD works well on compiler-
generated programs, but does not handle self-modifying programs and performs
poorly on programs that are packed or obfuscated, as it is not optimized for ex-
tensive dynamic code discovery (it uses trap instructions to instrument all return
instructions and other forms of short indirect control transfers that it discovers
at runtime). BIRD also lacks a general-purpose interface for instrumentation
and does not produce analysis tools for the code it identifies.

Other dynamic instrumentation tools forgo static analysis altogether, instead
discovering code as the program executes and providing an instruction-level in-
terface to the code (e.g., PIN [27], Valgrind [7]). These tools can instrument
dynamically unpacked and self-modifying code, but do not defend against
analysis-resistance techniques [18]. As with BIRD, the lack of a structural anal-
ysis means that it is difficult to selectively instrument the code and that it may
not be possible to perform simple-sounding tasks like hooking a function’s return
values because compiler optimizations (and obfuscations) introduce complexities
like shared code, frameless functions, and tail calls in place of return statements.

Unpacking. The prevalence of code packing techniques in malware has driven
the creation of both static and dynamic approaches for detecting packed mali-
cious code. Some anti-virus tools (e.g., BitDefender [8]) create static unpackers
for individual packer tools at significant expense, but this approach will not scale
with the explosive growth rate of new packing approaches [9,35]. Anti-virus tools
also employ “X-Ray” techniques that can statically extract the packed contents
of binaries that employ known compression schemes or weak encryption [37].
Coogan et al. [15] use static analysis to extract the unpacking routine from a

322 K.A. Roundy and B.P. Miller

packed binary and then use the extracted routine to unpack it. These static ap-
proaches are unsuccessful when confronted with malware that employs multiple
packing layers (e.g., Rustock [12]), and Coogan et al.’s static techniques are also
unable to deal with heavily obfuscated code [33,46].

Most dynamic unpacking tools take the approach of detecting memory loca-
tions that are written to at run-time and later executed as code. OmniUnpack
[30], Saffron [41], and Justin [20] approach the problem at a memory-page gran-
ularity by modifying the operating system to manipulate page write and execute
permissions so that both a write to a page and a subsequent execution from that
page result in an exception that the tool can intercept. This approach is efficient
enough that it can be used in an anti-virus tool [30], but it does not identify
unpacked code with much precision because of its memory-page granularity.

Other unpackers identify written-then-executed code at a byte level by tracing
the program’s execution at a fine granularity and monitoring all memory writes.
EtherUnpack [17] and PolyUnpack [44] employ single-step execution of the bi-
nary, whereas Renovo [23] and “Saffron for Intel-PIN” [41] use the respective
instruction-level instrumentation capabilities of the Qemu whole-system emula-
tor [7] and the PIN instrumenter [27]. By contrast, our analysis-guided instru-
mentation allows us to unpack and analyze program binaries with a hundred-fold
reduction in instrumented program locations and comparable execution times.

3 Technical Overview

Our hybrid algorithm combines the strengths of static and dynamic analysis. We
use static parsing techniques to analyze code before it executes, and dynamic
techniques to capture packed, obfuscated, and self-modifying code. Hybrid anal-
ysis allows us to provide analysis-guided dynamic instrumentation on analysis-
resistant program binaries for the first time, based on the following techniques:

Parsing. Parsing allows us to find and analyze binary code by traversing stati-
cally analyzable control flow starting from known entry points into the code. No
existing algorithm for binary code analysis achieves high accuracy on arbitrarily
obfuscated binaries, so we create a modified control-flow traversal algorithm [47]
with a low false-positive rate. Our initial analysis of the code may be incomplete,
but we can fall back on our dynamic capture techniques to find new entry points
into the code and use them to re-seed our parsing algorithm.

Dynamic Capture. Dynamic capture techniques allow us to find and analyze
code that is missed by static analysis either because it is not generated until
run-time or because it is not reachable through statically analyzable control flow.
Our static analysis of the program’s control flow identifies control transfer in-
structions that may lead to un-analyzed code; we monitor these control transfers
using dynamic instrumentation, thereby detecting any transition to un-analyzed

Hybrid Analysis and Control of Malware 323

1. Load the program into memory, paused at its entry point

2. Remove debugging artifacts

3. Parse from known entry points

4. Instrument newly discovered code

5. Resume execution of the program

6. Handle code discovery event, adding new entry points

7. Goto 3

Fig. 1. Algorithm for binary code discovery, analysis, and instrumentation

code in time to analyze and instrument it before it executes. This approach is
similar to BIRD’s [34], but monitors a smaller set of control transfers.

Code Overwrite Monitoring. Code overwrites invalidate portions of an ex-
isting code analysis and introduce new code that has not yet been analyzed. We
adapt DIOTA’s [29] mechanism for detecting code overwrites by write-protecting
memory pages that contain code and handling the signals that result from write
attempts. Accurately detecting when overwriting ends is important, as it allows
us to update our analysis only once when large code regions are overwritten in
small increments. We detect the end of code overwriting in a novel way by using
our structural analysis of the overwrite code to detect any loops that enclose the
write operations, allowing us to delay the analysis update until the loop exits.

Signal- and Exception-Handler Analysis. We use dynamic analysis to re-
solve signal- and exception-based control transfer obfuscations [18,38]. We detect
signal- and exception-raising instructions and find their dynamically registered
handlers through standard techniques, and then add the handlers to our analysis
and instrument them to control their execution.

Figure 1 illustrates how we combine the above techniques into an iterative
algorithm that allows us to provide analysis-guided dynamic instrumentation
of analysis-resistant program binaries. The key feature of this algorithm is that
it allows all of the program’s code to be analyzed and instrumented before it
executes. Our algorithm’s incremental instrumentation of the code is similar
to Mirgorodskiy and Miller’s use of “self-propelled instrumentation” to trace a
program’s execution [31], but we also analyze and instrument analysis-resistant
code, whereas they can instrument only statically analyzable code.

4 Parsing

The purpose of our parsing algorithm is to accurately identify binary code and
analyze the program’s structure, producing an interprocedural control flow graph
of the program. Existing parsing techniques for arbitrarily obfuscated code have
attempted to identify code with good accuracy and coverage, and have come up
short on both counts [24]. Instead, we prioritize accurate code identification, as
an incorrect parse can cause incorrect program behavior by leading to the instru-
mentation of non-code bytes, and is ultimately not very useful. The competing

324 K.A. Roundy and B.P. Miller

goal of good coverage is relatively less important, because our dynamic tech-
niques compensate for lapses in coverage by capturing statically un-analyzable
code at run-time and triggering additional parsing.

Control-flow traversal parsing [47] is the basis for most accurate parsing tech-
niques, but it makes three unsafe assumptions about control flow that can re-
duce its accuracy. First, it assumes that function-call sites are always followed by
valid code sequences. Compilers violate this assumption when generating calls to
functions that they know to be non-returning, while obfuscated programs (e.g.,
Storm Worm [39]) often contain functions that return to unexpected locations
by tampering with the call stack [25]. Second, the algorithm assumes that con-
trol flow is only redirected by control transfer instructions. Obfuscated programs
often use an apparently normal instruction to raise a signal or exception, thereby
transferring control to code that is hidden in a signal or exception handler [18].
The handler can further obfuscate control flow by telling the operating system to
resume execution away from the signal- or exception-raising instruction, poten-
tially causing non-code bytes to be parsed following the instruction [38]. Third,
the algorithm assumes that both targets of conditional branch instructions can
be taken and therefore contain valid code. Program obfuscators can exploit this
assumption by creating branches with targets that are never taken, thereby di-
luting the analysis with junk code that never executes [14].

In our experience with analysis-resistant binaries, we have found that by far
the most targeted vulnerability is the assumption that code follows each call
instruction, and we have addressed this vulnerability in our current parsing
algorithm. We detect and resolve signal- and exception-based obfuscations at
run-time (see Section 7), when we analyze and instrument any hidden code
and correct our analysis to include the obfuscated control transfer. The use of
branches with targets that are never taken dilutes the analysis with junk code
but has thus far not been a problem for our hybrid analysis and instrumentation
techniques. Our ongoing work will improve upon our parser’s accuracy by adding
static detection of some fault-based control transfers and never-taken branch
targets, thereby making our instrumentation of the program safer and more
efficient. In the meantime, our current parsing algorithm achieves significant
accuracy improvements relative to existing techniques for parsing obfuscated
code, allowing us to analyze and instrument most analysis-resistant programs.

Non-returning Calls. When a called function either never returns or returns
to an unexpected location by tampering with the call stack [25], one or more junk
bytes may follow the function call site. The simplest approach to this problem
would be to adopt the assumption made by BIRD [34] and Kruegel et al.’s
obfuscated code parser [24], that function calls never return, and then rely on
run-time monitoring of return instructions to discover code that follows call sites.
This runtime-discovery approach is taken by BIRD, and while it is our technique
of last resort, our data-flow analysis of called functions can often tell us whether
the function will return, and to where, thereby increasing the code coverage
attained through parsing and avoiding unnecessary instrumentation.

Hybrid Analysis and Control of Malware 325

push ADDR pop ebp

... inc ebp

retn push ebp

retn

(a) (b)

Fig. 2. Code sequences that tamper with return addresses on the call stack

We take advantage of the depth-first nature of our parsing algorithm to use
the analysis of called functions in deciding whether or not to continue parsing
after call instructions. We do not resume parsing after the call site if our analysis
of the called function contains no return instructions, or if our static call stack
analysis [26] of the function detects that it tampers with the stack. Our call-stack
analysis emulates the function’s stack operations to detect whether the function
alters its return address, either by overwriting the address or by imbalancing the
call stack. Figure 2 illustrates two call-stack tampering tricks used by the ASPack
packer that are easily detected by our analysis. Figure 2a shows an instruction
sequence that transfers control to ADDR upon executing the return instruction,
while Figure 2b shows a sequence that increments the return address of a function
by a single byte. In both cases, our call-stack analysis informs the parser of the
actual return address of the called function, and the byte immediately following
the call site is not parsed as code.

5 Dynamic Capture

Having found and analyzed as much of the code as possible by traversing the
program’s statically analyzable control flow, we turn to dynamic capture tech-
niques to find code that is not statically analyzable. Statically un-analyzable
code includes code that is present in the binary but is reachable only through
pointer-based address calculations, and code that is not initially present because
it is dynamically unpacked. Our approach to both problems lies in monitoring
those control transfers whose targets are either unknown or invalid when we
originally parse them. More precisely, we use dynamic capture instrumentation
to monitor the execution of instructions that meet one of the following criteria:

– Control transfer instructions that use registers or memory values to deter-
mine their targets. Obfuscated programs often used indirect jump and call
instructions to hide code from static analysis. For example, the FSG packer
has an indirect function call for every 16 bytes of bootstrap code. We deter-
mine whether indirect control transfers leave analyzed code by resolving their
targets at run-time with dynamic instrumentation. In the case of indirect call
instructions, when our parser cannot determine the call’s target address, it
also cannot know if the call will return, so it conservatively assumes that it
does not; our instrumentation allows us to trigger parsing both at call target
and after the call site, if we can determine that the called function returns.

326 K.A. Roundy and B.P. Miller

– Return instructions of possibly non-returning functions. Return instructions
are designed to transfer execution from a called function to the caller at the
instruction immediately following the call site; unfortunately they can be
misused by tampering with the call stack. As detailed in Section 4, during
parsing we attempt to determine whether called functions return normally
so that we can continue parsing after call sites to those functions. If our
analysis is inconclusive we instrument the function’s return instructions.

– Control transfer instructions into invalid or uninitialized memory regions.
Control transfers to dynamically unpacked code can appear this way, as code
is often unpacked into uninitialized (e.g., UPX) or dynamically allocated
memory regions (e.g., NSPack). Our instrumentation of these control transfer
instructions executes immediately prior to the transfer into the region, when
it must contain valid code, allowing us to analyze it before it executes.

– Instructions that terminate a code sequence by reaching the end of initialized
memory. Some packer tools (e.g., UPack) and custom-packed malware (e.g.,
Rustock [12]) transition to dynamically unpacked code without executing a
control transfer instruction. These programs map code into a larger memory
region so that a code sequence runs to the end of initialized memory without
a terminating control transfer instruction. The program then unrolls the re-
mainder of the sequence into the region’s uninitialized memory so that when
it is invoked, control flow falls through into the unpacked code. We trigger
analysis of the unpacked instructions by instrumenting the last instruction
of any code sequence that ends without a final control transfer instruction.

Our dynamic capture instrumentation supplies our parser with entry points into
un-analyzed code. Before extending our analysis by parsing from these new entry
points, we determine whether the entry points represent un-analyzed functions
or if they are extensions to the body of previously analyzed functions. We treat
call targets as new functions, and treat branch targets as extensions to existing
functions (unless the branch instruction and its target are in different memory
regions). The target of a non-obfuscated return instruction is always immediately
preceded by an analyzed call instruction, in which case we parse the return
instruction’s target as an extension of the calling function. When a return target
is not immediately preceded by a call instruction, we conclude that the call stack
has been tampered with and parse the target as a new function.

Cost issues arise from our use of the Dyninst instrumentation library [22]
because it monitors programs from a separate process that contains the analy-
sis and instrumentation engine. The problem is that our code-discovery instru-
mentation requires context switching between the two processes to determine
whether monitored control transfers lead to new or analyzed code. We reduce
this overhead by caching the targets of these instructions in the address space of
the monitored program, and context switching to Dyninst only for cache misses.

6 Response to Overwritten Code

Code overwrites cause significant problems for binary analysis. Most analysis tools
cannot analyze overwritten code because they rely on static CFG representations

Hybrid Analysis and Control of Malware 327

(a) The monitored program over-
writes an instruction. We have
removed write permissions from
code pages to cause code over-
writes to raise access rights vio-
lations.

(b) A correct but inefficient ap-
proach that updates the CFG in
response to each code write, trig-
gering major processing.

(c) Our optimized handler in-
struments the loop’s exit points
with callbacks to our CFG up-
dater and restores write permis-
sions to the overwritten page.

(d) When writing completes, the
instrumentation at a loop exit
triggers a callback to our CFG
updater.

Fig. 3. Our approach to detecting code writes is shown in Figure 3a, alternative meth-

ods for responding to code writes are shown in Figures 3b and 3c-3d.

of the code. Code overwrites cause problems for CFGs by simultaneously invali-
dating portions of the CFG and introducing new code that has yet to be analyzed.
We have developed techniques to address this problem by updating the program’s
CFG and analyzing overwritten code before it executes.

To analyze overwritten code before it executes, we can either detect the mod-
ified instructions immediately prior to their execution, by checking whether the
bytes of each executed instruction have changed [44], or detect writes to code
as soon as they occur, by monitoring write operations to analyzed code re-
gions. Monitoring each instruction for changes is expensive because it requires
single-step execution of the program. Fortunately, we can efficiently detect write
operations that modify code by adapting DIOTA’s techniques for intercepting
writes to executable code regions [29]. DIOTA monitors writes to all memory

328 K.A. Roundy and B.P. Miller

pages that are writable and executable by removing write permissions from those
pages, thereby causing writes that might modify code to raise an access-rights
violation that DIOTA intercepts. As illustrated in Figure 3a, we have adapted
this mechanism for packed binaries, which typically mark most of their memory
as writable and executable, by removing write permissions only from memory
pages that contain analyzed code.

A näıve approach based on monitoring writes to code pages might respond to
write attempts by emulating each write and immediately updating the analysis,
as shown in Figure 3b. Doing so is undesirable for efficiency reasons. Large code
regions are often overwritten in small increments, and updating the CFG in
response to every code write is unnecessarily expensive, as the analysis does not
need to be updated until the overwritten code is about to execute. Instead, we
catch the first write to a code page but allow subsequent writes, delaying the
update to the window between the end of code overwriting and the beginning of
modified code execution. This delayed-update approach divides our response to
code overwrites into two components that we now describe in detail: a handler
for the access-rights violation resulting from the first write attempt, and a CFG
update routine that we trigger before the modified code executes.

6.1 Response to the Initial Access-Rights Violation

When a write to a code page results in an access-rights violation, our first task is
to handle the exception. We disambiguate between real access-rights violations
and protected-code violations by looking at the write’s target address. Protected-
code violations are artificially introduced by our code-protection mechanism and
we handle them ourselves to hide them from the monitored program. For real
access-rights violations we apply the techniques of Section 7 to analyze the reg-
istered handler and pass the signal or exception back to the program.

Our handler also decides when to update the CFG, attempting to trigger
the update after the program has stopped overwriting its code, but before the
modified code executes. A straightforward approach would be to restore write
permissions for the overwritten page and remove execute permissions from the
page, thereby causing a signal to be raised when the program attempts to execute
code from the overwritten page (similar to the approach taken by OmniUnpack
[30], Justin [20], and Saffron [41]). Unfortunately, this approach fails in the com-
mon case that the write instruction writes repeatedly to its own page, when this
approach effectively devolves into single-step execution. Instead, we apply the
techniques shown in Figures 3c and 3d to detect the end of overwriting, and delay
updating the CFG until then. We perform inter-procedural loop analysis on the
execution context of the faulting write instruction to see if the write is contained
in a loop, in which case we instrument the loop’s exit edges with callbacks to
our CFG update routine. We allow subsequent writes to the write-target’s code
page to proceed unimpeded, by restoring the page’s write permissions. When the
write loop terminates, one of the loop’s instrumented exit edges causes the CFG
update routine to be invoked. We take extra precautions if the write loop’s code
pages intersect with the overwritten pages to ensure that the write loop does not

Hybrid Analysis and Control of Malware 329

modify its own code. We safeguard against this case by adding bounds-check in-
strumentation to all of the loop’s write operations so that any modification of
the loop’s code will immediately trigger our CFG update routine.

Our handler’s final task is to save a pre-write copy of the overwritten memory
page, so that when writing completes, the CFG update routine can identify the
page’s modified instructions by comparing the overwritten page to the pre-write
copy of the page. If the loop writes to multiple code pages, the first write to each
code page results in a separate invocation of our protected-code handler, which
triggers the generation of a pre-write copy of the page, and associates it with
the write loop by detecting that the write instruction lies within it. Our handler
then restores write permissions to the new write-target page and resumes the
program’s execution. When the write loop finally exits, instrumentation at one
of its exit edges triggers a callback to our CFG update routine.

6.2 Updating the Control Flow Graph

We begin updating our analysis by determining the extent to which the code has
been overwritten. We identify overwritten bytes by comparing the overwritten
code pages with our saved pre-write copies of those pages, and then detemine
which of the overwritten bytes belong to analyzed instructions. If code was over-
written, we clean up the CFG by purging it of overwritten basic blocks and of
blocks that are only reachable from overwritten blocks. We analyze the modified
code by seeding our parser with entry points into the modified code regions. We
then inform the analyst of the changes to the program’s CFG so that the new
and modified functions can be instrumented. After adding our own dynamic cap-
ture instrumentation to the new code, we again remove write permissions from
the overwritten pages and resume the monitored program’s execution.

7 Signal- and Exception-Handler Analysis

Analysis-resistant programs are often obfuscated by signal- and exception-based
control flow. Static analyses cannot reliably determine which instructions will
raise signals or exceptions, and have difficulty finding signal and exception han-
dlers, as they are usually registered (and often unpacked) at run-time. Current
dynamic instrumentation tools do not analyze signal and exception handlers
[27,29], whereas we analyze them and provide analysis-based instrumentation on
them. This ability to analyze and control the handlers is important on analysis-
resistant binaries because the handlers may perform tasks that are unrelated to
signal and exception handling (e.g., PECompact overwrites existing code).

Signal and exception handlers can further obfuscate the program by redirect-
ing control flow [38]. When a signal or exception is raised, the operating system
gives the handler context information about the fault, including the program
counter value. The handler can modify this saved PC value to cause the OS to
resume the program’s execution at a different address. As shown in step 3 of
Figure 4, this technique is used by the “Yoda’s Protector” packer to obfuscate

330 K.A. Roundy and B.P. Miller

1:A store to address 0 causes an access vio-
lation and the OS saves the fault’s PC on
the call stack.
1a: The OS informs the attached SD-

Dyninst process of the exception.
1b: SD-Dyninst analyzes the registered

exception handler, instruments its
exit points, and returns to the OS.

2:The OS calls the program’s exception
handler.

3:The handler overwrites the saved PC with
the address of the program’s original en-
try point.
3a: Instrumentation at the handler’s exit

point invokes SD-Dyninst.
3b: SD-Dyninst detects the modified PC

value, analyzes the code at that ad-
dress, and resumes the handler’s ex-
ecution.

4:The handler returns to the OS.
5:The OS resumes the program’s execution

at the modified PC value, which is the
program’s original entry point.

Fig. 4. The normal behavior of an exception-based control transfer used by Yoda’s

Protector is illustrated in steps 1-5. Steps 1a-1b and 3a-3b illustrate SD-Dyninst’s

analysis of the control transfer through its attached debugger process.

its control transfer to the program’s original entry point (OEP) [16]. Yoda’s Pro-
tector raises an exception, causing the OS to invoke Yoda’s exception handler.
The handler overwrites the saved PC value with the address of the program’s
OEP, causing the OS to resume the program’s execution at its OEP.

Analyzing Signal- and Exception-Based Control Flow. We find and ana-
lyze handlers by intercepting signals and exceptions at run-time. Signal and ex-
ception interception is possible whether we observe the malware’s execution from
a debugger process or virtual machine monitor (VMM). In our current implemen-
tation, SD-Dyninst is apprised of raised signals and exceptions through standard
use of the debugger interface. A VMM-based implementation would automat-
ically be apprised of signals and exceptions, and would use VM-introspection
techniques to detect which of them originate from malicious processes [19].

As shown in Figure 4, upon notification of the signal or exception, we analyze
and instrument the program’s registered handlers. We find handlers in Windows
programs by traversing the linked list of structured exception handlers that is
on the call stack of the faulting thread. Finding handlers is even easier in Unix-
based systems because only one handler can be registered to each signal type.
We analyze the handler as we would any other function, and mark the faulting
instruction as an invocation of the handler.

We guard against the possibility that the handler will redirect control flow
by instrumenting it at its exit points. After analyzing the handler, but before
it executes, we insert our exit-point instrumentation (step 1b of Figure 4). We
inform the analyst’s tool of the signal or exception and of the newly discovered
handler code so that it can add its own instrumentation. We then return control

Hybrid Analysis and Control of Malware 331

to the OS, which invokes the program’s exception handler. When the handler is
done executing, our exit-point instrumentation triggers a callback to our anal-
ysis engine (steps 3a-3b of Figure 4), where we check for modifications to the
saved PC value. If we detect a change, we analyze the code at the new address,
instrument it, and allow the analyst to insert additional instrumentation.

8 Experimental Results

We evaluated our techniques by implementing them in SD-Dyninst and applying
it to real and synthetic malware samples. We show that we can efficiently ana-
lyze obfuscated, packed, and self-modifying code by applying our techniques to
the binary packer tools that are most heavily used by malware authors, compar-
ing these results to two of the most efficient existing tools. We demonstrate the
usefulness of our techniques by using SD-Dyninst to create a malware analysis
factory that we apply to a large batch of recent malware samples. Our analy-
sis factory uses instrumentation to construct annotated program CFG’s and a
stackwalk at the program’s first socket communication.

8.1 Analysis of Packer Tools

Packed binaries begin their execution in highly obfuscated metacode that is often
self-modifying and usually unpacks itself in stages. The metacode decompresses
or decrypts the original program’s payload into memory and transfers control to
the payload code at the original program’s entry point.

Table 1 shows the results of applying our techniques to the packer tools that
are most often used to obfuscate malicious binaries, as determined by Panda
Research for the months of March and April 2008, the latest dates for which
such packer statistics were available [10]. We do not report results on some of
these packers because they incorporate anti-tampering techniques such as self-
checksumming, and SD-Dyninst does not yet incorporate techniques for hiding
its use of dynamic instrumentation from anti-tampering. We excluded NullSoft’s
installer tool (with 3.58% market share) from this list because it can be used to
create binaries with custom code-unpacking algorithms; though we can handle
the analysis-resistance techniques contained in most NullSoft-based packers, we
cannot claim success on all of them based on successful analysis of particular
packer instances. We also excluded the teLock (0.63% market share) and the
Petite (0.25% market share) packer tools, with which we were unable to produce
working binaries. The total market share of the packer tools listed by Panda
Research is less than 40% of all malware, while at least 75% of malware uses some
packing method [8,50]. This discrepancy is a reflection both of the increasing
prevalence of custom packing methods and a limitation of the study, which
relied on a signature-based tool to recognize packer metacode [11]; most custom
packers are derivatives of existing packer tools, which are often modified with
the express purpose of breaking signature-based detection.

In Table 1 we divide the execution time of the program into pre- and post-
payload execution times, representing the time it takes to execute the binaries’

332 K.A. Roundy and B.P. Miller

Table 1. Our analysis techniques applied to the most prevalent packer tools used to

obfuscate malware. We analyzed all of the packed binaries that do not employ anti-

tampering techniques.

Malware Over- Anti Time (seconds)

market writes tamper- Pre- Pre-payload Post-payload

Packer share code ing exec’n instr. uninstr. instr. uninstr.

UPX 9.45% 23.44 0.50 0.02 2.80 0.02

PolyEnE 6.21% 22.55 1.24 0.02 2.81 0.02

EXECryptor 4.06% yes yes

Themida 2.95% yes yes

PECompact 2.59% yes yes 22.81 3.16 0.02 2.81 0.02

UPack 2.08% yes 22.56 23.50 0.03 4.08 0.02

nPack 1.74% 23.21 1.54 0.02 2.80 0.02

ASPack 1.29% yes 22.58 4.42 0.02 2.81 0.02

FSG 1.26% 22.53 1.38 0.03 2.78 0.02

Nspack 0.89% 22.52 2.69 0.03 2.78 0.02

ASProtect 0.43% yes yes

Armadillo 0.37% yes yes

Yoda’s Protector 0.33% yes yes

WinUPack 0.17% yes 22.44 23.60 0.03 4.10 0.02

MEW 0.13% 22.56 3.87 0.03 2.80 0.02

metacode and payload code, respectively. In the uninstrumented case, we deter-
mine the proper time split by using a priori knowledge of the packed program to
breakpoint its execution at the moment that control transfers from its metacode
to its payload code. In the instrumented case, our code-discovery instrumenta-
tion automatically identifies this transition by capturing the control transfer to
the payload code. We report on SD-Dyninst’s pre-execution cost separately, as
one of the major benefits of incorporating static analysis techniques into our
approach is that we are able to frontload much of the analysis of the program
so that it does not affect the program’s execution time.

The most striking differences in Table 1 are in the pre-payload cost incurred
by SD-Dyninst from one packer to the next. These differences are proportional
to the number of occasions in which we discover and analyze new code in the
metacode of these binaries. Our instrumentation of the UPX, PolyEnE, nPack,
and Nspack packers caused little slowdown in their execution, as their metacode
is static and not obfuscated in ways that substantially limit our ability to parse
them prior to their execution, while the FSG, MEW, ASPack, UPack, and Win-
Upack packers are more heavily obfuscated and unpack in stages, requiring that
we analyze their code incrementally. The largest contributor to the incremental
analysis cost is SD-Dyninst’s current inability to resolve the targets of indirect
control transfers at parse time, coupled with a simplifying implementation
decision to instrument whole functions at a time, meaning that discovery of
a new basic block currently causes its entire function to be re-instrumented.
SD-Dyninst’s performance will improve significantly in the near future through

Hybrid Analysis and Control of Malware 333

Table 2. A comparison of pre-payload execution times and instrumented program

locations in SD-Dyninst, Renovo, Saffron, and EtherUnpack on packed executables.

Pre-payload time Instrumented locations

Packer SD-D. Ren. Saff. Ether SD-D. Ren. Saff.

UPX 0.5 5 2.7 7.6 6 2,278 4,526

ASPack 4.4 5 fail 18.7 34 2,045 4,141

FSG 1.6 8 1.4 31.1 14 18,822 31,854

WinUpack 23.6 8 23.5 67.8 23 18,826 32,945

MEW 4.0 6 fail 150.5 22 21,186 35,466

the addition of code-slicing capabilities to Dyninst, which will allow SD-Dyninst
to resolve many indirect control transfers at parse time.

In Table 2 we compare the overall expense of our techniques to the most
efficient tools for identifying dynamically unpacked and modified code, Renovo
[23], “Saffron for Intel PIN” [41], and EtherUnpack [17]. We executed Saffron
and EtherUnpack on our own hardware, but the Renovo tool is not yet publicly
available, so we compared against Renovo’s self-reported execution times for
packed notepad.exe executables, limiting this comparison to the top packer tools
that they also analyzed in their study. We ran SD-Dyninst and Saffron on an Intel
Core 2 Duo T2350 1.6GHz CPU with 2.5GB of memory, while Renovo’s study
was conducted on an Intel Core 2 Duo E6660 2.4GHz CPU with 4GB memory
and EtherUnpack executed on an Intel Xeon E5520 2.27GHz CPU with 6GB of
memory. These numbers reflect the post-startup time it took for SD-Dyninst,
Renovo, Saffron, and EtherUnpack to execute the instrumented metacode of the
various packer tools.

As seen in Table 2, except in the case of our unoptimized analysis of the Win-
Upack executable, our pre-payload execution times are comparable to those of
Renovo, Saffron, and EtherUnpack despite the fact that our tool also analyzes
the code while the other tools only identify its dynamically unpacked portions.
The Saffron unpacker only partially unpacked the ASPack and MEW executa-
bles, as it quits at the first occurrence of written-then-executed code.

The savings afforded by our use of analysis-guided instrumentation help to
amortize our analysis costs. Saffron instruments the program at every instruc-
tion, while Renovo instruments at all control transfers and at all write instruc-
tions (EtherUnpack’s single-step mechanism does not rely on instrumentation).
We estimated Saffron’s use of instrumentation by modifying its source code to
maintain a count of unique instrumented instructions, and estimated Renovo’s
use of instrumentation based on their algorithm description, by instrumenting
the packed programs to maintain a count of unique control transfer and write
instructions. Table 2 shows that our structural analysis allows us to instrument
the program at fewer than a 100th of the locations instrumented by Saffron and
Renovo, because our structural analysis allows us to limit our use of instrumen-
tation to instructions whose targets are statically unresolved.

334 K.A. Roundy and B.P. Miller

8.2 Malware Analysis

Accomplishing an analysis task using SD-Dyninst requires no more skill from the
analyst than performing the same task with Dyninst on a conventional binary. We
wrote a malware analysis factory that uses SD-Dyninst to perform code-coverage
of malicious program executions by instrumenting every basic block in the pro-
gram, (both statically present and dynamically unpacked blocks) and removing
the instrumentation once it has executed. This instrumentation code consists of
only fifty lines. Our factory halts the malware at the point that it attempts its
first network communication, exits, or reaches a 30-minute timeout. At this time,
the factory prints out a traversal of the program’s call stacks and outputs a CFG
of the binary that identifies calls to Windows DLL functions and is annotated to

(a) The entire CFG. (b) CFG excerpt showing Conficker’s basic blocks and
its calls to system libraries. Basic blocks that have ex-
ecuted are shown in red blocks, non-executed blocks
are in light-grey, and API functions are shown as white
rectangles.

Fig. 5. Two views of Conficker A’s control flow graph. The CFG in part (a) can be

explored in an interactive viewer, as shown in the excerpt from part (b).

top pc=0x7c901231 DbgBreakPoint 0x7c901230 in ntdll.dll [Win DLL]

pc=0x10003c83 DYNbreakPoint 0x10003c70 in dyn RT.dll [Instrument.]

pc=0x100016f7 DYNstopThread 0x10001670 in dyn RT.dll [Instrument.]

pc=0x71ab2dc0 select 0x71ab2dc0 in WS2 32.dll [Win DLL]

base pc=0x401f34 func=nosym1f058 0x41f058 in cf.exe [Conficker]

Fig. 6. An SD-Dyninst stack walk taken when the Conficker A binary executes

Winsock’s select routine. The stack walk includes frames from our instrumentation,

select, and Conficker.

Hybrid Analysis and Control of Malware 335

distinguish between blocks that have executed and those that have not. If the mal-
ware fails to send a network packet, we verify our analysis by comparing against a
trace of the malware’s execution to ensure that our analysis reaches the same point.

We set up our malware analysis factory on an air-gapped system with a 32-bit
Intel-x86 processor running Windows XP with Service Pack 2 inside of VMWare
Server. We then analyzed 200 malware samples that were collected by Offensive
Computing [3] in December 2009. Our tool detected code unpacking in 27%
of the samples, code overwrites in 16%, and signal-based control flow in 10%.
33% of the malicious code analyzed by our hybrid techniques was not part of
the dynamic execution trace and would not have been identified by dynamic
analysis. For the malware samples that attempted to communicate with the
network, our analysis factory walked their call-stacks to identify the code in the
malicious executable that triggered the network communication.

As an example of the kinds of results produced by our factory, in Fig-
ures 5 and 6 we show two of its analysis products for the Conficker A
malware binary. Our factory created similar analysis products for all the
other malware binaries that we analyzed, and these can be viewed online at
http://www.paradyn.org/SD_Dyninst/. In Figure 5a we show the annotated
CFG of the Conficker A binary in its entirety, while Figure 5b shows an excerpt
of that graph, highlighting the fact that SD-Dyninst has captured static and
dynamic code, both code in the executable and code in Windows DLL’s, and
both code that has executed and code that has not executed but that may be
of interest to the analyst. Figure 6 shows our traversal of Conficker’s call stacks
at its first call to the select routine. As seen in this stack trace, we are able to
identify the stack frames of functions that lack symbol information, an impor-
tant benefit of our analysis capabilities. While existing stackwalking techniques
are accurate only for statically analyzable code [26], our hybrid analysis enables
accurate stackwalking by virtue of having analyzed all of the code that could be
executing at any given time.

9 Conclusion

We create a hybrid analysis algorithm that makes it possible to analyze and
control the execution of malicious program binaries in a way that is both more
intuitive and more efficient than existing methods. Our combination of static
and dynamic analysis allows us to provide analysis-guided instrumentation on
obfuscated, packed, and self-modifying program binaries for the first time. We
implemented these ideas in SD-Dyninst, and demonstrated that they can be
applied to most of the packing tools that are popular with current malware.
We demonstrated the usefulness of our techniques by applying SD-Dyninst to
produce analysis artifacts for the Conficker A binary that would have required
substantial manual effort to produce through alternative methods.

Ongoing research in the Dyninst project promises to address the two primary
limitations of this work. First, our instrumentation’s changes to the program’s
address space can be detected through anti-tampering techniques such as self-
checksumming. The second problem is that our parsing techniques assume that

http://www.paradyn.org/SD_Dyninst/

336 K.A. Roundy and B.P. Miller

the targets of conditional control transfers always represent real code, meaning
that the obfuscation proposed by Collberg et al. [14] could be used to pollute
our parse with non-code bytes, potentially causing us to instrument data and
causing the program to malfunction. Both of these problems are being addressed
by a piece of ongoing research in Dyninst that will ensure that the presence of
instrumentation will not impact a program’s data accesses.

Two additional analysis-resistance techniques that merit discussion are anti-
debugging and timing checks. Several Windows API and system calls can be
used to detect the presence of a debugger. Invocations of such functions are
easily detected by SD-Dyninst instrumentation and we have disabled those we
have come across, but from the literature [18] we know there are additional anti-
debugging methods that our current implementation does not disable. Timing
checks similarly depend on Windows API calls, system calls, and special-purpose
instructions that are easily detected by SD-Dyninst. However, we have not had to
disable timing checks, as most existing checks are tuned to detect the significant
slowdowns incurred by single-step debugging techniques and are not triggered
by our more efficient instrumentation-based techniques. It is possible that fu-
ture timing checks could detect the slowdown caused by our algorithm’s online
analysis, in which case we could adapt Ether’s [17] clock emulation techniques
to hide the slowdown from the program.

Acknowledgments

This work is supported in part by Department of Energy grants DE-SC0004061,
08ER25842, 07ER25800, DE-SC0003922, Department of Homeland Security
grant FA8750-10-2-0030 (funded through AFRL), and National Science Founda-
tion Cybertrust grants CNS-0627501, and CNS-0716460.

The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

References

1. Computer economics 2007 malware report: The economic impact of viruses, spy-

ware, adware, botnets, and other malicious code (2007)

2. Darkparanoid virus (1998)

3. Offensive computing, http://www.offensivecomputing.net

4. Anckaert, B., Madou, M., Bosschere, K.D.: A model for self-modifying code. In:

Information Hiding, Alexandria, VA, pp. 232–248 (2007)

5. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: In-

ternational Conference on Compiler Construction, New York, NY, pp. 5–23 (2004)

6. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.

Journal in Computer Virology 2(1), 66–77 (2006)

7. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual

Technical Conference, Anaheim, CA, pp. 41–46 (2005)

8. BitDefender: BitDefender anti-virus technology. White Paper (2007)

9. Bustamante, P.: Malware prevalence. Panda Research web article (2008)

10. Bustamante, P.: Packer (r)evolution. Panda Research web article (2008)

http://www.offensivecomputing.net

Hybrid Analysis and Control of Malware 337

11. Bustamante, P.: Personal correspondence (2009)

12. Chiang, K., Lloyd, L.: A case study of the rustock rootkit and spam bot. In: First

Conference on Hot Topics in Understanding Botnets, Cambridge, MA (2007)

13. Cifuentes, C., Emmerik, M.V.: UQBT: adaptable binary translation at low cost.

Computer 33(3), 60–66 (2000)

14. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and

stealthy opaque constructs. In: Symposium on Principles of Programming Lan-

guages, San Diego, CA, pp. 184–196 (1998)

15. Coogan, K., Debray, S., Kaochar, T., Townsend, G.: Automatic static unpacking

of malware binaries. In: Working Conference on Reverse Engineering, Antwerp,

Belgium (2009)

16. Danehkar, A.: Inject your code into a portable executable file (2005),

http://www.codeproject.com/KB/system/inject2exe.aspx

17. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware analysis via hard-

ware virtualization extensions. In: Conference on Computer and Communications

Security, Alexandria, VA (2008)

18. Ferrie, P.: Anti-unpacker tricks. In: International CARO Workshop. Amsterdam,

Netherlands (2008)

19. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture

for intrusion detection. In: Network and Distributed System Security Symposium,

San Diego, CA (2003)

20. Guo, F., Ferrie, P., Chiueh, T.: A study of the packer problem and its solutions.

In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,

pp. 98–115. Springer, Heidelberg (2008)

21. Hind, M., Pioli, A.: Which pointer analysis should I use? In: International Sympo-

sium on Software Testing and Analysis, Portland, OR, pp. 113–123 (2000)

22. Hollingsworth, J.K., Miller, B.P., Cargille, J.: Dynamic program instrumentation

for scalable performance tools. In: Scalable High Performance Computing Confer-

ence, Knoxville, TN (1994)

23. Kang, M.G., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed

executables. In: Workshop on Recurring Malcode, Alexandria, VA (2007)

24. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated

binaries. In: USENIX Security Symposium, San Diego, CA (2004)

25. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static

disassembly. In: Conference on Computer and Communications Security, Washing-

ton, DC, pp. 290–299 (2003)

26. Linn, C., Debray, S., Andrews, G., Schwarz, B.: Stack analysis of x86 executables

(2004) (manuscript)

27. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with

dynamic instrumentation. In: Programming Language Design and Implementation,

Chicago, IL, pp. 190–200 (2005)

28. Madou, M., Anckaert, B., de Sutter, B., Bosschere, K.D.: Hybrid static-dynamic

attacks against software protection mechanisms. In: ACM Workshop on Digital

Rights Management, Alexandria, VA, pp. 75–82 (2005)

29. Maebe, J., Bosschere, K.D.: Instrumenting self-modifying code. In: International

Workshop on Automated and Algorithmic Debugging, Ghent, Belgium (2003)

30. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast, generic, and safe

unpacking of malware. In: Annual Computer Security Applications Conference,

Miami Beach, FL (2007)

http://www.codeproject.com/KB/system/inject2exe.aspx

338 K.A. Roundy and B.P. Miller

31. Mirgorodskiy, A.V., Miller, B.P.: Autonomous analysis of interactive systems with

self-propelled instrumentation. In: International Conference on Parallel Comput-

ing, San Jose, CA (2005)

32. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware

analysis. In: Symposium on Security and Privacy, Oakland, CA, pp. 231–245 (2007)

33. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.

In: Annual Computer Security Applications Conference, Miami Beach, FL (2007)

34. Nanda, S., Li, W., Lam, L.C., Cker Chiueh, T.: Bird: Binary interpretation us-

ing runtime disassembly. In: International Symposium on Code Generation and

Optimization (CGO 2006), New York, NY, pp. 358–370 (2006)

35. Neumann, R.: Exepacker blacklisting part 2. Virus Bulletin pp. 10–13 (2007)

36. Nguyen, A.M., Schear, N., Jung, H., Godiyal, A., King, S.T., Nguyen, H.: Mavmm:

A lightweight and purpose-built vmm for malware analysis. In: Annual Computer

Security Applications Conference, Honolulu, HI (2009)

37. Perriot, F., Ferrie, P.: Principles and practise of x-raying. In: Virus Bulletin Con-

ference, Chicago, IL, pp. 51–66 (2004)

38. Popov, I., Debray, S., Andrews, G.: Binary obfuscation using signals. In: USENIX

Security Symposium, Boston, MA, pp. 275–290 (2007)

39. Porras, P., Saidi, H., Yegneswaran, V.: A multi-perspective analysis of the storm

(peacomm) worm. SRI International Technical Report (2007)

40. Porras, P., Saidi, H., Yegneswaran, V.: An analysis of conficker’s logic and ren-

dezvous points. SRI International Technical Report (2009)

41. Quist, D., Ames, C.: Temporal reverse engineering. In: Blackhat, USA, Las Vegas,

NV (2008)

42. Quist, D.A., Liebrock, L.M.: Visualizing compiled executables for malware analysis.

In: Workshop on Visualization for Cyber Security, Atlantic City, NJ (2009)

43. Rosenblum, N.E., Zhu, X., Miller, B.P., Hunt, K.: Learning to analyze binary

computer code. In: Conference on Artificial Intelligence, Chicago, IL (2008)

44. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: PolyUnpack: Automating

the hidden-code extraction of unpack-executing malware. In: Annual Computer

Security Applications Conference, Miami Beach, FL, pp. 289–300 (2006)

45. Security, P.: Annual report Pandalabs (2008)

46. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Impeding malware analysis using condi-

tional code obfuscation. In: Network and Distributed System Security Symposium,

San Diego, CA (2008)

47. Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., Robinson, S.G.: Binary trans-

lation. Communications of the ACM 36(2), 69–81 (1993)

48. Srivastava, A., Edwards, A., Vo, H.: Vulcan: Binary transformation in a distributed

environment. Technical Report MSR-TR-2001-50 (2001)

49. Srivastava, A., Eustace, A.: ATOM: a system for building customized program

analysis tools. In: Programming Language Design and Implementation, Orlando,

FL (1994)

50. Trilling, S.: Project green bay–calling a blitz on packers. In: CIO Digest: Strategies

and Analysis from Symantec, p. 4 (2008)

51. Vigna, G.: Static disassembly and code analysis. In: Malware Detection. Advances

in Information Security, vol. 35, pp. 19–42. Springer, Heidelberg (2007)

52. Yegneswaran, V., Saidi, H., Porras, P.: Eureka: A framework for enabling static

analysis on malware. Technical Report SRI-CSL-08-01 (2008)

Anomaly Detection and Mitigation for

Disaster Area Networks

Jordi Cucurull, Mikael Asplund, and Simin Nadjm-Tehrani

Department of Computer and Information Science, Linköping University

SE-581 83 Linköping, Sweden

{jordi.cucurull,mikael.asplund,simin.nadjm-tehrani}@liu.se

Abstract. One of the most challenging applications of wireless network-

ing are in disaster area networks where lack of infrastructure, limited en-

ergy resources, need for common operational picture and thereby reliable

dissemination are prevalent. In this paper we address anomaly detection

in intermittently connected mobile ad hoc networks in which there is

little or no knowledge about the actors on the scene, and opportunis-

tic contacts together with a store-and-forward mechanism are used to

overcome temporary partitions. The approach uses a statistical method

for detecting anomalies when running a manycast protocol for dissemina-

tion of important messages to k receivers. Simulation of the random walk

gossip (RWG) protocol combined with detection and mitigation mecha-

nisms is used to illustrate that resilience can be built into a network in a

fully distributed and attack-agnostic manner, at a modest cost in terms

of drop in delivery ratio and additional transmissions. The approach is

evaluated with attacks by adversaries that behave in a similar manner

to fair nodes when invoking protocol actions.

1 Introduction

Disaster area networks are created through spontaneous mobilisation of ad hoc
communication when the existing infrastructure is wiped out or severely over-
loaded. In such environments, in addition to local establishments of cellular net-
works and satellite connections there is a potential for hastily formed networks
(HFN) [1] of wireless devices connecting via 802.11 or similar technologies. One
of the major needs in a disaster area is timely dissemination of information
destined for a large group of actors. However, due to the nature of the multi-
party engagements, and massive engagement of volunteers there is little room
for establishment of mutual trust infrastructures. Any dissemination protocols
destined for such environments require to function in a chaotic context where
the node identifiers or even the number of involved nodes cannot be assumed.

The physical aspects of above networks can be characterised by intermittent
connectivity, leading to networks in which existence of partitions is a norm. This
creates a variation of mobile ad hoc networks (MANET) with no contempo-
raneous routes among the nodes, also referred to as intermittently connected
MANET (IC-MANET). Experience from the Katrina HFN [2] shows that even

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 339–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

340 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

in disaster environments there are security threats – actors who try to disrupt
operations or use the information for own benefit. However, the application of
security measures in these environments is far from trivial. This paper addresses
security issues that impact dissemination of messages, and thereby focuses on
the availability of the dissemination services in IC-MANET.

We study the impact of intrusions on a dissemination protocol, Random Walk
Gossip (RWG) that is designed to run in IC-MANET in a disaster area net-
work [3]. This algorithm is intended to disseminate important messages to any k
receivers, thereby a manycast algorithm that does not rely on knowledge about
the network nodes. Its main characteristics are that it overcomes lack of infor-
mation with opportunistic contacts and uses a store-and-forward mechanism to
overcome network partitions. Moreover, to act in an energy-efficient manner it
will try to avoid excessive transmissions by decentralised control of number of
custodians for a given message.

In such a scenario the adversary has no choice other than behaving in a way
that resembles the rest of the nodes in the network, and we further assume
that the adversary too needs to be efficient in its use of energy and bandwidth
resources. In fact the adversary may not act normally, but seen from a restricted
view, being the local knowledge at each mobile node, it follows fragments of the
protocol specification.

Intrusion detection mechanisms are intended to identify malicious activity
targeted at the resources of a monitored system, broadly classified as misuse or
anomaly detection. The former requires the formulation of misuse constraints,
which are extremely complex when the adversary behaves within the boundaries
of the protocol specifications and when at the same time it must be suitable for
different environments, i.e. dynamic load, partition sizes, varying local densities
and connectivity changes. In the IC-MANET context anomaly detection is a
suitable approach to intrusion detection while misuse detection is less appropri-
ate. First, the fact that the adversary behaves in a similar way to the fair nodes
makes formulation of misuse constraints hard if not impossible. Second, even
if we can formulate a set of rules for undesirable packet sequences, these will
hardly work in all nodes due to dynamic load and partition changes.

Our approach builds on a learning based anomaly detection technique that
uses only normal data in the learning phase. While this might be a limitation of
the approach, since there is no guarantee that attacks are not present in the early
deployment phase in the scenario, we believe that the efficiency of the technique
will outweigh its disadvantages. Another major problem in highly unpredictable
and partitionable networks is what to do when an attack is suspected. If the
network is generally chaotic and the goal is to maintain dissemination levels
then it is less relevant to exactly identify adversary nodes and try to isolate or
ignore them. We therefore suggest mitigation approaches that enable each node
to adjust its own behaviour thereby reducing the effect of the suspected attack.

The threat model that we consider is that the adversary tries (1) to drain
the network resources, both at node level (battery life) and network level (avail-
able bandwidth), thereby reducing the dissemination flows, and (2) acts as an

Anomaly Detection and Mitigation for Disaster Area Networks 341

absorbing patch which reduces some message dissemination in its vicinity, acting
as a grey hole at certain times and locations. Clearly this threat model creates
a challenging type of adversary to detect.

Our detection and mitigation approach has been evaluated in a simulation
setting where an implementation of the RWG algorithm is running with a disas-
ter mobility model adapted from earlier work [4]. The evaluations indicate that
the approach indeed creates a resistance to attacks that match the above threat
model, and show that the network recovers from the attack when it is of a tran-
sient nature. Moreover, our approach dampens the effect of the attacks on the
network resources by preserving the overall overhead in the network compared to
the non-mitigated case, whilst not losing the delivery goals significantly. These
results are obtained despite the fact that the classical metrics used for evalua-
tion of intrusion detection do not show good results. The paper discusses why
the network performance metrics are more useful in IC-MANET clarifying the
impact of partitions, traffic load and the store-and-forward approach.

The contributions of the paper are as follows:

– Presentation of a scalable approach to anomaly detection and mitigation in
partitionable ad-hoc networks with scarce resources that run a given dissem-
ination protocol suitable for these environments. The detection algorithm is
scalable since it is fully distributed and efficient. It is a statistical mecha-
nism reminiscent of the chi-square technique [5]. It has been adapted to the
specific RWG protocol by selection of appropriate (general) features.

– Illustration of the approach using a simulation platform, and specifically
analysing why the performance based metrics outperform the classic detec-
tion rate and false positive rate metrics in such disaster area networks.

2 Related Work

Yang et al. [6] describe the major security challenges in MANET and some of the
existing solutions. Among the identified challenges are the lack of a well-defined
place to deploy the security solutions, the vulnerability of the information con-
tained within the devices, the fact of communicating within a shared medium,
bandwidth, computation and energy resource constraints, the dynamic network
topology, and the wireless channel characteristics (e.g. interference and other
effects leading to unreliability). It is also stated that a complete security solu-
tion should integrate prevention, detection and reaction components. Prevention
typically evolves around establishment of trust, often based on cryptographic
techniques. However, trust is not easy to achieve in such scenarios [1] and cryp-
tographic techniques, as studied in Prasithsangaree and Krishnamurthy [7], usu-
ally are computationally too expensive. Farrell and Cahill [8], in the context of
delay-tolerant networks, also mention the lack of cryptographic key management
schemes as an open issue.

Orthogonal to the preventive perspective we need to consider the role of in-
trusion detection in IC-MANET. Several approaches to intrusion detection have

342 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

already been proposed for the MANET Ad hoc On Demand Distance Vector
(AODV) and Optimised Link State Routing (OLSR) protocols. However, to our
knowledge no earlier works address multicast protocols, and specifically not those
suitable to run in a partitioned MANET. Some authors propose that specifying,
distributing and updating the signatures of the attacks is not feasible [9] in these
environments. Instead, anomaly detection is easier to apply since the normal-
ity model can be created and updated in each node from its own observations.
Hence, abnormal behaviours in the specific context of a particular node, even if
they are within the boundaries of the protocol specifications, can be detected.
Garcia-Teodoro et al. [10] present an extensive review of the most popular tech-
niques used in anomaly detection, which can be roughly classified into statistical
based, knowledge based, and machine learning based. The most significant chal-
lenges of anomaly detection are also mentioned, namely low detection efficiency
and high false positive rate, low throughput and high cost, absence of appropri-
ate metrics and assessment methodologies for evaluating and comparing different
techniques, protection of the intrusion detection mechanism from attacks, and
analysis of ciphered data. In our work we confirm that the classic metrics used in
wired or fully connected wireless networks are not appropriate in IC-MANET.
We believe comparisons on common simulation platforms (as long as the authors
make their code accessible to other researchers) is a first step for comparative
evaluation.

Although anomaly detection for IC-MANET has to be geared towards proto-
cols that in fact manage the challenges of multiple partitions – what we aim to
address in this paper – we would like to name a few precursors for anomaly de-
tection in MANET. Nakayama et al. [11] propose an adaptive method to detect
attacks on the AODV routing protocol. The method is based on the calcula-
tion of projection distances using multidimensional statistics and the Principal
Component Analysis (PCA) to determine the axis that expresses the most rel-
evant data correlations. Cabrera et al. [12] propose a method to detect attacks
on AODV and OLSR protocols. The method consists of three hierarchical and
distributed intrusion detection modules based on pattern recognition and clas-
sifier fusion. Liu et al. [9] too present a method to detect attacks on the AODV
routing protocol. The method is based on the combination of two data mining
approaches over data obtained from the MAC and network layers. The technique
allows the identification of the MAC address of the attacker, although it can be
easily spoofed. Later, a Bayesian method is used to correlate local and global
alerts. It also proposes a collaborative decision mechanism among nodes in the
radio transmission range. These approaches are not applicable to our problem
area. First due to the manycast nature of dissemination and secondly due to the
intermittent connectivity in disaster area networks.

Among the few works that address intrusion detection in IC-MANET, there
is work by Chuah et al. [13] proposing a rule-based misuse detection mechanism
targeted towards delay-tolerant networks. It builds on a history-based routing
protocol, detects attacker nodes, and mitigates their effects by keeping them on
a black list, i.e. through isolation. Other security-related work in IC-MANET is

Anomaly Detection and Mitigation for Disaster Area Networks 343

concerned with prevention, e.g. Scalavino et al. [14] who propose an authorisation
scheme to protect the data exchanged in disaster events.

A main challenge of anomaly detection in MANET [9] is that most of the
approaches do not succeed with localisation of the attack sources. There is no
prior trust relationship among the network nodes, and network operation relies
on altruism and cooperation of neighbour nodes. Also the fact that nodes fail to
respond, e.g. through network congestion, link failure, or topology changes, can
be confused with intrusions [15], producing high false positive rates.

The metrics used on intrusion detection in MANET are usually based on
the accounting for detection rate and false positive rate typically presented as
ROC curves. In most cases these metrics reflect the number of attacks detected,
but sometimes they show the number of attackers detected [13]. The detection
delay is not usually taken into account, but there are a few exceptions [16,17,13].
There are approaches that quantify the impact of the detectors, such as network
overhead or the CPU speed-up [18], or data delivery ratio to evaluate the impact
of attack response [13]. In this paper we also advocate the use of delivery ratio
and total transmissions (as an indicator of overhead) for evaluation purposes.

Finally, response and mitigation of attacks is one of the topics that has not
been considered much in the intrusion detection literature for wireless ad-hoc
environments. Some MANET works [16,19] just mention it and propose certain
actions, but do not really apply it. There are a few exceptions in which mitiga-
tion is really applied [13,20]. In addition to the network performance metrics to
show the benefits of the approaches, the work by Wang et al. [20] also proposes
metrics to decide whether it is worth to enable the mitigation or not. This is
an interesting direction that should be explored within IC-MANET too, but we
postpone it to future works.

3 Protocol Description and Threat Model

3.1 Protocol Description

The Random Walk Gossip (RWG) is a message dissemination protocol for in-
termittently connected networks that has been presented and evaluated in a
previous publication [3]. Here we will try to provide just as much information as
needed to understand the threat model that we have used.

The protocol is designed to cope with the challenges faced in disaster area
networks such as intermittent connectivity, scarcity of bandwidth and energy, as
well as unknown and unpredictable network topologies with partitions. RWG is
a manycast protocol, which means that a message is intended to reach a given
number k of nodes. When k nodes have been reached, the message is k-delivered
and does not need to be propagated anymore, thus not wasting energy. RWG is
based on a store-and-forward mechanism, i.e. each node keeps the messages to
forward in a local buffer until they have been delivered. This mechanism prevents
the loss of messages because of network partitions.

When a message is sent in a connected part of the network, it will perform a
random walk over the nodes, until all the nodes in the partition are informed of

344 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

Fig. 1. Random Walk Gossip

this message. This walk is controlled by a three-way packet exchange shown in
Figure 1. First a Request to Forward (REQF), that includes the message payload,
is sent by the current custodian of the message (indicated as grey in the picture).
The neighbouring nodes that hear the REQF reply with an acknowledgement
packet (ACK). The custodian chooses one of these nodes randomly and sends an
OK to Forward (OKTF) to this node indicating that it will be the next custodian.
The other nodes will retain the message without actively disseminating it. They
will keep the message as inactive until it expires. Partitions can be overcome
by the movement of nodes. Thus, new uninformed nodes will be informed by
some node that keeps the message as inactive and restarts to disseminate. This
process will continue as long as no more uninformed nodes remain in the network
or the message is k-delivered.

All the packet types share the same header structure. In order to keep track of
which nodes have seen a given message, each packet header contains a bit vector
called the informed vector. When a node receives the message it produces a hash
of its own address and puts a 1 in the bit vector in the field corresponding to the
hash. This allows the protocol to know when a message is k-delivered, and to tell
the potential future recipients of the message how far the message has reached
towards its dissemination goal (summing the number of 1’s indicates the current
known local knowledge on this). The informed vector also indicates which nodes
have received the message. If a node A hears a new neighbour B, then A will go
through the messages stored in its buffer to see if B has not yet been informed of
any of the messages, in which case those messages will be reactivated and sent
to node B (and other uninformed nodes in the vicinity).

Finally, when a node realises that a message is k-delivered it sends a Be Silent
(BS) packet to its vicinity. This packet will cause all receiving nodes to also
realise that the message is k-delivered and thus remove it from their buffers. No
new BS packets are sent upon the reception of a BS packet.

3.2 Threat Model

Routing and dissemination protocols for MANET are usually based on cooper-
ation of the network nodes and assume fair play. RWG is not an exception and
an attacker can take advantage of it. There are many ways a malicious node can
attempt to disrupt the dissemination activity in a network. This paper focuses
on the mitigation of low-cost attacks which are consistent with the protocol spec-
ification. We study how a disrupting node will try to impact the dissemination
and resource usage of the network without investing too much of its own energy

Anomaly Detection and Mitigation for Disaster Area Networks 345

resources. Recall that the only packet type with a payload is the REQF packet.
This is also the one that claims more in terms of transmission energy and band-
width. Using forged inexpensive ACKs three aspects of the protocol operation
can be attacked:

– Discovery of new nodes: RWG discovers new nodes in the vicinity by
listening to the packets the node receives. Each time a packet is received
the messages stored in the local buffer are checked to see if they have been
already delivered to the sender of that packet. If that is not the case they
are forwarded to the node. An attacker can exploit this mechanism by send-
ing many ACK packets with different fake sender addresses and create a
high number of message retransmissions. The fake addresses are randomly
generated and there is no mechanism to prevent their usage.

– Delivery status propagation: The propagation of the delivery status of
the messages is done through the informed vector included in the sent packet
headers. An attacker can manipulate these vectors and take advantage of the
other nodes to propagate them using ACK packets.

– Selection of custodians for a given message: When a message is for-
warded to a group of nodes, they answer with an ACK packet. RWG uses
these ACK packets to randomly choose one of the nodes as the next custo-
dian of the message. An attacker could exploit this mechanism to be elected
as the next custodian by answering with several ACKs increasing the prob-
ability of being chosen.

It is assumed that the adversaries will have a complete knowledge of the protocol
and that will act according to the RWG specifications. Though our anomaly
detection algorithm is oblivious to the attack patterns, we will later use two
specific instances of attacks (see Section 5.2) based on exploiting some of the
operations described for the purpose of evaluation.

4 Anomaly Detection and Mitigation

Anomaly detection is based on the construction of a model that represents the
normal behaviour of a system and which is used to determine abnormal situ-
ations. Since MANET are usually operated by resource constrained devices a
statistical-based approach has been selected as an anomaly detector since it has
a smaller footprint than other techniques.

4.1 Detection Algorithm

The anomaly detector we propose represents normality as a vector of numerical
values called features. The algorithm is based on a distance function D(xi) that
calculates sums of squared differences between a given observation xi of the
system (which contains F features) and the normality model x̄ to decide if the
observation is anomalous or not (see Eq. 1). An observation is obtained and
evaluated each time a packet is received. According to the central limit theorem,

346 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

if the number of variables is large enough, then the calculated sums of squared
differences will follow a normal distribution. Hence a threshold (T1), based on
the statistical three-sigma rule (also called 68-95-99.7 rule) [21], is introduced to
determine if the distance measured is outside of the values considered normal.
The work flow of the system has two differentiated parts.

D(xi) =
F∑

j=1

(xi,j − x̄j)2 (1)

1. Training: In this part in which the normality model of the system is cre-
ated, only observations of the normal behaviour of the system are used.
The model consists of a vector (x̄) with the average value of each feature,
two vectors (max, min) with the maximum and minimum values expected
for each feature under normal conditions, and a threshold (T1) that states
which is the maximum distance observed from the average field of normality.
The normality model is created during a period of time that includes two
consecutive steps that comprise N and M observations respectively.

(a) Calculation of average, maximum and minimum values: During
a period of time with a number of N observations, the average (x̄),
maximum (max), and minimum (min) vectors are calculated. The last
two vectors are used for normalisation, i.e. to keep all the features from
normal observations within the same range of values. Normalisation is
also applied to x̄.

x̄ =
1
N

N∑

i=1

xi (2)

(b) Calculation of the threshold: During a period of time, and for a
number of M observations, the distance D(xi) between an observation
xi and the calculated average x̄ is measured. T1 (see Eq. 3, 4, and 5) is
defined as the mean of the distances calculated (μ) plus three times their
standard deviation (σ). According to the three-sigma rule the range [μ−
3σ, μ+3σ] should cover 99.7% of the distances of the normal observations
evaluated. Note that just the upper limit is used, because evaluations
with small distances are not considered anomalous.

μ =
1
M

M∑

i=1

D(xi) (3)

σ =

√
√
√
√ 1

M

M∑

i=1

(μ−D(xi))2 (4)

T1 = μ + 3σ (5)

Anomaly Detection and Mitigation for Disaster Area Networks 347

2. Testing: During this step the detector is fed with observations of the sys-
tem behaviour that can be anomalous. The detector decides whether an
observation xi is anomalous by calculating the distance D(xi) from x̄, which
determines how far is the current observation from the normal behaviour
of the system, and compares it with T1. If D(xi) > T1 the observation is
categorised as anomalous, and if D(xi) ≤ T1 it is categorised as normal.

4.2 Features

The features of an anomaly detector are the variables which are believed to
characterise the behaviour of the monitored system. Our approach uses features
at the routing layer and most of them are statistical.

– Packet rates: Number of packets of each type received during the last I1

seconds. There are four of these features, one for each packet type.
– Packet distances: Distance, measured in number of packets received, be-

tween the reception of two specific types of packets. E.g., number of packets
received between the reception of a REQF and the next ACK. There are six-
teen of these features that cover all the possible packet type combinations.

– Packet rate differences: Relative difference in the packet rates calculated
for each type of packet. There are six features, one for each relevant combi-
nation.

– Number of different source addresses: Number of different source ad-
dresses counted in the packets received during the last I2 seconds.

– Packet ratios: Quotient of the number of packets received of a specific type
compared to another packet type among the last I3 packets received. There
are three of these features: ACK/REQF, ACK/OKTF, ACK/BS.

– Summation of informed vectors: Summation of all the positions of the
informed vectors received in the last I4 packets.

Because the evaluation is carried out each time a packet is received, the features
that provide information about the last packets received are implemented as
sliding windows over the intervals I1, I2, I3, and I4.

4.3 Alert Aggregation

Statistical anomaly detection requires a certain time to detect an anomaly within
the system. As alerts cannot be mapped to the specific packets causing the
attacks, the alarms must be raised after an interval of suspicion. This is the
reason why the alerts raised by the detector are processed and aggregated during
an interval Ia of aggregation.

In each of these periods the number of packets evaluated and the number of
alerts registered are counted. Then, an alarm is raised if the number of alerts
within that period exceeds a certain threshold (T2). The threshold is a tun-
able parameter of the system which is defined in terms of proportion of alerts
registered over the number of packets evaluated during Ia.

348 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

4.4 Mitigation

When an alarm is raised in a node the mitigation scheme is locally enabled. As
it will be explained in Section 5.3, a careful RWG operational mode is proposed
to cover the possible attacks that fall within the threat model defined. Since it
is not clear whether an attack is transient, continuous or intermittent, we need
to decide how long a mitigation should take place. In this paper we have simply
evaluated a mitigation that takes place over a constant interval Im (> Ia). This
prevents the system from disabling the mitigation too early as a consequence of
the beneficial effects of the mitigation instead of the finalisation of the attack.

5 Evaluation

This section evaluates the detection and mitigation approach applied to RWG
in a disaster area scenario against the threat model described in Section 3.2.

5.1 Simulation Setup

The performance of the approach has been evaluated using the Network Simula-
tor 3 (ns-3) with an implementation of the detection and mitigation mechanisms
embedded in the RWG protocol implementation at the network layer.

The disaster area scenario includes the mobility traces from Aschenbruck et
al. [4], based on a large training manoeuvre in preparation of the FIFA world
cup in Germany in 2006. The original traces include 150 mobile nodes. To induce
partitions and create an intermittently connected network we have selected 25
of the nodes, chosen uniformly over the locations in the area, while maintaining
the trace for that node. This creates a similar network with lower density. Five
other nodes have been chosen as attackers while acting in the same network,
again with a uniform distribution among the fair nodes. The attacker nodes do
not create normal traffic (data) in the network, but produce packets that are
compatible with the protocol specification as described in section 5.2. This is
aligned to the threat model defined, where the attacker spend the minimum
energy possible. All the nodes use the 802.11a protocol, at 6Mb/s data rate with
a radio range of 24 meters. The speed of the nodes varied in the range 1-2 m/s
in an area of 200m x 350m. The load is generated by introducing in the network
a total of 15 messages to disseminate every second from randomly chosen nodes.
Each message has set to be delivered to minimum number of 10 nodes (k = 10).

The simulation time for each run is 3000 seconds. The first 200 seconds are
discarded (not used for anomaly detection) due to start-up time for the protocol.
The following 1400 seconds are used for training the system (half of them for
calculating x̄, min and max vectors and the rest for the threshold), and the last
1400 seconds are used for evaluation. Each simulation is repeated 10 times with
different sets of traces and all the results shown are averages over these 10 runs.
The alert aggregation window (Ia) is chosen as 10 seconds (unless otherwise
stated). The selected threshold (T2) for the alert aggregation process is set up to

Anomaly Detection and Mitigation for Disaster Area Networks 349

30%. The mitigation period (Im), during which a mitigation remains enabled is
set up to 200 seconds. The intervals used to calculate the features (I1, I2, I3, and
I4) are set up to 5 seconds, 10 seconds, 50 packets, and 100 packets, respectively.

5.2 Generated Attacks

To show the effectiveness of the detection and mitigation approach, two attacks
that fall into the threat model described in Section 3.2 have been implemented.

– Draining attack: It makes the nodes around the attacker to transmit more
packets than usual in order to drain their batteries and waste some band-
width. The effect, that exploits the RWG node discovery mechanism, is
achieved by regularly sending ACK packets with different fake identities.
As it is depicted on Fig. 2 the affected neighbours (A and B affected by C
in the example) respond to each ACK by sending all the messages stored
in their buffers (m1, m2, m3) which are in inactive state, since the identity
announced in the ACK (nF) is completely new and it seems to come from a
not yet informed node. The attack is cheap since just one inexpensive ACK
packet issued by the attacker may reach several nodes which can answer
with several possibly expensive REQF packets that, besides, induce other
responses to them (3 REQF, 3 ACK and 3 OKTF in the example).

Fig. 2. Draining attack

350 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

Fig. 3. Grey hole attack

– Grey hole attack: This attack, which exploits the propagation of the mes-
sage delivery status, consists of making the nodes around the attacker to
believe that the messages they disseminate have already reached k nodes as
required. This makes the fair nodes to execute the mechanisms for remov-
ing the message, thus resulting in a reduction of network message k-delivery
ratio. As can be seen in Fig. 3 the attacker answers the REQF packets re-
ceived with an ACK that contains a forged informed vector (see values within
parenthesis in the example). The vector is modified to include k− 1 bits set
to 1. Hence, when another fair ACK is received the node which has sent the
REQF considers that the message has been disseminated to k nodes and
issues a BS packet. Note that the attacker does not directly set the number
of bits of the informed vector to k in order to go unnoticed.

In both cases the adversaries do not participate in the normal operation of the
network, but can listen and send packets as any other node. Both of the attacks
are tested in both continuous and transient modes. The continuous mode enables
the attack during 2/3 of the detection time. From the 2067th time step in our
tests, until the end of the simulation. While the transient mode enables the
attack during a certain interval of the simulation, from 2200 to 2400 seconds in
our tests. The former shows the effects of a persistent attack, while the latter
shows the effects of an attack that disappears shortly after.

These attacks have indeed a significant impact on network performance. Be-
ginning with the draining attack, it is performed by 5 nodes each sending 10
ACK packets/second with different identities. Each of these ACKs produces
around 15 direct responses as REQF packets issued by the victims. The impact
of the continuous draining attack can be seen on Fig. 4, where a huge and sharp
increase of the network packet transmissions can be observed soon after the at-
tack. Note that a peak, with around 150% higher packet transmission rate, is
registered during the first 100 seconds of the attack. Later this rate is reduced
and stabilised to around a 90% higher rate compared to the no attack case. This
is due to the fact that just at the beginning of the attack there are more inactive
messages ready to be forwarded in the buffers of the fair nodes.

Anomaly Detection and Mitigation for Disaster Area Networks 351

The grey hole attack, whose goal is to reduce the chances of successful dis-
semination of messages, is performed by 5 nodes each one answering to all the
REQF packets they receive with forged ACK packets. The impact of the con-
tinuous grey hole attack can be seen in Fig. 6, which depicts how the message
k-delivery rate, in comparison with the messages introduced into the network,
suddenly drops to a 10% of the normal rate (which in this scenario is around 10
messages/second) just after the beginning of the attack.

5.3 Implemented Mitigations

In a highly unpredictable environment with pockets of connectivity, we need to
act in a way that works with unknown node IDs and “fuzzy” normality. Instead
of suspecting individual nodes and isolating them (which is very difficult to do
accurately) as for example in the work by Wang et al. [20], our approach is
based on the adjustment of the protocol behaviour in the own node to a careful
mode. In this mode the performance can slightly decrease, but the impact of the
attacks is strongly reduced. The new operational mode responds to the threats
described in Section 3.2 and it is generic enough to provide a unified response
to them.

For the attacks that target the RWG mechanisms for discovery of new nodes
and selection of custodians, the mitigation consists of ignoring cheap packets
(ACK, OKTF, and BS) with “fake” identities. Of course, in the normal operation
of the protocol none of the nodes have knowledge to distinguish good and fake
identities. We propose that we have a chance of recognising such nodes if we
add a low overhead mechanism to the protocol, namely creating a list of known
nodes during the periods in which the mitigation is not enabled. This can be
effectively done if a list is updated with identities of nodes that have sent REQF
messages. This addition to the protocol is not wasteful of energy (given that
transmission energy is the dominant factor) but uses up some storage at each
node. We also expect a slight increase in the latency for detection of new nodes
in the vicinity.

For the attacks that target the RWG mechanism for propagation of delivery
status, the solution consists of going into a “suspicious mode”. In this mode we
restrict the update of the delivery information from the ACK packets received
(i.e. do not set zeros to ones in the bit vector). More specifically, when the
mitigation is enabled, the informed vectors of the messages contained in the
node’s local buffer are only updated from the informed vectors of the REQF,
OKTF and BS packets. If an ACK is received the local informed vectors are just
updated for the position that corresponds to the sender of the ACK, but the
informed vector contained within the ACK packet is ignored. This mitigation
imposes a heavier burden on the network resources. The information regarding
the number of deliveries of each message is propagated slower than usual and
the message is kept in the network for a longer time than needed increasing the
transmission of packets around a 25%.

Obviously, the application of these techniques reduces the performance of the
network if enabled indefinitely (we lose some of the strengths of RWG). This

352 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

is the reason why they are not an integrated part of the protocol specification.
Instead, it is best to apply them just during an interval (Im) after the detection
of an attack. Further studies should show what are the optimal intervals to select
for Im in a given network environment.

5.4 Evaluation Metrics

Given the chaotic nature of the scenario we would not be able to use the classic
detection rate (DR) and false positive rate (FPR) metrics for evaluation. This
is due to the fact that the success of the approach is not measurable with those
metrics neither on a per node basis nor on a network wide (average) basis. The
locality of the attackers, the nature of the partitions, and the mobility of the
nodes, all affect the results so that there are no meaningful homogeneous out-
comes using these metrics. However, we will come back to them and analyse the
above locality aspects in Section 5.6. Our main evaluation metrics for detection
and mitigation are instead:

– K-Delivery Rate (KDR): Depending on the connectivity of the network,
the message load, and the dynamics only a proportion of the messages sent
are finally k-delivered. Thus, a good metric to evaluate the possible effects
of an attack and its mitigation is the number of messages which are in fact
k-delivered over the interval of study.

– Packet Transmission Rate (PTR): Another relevant metric is the num-
ber of packets transmitted during the interval of study. Besides being an
indicator of the usage of bandwidth as a resource, the PTR is an indicator
of the energy spent by the nodes, since the more transmissions the more
energy is consumed.

5.5 Detection and Mitigation Results

The detection approach proposed in Section 4 has been tested with the two at-
tacks and two combinations described in Section 5.2 (continuous and transient).
In the following, whenever an attack is sensed the anomaly detector enables both
mitigations at the same time (ignores ACK packets with possible bogus IDs, and
does not update the informed vector on ACK packets received). The Im interval
is selected as 200 seconds.

Fig. 4 shows the effect of applying the detection and mitigation to the contin-
uous draining attack. When the detection and mitigation mechanism is disabled
the PTR in the network is around 90% higher than the normal rate as a result
of the attack (except during the initial peak which is higher). However, when
the mechanism is enabled, the PTR increases, but as soon as the attack be-
comes detected in most of the nodes, the mitigation actions are taken and the
attack impact is reduced. Fig. 5 shows the transient draining attack, which as
in the previous case increases the PTR with the same proportions. Nonetheless,
in this case an initial peak of the PTR with mitigation is noticeable since the
PTR in the simulation without attack is also increasing. In this case it is worth

Anomaly Detection and Mitigation for Disaster Area Networks 353

mentioning that after the attack, the number of packets sent gradually returns
to the normality as the mitigation is disabled within Im of detecting in each
node. In both cases the detection delay observed is about 10-30 seconds after
the beginning of the attack for nodes close to the attackers.

Fig. 6 shows the effect of applying the detection and mitigation to the con-
tinuous grey hole attack. When the mechanism is disabled and the attack starts
the KDR drastically drops to around 10% of the normal rate. With the mech-
anism enabled the KDR also drops, but not so low, and after a certain period
it stabilises to values slightly below the values without an attack . In Fig. 7 the
impact of the transient grey hole attack is shown, which as in the previous case
drastically decreases the delivery ratio. The detection and mitigation responds
similarly, but in this case it can be observed that the mechanism helps to a
fast recovery once the attack has ended. With this attack the detection delay
is longer and highly dependant on each node. The nodes close to the attackers
show a detection delay around 10-60 seconds after the beginning of the attack
for both continuous and transient modes. It is worth to say that this is a complex
attack to mitigate since once the informed vector is sent there is a contagious
impact on the other partitions while the mitigation is not enabled everywhere
(since the detection is not strong enough in some places with the same threshold
everywhere).

The results shown demonstrate that the approach is successful in creating
a resistance to the attacks that conform to the given threat model despite the
difficulties that the complexity of IC-MANET bring to the picture.

5.6 Locality and Classic Metrics

The most usual evaluation metrics for measuring the anomaly detection perfor-
mance are the Detection Rate (DR)1 and the False Positive Rate (FPR)2. In
this section we show why these metrics are less meaningful in IC-MANET. We
begin by discussing how to apply the metrics in the evaluation. To calculate
these metrics we need to determine whether during the period of alarm the node
was under attack. In intermittently connected networks the concept of being
under attack for a particular node is not clear. Just considering a fixed attack
interval for all the nodes is meaningless, since attacks do not always take place
in a well-determined time interval and confined space. Nodes can be isolated
from the attackers during some periods or can be too far from the attackers to
be significantly affected by them. Besides, some attacks can be propagated fur-
ther even if their source has stopped attacking, such as some types of flooding
attacks. Hence, our attempt to account for the classic DR and FPR metrics,
is based on tagging the packets sent by the attacker and the packets sent in
response to them. Then, in each aggregation interval Ia(see Section 4.3) a node
has been considered as being under attack if at least one of the tagged packets
has been received in that interval.

1 DR = TP/(TP +FN) where TP stands for true positives and FN for false negatives.
2 FPR = FP/(FP + TN) where TN stands for true negatives.

354 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

N
um

be
r

of
 tr

an
sm

is
si

on
s

(p
kt

s/
se

c)

Time (sec)

Attack without detection and mitigation
Attack with detection and mitigation

No attack

Fig. 4. Draining continuous attack

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

N
um

be
r

of
 tr

an
sm

is
si

on
s

(p
kt

s/
se

c)

Time (sec)

Attack without detection and mitigation
Attack with detection and mitigation

No attack

Fig. 5. Draining transient attack

Anomaly Detection and Mitigation for Disaster Area Networks 355

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

K
-d

el
iv

er
ed

 m
es

sa
ge

s
(m

sg
 /

se
c)

Time (sec)

No attack
Attack with detection and mitigation

Attack without detection and mitigation
Load introduced

Fig. 6. Grey hole continuous attack

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

K
-d

el
iv

er
ed

 m
es

sa
ge

s
(m

sg
 /

se
c)

Time (sec)

No attack
Attack with detection and mitigation

Attack without detection and mitigation
Load introduced

Fig. 7. Grey hole transient attack

356 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.03 0.06 0.09 0.12 0.15

D
R

 (
%

)

FPR (%)

Continuous attack
Transient attack

Fig. 8. ROC drain attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.03 0.06 0.09 0.12

D
R

 (
%

)

FPR (%)

Continuous attack
Transient attack

Fig. 9. ROC grey hole attack

The network wide average results obtained in terms of DR and FPR, by
using different T2 values have been depicted on Fig. 8 and 9. These numbers are
computed by averaging the performance of all 25 anomaly detectors over the
entire test interval. The curves demonstrate that in highly partitioned networks
with very different conditions it is not feasible to analyse the results of the
detection mechanism on an aggregate basis using these metrics. While the earlier
results were convincing about the success of the approach, these curves show
mediocre results overall.

We have observed that the traffic flow, the type of attack, and the number
of attackers in each partition produce very different detection rates. The net-
work topology in our disaster area is composed of eight partitions more or less
stable along the whole simulation, with moving nodes acting as “bridges” over
the partitions. Analysing the results node by node we have confirmed that the
parameter with more influence over the detection performance is the proximity
of the adversaries to the fair nodes. Table 1 show the best, worst, and aver-
age DR and FPR, for the continuous draining and grey hole attacks. Results
in each column are categorised into different classes. Each class (different rows
as described in column 1) shows the results aggregated for partitions that have
similar number of adversaries, i.e. partions with no adversaries, partitions with
1 adversary, and so on. There are around 1/3 of the fair nodes in each class. The
results, calculated with the alert aggregation threshold T2 at 5%, demonstrate
that the less the partition is affected by attacks the worse is the performance of
the detection. That is, the classes with zero and one adversary are the ones that
reduce the average detection performance. Note that despite having partitions
with no adversaries, some attacks are received by sporadic contacts with other
partitions.

Another aspect which has been observed is that in the transient cases the false
positive rate is a bit lower than in the continuous cases. The reason is that the
attacks are always detected with a small delay, but the alarm also persists when
the attack is finished. Since the attack is not continuously received uniformly by
all the nodes, because of their mobility, there are some gaps during which the
alarms are enabled and counted as false positives. The continuous attacks are
longer and present more of these gaps. This shows, once again, the complexity
of the performance accounting using these metrics.

Anomaly Detection and Mitigation for Disaster Area Networks 357

Table 1. Detection performance for the continuous attacks

Adversaries Draining Attack Grey Hole Attack

per Average Best Worst Average Best Worst

partition DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR

2 94% 6% 95% 6% 93% 8% 63% 8% 70% 5% 60% 10%

1 90% 5% 97% 3% 85% 7% 44% 4% 55% 2% 40% 7%

0 58% 5% 93% 4% 45% 8% 29% 6% 66% 3% 11% 9%

6 Conclusions

In this article we have presented a holistic anomaly detection and mitigation ap-
proach for dissemination protocols for intermittently connected networks. The
approach has been integrated and evaluated in the Random Walk Gossip dis-
semination protocol applied within a disaster area scenario.

We have adopted a statistical-based detector algorithm to combat the typical
resource constraints associated with the devices with respect to CPU power used
for learning and detection. The threat model for which the approach has been
validated focuses on making a big impact on fair nodes with little invested energy
by the adversary. Moreover, the adversary behaviour is so similar to the normal
behaviour that is hard to distinguish the attacks by creation of constraints,
signatures or rules. So this environment is indeed a challenging environment.

Taking into account this threat model we have had to add a mitigation mode
to the basic protocol operation. When in this mode, small modifications in the
protocol create a chance of deciding when the own behaviour has to be changed
due to a suspected attack. This is different from earlier works where identification
of the culprit and individual isolation or specific treatment is the response. The
integrated protocol can of course be run in the original no-mitigation mode
when no attacks are expected and then no protection is provided either. Hence,
the added detection-mitigation algorithm can be seen as an enhancement of an
earlier protocol that works in a fair-play scenario. We believe this way of thinking
can be generalised and applied in other dissemination protocols too.

Furthermore, our approach assumes full knowledge of the adversary about the
protocol and even the anomaly detection scheme. The adversary cannot easily
adapt to avoid detection by the algorithm due to the unpredictability of what
learning has accomplished in the normality model. This is a simple and powerful
aspect of our scheme.

The evaluation of the approach has demonstrated its effectiveness by show-
ing resistance to the attacks using network performance metrics. In two attack
modes, transient and continuous, we have shown that mitigation brings back the
network to performance levels close to pre-attack scenarios. The analysis has also
highlighted the complexity of using the classic metrics, detection rate and false
positive rate, in highly partitioned networks. These metrics are not appropriate
to measure the detection performance on a global basis in highly partitioned
networks.

358 J. Cucurull, M. Asplund, and S. Nadjm-Tehrani

Future work includes identifying the applicability of the methods to more at-
tack types, an intermittent version of the current attacks, and the addition of
new threat models. It is also interesting to explore which parts of this resilience to
attacks can be beneficially integrated into the dissemination algorithm. Current
work includes the addition of two new components to the detection-mitigation
loop. First, a diagnosis element that runs in parallel with a general (early) mit-
igation. This would be useful to adapting the mitigation without pinpointing
attacker nodes. Second, an adaptive component that decides when and how to
end a given mitigation phase, and a return to the less careful mode.

Another aspect in which more research is required is the study of impact of
mitigation actions. When a node enables the mitigation, in some cases this may
change the behaviour of the system and can be detected as an anomaly creating
a recursive chain of alarms among the nodes. This is a complex problem because
the behaviour of the system can be affected by the mitigation actions applied
by all the nodes.

Acknowledgements

This work was supported by a grant from the Swedish Civil Contingencies
Agency (MSB) and the national Graduate school in computer science (CUGS).

References

1. Denning, P.J.: Hastily formed networks. Communications of the ACM 49(4), 15–20

(2006)

2. Steckler, B., Bradford, B.L., Urrea, S.: Hastily formed networks for complex hu-

manitarian disasters after action report and lessons learned from the naval post-

graduate school’s response to hurricane katrina. Technical Report, Naval Postgrad-

uate School (2005)

3. Asplund, M., Nadjm-Tehrani, S.: A partition-tolerant manycast algorithm for dis-

aster area networks. In: IEEE Symposium on Reliable Distributed Systems, pp.

156–165 (2009)

4. Aschenbruck, N., Gerhards-Padilla, E., Gerharz, M., Frank, M., Martini, P.: Mod-

elling mobility in disaster area scenarios. In: MSWiM 2007: Proceedings of the 10th

ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile

Systems, pp. 4–12. ACM, New York (2007)

5. Ye, N., Chen, Q.: An anomaly detection technique based on a chi-square statistic for

detecting intrusions into information systems. Quality and Reliability Engineering

International 17(2), 105–112 (2001)

6. Yang, H., Luo, H., Ye, F., Lu, S., Zhang, L.: Security in mobile ad hoc networks:

challenges and solutions. IEEE Wireless Communications 11(1), 38–47 (2004)

7. Prasithsangaree, P., Krishnamurthy, P.: On a framework for energy-efficient secu-

rity protocols in wireless networks. Computer Communications 27(17), 1716–1729

(2004)

8. Farrell, S., Cahill, V.: Security considerations in space and delay tolerant networks.

In: Second IEEE International Conference on Space Mission Challenges for Infor-

mation Technology, Washington, DC, USA, pp. 29–38. IEEE, Los Alamitos (2006)

Anomaly Detection and Mitigation for Disaster Area Networks 359

9. Liu, Y., Li, Y., Man, H., Jiang, W.: A hybrid data mining anomaly detection

technique in ad hoc networks. International Journal of Wireless and Mobile Com-

puting 2(1), 37–46 (2007)

10. Garćıa-Teodoro, P., Dı́az-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-

based network intrusion detection: Techniques, systems and challenges. Computers

& Security 28(1-2), 18–28 (2009)

11. Nakayama, H., Kurosawa, S., Jamalipour, A., Nemoto, Y., Kato, N.: A dynamic

anomaly detection scheme for AODV-based mobile ad hoc networks. IEEE Trans-

actions on Vehicular Technology 58(5), 2471–2481 (2009)

12. Cabrera, J.B., Gutirrez, C., Mehra, R.K.: Ensemble methods for anomaly detec-

tion and distributed intrusion detection in mobile ad-hoc networks. Information

Fusion 9(1), 96–119 (2008)

13. Chuah, M., Yang, P., Han, J.: A ferry-based intrusion detection scheme for sparsely

connected ad hoc networks. In: Fourth Annual International Conference on Mobile

and Ubiquitous Systems: Networking & Services, pp. 1–8. IEEE, Los Alamitos

(2007)

14. Scalavino, E., Russello, G., Ball, R., Gowadia, V., Lupu, E.C.: An opportunistic

authority evaluation scheme for data security in crisis management scenarios. In:

ASIACCS 2010: Proceedings of the 5th ACM Symposium on Information, Com-

puter and Communications Security, pp. 157–168. ACM, New York (2010)

15. Thamilarasu, G., Balasubramanian, A., Mishra, S., Sridhar, R.: A cross-layer based

intrusion detection approach for wireless ad hoc networks. In: IEEE International

Conference on Mobile Adhoc and Sensor Systems Conference, pp. 854–861. IEEE,

Los Alamitos (2005)

16. Sun, B., Wu, K., Pooch, U.W.: Zone-based intrusion detection for ad hoc networks.

International Journal of Ad Hoc & Sensor Wireless Networks. Old City Publishing

(2004)

17. Tseng, C.H., Wang, S.H., Ko, C., Levitt, K.: DEMEM: Distributed evidence-driven

message exchange intrusion detection model for MANET. In: Zamboni, D., Krügel,

C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 249–271. Springer, Heidelberg (2006)

18. Huang, Y.a., Lee, W.: A cooperative intrusion detection system for ad hoc net-

works. In: SASN 2003: Proceedings of the 1st ACM Workshop on Security of Ad

Hoc and Sensor Networks, pp. 135–147. ACM, New York (2003)

19. Deodhar, A., Gujarathi, R.: A cluster based intrusion detection system for mo-

bile ad hoc networks. Technical Report, Virginia Polytechnic Institute & State

University

20. Wang, S.H., Tseng, C.H., Levitt, K., Bishop, M.: Cost-sensitive intrusion responses

for mobile ad hoc networks. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID

2007. LNCS, vol. 4637, pp. 127–145. Springer, Heidelberg (2007)

21. Moore, D.S., Cabe, G.P.M.: Introduction to the practice of statistics, 5th edn. W.

H. Freeman, New York (2005)

Community Epidemic Detection Using

Time-Correlated Anomalies

Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

Stanford University�

{oliner,ashutosh.kulkarni,aiken}@cs.stanford.edu

Abstract. An epidemic is malicious code running on a subset of a com-
munity, a homogeneous set of instances of an application. Syzygy is an

epidemic detection framework that looks for time-correlated anomalies,
i.e., divergence from a model of dynamic behavior. We show mathemati-

cally and experimentally that, by leveraging the statistical properties of

a large community, Syzygy is able to detect epidemics even under adverse

conditions, such as when an exploit employs both mimicry and polymor-

phism. This work provides a mathematical basis for Syzygy, describes

our particular implementation, and tests the approach with a variety of

exploits and on commodity server and desktop applications to demon-

strate its effectiveness.

Keywords: epidemic detection, anomalies, community.

1 Introduction

Consider a set of instances of an application, which we call a community. Two
examples of communities are all the mail servers in an organization or all the
browsers on a cluster of workstations. Assume some subset of these instances,
or clients, are compromised and are running malicious code. The initial breach
(or breaches) went undetected and the existence of the exploit is unknown, so
the malicious code may continue running indefinitely, perhaps quietly stealing
computing resources (as in a zombie network), spoofing content, denying service,
etc. We present a method for detecting such situations by using properties of
the aggregate behavior of the community to reliably identify when a subset of
the community is not behaving properly.

A client is either healthy and exhibits correct behavior or infected and exhibits
incorrect behavior; our method detects epidemics, meaning when a subset of the
community is infected. The user specifies what constitutes correct operation for
individual clients by providing a model, which may be incomplete (omit correct
behaviors), or unsound (admit incorrect behaviors), or both. For example, a
community of web servers may be modeled by the typical distribution of response
times each provides. The class of attacks we want to detect are those that cause
� This work was supported in part by NSF grants CCF-0915766 and CNS-050955, and

by the DOE High-Performance Computer Science Fellowship.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 360–381, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Community Epidemic Detection Using Time-Correlated Anomalies 361

undesirable deviation from normal behavior, regardless of the attack vector (e.g.,
buffer overrun, insider attack, or hardware tampering). Our focus is on detecting
epidemics in a community composed of instances of a specific application, rather
than the entire system or individual clients in the community, and this distinction
leads to a different approach.

We describe an implementation of an epidemic detector, called Syzygy, that
applies two main insights: (i) even if a single noisy model cannot reliably judge
the health of a client, we can reduce the noise by averaging the judgements of
many independent models and (ii) epidemics exhibit time-correlated behavior
that is impossible to detect on a single client. Our method effectively leverages
the statistical properties of a large community to turn noisy models into reliable
community detectors and uses the temporal properties of an epidemic as a means
for better detecting it.

Syzygy monitors each client’s behavior and reports anomaly scores, which
quantify the divergence of recent behavior from the model. For example, a client
whose recent response times are unusually high may report a score that is above
average (anomalous). Syzygy then computes the numerical average of all clients’
scores and checks whether this community score exceeds a threshold. By doing
these computations properly (see Section 3), we can make strong theoretical
guarantees about our ability to overcome model noise and detect epidemics.
Intuitively, we expect anomalies on individual clients in a large community to
be common, but we do not expect anomaly scores from multiple clients to be
strongly correlated in time, absent an epidemic.

We describe and analyze Syzygy’s detection algorithm mathematically in Sec-
tion 3. In our evaluation, we focus on the following questions:
—Can Syzygy detect epidemics under realistic conditions? In Section 4, we
demonstrate that our method can leverage the community to detect a variety
of epidemics in a cluster of commodity web servers even given noisy, incom-
plete client models. Syzygy does not require source code or specially compiled
binaries.
—How do client and community characteristics affect performance (i.e., false
positives)? In Section 5, we deploy Syzygy on the web browsers of a campus
network and show that, despite very different client systems and user behav-
iors, healthy community behavior is a stable, reliable signal that is unlikely to
generate excessive false positives (our deployments generated none). Indeed, as
the community grows, Syzygy approaches a 100% detection rate with no false
positives; given a sufficiently large training set and community, one can specify
an acceptable false positive rate a priori and with high confidence. Even com-
munities of only a dozen clients exhibit desirable properties. See Sections 3.3,
4.2, and 5.2–5.3.
—What kinds of epidemics can Syzygy detect? In Section 6, we conduct sim-
ulation experiments using commercial, off-the-shelf software and artificially
powerful exploits (e.g., capable of nearly perfect mimicry) and demonstrate
that the community enables Syzygy to detect epidemics under a variety of
adverse conditions. Exploits may change their source code, perform different

362 A.J. Oliner, A.V. Kulkarni, and A. Aiken

malicious actions, or even use a different vector of infection across clients
(see Section 3.2).
—How good must client models be and how easy is it to acquire such models?
Syzygy works on top of existing client-based anomaly detectors, dampening noise
and providing sensitivity to time-correlated behavior. Syzygy requires only that
anomaly scores are mostly independent across healthy clients and higher, on
average, for infected clients; the method is agnostic to what measurements are
used to construct these scores.

Throughout the paper—using math, deployments, and simulations—we show
that, in a large community, even simple, noisy models are sufficient for reliable
epidemic detection. We conclude with a discussion of the issues involved with
building a larger-scale deployment (Section 7). Many real security infrastructures
are a constellation of tools; working in concert with other detection and response
tools, and with low overhead and few practical requirements, Syzygy provides
both new and more reliable information about epidemics.

2 Related Work

Syzygy detects malicious software running on clients in a community (epidemics)
even under typical real-world constraints: the client model is incomplete, informa-
tion about communication (network activity) is unavailable, and measurements
are noisy. It may be impossible, given social engineering and insider attacks, to
prevent all security breaches; a strength of Syzygy is that it can detect the bad be-
havior that follows a breach. In situations where the total damage is integral over
time and the size of the infected community—such as when an exploit is stealing
resources—the ability to detect such epidemics is crucial.

Anomaly-based intrusion detection has a long history [5, 27, 28, 29, 31, 35]. A
commonly held view is that anomaly detection is fundamentally limited by the
mediocre quality of the models that can be obtained in practice and therefore
must necessarily generate excessive false positives in realistic settings (see, e.g.,
[2]). We agree with the gist of this argument for single clients, but we show in
this paper that an appropriate use of a community can make strong guarantees
even with noisy models.

Crucial, however, is how the community is used. Most previous systems that
use a community at all use it only to correlate alarms generated locally on each
client—the difficulty is that the alarm/no alarm decision is still made on the basis
of a single client. Alert-correlation systems then try to suppress the resulting false
alarms by correlating alarms from other clients or different detectors [4, 13, 36].
Other collaborative detection efforts that raise alarms only on individual clients
include heterogeneous network overlays [44] and network anomaly detectors, such
as by using cumulative triggers [15, 16] or alarm aggregation and correlation
[1, 17, 32, 41]. Some work also uses correlation to characterize attack scenarios
and causal flow [19, 26, 34].

Community Epidemic Detection Using Time-Correlated Anomalies 363

Syzygy is fundamentally different from all of these systems in that it uses the
aggregate behavior of the community to decide whether to raise an alarm for
the community, not individual clients. The ability to make alert decisions based
on analyzing the combined behavior of multiple clients is what gives Syzygy
strong theoretical and practical properties that are absent from all previous work.
There is prior work for file systems [43] and peer-to-peer networks [22, 23] that
generate alerts based on aggregate behavior, but these do so without utilizing
the statistical benefits of a large community.

Another category of work uses the community simply to gather data more
quickly or to spread the burden of monitoring among many clients. For example,
the Application Communities project [21] uses the community to distribute work;
everything could be done on a single client, given more time. Syzygy uses the
community in both these ways, as well; in contrast, however, it also looks for
time-correlated deviations from normal behavior, which is not possible on a
single client.

Syzygy was originally a detection component of the VERNIER security archi-
tecture [20]. Syzygy’s role is to monitor instances of a target application for signs
of infection: attacks on the security infrastructure or other applications within
the client system, problem diagnosis, and reaction to the intrusion are all the
responsibility of other VERNIER components. Among the various VERNIER
detectors, Syzygy is specifically looking for time-correlated activity, as might be
expected from a propagating worm or a coordinated attack. This specialization
allows Syzygy to be small, lightweight, and asymptotically ideal while using the
community in a novel way.

There are also uses of the community for tasks other than detection, such
as diagnosing problems by discovering root causes [39] and preventing known
exploits (e.g., sharing antibodies) [2, 3, 25]. Although other parts of VERNIER
employ such measures, our focus is on detection.

3 Syzygy

Consider a community of n clients in which we wish to detect epidemics. During
training, Syzygy observes the normal operation of the clients and builds a model
(see Section 3.1). It is important to note that the specific choice of model is
independent from the rest of Syzygy’s operation; the only requirement is that
the model produces an anomaly signal according to the constraints in Section 3.2.

While subsequently in monitoring mode, Syzygy periodically collects the most
recent value of the anomaly signal (the anomaly score) from each client and
checks whether the community’s average anomaly score exceeds a threshold V .
If so, Syzygy reports an epidemic. The properties of the anomaly signal are such
that, given a large community, Syzygy can compute the threshold automatically
at runtime and is insensitive to minor variations in this parameter. We explain
these properties mathematically in Section 3.3 and support them experimentally
in Sections 5.2 and 6.3.

364 A.J. Oliner, A.V. Kulkarni, and A. Aiken

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Anomaly Score

D
en

si
ty

X (healthy)
Y (infected)

μμX μμY

δδ

Fig. 1. An illustration of anomaly signals.

Neither X nor Y are normally distributed,

but μY > μX , as required. The exploit

may sometimes look “normal”.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Community Score

D
en

si
ty

False Positives
V

Fig. 2. A distribution of healthy commu-

nity scores using hypothetical data. The

threshold V determines what fraction of

scores result in false positives.

3.1 Model

When applying our method to detect epidemics in a community, the user selects
an appropriate client model, which uses some combination of signals that can
be measured on individual clients to quantify how surprising (anomalous) recent
behavior is. We require only that the model generate anomaly scores that are
mostly independent across healthy clients and that it quantify how surprising
recent behavior is, compared with historical behavior or a theoretical baseline.

The model for a community of servers might characterize normal behav-
ior according to performance (see an example using request response times in
Section 4), while the model for a community of web browsers might use code ex-
ecution paths (see examples using system calls in Sections 5 and 6). The example
models used in this paper could easily be refined or replaced with alternatives
to match the attacks we want to detect: call stack content [8], execution traces
[10], call arguments [24], remote procedure calls [12], etc.

3.2 Anomaly Signal

The anomaly signal decouples the choice of model from the rest of the system;
any model that satisfies the properties explained in this section may be used
with Syzygy. Each client keeps the server apprised of the client’s anomaly score,
the current value of the client’s anomaly signal. This score is a measure of how
unusual recent behavior is compared to a model of client behavior: a higher score
indicates more surprising behavior than a lower score. (This is sometimes called
the IS statistic [18] or behavioral distance [11].)

The distribution of anomaly scores generated by a healthy client (X) must
have a mean (μX) that is less than the mean (μY) of the anomaly score distribu-
tion of an infected client (Y), so we require μY > μX + δ. The larger the δ, the
better, though any positive δ will suffice. Figure 1 illustrates two valid anomaly
signal distributions, where X and Y are random variables such that both have
finite mean and finite, positive variance.

More generally, let the anomaly scores from healthy client i, denoted ai, be
distributed like Xi (written ai ∼ Xi) and let ai ∼ Yi when client i is infected.
Assume, without loss of generality, that all clients have the same distribution, i.e.,
let Xi ∼ X and Yi ∼ Y . The distributions may be standardized to enforce this

Community Epidemic Detection Using Time-Correlated Anomalies 365

assumption, because only the mean and variance are relevant to our asymptotic
results. If infected behavior does not differ from normal behavior, then δ will be
unacceptably small (even negative); this can be resolved by refining the model
to include more relevant signals or adjusting the model to amplify surprising
behaviors. In this paper, we use two simple models (see Sections 4.1 and 5.1)
that share a similar anomaly score computation (see Section 4.1), and both
provided sufficiently large δ values to detect a variety of exploits.

3.3 Epidemic Detection

The Syzygy server computes the average anomaly score among the active clients;
this community score C represents the state of the community. If C > V , for a
tunable threshold V , the server reports an epidemic. Consider a healthy commu-
nity of n clients and let ai ∼ X . Then, by the Central Limit Theorem, as n→∞,
the community scores are distributed normally with mean μX and variance σ2

X

n :

C = averagei(ai) =
1
n

∑

i

(X) ∼ Norm(μX ,
σ2

X

n
).

When E(|X |3) = ρ < ∞, where E() denotes expected value, convergence hap-
pens at a rate on the order of 1√

n
(Berry-Esséen theorem). Concretely, let

C′ = C − μX , and let Fn be the cumulative distribution function (cdf) of C′√n
σX

and Φ the standard normal cdf. Then there exists a constant B > 0 such that
∀x, n, |Fn(x)− Φ(x)| ≤ Bρ

σ3
X

√
n
.

Consider now when some number of clients d ≤ n of the community have been
exploited. The community score, as n, d→∞, will be

C =
1
n

(
n−d∑

i=1

X +
d∑

i=1

Y

)

∼ Norm
(

(n− d)μX + dμY

n
,
(n− d)σ2

X + dσ2
Y

n2

)

.

The rate of convergence guarantees that we get this asymptotic behavior at
relatively small values of n and d, and even when d << n; in Section 6 we
support this fact experimentally.

The threshold V must be set given the community size (n) and given the
mean (μX) and standard deviation (σX) of the healthy client anomaly scores,
but without knowing the size (d) and distribution (μY and σY) of the infected
population, because those are unknown at runtime. We can pick any positive
V between σ2

X/n and (σ2
X/n) + δ and guarantee that there exist n and d that

give an arbitrarily high probability of perfect detection (FP=FN=0). Without
knowing δ, however, the best strategy is to pick the lowest value of V such that
the false positive rate is acceptable. Using the following analysis, we can compute
and adjust V at runtime based on known quantities and a specified false positive
rate; we do this using data from real deployments in Sections 4.2 and 5.2.

The expected rate of false positives is the fraction of the community scores in
a community with no infected clients that falls above V . (See Figure 2.) This is

366 A.J. Oliner, A.V. Kulkarni, and A. Aiken

Table 1. A reference table of the terminology used in this paper. Let E be the event

that Syzygy reports an epidemic and let H be the event that the community is healthy.

Term Meaning

n The total number of active clients in the community.

d The number of infected clients in the community.

Wi The size of the recent window on client i. We use Wi = 1000 measure-

ments.

Ti The silence threshold on client i. If the application records no measure-

ments for Ti seconds, Syzygy generates a hiaton; if a client reports no

anomaly scores for 2Ti seconds, the server marks it inactive.

ai Anomaly score. The instantaneous value of the anomaly signal Ai(t) on

client i.

X, Y The distributions of anomaly scores for healthy (X) and infected (Y)

clients.

C Community score: average of the most recent anomaly scores from active

clients.

V The epidemic threshold. If C > V , Syzygy reports an epidemic.

δ Defined as μY − μX . Intuitively, the average distance between anomaly

scores generated by healthy versus infected clients. One kind of mimicry

attack drives δ toward zero.

r The rate of a rate-limited mimicry attack: the application appears

healthy a fraction 1 − r of the time and infected a fraction r of the

time.

TP True positive rate or detection rate. P (E|¬H).

TN True negative rate. P (¬E|H).

FP False positive rate, or Type I classification error rate. P (E|H).

FN False negative rate, or Type II classification error rate. P (¬E|¬H).

F1 Measure A summary metric with precision and recall weighted equally:
2TP

2TP+F P+F N
.

precisely the value of the parametrized Q-function, the complement of the normal
cdf: Q(α) ≡ 1√

2π

∫∞
α e−

x2
2 dx. Let H ∼ Norm

(
μX ,

σ2
X

n

)
be the distribution of

community scores in a healthy community of size n. The probability that a
randomly selected community score will be a false positive is FP = P (C > V) =
Q

(
(V−μH)

√
n

σH

)
. Table 1 lists the significant terms and metrics used in this paper.

This analysis relies on two modest assumptions. First, the parameters μX and
σX must characterize the future distribution of anomaly scores. A model that
is out-of-date or produced with biased training data, for example, may produce
anomaly scores inconsistent with the expected distribution. In Section 6.4 we
explore the impact of using on one system a model produced for a different one
and in Section 5.2 we show that even relatively heterogeneous machines pro-
duce predictable community score distributions. It is straightforward to detect
when observed behavior disagrees with expectation, and the solution is to re-
train the model. Second, during normal operation, client anomaly scores should
be mostly independent. In situations like a network-distributed software upgrade,

Community Epidemic Detection Using Time-Correlated Anomalies 367

innocuous dependencies may cause correlated behavior (i.e., correlated behavior
without a malicious cause, which is our definition of a false positive). Indeed,
it is indistinguishable from an attack except that one change to the software is
authorized and the other is not. Such false alarms are easily avoided by mak-
ing information about authorized changes to monitored applications available
to Syzygy. Other sources of accidentally correlated behavior are quite rare; we
observed no false alarms at all in a deployment with real users (see Section 5).

4 Detection Experiments

We first test Syzygy’s ability to detect epidemics in a community using a cluster
of 22 machines running unmodified instances of the Apache web server. Each
machine has four cores (two dual core AMD Opteron 265 processors), 7 GB of
main memory, and the Fedora Core 6 distribution of Linux. Each client serves
streams of requests generated by a workload script. The workload generator,
at exponentially distributed random times, makes requests from a list of 178
available HTML and PHP pages that includes several pages that do not exist
and two pages for which the requester does not have read permission. We run
the workload generator for 100,000 requests (∼2.8 hours) to train the model,
then use those same training traces to set V so that we expect to get one false
positive per week (see Section 3.3 for how we do this; also see Section 5.2 for
more on false positives). We use Apache’s existing logging mechanisms to record
measurements (e.g., response times).

For this community, we aim to detect the following classes of attack: denial
of service (DoS), resource exhaustion, content spoofing, and privilege escalation.
Thus, we pick a client model that is likely to detect such attacks (see Section 4.1).
We test Syzygy with two DoS attacks that prevent Apache from serving 1%
or 10% of requests, at random, respectively; two resource exhaustion attacks
that allow Apache to continue serving requests but gradually consume memory
or CPU time, respectively; three content spoofing attacks that cause (i) PHP
pages to be served in place of previously non-existent pages, (ii) PHP pages to
be served in the place of certain HTML pages, or (iii) HTML pages to be served
in place of certain PHP pages; and a privilege escalation attack that makes all
page accesses authorized (no 403 Errors). We find that Syzygy can achieve high
detection rates for these attacks with no false positives (see Section 4.2).

The clients in these experiments are homogeneous; in Section 5, we explore
the effects of heterogenous hardware and varying user behavior with a deploy-
ment using an interactive application (the Firefox web browser). Section 6 con-
tains additional experiments, in a more controlled environment, that explore the
properties of much larger communities (thousands of clients) and more advanced
exploits (capable of various degrees of mimicry).

4.1 Model

Assume that our security goal for this community is to ensure that clients are
serving requests according to expected performance; that is, the request response

368 A.J. Oliner, A.V. Kulkarni, and A. Aiken

behavior should be consistent over time. During training, the model computes
a frequency distribution of request response times and the maximum observed
time between consecutive requests. This is just one choice of model and is not
intrinsic to Syzygy.

When a request is made of the server, the model increments the counter asso-
ciated with the response time s in a table indexed by response times (10 μsecond
precision). From this frequency distribution, we compute a density function Si

by dividing each entry by the total number of observed response times. Thus,
Si(s) is the fraction of times that response time s was observed on client i.

To incorporate timing in the model, which can help identify the absence of
normal behavior (such as during a denial of service attack), we record the time
between the start of each consecutive pair of requests. The model measures
these times only when the application is active. A client is active when it reports
its first anomaly score and becomes inactive after reporting an anomaly score
accompanied by the END message. (See below for when this token is generated.)
From these data, we set a silence threshold Ti for each client i, which we initially
pick to be the maximum time between any two consecutive requests.

Monitoring. On the client, Syzygy monitors all requests made to the applica-
tion. In addition, Syzygy may inject two kinds of artificial measurements into
the sequence. The first, called END, indicates that the application has terminated
(switched to inactive); Syzygy generates an END token when the application exits
cleanly, terminates abruptly such as due to an error, or when the Syzygy client
is closed cleanly. If an active client stops reporting scores for longer than the
timeout threshold, currently set to 2Ti seconds, then the Syzygy server marks
that client inactive without fabricating a token. The second artificial measure-
ment, a hiaton [37] denoted X, indicates that no measurements were generated
for longer than Ti seconds, including any Xs produced via this process. In other
words, at the start of each request, a timer starts; when this timer exceeds Ti,
Syzygy generates a hiaton and resets the timer.

Each client maintains a window of the most recent Wi request response times,
including the fabricated hiatons and END tokens. From this window, we compute
the density function Ri, analogous to Si, above. Thus, Ri(s) is the fraction of
times measurement s appears in the previous Wi measurements on client i.

Anomaly Signal. Let ai be the most recent anomaly score and Wi be the size
of the recent window for client i. The units of ai and Wi may depend on the par-
ticular choice of model, but should be consistent across clients. In this paper, we
measure the anomaly signal in bits and the window size in number of measure-
ments. Our implementation computes ai using Kullback-Liebler (KL) divergence
with a base-2 logarithm. Roughly, this measures the information gained by seeing
the recent window, having already observed the historical behavior. Specifically,
over the measurements s in the density function for the recent window (s ∈ Ri),
we have ai =

∑
s Ri(s) log Ri(s)

Si(s)
.

This computation can be updated incrementally in constant time as one mea-
surement leaves the recent window and another enters it. To prevent division by

Community Epidemic Detection Using Time-Correlated Anomalies 369

0 5 10 15 20 25 30

0.
42

0.
46

0.
50

Infected Clients (d)

M
ax

 C
om

m
un

ity
 S

co
re

 (C
)

DoS (1%)
DoS (10%)
Content Spoof (i)
Content Spoof (ii)
Content Spoof (iii)
Privilege Escalation
Memory Thief
CPU Thief

Fig. 3. Syzygy detected all of the attacks

once the infection size was sufficiently

large. The horizontal line is the epidemic

threshold V .

0.30 0.35 0.40 0.45 0.50 0.55

0
5

10
15

Client or Community Score

D
en

si
ty

Client Scores
Community Scores
Epidemic Threshold (V)

Fig. 4. Our client model is incomplete

and noisy; anomalous behavior is com-

mon. The community scores, however, are

extremely steady.

zero, the measurements in the recent window are included in the distribution
Si. By default, each client reports this score whenever there is new information
available to the model (e.g., a request or hiaton), but it is straightforward to add
feedback or batching to the client-server protocol to curb communication traffic
(we do so in Section 5.3).

4.2 Results

Figure 3 shows the results of our detection experiments; there were no false
positives in these experiments and detection latency was never more than a
couple of seconds. Although some attacks are difficult to detect when only a few
machines are infected (low d), Syzygy is able to correctly detect each attack once
a sufficiently large number of clients are infected. In the case of the third (iii)
content spoof attack, the behavior is anomalous enough on even a single client
for our simple response time model to detect it; this is not true for most of the
other attacks, meaning the community was crucial.

We achieved these high detection rates despite the fact that our behav-
ior model was incomplete and noisy. Figure 4 shows part of the distribution
of anomaly scores reported by individual healthy clients. In fact, these values
ranged as high as 0.8 but we have truncated the graph for readability. In con-
trast, however, note that the healthy community scores stayed within a very
small range (the dashed red line is actually a very slim Gaussian). The epidemic
threshold V is the dotted line to the right of the cluster of community scores.
Because the community scores are such a stable signal, they enable Syzygy both
to reliably provide a low false positive rate and to be sensitive to minor—but
not isolated—changes in client behavior.

In the subsequent sections, we discuss the benefits of distributed training, the
effects of heterogenous hardware and user behavior, performance and overhead
on a real network deployment, predicting and setting the false positive rate,
performance in communities with thousands of clients, and Syzygy’s robustness
against tainted training data and advanced exploit behavior (like mimicry).

370 A.J. Oliner, A.V. Kulkarni, and A. Aiken

5 Deployment Experiments

For practical use, our method assumes that (i) a real deployment can scale to
large numbers of clients across a realistic network topology and (ii) despite mi-
nor client variations, such as hardware and configuration differences, healthy
anomaly score distributions are similar across clients. We verify that these as-
sumptions hold in practice by deploying Syzygy on several dozen Linux work-
stations on a university campus. Most of these machines were 3.0 GHz Intel
Core2 Duos with 2 GB RAM and the CentOS 5 operating system; exceptions
include two laptops and (briefly) the Syzygy server, itself. Syzygy monitored the
Firefox web browser via strace on Linux. Over the course of these two weeks
of experiments, Syzygy reported no false positives.

5.1 Model

In the next two sections, we use a model of client behavior (different from Sec-
tion 4) that uses short sequences of a program’s system calls. This information
can be gathered with low overhead and has been shown to be useful [9, 14]. We
use sequences of six system calls to be consistent with previous work [7, 14, 22],
but instead of using one of the existing stide or t-stide algorithms [33], the
model uses an information theoretic approach with several additional modifica-
tions. During training, Syzygy computes a frequency distribution of system call
sequences of length six and the maximum observed time between consecutive sys-
tem call invocations. The computations are extremely similar to Section 4.1, but
use system call sequences as measurements, instead of request response times.

Whenever a system call is invoked, the model concatenates the name of the
call onto a sequence consisting of the previous five and increments the counter
associated with that sequence. For example, on Mac OS X, while executing the
command echo hi, we generate the following period-delimited sequence:

s = sigaction.writev.read.select.select.exit.

Even when idle, many applications will continue to invoke system calls (e.g.,
polling for new work or user input). This behavior acts as a kind of heartbeat
for the program, and its absence indicates unusual behavior just as much as
the presence of, say, unusual system call sequences. For example, during one
such execution of echo hi, the maximum time between system call invocations,
according to dtrace, was 375 μs.

Using this kind of information about call sequences and timing, we construct
a model analogous to the one for request response times in Section 4.1. The
only differences are that the tables used to construct Si and Ri are indexed by
sequences and the recent window Wi has units of sequences. The anomaly signal
is computed as described in Section 4.1.

5.2 Distributed Training

Over a period of roughly two weeks, we collected normal usage traces from 35
active clients. During the day, a median of 8 clients were active at a time. The

Community Epidemic Detection Using Time-Correlated Anomalies 371

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Training Set

Fr
ac

tio
n

of
 U

ni
qu

e
S

eq
ue

nc
es

Fig. 5. Distributed training happens

quickly: 25% of the data exhibits 90% of

the unique sequences. Retraining a model

(e.g., after a software upgrade) is efficient

0 5 10 15 20 25 30 35

0.
0

1.
0

2.
0

3.
0

Community Size (n)

S
ta

nd
ar

d
D

ev
ia

tio
n

(s
d(

C
))

Community Makeup:
Actual
Outliers Removed
High SD Removed
Homogeneous
Homogeneous (High SD)

Fig. 6. Community scores converge in

real data; variance comes from client vari-

ance, not system configuration or work-

load heterogeneity

first week of these traces is our training data and contains more than 2.2 billion
sequences, of which approximately 180,000 are unique. As shown in Figure 5,
most of the sequences were seen quickly (90% within the first 25% of the trace).
The fact that training speeds up with community size is consistent with pre-
vious work [21]; Syzygy’s distinctive use of the community occurs during the
monitoring phase (Section 5.3).

During this training period, while the clients were reporting both the complete
sequences and timestamps at an average of 100 KB/s, the average bandwidth
usage at the server was 1160 KB/s (the peak was 3240 KB/s). The clients re-
quired less than 1% CPU each for the strace process and Syzygy script. With
all 35 clients active, the server-side script was using 13% of the processor, on
average, with peaks as high as 32%.

Even though the training data includes machines that are unlike most of the
cluster, such as two laptops, we still find that the distribution of community
anomaly scores within the training community converges toward a tight normal
distribution. Figure 6 shows the standard deviation of the community score for
increasing numbers of clients; in the figure, the clients “join” the community
in reverse order of average anomaly score (so n = 1 represents the client with
the highest average anomaly score). To evaluate the impact of heterogeneity,
we also plot four hypothetical communities: “Outliers Removed,” where the two
laptops and the Syzygy server were replaced with the client with the lowest
standard deviation, “High SD Removed,” where the five clients with the high-
est standard deviations were replaced with five clones of the machine with the
lowest standard deviation, and “Homogeneous” and “Homogeneous (High SD),”
which are communities of n clones of the client with the lowest average anomaly
score and highest standard deviation, respectively. The results show that vari-
ance in the community score comes not from client heterogeneity (the client in
“Homogeneous (High SD)” was a normal cluster machine) but from client vari-
ance. The results also show that a larger community can compensate for client
variance.

Section 3.3 shows how to compute the threshold V , given a desired false
positive rate and the training data; these analytical results correspond well with
what we observe experimentally. Using the data from our deployment, Figure 7
plots the appropriate choice of V for a desired false positive rate (note the log
scale) and community size (n). The units of the false positive rate, for this

372 A.J. Oliner, A.V. Kulkarni, and A. Aiken

1e−06 1e−04 1e−02

0
1

2
3

4
5

False Positive Rate (log scale)

Th
re

sh
ol

d
(V

)

n=
1
2
4
8
16
35

Fig. 7. For a given false positive rate

and community size, we can compute the

threshold V . The vertical red line, for

instance, corresponds to about one false

positive per six days.

0e+00 2e−04 4e−04 6e−04 8e−04 1e−03

0e
+0

0
4e

−0
4

8e
−0

4

Predicted FP Rate

A
ct

ua
l F

P
 R

at
e

n=
30
31
32
33
34

Fig. 8. The training data is a good pre-

dictor of the false positive rates seen in

monitoring data. The threshold V can be

set as high as necessary to achieve an ac-

ceptable rate of false positives.

deployment, are expected false positives per five seconds. The vertical line is a
hypothetical target rate: 1 × 10−5 (about six days). The y-value at which this
line intercepts each community size line is the threshold for that value of n.

5.3 Distributed Monitoring

After training is complete, Syzygy switches to monitoring mode. For these ex-
periments, we set Ti = ∞ to prevent hiatons from being introduced. (We omit
the exploration of Ti values for space reasons.) Over the course of a week, we
collected just under 10 billion anomaly scores from the community. Five clients
seen during training were not heard from again, while four new ones appeared.
There were no epidemics nor other coordinated events during the monitoring
period; the machines are part of the campus computing infrastructure, so we
could not obtain permission to stage an epidemic.

The strace process on the client requires an average of 1–2% CPU overhead,
and the Syzygy client script requires another 2–3% to calculate the anomaly
scores and send them to the server. The server-side Syzygy process uses less
than 1% of the CPU for a single client; our experiments suggest a server could
easily handle more than a hundred clients (see Section 7).

Syzygy can either send one packet per anomaly score or buffer some number
before reporting them. At an average rate of 2000 system calls per second, send-
ing one packet per call would be inefficient. Buffering 100 scores with a short
timeout to ensure freshness, for example, reduces the bandwidth requirements
to 20 packets per second at 1.5 KB per packet (∼ 30 KB/s), including the over-
head of transmitting timestamps along with the anomaly scores, which we did
for experimental purposes. Communicating the scores alone would require less
than half this bandwidth.

Section 3.3 notes that achieving the target false positive rate requires that μX

and σX accurately describe the future distribution of anomaly scores. Figure 8
quantifies that statement using the deployment data collected while Syzygy
was in monitoring mode (data not used to build the model). The diagonal red
line indicates perfect agreement. Even at very low false positive rates and small

Community Epidemic Detection Using Time-Correlated Anomalies 373

community sizes, the modeling data was sufficient to allow good prediction of
the false positive rate on real monitoring data.

6 Controlled Experiments

In this section, we test Syzygy in a controlled environment under various adverse
conditions, using trace data from commodity applications and exploits capable
of sophisticated behaviors.

An experiment is a binary classification problem in which Syzygy is given a
sequence of anomaly scores for n clients and must decide whether 0 of them are
infected (healthy) or whether d ≥ 1 of them have been exploited (infected). Thus,
an example is a set of n score vectors of length Wi. Ideally, Syzygy should report
an epidemic iff one or more of the score vectors was produced by an infected
client. We use standard metrics to evaluate performance on this classification
problem: false positive rate (FP), false negative rate (FN), true positive rate
(TP), true negative rate (TN), and F1 Measure (2TP

2TP+FP+FN), which combines
precision and recall, weighting each equally.

For example, say we are measuring Syzygy’s performance on a community of
size n = 100 and epidemic of size d = 5. We produce an example of an in-
fected community as follows. Say that we have already constructed models for all
n clients and have the associated system call traces. To construct each of the n−d
healthy score vectors, we pick a window from the application trace, uniformly at
random, and compute the anomaly scores as described in Section 4.1. (The sam-
ple window determines Ri.) Using exploit traces, we construct d infected score
vectors. Syzygy then takes the n vectors of anomaly scores and computes the ele-
mentwise averages. If C > V for any element C of the resulting community score
vector, then Syzygy classifies the example as infected; otherwise, it classifies it as
healthy. Using data described in Section 6.1, we plot the community scores for
a pair of examples in Figure 9; a healthy example is on the left and an infected
example on the right. In other words, in the plot, the first 1000 scores are from a
healthy community, while the next 1000 are from an infected community—Syzygy

●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●
●●

●●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●

●●
●●●●●
●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●
●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●

0 500 1000 1500 2000

1.
4

1.
6

1.
8

2.
0

2.
2

Healthy Infected

Score Index

C
om

m
un

ity
 S

co
re

 (
C

)

Threshold (V)
Infection Point

Fig. 9. A pair of examples, using Camino

and the showpages exploit with n = 100

and d = 5, showing a TN and a TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

Anomaly Score

D
en

si
ty

Adium (mean= 2.5976 , sd= 1.3218)
Camino (mean= 1.5645 , sd= 1.9471)
Mail (mean= 1.3196 , sd= 1.9982)
TextEdit (mean= 1.9679 , sd= 1.3489

Fig. 10. Healthy anomaly distributions,

plotted with a kernel density estima-

tor. The bump at around 2.75 suggests

Adium’s model is imperfect.

374 A.J. Oliner, A.V. Kulkarni, and A. Aiken

Table 2. Training data. The Unique column indicates the number of unique length-six

sequences. Ti is the maximum time from the beginning of one system call to the start

of the next.

Application Version Calls Time (sec) Rate (calls/sec) Unique Ti (sec)

Adium 1.2.7 6,595,834 33,278 198.204 50,514 54.451

Camino 1.6.1Int-v2 113,341,557 57,385 1975.11 103,634 7.2605

Mail 3.3 106,774,240 48,630 2195.65 126,467 896.85

TextEdit 1.5 (244) 176,170 31,794 5.54098 4469 6031.4

classifies them based on V , reporting an epidemic when it sees the first score from
the infected community.

We repeat this randomized process 1000 times per example to get statistically
meaningful metrics. We always present Syzygy with an equal number of healthy
and infected examples, though Syzygy does not use this fact in any way. This
is not meant to reflect the base rate of intrusions in a system, but increases the
precision of the metrics. As the size of the training set goes to infinity, it becomes
irrelevant as to whether or not we remove the current trace file from the training
set because its influence goes to zero. It is sufficient to select random windows
from the traces because Syzygy is memoryless outside of each sample. Unless
noted otherwise, we set Wi = 1000 sequences and V = μH + 2σH , where H is
the distribution of community scores for a community of size n, as in Section 3.3.
We present the results of our controlled experiments in Sections 6.2–6.5.

6.1 Data

We collect system call and timing traces from commercial, off-the-shelf software
under normal usage by the authors, using the utility dtrace. We use several
desktop applications: a chat program (Adium), a web browser (Camino), a mail
client (Mail), and a simple text editor (TextEdit). A summary of these data
is provided in Table 2. When compared to the real deployments in Sections 4
and 5, we find that our simulations are a reasonable approximation. Note that,
although Syzygy must build a dynamic model of application behavior, it does
not need to learn exploit signatures.

Many exploits currently found in the wild are brazen about their misbehavior
(large δ) and are therefore easy for Syzygy to detect (see Section 3.3). Instead, we
focus in this section on Syzygy’s distinguishing ability to detect next-generation
exploits under adverse conditions. These exploits can infect the application at
any execution point (i.e., multiple infection vectors), are privy to all of Syzygy’s
data and parameters, and can perform skillful mimicry. The adverse conditions
include client heterogeneity and tainted training data.

In order to simulate such behavior, we use four next-generation exploits:
mailspam infects Mail, then composes and sends a large number of emails (based
on the open mail relay in the Sobig worm’s trojan payload); prompttext infects
TextEdit, then asks the user for input that it writes to a file (based on file cre-
ation and deletion seen in SirCam, Chernobyl, or Klez [40]); screenshot infects

Community Epidemic Detection Using Time-Correlated Anomalies 375

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Training Set

Fr
ac

tio
n

of
 U

ni
qu

e
S

eq
ue

nc
es

Adium
Camino
Mail
TextEdit

Fig. 11. The applications generate new

sequences throughout training, with oc-

casional bursts (e.g., program launches)

0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

Infected Clients (d)

F1
 M

ea
su

re

Mail / mailspam
TextEdit / prompttext
Adium / screenshot
Camino / showpages

Fig. 12. F1 measure with n = 100 and

varying infection size (d) using each of the

four pairs of programs and exploits

20 50 100 200 500 1000 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Community Size (n)

F1
 M

ea
su

re

f=0.5
f=0.2
f=0.1
f=0.05

Fig. 13. F1 measure with varying com-

munity size and constant fraction f = d/n
infected, using TextEdit and prompttext

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.

0
0.

4
0.

8

Threshold Multiplier k (V=mean+k*sd)

F1
 M

ea
su

re

d =
1
2
4

6
8
10

Fig. 14. F1 measure with n = 100 and

varying threshold multiplier using traces

from Mail and the mailspam exploit

Adium, then takes a snapshot of the current display (like prompttext but with-
out user interaction); and showpages infects Camino, then loads a series of web
pages (based on HTML proxies like Sobig’s trojan, DoS payloads like Code Red
and Yaha, and self-updating payloads like W32/sonic and W32/hybris [6]).

Except where noted, we gathered data using an Apple MacPro with two 2.66
GHz Dual-Core Intel Xeons and 6 GB of memory running Mac OS X 10.5.4,
and the results we present are representative. Using the resulting model, we
compute the distribution X of healthy client anomaly scores for each program
(Figure 10). The results of Section 5.2 show that behavioral variance comes from
client behavior over time, rather than client heterogeneity; the smartest way to
gather a good data set was, therefore, to monitor a single client for a long time.
Section 6.4 provides experiments supporting the merit of that decision.

We use the phrase “normal usage” to mean that no artificial workloads were
generated nor were certain activities prescribed. As is evident from the rate of
new sequences seen during training, plotted in Figure 11, we made no effort
to train until convergence, nor to exercise the rarer features of these programs.
We also do not separate sequences by thread, instead ordering them strictly
by time of invocation. The resulting models are therefore small, imprecise, and
incomplete, as we might expect to achieve in practice; the Syzygy performance
numbers we present would only improve with better models.

6.2 Detection Performance

We first consider Syzygy’s ability to detect epidemics for various sizes of com-
munity and infected population. Consider the experiments plotted in Figure 12

376 A.J. Oliner, A.V. Kulkarni, and A. Aiken

wherein a fixed-size community is being infected. Syzygy’s performance improves
with infection size, peaking, in this experiment, at around 10 exploited clients
(10% of the community). Figure 13 shows, however, that with a sufficiently
large community we require a vanishingly small fraction of the population to be
sacrificed before we detect the exploit. Although the community and infected
population are growing at the same rate, Syzygy’s ability to detect the infection
outpaces that growth.

6.3 Parameter Sensitivity

We next evaluate Syzygy’s sensitivity to the threshold V . Figure 14 shows per-
formance for various choices of V . Once the community and infected population
are sufficiently large, we see the performance curve reach a maximum at a point
between V = μX and μY . Increasing the multiplier tends to increase precision,
decrease recall, and decrease the false positive rate (which falls off like the tail of
the normal distribution). To further visualize this, see Figure 15. As the number
of clients grows, the normal and infected distributions become more clearly sep-
arated. This increasing noise margin suggests that the exact placement of the
threshold does not strongly affect Syzygy’s performance. Indeed, in the limit, all
choices of threshold μX < V < μY yield perfect detection.

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

Anomaly Score (n=1)

D
en

si
ty

TextEdit
Prompttext

1 2 3 4 5

0
1

2
3

Average Anomaly Score (n=20)

D
en

si
ty

TextEdit
Prompttext

Fig. 15. The left plot shows anomaly signal density estimates for TextEdit and the

prompttext exploit. There is no ideal position on the x-axis to set a threshold. On the

right, we see that averaging scores across a number of clients yields a clearer separation.

6.4 Client Variation

We expect clients to differ in machine specifications and configurations, and for
these to change over time. To test this situation, we ran the same applications
as on our primary test machine (System A) on a second system (System B)
with different specifications: an Apple PowerBook G4 with a single 1.33 GHz
PowerPC processor and 1.25 GB of memory running Mac OS X 10.5.4. The
data is summarized in Table 3. In Figure 16, we compare the anomaly scores for
these Adium traces against those from the training system and the screenshot
exploit. Although System B’s average score is higher by Δ (its model is from
another system), the programs behave similarly enough on both systems that
unusual but healthy clients are not easily confused with exploits.

Community Epidemic Detection Using Time-Correlated Anomalies 377

2 4 6 8 10

0.
0

0.
4

0.
8

1.
2

Anomaly Score (n=1)

D
en

si
ty

Adium (System A)
Adium (System B)
Screenshot

2 3 4 5 6 7 8

0.
0

0.
4

0.
8

1.
2

Average Anomaly Score (n=20)

D
en

si
ty

Adium (System A)
Adium (System B)
Screenshot

Fig. 16. Similar to Figure 15, except using the Adium program and giving data for

both our primary system (System A) and the laptop (System B). All curves are based

on the Adium model built using only System A.

Table 3. Data from OS X apps on a different client. The Unique column indicates the

number of unique length-six sequences, and Ti is the maximum time from the begin-

ning of one system call to the start of the next. The Δ column shows the empirically

estimated average difference between anomaly scores on Systems A and B.

Program Version Time (sec) Rate (calls/sec) Unique Ti (sec) ≈ Δ

Adium 1.2.7 2093 54.8839 6749 47.457 0.31589

Camino 1.6.1Int-v2 3901 868.294 21,619 1.84077 0.60442

Mail 3.3 (926.1/926) 1126 16.2869 7963 421.645 0.53272

TextEdit 1.5 (244) 2506 92.8204 2925 528.164 1.17758

As the community grows, however, System B begins looking like an exploit.
The healthy community score distribution variance, σH , shrinks, so V moves
closer to μX , slowly passing below System B’s average anomaly score. This
contrived problem is easily remedied by using a model constructed from System
B’s behavior rather than System A’s, or by normalizing the anomaly scores from
System B as prescribed in Section 3.2. In practice, such a situation may arise
when a client upgrades the application but does not retrain the model; if a client’s
anomaly signal remains high for long periods of time, this may indicate that the
model is no longer valid—only when many clients make such changes would we
expect spurious epidemic reports. Section 5 contains additional results related
to client variation that suggest heterogeneity is not a problem in practice.

6.5 Mimicry and Tainting

An exploit can avoid detection if its behavior is sufficiently similar to the ap-
plication’s, from the perspective of a given model [38]. There are two ways an
exploit might mimic application behavior: (i) by ensuring that the distribution
of anomaly scores is sufficiently similar or (ii) by limiting the rate at which it
exhibits bad behavior. Perfect mimicry, in which exploit behavior is indistin-
guishable from application behavior, can never be detected, by definition, using
any behavior-based epidemic detector; however, we can show Syzygy is robust
against a very high degree of mimicry and against rate-limiting an attack.

Scenario (i), mimicking the distribution, is quantified in Syzygy by the pa-
rameter δ. Recall that a lower value for δ means the two distributions are more

378 A.J. Oliner, A.V. Kulkarni, and A. Aiken

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Delta

F1
 M

ea
su

re

n =
20
50
100
200

500
1000
2000

Fig. 17. Varying δ using Adium, with

d/n = 0.1. Mimicry makes detection more

difficult, but, at higher δs, performance

improves logarithmically with n.

0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

Rate of Exploit Behavior (r)

F1
 M

ea
su

re

n =
20
50
100
200
500
1000
2000

Fig. 18. Varying rate of bad behavior (r)
using Camino and showpages, with d/n =

0.1. A sufficiently large community guar-

antees that bad behavior will overlap.

similar. Tainted training data is symmetric to mimicry: raising μX instead of
lowering μY . Either way, δ is decreased and the following results hold. Intu-
itively, these experiments simulate an exploit that makes system call sequences
in similar (but not identical) proportions to the application. This is done com-
putationally by generating anomaly scores from the application’s distribution,
then shifting them positively by δ. (Y ∼ X + δ.)

Figure 17 gives results from these experiments. Syzygy is able to detect fairly
well even for low δ. The poor performance at the lowest δs, despite large com-
munities, is almost exclusively a result of false negatives: V is set too high. With
a lower V , we can get F1 > 0.6 even when δ = 0.1, n = 10, and d = 1.

We now consider scenario (ii), limiting bad behavior to a fixed rate. Specifi-
cally, if the exploit spreads bad behavior out over time, in bursts that cumula-
tively account for a fraction r of the runtime per client, such that the community
signal does not deviate above μX + V , no epidemic will be reported. Mathemat-
ically, this attack corresponds to decreasing the effective infection size from d to
dr. This, in itself, may be considered a victory under certain circumstances, such
as when a worm may be contained so long as it does not spread too quickly [42].
In our experiment, we splice windows of infected anomaly scores into sequences
of healthy anomaly scores, in proportions determined by the rate r. Figure 18
shows how Syzygy performs against this rate-limiting attack. Again, false neg-
atives dominate the metric—with a better-chosen V , we can get F1 above 0.68
at r = 0.05 with as few as 10 clients.

7 Scalability

Mathematically, Syzygy’s accuracy improves as the community grows, so it is
crucial that the implementation scales well. This issue is independent of the anal-
ysis in Section 3. We described the infrastructure as using a central server, and
demonstrated that it works for as many as 35 clients (Section 5). Communication
is one-way (client to server) and there is no consensus or agreement protocol, so
the total community traffic scales linearly with the number of clients.

This central server may be replaced, however, with alternatives that would
increase scalability and avoid a single point of failure. One option is a server hi-
erarchy; each server computes the community score for its children and reports

Community Epidemic Detection Using Time-Correlated Anomalies 379

this value and the size of that sub-community to a parent server. This arrange-
ment works precisely because the function used to compute the community score,
mean(), is associative (when weighted by sub-community size).

In addition to communication overhead, there is monitoring overhead on the
clients. This is typically a consequence of model choice and unaffected by com-
munity size. In our controlled experiments, the primary monitoring tool, dtrace,
required less than 10% of one CPU even during heavy activity by the monitored
application; the average usage was below 1%. In our deployment experiments
with Firefox, Syzygy required less than 5% of the CPU on average, and 7% peak,
including strace overhead (see Section 5.3). Using our strace-based implemen-
tation for Windows, however, the slowdown was noticeable. The overhead in our
Apache deployment (see Section 4), which took advantage of the web server’s
built-in logging mechanism, was negligible. If overhead becomes problematic,
then it may be worth changing the model to measure less costly signals. For
example, Sharif et al [30] implemented control-flow monitoring with overhead
comparable to our system call-based approach—this optimization would likely
yield greater precision at lower overhead.

8 Contributions

Syzygy is an epidemic detection framework that looks for time-correlated anoma-
lies in a homogeneous software community—precisely the behavior that would
accompany an exploit as it executes among a set of clients. Our results show
that Syzygy is effective at automated detection of epidemics, is practical to de-
ploy, and scales well. Syzygy takes advantage of the statistical properties of large
communities in a novel way, asymptotically approaching perfect detection.

Acknowledgments

The authors thank the members of the VERNIER team, especially Elizabeth
Stinson, Patrick Lincoln, Steve Dawson, Linda Briesemeister, Jim Thornton,
John Mitchell, and Peter Kwan. Thanks to Sebastian Gutierrez and Miles Davis
for help deploying Syzygy, to Naeim Semsarilar for his invaluable contributions
to the early stages of this work, and to Xuân Vũ for her input and support.

References

[1] Bouloutas, A., Calo, S., Finkel, A.: Alarm correlation and fault identification in

communication networks. IEEE Transactions on Communications (1994)

[2] Brumley, D., Newsome, J., Song, D.: Sting: An end-to-end self-healing system for

defending against internet worms. In: Malware Detection and Defense (2007)

[3] Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,

P.: Vigilante: End-to-end containment of internet worms. In: SOSP (2005)

[4] Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection

framework. In: IEEE Symposium on Security and Privacy, pp. 202–215 (2002)

380 A.J. Oliner, A.V. Kulkarni, and A. Aiken

[5] Debar, H., Becker, M., Siboni, D.: A neural network component for an intrusion

detection system. In: IEEE Symposium on Security and Privacy (1992)

[6] Ellis, D.: Worm anatomy and model. In: WORM (2003)

[7] Eskin, E.: Anomaly detection over noisy data using learned probability distribu-

tions. In: ICML (2000)

[8] Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection

using call stack information. In: IEEE Symposium on Security and Privacy (2003)

[9] Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix

processes. In: IEEE Symposium on Security and Privacy (1996)

[10] Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for

anomaly detection. In: CCS (2004)

[11] Gao, D., Reiter, M.K., Song, D.: Behavioral distance for intrusion detection. In:

Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 19–40. Springer,

Heidelberg (2006)

[12] Giffin, J.T., Jha, S., Miller, B.P.: Detecting manipulated remote call streams. In:

USENIX Security, pp. 61–79 (2002)

[13] Gu, G., Cárdenas, A.A., Lee, W.: Principled reasoning and practical applications

of alert fusion in intrusion detection systems. In: ASIACCS (2008)

[14] Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of

system calls. Journal of Computer Security 6(3), 151–180 (1998)

[15] Huang, L., Garofalakis, M., Joseph, A.D., Taft, N.: Communication-efficient track-

ing of distributed cumulative triggers. In: Intl. Conf. on Distributed Computing

Systems (ICDCS) (June 2007)

[16] Huang, L., Nguyen, X.L., Garofalakis, M., Hellerstein, J., Jordan, M., Joseph, A.,

Taft, N.: Communication-efficient online detection of network-wide anomalies. In:

IEEE INFOCOM (2007)

[17] Jakobson, G., Weissman, M.: Alarm correlation. IEEE Network (1993)

[18] Javitz, H.S., Valdes, A.: The SRI IDES statistical anomaly detector. In: IEEE

Symposium on Security and Privacy (1991)

[19] King, S.T., Mao, Z.M., Lucchetti, D.G., Chen, P.M.: Constructing attack scenarios

through correlation of intrusion alerts. In: CCS (2002)

[20] Lincoln, P., et al.: Virtualized Execution Realizing Network Infrastructures En-

hancing Reliability (VERNIER), http://www.sdl.sri.com/projects/vernier/

[21] Locasto, M.E., Sidiroglou, S., Keromytis, A.D.: Software self-healing using collab-

orative application communities. In: NDSS (2005)

[22] Malan, D.J., Smith, M.D.: Host-based detection of worms through peer-to-peer

cooperation. In: ACM Workshop on Rapid Malcode (2005)

[23] Malan, D.J., Smith, M.D.: Exploiting temporal consistency to reduce false posi-

tives in host-based, collaborative detection of worms. In: WORM (2006)

[24] Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection.

In: TISSEC (2006)

[25] Newsome, J., Brumley, D., Song, D.: Vulnerability-specific execution filtering for

exploit prevention on commodity software. In: NDSS (2006)

[26] Ning, P., Cui, Y., Reeves, D.S.: Constructing attack scenarios through correlation

of intrusion alerts. In: CCS (2002)

[27] Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer

Networks 31 (1999)

[28] Porras, P.A., Neumann, P.G.: Emerald: event monitoring enabling responses

to anomalous live disturbances. In: National Computer Security Conference,

NIST/NCSC (1997)

[29] Sebring, M.M., Whitehurst, R.A.: Expert systems in intrusion detection: a case

study. In: National Computer Security Conference (1988)

http://www.sdl.sri.com/projects/vernier/

Community Epidemic Detection Using Time-Correlated Anomalies 381

[30] Sharif, M., Singh, K., Giffin, J., Lee, W.: Understanding precision in host based

intrusion detection. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007.

LNCS, vol. 4637, pp. 21–41. Springer, Heidelberg (2007)

[31] Smaha, S.: Haystack: an intrusion detection system. In: Aerospace Computer Se-

curity Applications Conference (1988)

[32] Staniford-chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagl, J.,

Levitt, K., Wee, C., Yip, R., Zerkle, D.: Grids—a graph based intrusion detection

system for large networks. In: NIST/NCSC (1996)

[33] Tan, K.M.C., Maxion, R.A.: “Why 6?” Defining the operational limits of stide, an

anomaly-based intrusion detector. In: IEEE Symposium on Security and Privacy

(2002)

[34] Ullrich, J.: DShield—distributed intrusion detection system,

http://www.dshield.org
[35] Vaccaro, H., Liepins, G.: Detection of anomalous computer session activity. In:

IEEE Symposium on Security and Privacy (1989)

[36] Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi,

A. (eds.) RAID 2001. LNCS, vol. 2212, p. 54. Springer, Heidelberg (2001)

[37] Wadge, W.W., Ashcroft, E.A.: Lucid, the dataflow programming language.

A.P.I.C. Studies in Data Processing (1985)

[38] Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.

In: CCS (2002)

[39] Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.-M.: Automatic miscon-

figuration troubleshooting with PeerPressure. In: OSDI (2004)

[40] Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A taxonomy of computer

worms. In: WORM (2003)

[41] Weaver, N., Staniford, S., Paxson, V.: Very fast containment of scanning worms.

In: USENIX Security (2004)

[42] Williamson, M.M.: Throttling viruses: Restricting propagation to defeat malicious

mobile code. In: ACSAC (2002)

[43] Xie, Y., Kim, H., O’Hallaron, D., Reiter, M., Zhang, H.: Seurat: a pointillist

approach to anomaly detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.)

RAID 2004. LNCS, vol. 3224, pp. 238–257. Springer, Heidelberg (2004)

[44] Yegneswaran, V., Barford, P., Jha, S.: Global intrusion detection in the DOMINO

overlay system. In: NDSS (2004)

http://www.dshield.org

A Data-Centric Approach to Insider Attack

Detection in Database Systems

Sunu Mathew1,�, Michalis Petropoulos2,
Hung Q. Ngo2, and Shambhu Upadhyaya2

1 Information Security,

Amazon.com Inc., Seattle WA 98104, USA

smathew@amazon.com
2 Computer Science and Engineering,

University at Buffalo, Buffalo NY 14260, USA

{mpetropo,hungngo,shambhu}@buffalo.edu

Abstract. The insider threat against database management systems is

a dangerous security problem. Authorized users may abuse legitimate

privileges to masquerade as other users or to maliciously harvest data.

We propose a new direction to address this problem. We model users’

access patterns by profiling the data points that users access, in contrast

to analyzing the query expressions in prior approaches. Our data-centric

approach is based on the key observation that query syntax alone is a

poor discriminator of user intent, which is much better rendered by what
is accessed. We present a feature-extraction method to model users’ ac-

cess patterns. Statistical learning algorithms are trained and tested using

data from a real Graduate Admission database. Experimental results in-

dicate that the technique is very effective, accurate, and is promising

in complementing existing database security solutions. Practical perfor-

mance issues are also addressed.

1 Introduction

Ensuring the security and privacy of data assets is a crucial and very difficult
problem in our modern networked world. Relational database management sys-
tems (RDBMS) are the fundamental means of data organization, storage and
access in most organizations, services, and applications. Naturally, the ubiquity
of RDBMSs led to the prevalence of security threats against these systems. An
intruder from the outside, for example, may be able to gain unauthorized ac-
cess to data by sending carefully crafted queries to a back-end database of a
Web application. This class of so-called SQL injection attacks are well-known
and well-documented, yet still very dangerous [1]. They can be mitigated by
adopting suitable safeguards, for example, by adopting defensive programming
techniques and by using prepared statements [2].

An insider attack against an RDBMS, however, is much more difficult to
detect, and potentially much more dangerous [29,7,14]. According to the most
� Work done as a graduate student at the University at Buffalo.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 382–401, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Data-Centric Approach to Insider Attack Detection in Database Systems 383

recent U.S. Secret Service/CERT/Microsoft E-Crime report, insider attacks con-
stitute 34% of all surveyed attacks (outsiders constitute 37%, and the remain-
ing 29% have unknown sources). For example, insiders to an organization such
as (former) employees or system administrators might abuse their already ex-
isting privileges to conduct masquerading, data harvesting, or simply sabotage
attacks [11].

More formally, the RAND workshop devoted to insider threats [8] defined an
insider as “someone with access, privilege or knowledge of information systems
and services,” and the insider threat problem as “malevolent (or possibly inadver-
tent) actions by an already trusted person with access to sensitive information
and information systems.” Examples of insider attacks include masquerading
and privilege abuse which are well-known threats in the financial, corporate and
military domains; attackers may abuse legitimate privileges to conduct snooping
or data-harvesting [29] with malicious intent (e.g., espionage).

1.1 Main Ideas

By definition, detecting insider attacks by specifying explicit rules or policies is
a moot point: an insider is always defined relative to a set of policies. Conse-
quently, we believe that the most effective method to deal with the insider threat
problem is to statistically profile normal users’ (computing) behaviors and raise
a flag when a user deviates from his/her routine. Intuitively, a good statistical
profiler should be able to detect non-stealthy sabotage attacks, quick data har-
vesting attacks, or masquerading attacks, because the computing footprints of
those actions should be significantly different from day-to-day activities, from a
statistical point of view.

The user profiling idea for insider threat detection in particular, and anomaly
detection in general, is certainly not new (see, e.g., [30]). In the context of an
RDBMS (or any problem requiring statistical profiling), the novelty is in the
answers to two critical questions: (1) what is a user profile (and how to construct
it)? and (2) which machine-learning techniques and models should we adopt so
that the profiles are practically useful for the detection problem? By “useful” we
mean some relevant classes of insider attacks can be detected to a good degree
of accuracy. By “practical” we mean the method can be deployed and perform
effectively in a real RDBMS. The novelty and contributions of this paper come
from answering the above two questions.

Prior studies (e.g., [13,21,17,34,31,18]) have led to the development of intru-
sion detection systems (IDS) that aimed to protect databases from attacks. Our
contribution is complementary, and is focused specifically on analyzing users’
interactions with an RDBMS by means of database queries. Analysis of other
behavioral features useful in insider threat detection (location of the attacker, in-
formational correlation between consecutive queries, and temporal features such
as time between queries, duration of session, etc.) is beyond the scope of this
paper, and is considered future work.

Perhaps the most natural user “profile” is the set of SQL queries a user issues
daily to the database, or more generally, some feature vectors representing past

384 S. Mathew et al.

queries. Indeed, [18] relied on the SQL-expression syntax of queries to construct
user profiles. This approach has the advantage that the query processing of the
insider detection system is computationally light: a new query is analyzed by
some statistical engine; only queries accepted by the engine are then issued to
the database. However, as we shall later demonstrate in this paper, this syntax-
centric view is ineffective and error-prone for database anomaly detection in
general, and for database insider threat detection, in particular. On the one hand,
queries may differ widely in syntax yet produce the same “normal” (i.e., good)
output, causing the syntax-based detection engine to generate false positives.
On the other hand, syntactically similar queries may produce vastly different
results, leading the syntax-based engine to generate false negatives.

Our main idea and also our conviction is that the best way to distinguish
normal vs. abnormal (or good vs. malicious) access patterns is to look directly
at what the user is trying to access – the result of the query itself – rather than
how he expresses it, i.e. the SQL expressions. In other words, this data-centric
approach values the semantics of the queries more than their syntax. When
a malicious insider tries to acquire new knowledge about data points and their
relationships, the data points accessed are necessarily different from the old (i.e.,
previously) accessed points. This deviation occurs in the data harvesting attacks
as well as in the masquerading attacks (e.g., when an intruder gains access to
an insider’s account by means of a compromised account).

1.2 Contributions

Our first contribution is the proposed data-centric viewpoint, which to the best
of our knowledge has not been studied in the database security and the insider
threat literature. Intuitively, the data-centric approach has the following advan-
tage: for an insider to evade our system, he has to generate queries producing
results that are statistically similar to the ones he would have gotten anyhow
with legitimate queries using his existing privileges, rendering the attempt at cir-
cumvention inconsequential. In contrast, in the syntax-based approach, queries
with similar syntax can give different results: the attacker may be able to craft
a “good-looking” malicious query bypassing the syntax-based detection engine
to access data he’s not supposed to access. This point is validated in Sections 3,
5 and 6.

The second contribution is a method to extract a feature vector from the
result set of a query, which is the core of our answer to question (1) above. The
dimension of the feature vector is only dependent on the database schema, but
independent of the size of the database. In particular, the dimensionality of a
query’s feature vector is independent of how large the result set of the query is.
This bounded dimensionality also partially addresses scalability and performance
concerns the acute reader might have had. Section 4 details the method.

The third contribution is to address the following potential performance prob-
lem: a query has to be executed before the decision can be made on whether or
not it is malicious. What if a malicious query asks for hundreds of gigabytes of
data? Will the query have to be executed, and will our detection engine have to

A Data-Centric Approach to Insider Attack Detection in Database Systems 385

process this huge “result set” before detecting the anomaly? These legitimate
concerns are within the scope of question (2) above. We will show that this
performance-accuracy tradeoff is not at all as bad as it seems at first glance. We
experimentally show that a representative constant number of result tuples per
query is sufficient for the detection engine to perform well, especially when the
right statistical features and distance function (between normal and abnormal
result sets) are chosen. Furthermore, these (constant number of) result tuples
can be computed efficiently by leveraging the pipelined query execution model
of commercial RDBMS’s.

The fourth contribution, presented in Section 5, is a taxonomy of anomalous
database access patterns, which is needed to systematically evaluate the accuracy
of both the data-centric and the syntax-centric approaches.

The fifth contribution is a relatively extensive evaluation of several statistical
learning algorithms using the data-centric approach. Specifically, for the mas-
querade detection problem on a real Graduate Admission data set, we found
that k-means clustering works very well, with detection rates of around 95-99%.
For detecting data harvesting, we develop an outlier detection method based
on attribute deviation (a sort of clustering using the L∞-norm) which performs
well. Furthermore, this method is suitable when the features are only extracted
from a constant number of tuples of the result set, thus making it practical.

In summary, though our results are derived in the limited context of insider
threat detection with respect to database security, this paper is a first step in
exploring the larger potential of the data-centric approach in anomaly detection.

Paper Outline. The rest of this paper is organized as follows. Section 2 surveys
background and related work. Section 3 demonstrates the limitations of the
syntax-based approach, thus motivating the data-centric approach introduced
in Section 4. Section 5 gives a brief taxonomy of query anomalies facilitating
the experiments presented in Section 6. We further discuss our solution, its
implications, and future research directions in Section 7.

2 Related Work

IDSs with direct or indirect focus on databases have been presented in the lit-
erature [23,35]. In [22], temporal properties of data are utilized for intrusion
detection in applications such as real-time stock trading. Anomaly detection
schemes dealing with SQL injection attacks in Web applications were studied
in [20,34]. SQL injection attacks are a specific kind of database query anomaly
that is detected by our approach in a straightforward manner as we shall show.

Data correlation between transactions is used to aid anomaly detection in
[17]. Similarly, in [32], dependency between database attributes is used to gen-
erate rules based on which malicious transactions are identified. The DEMIDS
system [13] detects intrusions by building user profiles based on their working
scopes which consist of feature/value pairs representing their activities. These
features are typically based on syntactical analysis of the queries. A system to
detect database attacks by comparison with a set of known legitimate database

386 S. Mathew et al.

transactions is the focus of [21]; this is another syntax-based system where SQL
statements are summarized as regular expressions which are then considered to
be “fingerprints” for legitimate transactions. Yet another syntax-based approach
was considered in [27] for web databases, where fingerprints of all SQL statements
that an application can generate are profiled. A binary vector with length equal
to the number of fingerprints is used to build session profiles and aid in anomaly
detection. This approach made assumptions such as restricting the number of
distinct queries possible; these techniques may complement our approach in cases
where the assumptions are valid. In [15], database transactions are represented
by directed graphs describing execution paths (select, insert, delete etc.) and
these are used for malicious data access detection. This approach cannot handle
adhoc queries (as the authors themselves state) and works at the coarse-grained
transaction level as opposed to the fine-grained query level. Database session
identification is the focus of [36]: queries within a session are considered to be
related to each other, and an information theoretic metric (entropy) is used
to separate sessions; however, whole queries are used as the basic unit for n-
gram-statistical modeling of sessions. A multiagent based approach to database
intrusion detection is presented in [26]; relatively simple metrics such as access
frequency, object requests and utilization, and execution denials/violations are
used to audit user behavior.

Prior approaches in the literature that most resemble ours are [31] and [18].
The solution in [31] is similar in the use of statistical measurements; however the
focus of the approach is mainly on detecting anomalies in database modification
(e.g., inserts) rather than user queries. The query anomaly detection component
is mentioned only in passing and only a limited set of features (e.g., session du-
ration, number of tuples affected) are considered. The recent syntax-based work
in [18] has the same overall detection goals as our work: detection of anomalies
in database access by means of user queries. A primary focus on this paper will
be on exposing the limitations of syntax based detection schemes; the approach
in [18] will be used in this paper as a benchmark for evaluating the performance
of our approach.

3 Limitations of Syntax-Centric Approach

This section demonstrates that two syntactically similar queries may generate
vastly different results, and two syntactically distinct queries may give similar
results. Consequently, SQL expressions are poor discriminators of users’ intent.
For example, a syntax-based approach may model a query with a frequency
vector, each of whose coordinates counts the number of occurrences (or marks
the presence) of some keywords or mathematical operators [18].

Consider the following query:

SELECT p.product_name, p.product_id

FROM PRODUCT p

WHERE p.cost = 100 AND p.weight > 80;

A Data-Centric Approach to Insider Attack Detection in Database Systems 387

A syntactical analysis of this query and subsequent feature extraction (e.g.,
[18]) might result in the following features for query data representation – SQL
Command – SELECT, Select Clause Relations – PRODUCT, Select Clause
Attributes – product name, product id, Where Clause Relation – PRODUCT,
Where Clause Attributes – cost, weight. Now consider the alternate query:

SELECT p.product_name, p.product_id

FROM PRODUCT p

WHERE p.cost > 100 AND p.weight = 80;

This query has the same syntax-based feature set as the previous one; however,
the data tuples accessed in the two cases are vastly different.

Conversely, suppose we rewrite the first query as follows:

SELECT p.product_name, p.product_id

FROM PRODUCT p

WHERE p.cost = 100 AND p.weight > 80

AND p.product_name IS NOT NULL;

This query is syntactically different (three columns in the WHERE clause), but
produces the same result tuples as the first (under the reasonable assumption
that all products in the database have a valid product name). Most syntax-
based anomaly detection schemes are likely to flag this query as anomalous with
respect to the first.

Syntax analysis, even if very detailed (taking into account differences in the
operand difference between ‘=’ and ‘>’ in the above examples) is complicated
given the expressiveness of the SQL language, and involves determining query
equivalence, which is difficult to perform correctly. In fact, query containment and
equivalence is NP-complete for conjunctive queries and undecidable for queries
involving negation [10]. Our data-centric approach bypasses the complexities and
intricacies of syntax analysis.

4 Data-Centric User Profiles

A relational database often consists of multiple relations with attributes and
relationships specified by multiple primary key and foreign key constraints. One
can visualize a database as a single relation, called the Universal Relation [24],
incorporating the attribute information from all the relations in the database.

Our approach profiles users as follows: for each query we compute a statistical
“summary” of the query’s result tuples. The summary for a query is represented
by a vector of fixed dimension regardless of how large the query’s result tuple
set is. This way, past queries (i.e. normal queries) from a user can be intuitively
thought of as a “cluster” in some high dimensional space. We’d like to emphasize
that clustering is only one of several statistical learning technique we will adopt
for this problem. The term clustering is used here to give the reader an intuitive
sense of the model. When a new query arrives, if it “belongs” to the user’s
cluster, it will be classified as normal, and abnormal otherwise.

388 S. Mathew et al.

Table 1. Statistics Vector Format for Sample Database Schema

Database Schema S-Vector Features

Relation Attribute
Product.type(varchar) Product.type.ncount

Product.type.ndistinct

Product Product.cost.Min

Product.cost(numeric) Product.cost.Max

Product.cost.Mean

Product.cost.StdDev

Product.cost.Median

Our query summary vector is called an S-Vector. An S-Vector is a multi-
variate vector composed of real-valued features, each representing a statistical
measurement; it is defined by the columns of the universal relation correspond-
ing to a database. Each attribute of the universal relation contributes a number
of features to the S-Vector according to the following rules.

Numeric Attributes: each numeric attribute contributes the measurements Min
(value), Max (value), Mean, Median and Standard deviation.

Non-Numeric Attributes: the standard statistics do not make sense for non-
numeric attributes (e.g., char and varchar). For categorical attributes, one op-
tion is to expand a k-value attribute into k binary-valued attributes (value 1
if the category is represented in the set of result tuples and 0 otherwise) and
compute statistics on them as usual. However, the expansion of categorical at-
tributes may result in an S-vector that has far too many dimensions, affecting
the time-performance of the learner. We compromise by replacing each categori-
cal attribute with two numeric dimensions representing the total count of values,
as well as the number of distinct values for this attribute in the query result.

The S-Vector format for a database is determined by its schema; the value of
the S-Vector for a query is determined by executing the query and computing
the relevant attribute statistics based on the set of result tuples. Table 1 shows
the S-Vector format for a database consisting of a single relation. To illustrate
how an S-Vector value for a query is generated, consider the following query
executed against the database in Table 1:

SELECT p.cost

FROM PRODUCT p

WHERE p.type = ‘abc’;

For this query, the result schema consists of the single column Product.cost and
statistics computed on the result tuples are used to populate the Product.Min,
Product.Max, Product.Mean, Product.StdDev and Product.Median
features of the S-Vector format for the database – the result is the S-Vector
representation of this query.

A Data-Centric Approach to Insider Attack Detection in Database Systems 389

5 A Data-Centric Taxonomy of Query Anomalies

In order to evaluate the effectiveness and accuracy of a threat detection engine,
a taxonomy of query anomalies can help us reason about potential solutions.
Subsequent experiments can analyze the performance of detection schemes with
respect to specific anomalies in light of this taxonomy. We shall classify query
anomalies based on how “far” the anomalous query is from a normal query. From
a data centric view point, two queries are represented by the two result sets, each
of which consists of the result schema (the columns) and the result tuples (the
rows). If the result schemas are (very) different, the two queries are different. If
the result schemas are similar, then we need to look into how different the result
tuples are. On this basis we classify query anomalies. Table 2 summarizes the
taxonomy.

Table 2. A Taxonomy of Query Anomalies

Anomaly Cases Types Detected by Detected by Attack Models
Syntax-Centric? Data-Centric?

Type 1 Yes Yes Masquerade
Different Schema/
Different Results
Type 2 (a) Distinct Syntax Yes Yes SQL-Injection
Similar Schema/ (b) Similar Syntax No Yes Data-Harvesting
Different Results
Type 3 (a) Different Syntax/ False Positive Yes Data Harvesting
Similar Schema/ Similar Semantics (True Positive)
Similar Results (b) Different Syntax/ Yes No (Rare)

Different Semantics

Type 1: Distinct Schema and Tuples. Anomalous queries of this type have
result sets whose columns and rows are very different from those of normal
queries. Intuitively, anomalous queries of this type should be detected by both
the syntax-based and the data-centric approaches. The syntax-based approach
works because queries that differ in the result schema should have distinct SQL
expressions (especially in the SELECT clause). The data-centric approach works
because the S-vector of the anomalous query not only differ in the dimensions
(the result schema) but also in the magnitudes in each dimension (the statistics
of the result tuples). From the insider threat perspective, data harvesting and
masquerading can both result in this type of anomaly. As an example, consider
the following two queries to the database described in Table 1:

Query 1: SELECT p.cost

FROM PRODUCT p

WHERE p.type = ‘abc’;

Query 2: SELECT p.type

FROM PRODUCT p

WHERE p.cost < 100;

Distinguishing these kinds of queries has received the most attention in the
literature (e.g., [18]) especially in the context of masquerade detection and Role
Based Access Control (RBAC) [28], where different user roles are associated
with different authorizations and privilege levels. An attempt by one user-role
to execute a query associated with another role indicates anomalous behavior

390 S. Mathew et al.

and a possible attempt at masquerade. Syntax-based anomaly detection schemes
have been shown to perform well for this case and we experimentally show later
that data-centric schemes are also equally effective.

Type 2: Similar Schema, Distinct Tuples. Anomalous queries of this type
have result sets whose columns are similar to normal queries, but whose rows are
statistically different. The syntax of type-2 anomalous queries might be similar
to or different from normal queries. For example, consider the following normal
query:

SELECT *

FROM PRODUCT p

WHERE p.cost = 100;

Execution of this query results in the schema (p.type, p.cost) and data corre-
sponding to the WHERE condition p.cost = 100. On the one hand, the following
type-2 anomalous query has the same result schema as the normal one with a
statistically different result tuple-set (matching the additional constraint of the
product type):

SELECT *

FROM PRODUCT p

WHERE p.cost < 100 AND p.type = ‘abc‘;

The SQL expression syntax is also distinctly different from the normal query. The
WHERE clause has an additional attribute that is checked (p.type) compared
to the previous query. On the other hand, the following type-2 anomalous query
has the same result schema and also similar syntax as the normal query:

SELECT *

FROM PRODUCT p

WHERE p.cost < 100 AND p.cost > 100;

Yet the result tuples are the complement of that of the normal query. Thus, we
further classify type-2 anomalous queries into type-2a and type-2b, where type-
2a contains type-2 anomalous queries whose syntax are also distinct from normal
ones, and type-2b contains the rest. The intuition is that a syntax-based scheme
such as that in [18] is unlikely to be able to detect type-2b anomalous queries.
Indeed, the scheme in [18] represents the above type-2b query variation and
the original example query identically. Furthermore, type-2b anomalous queries
can be rewritten in multiple ways (e.g. p.cost != 100), varying combinations
of constants, arithmetic and logical operators; even very detailed syntax-based
models may be hard-pressed to consider all variations. We will show that data-
centric schemes are likely able to detect both of these anomalous types.

From the insider threat perspective, data harvesting and masquerading can
both result in type-2 anomaly. Another example of a well-known attack class
that may fall in this category is SQL injection since a typical attack is one that
injects input causing condition checks to be bypassed resulting in the output of
all tuples – e.g., a successful exploit of the first example above may lead to the
execution of:

A Data-Centric Approach to Insider Attack Detection in Database Systems 391

SELECT *

FROM PRODUCT p

WHERE 1;

Type 3: Similar Schema and Tuples. A query whose execution results in
a similar schema and tuples as a normal one is considered to be similar from a
data-centric viewpoint. Clearly, if the queries also have the same syntax, then
their resulting schemas and tuples are the same and they are identical from both
the data-centric and syntax-centric view.

The interesting case arises when a query producing the same result as a normal
query is syntactically different from the normal query. The question is, should
we consider such a query “anomalous”?

On the one hand, it seems to be obvious that a user accessing the same data
schema and tuples as those in his normal access patterns should not be flagged
as malicious regardless of how different the syntax of the queries he issued. For
example, the following two queries should be considered identical:

SELECT p.type

FROM PRODUCT p

WHERE p.cost < 100;

SELECT p.type

FROM PRODUCT p

WHERE p.cost < 100 AND p.type IN (

SELECT q.type

FROM PRODUCT q

);

The two queries have identical outputs, semantics, and thus user intent. We will
refer to an “anomalous” query of this type a type-3a query. Note again that
“anomalous” is not the same as “malicious.” Our approach will not raise a red
flag, while the syntax-based approach would issue a false positive.

On the other hand, two queries resulting in the same output might actually
reveal more information than what is in the output. To see this, we have to look
a little deeper into the semantics of the queries. Consider the following query in
relation to the ones from the previous paragraph.

SELECT p.type

FROM PRODUCT p

WHERE true;

Now assume, for the sake of illustration, that the attacker is attempting to see
all product types (data harvesting). If the above query returns more (or different
tuples) with respect to the first example, then the data-centric approach should,
conceptually detect this. But in the rare case when the result tuples are exactly
the same, this would (as expected) be permitted by the data-centric approach.
However, the attacker has now gained the additional information (based on his
results from the query from the previous paragraph), that all product types in
the database cost less than 100, and has refined his knowledge regarding some
entity. We call to this type of anomalous query type-3b.

This kind of successive knowledge accrual has received much interest in the
areas of privacy preserving data mining and query auditing ([4,19]). The attack

392 S. Mathew et al.

here arises from information refinement through temporal interaction between a
user and a database and not from a property of the query itself (i.e., its syntax
or result data). Exploiting temporal features from a data-centric viewpoint is an
important future research direction of ours. It should be noted, however, that it is
difficult for an attacker to intentionally exploit this condition, since presumably
he is unable to predict the nature of query output to ensure that result statistics
are unchanged from a normal query. In any case, addressing this type of attacks
is beyond the scope of this paper.

6 Experimental Validation

6.1 The Test Environment

The test environment consists of a real and currently active web application for
Graduate Student Admissions (called GradVote) that relies on a Postgresqldatabase
at the back-end. Users of the system query the database primarily via the web ap-
plication. The users fall into several roles, including Chair, Faculty and Staff.

The database schema consists of 20 relations with multiple (over 20 for some
tables) numeric and non-numeric attributes and 39 multi-level views (i.e., the
views refer to base relations as well as to other views). The training and testing
datasets consist of tens of thousands user queries labeled both by individual user-
name as well as by user-role. These views are significantly complex, possessing
multiple subqueries, complex joins and statistical attributes.

Our system, QStatProfiler, is positioned in the middle of the interaction channel
between the application and the database. It observes the queries to the database
as well as the results returned to the application. As queries are submitted to the
database and result tuples are returned, QStatProfiler simultaneously computes
query statistics and the S-vectors for the queries. QStatProfiler is flexible and can
accommodate a variety of machine learning/clustering algorithms. We shall elab-
orate on different algorithms and anomaly detection goals later.

Query Filtering: The first task of QStatProfiler is profiling users or roles. It is
thus necessary to ignore queries that are are common for all users. For example,
the application may issue a query to the database to obtain the currently active
list of users, or the time-line for a particular activity, and so on. These queries
may sometimes be generated as part of application startup. This set queries is
well-known a priori, since they may be embedded in the application code and can
be ignored while profiling. In our case, we maintain a list of url tags that indicate
common application queries, called Framework Queries by QStatProfiler.

Query Parsing and Unfolding: This component is concerned with obtaining the
mapping between the schema of the result set and the overall schema of the
database. The syntax of a user query may not refer directly to elements of the
base database schema (i.e., base relations and their attributes). References may
be made to views that might refer to other views; the use of aliases and in-line
subquery definitions can complicate the task of schema mapping. QStatProfiler
uses a query parsing component that is tailored to the Postgresql SQL syntax.

A Data-Centric Approach to Insider Attack Detection in Database Systems 393

Query parse trees are constructed and analyzed to determine the subset of the
database relations and attributes that are present in the result tuples. The output
of this phase is thus a set of relations and attributes that describe the result
tuples, from which S-vectors are constructed.

6.2 Approximating S-Vectors

As alluded to earlier, having to execute a query before classifying it as anomalous
is a legitimate performance concern – we address this issue in this section.

First, we argue that the approach does not impose significant additional bur-
den to the database server. In most application environments (e.g., web database
applications), execution of database queries is part of typical application func-
tion. For example, a user might submit queries through a web form; the queries
are executed at a remote database server and the results are made available to
the application. Our system operates as a passive component between the appli-
cation and the database server, observing queries and the corresponding results
without disrupting normal functioning. The database does not experience any
additional load due to the anomaly detection system; the computational cost
of calculating result statistics falls on a different host that runs the ID system
(QStatProfiler).

Second, the data-centric approach needs to see some data, necessitating some
performance penalty if we compare it to the syntax-centric approach on a mali-
cious query that the syntax-centric approach is able to detect (a true positive!).
However, as we shall see, the execution of one pipelined round in the RDBMS is
sufficient for the data-centric engine to perform well. The extra burden put on
the server is minimal, and is only marginally worse than the syntax-centric ap-
proach when that approach produces a true positive while ours produces a false
negative (type-3b queries, e.g., which are difficult for attackers to construct).
This marginal penalty is more than offset by queries on which our approach
produces a true positive while the syntax-based approach gives a false negative
(type-2b queries, e.g., which are easy for attackers to construct).

We propose to utilize only k tuples from the result set to build the corre-
sponding S-vector. We tested two ways to choose k tuples from a result set.

Initial-k tuples: Only the initial k tuples in the result set are used to approximate
the entire result set. Statistics computed from these tuples are used to generate
the S-Vector representation of the query. As soon as the S-Vector is classified
as anomalous, we can stop the rest of the pipelined rounds from the database,
avoiding extra execution overheads.

Random–k tuples: k tuples are chosen at random from the complete result set
– the S-vector of these k tuples are computed to represent the result set. This
approach is expected to produce better accuracy as compared to the initial-k
approach as it is not likely to be sensitive to specific orderings of the result tuples
by the database (this is especially important if the SQL query contains ‘ORDER
BY’ clauses). Fortunately, we show that our choice of the distance function seems
to be insensitive to result set ordering, as long as the set is not too small.

394 S. Mathew et al.

Table 3. Detection Percentage (%) – Type 1 Anomalies (Role Masquerade)

Syntax-Centric Data-Centric
Roles Algorithm C M F S-V S-V S-V S-V S-V S-V S-V

quip. quip. quip. (all) I(20) R(20) I(10) R(10) I(5) R(5)
Chair N-Bayes 81.67 85.33 75 85 85 82.67 78.33 77 81.67 90
vs. Dec. Tree 88 87.67 87.67 96.33 88.3 88.3 89 88.67 88.67 88.67

Faculty SVM 83.3 81 87.67 82.33 74.67 77 71.33 75.67 68 74.33
Clustering 73.3 72 65.67 92 92.67 92.33 94 94 92.67 93.33

Chair N-Bayes 58 93.5 95.5 60.5 59 60.5 62 57.5 62.5 60.5
vs. Dec. Tree 75 88 96 95.5 92.5 96 96 93 95 92.5

Staff SVM 51.5 84.5 96 80 84 85.5 78.5 81.5 85.5 82
Clustering 88.5 85.5 90.5 91.5 99 96 98.5 95 100 96

Faculty N-Bayes 84.33 90.67 93 58.67 61.3 60.3 60.3 59.3 63 60
vs. Dec. Tree 90 93.67 95.67 89.3 92.3 91.67 92 93.67 91.33 91.67

Staff SVM 87 93 95.67 69.67 71.67 71 69.33 72 68.67 72
Clustering 78.7 73.3 78 99 100 99.6 99.3 99.3 100 99.3

6.3 Detecting Type 1 and 2a Anomalies, and Masquerade Attacks

This section will show that the data-centric approach works slightly better than
the syntax-centric approach for type 1 and type 2a anomalies. The fact that both
approaches work well is to be expected by definition, because both the syntax
and the query result statistics are different in type 1 and type 2a anomalies. The
syntax-centric scheme in [18] has been shown to perform well in detecting role-
based anomalies. Because the results are similar and due to space limitation, we
will present only the type-1 anomaly results. Our experiments are also aimed at
evaluating the accuracy of both approaches in detecting role masquerade attacks.
Recall that each query for GradVote comes with a user role, and the execution of
a typical query in one role by a user with a different role constitutes an anomaly.

Syntax-Centric Features: For the sake of completeness, we briefly summarize
the syntax-centric data formats of [18]. Three representations are considered:
Crude (C-quiplet), Medium (M-quiplet), and Fine (F-quiplet). C-quiplet is a
coarse-grained representation consisting of the SQL-command, counts of pro-
jected relations, projected attributes, selected relations, and selected attributes.
M-quiplet is a medium-grained format recording the SQL command, a binary
vector of relations included in the projection clause, an integer vector denoting
the number of projected attributes from each relation, a binary vector of rela-
tions included in the selection clause, and an integer vector counting the number
of selected attributes from each relation. F-quiplet is fine-grained, differing from
the M-quiplet in that instead of a count of attributes in each relation for the
selection and projection clauses, a binary value is used to explicitly indicate the
presence or absence of each attribute in a relation in the corresponding clauses.

Test Setup: The available dataset of queries is labeled by the roles Staff, Fac-
ulty, and Chair, in addition to Framework, for the common application-generated
queries. The query set is randomized and separated into Train and Test sets of
1000 and 300 queries, respectively. Four query data representations are tested:
our S-Vector (dimensionality 1638) and the syntax-centric C-quiplet (dimen-
sionality 5), M-quiplet (dimensionality 73), and F-quiplet (dimensionality 1187).

A Data-Centric Approach to Insider Attack Detection in Database Systems 395

Table 4. Detection Percentage (%) – Type 2b Anomalies (Data Harvesting Attacks)

Syntax-Centric Data-Centric
Algorithm C M F S-V S-V S-V S-V S-V S-V S-V

quiplet quiplet quiplet (all) I(20) R(20) I(10) R(10) I(5) R(5)

Cluster Detection 23.5 26.4 17.64 83.87 12 67.7 6.4 45.1 6.4 35.4
Outlier False

Positive 14.47 11.84 15.8 10.5 3.9 6.5 3.9 5.2 2.6 6.6

Attrib Detection 0 17.64 2.9 87 87 87 87 87 12.9 64.5
Deviation False

Positive 0 4.8 4.8 22.6 26 15 23.8 15.8 23.8 20.4

Four supervised learning algorithms are tested with each of these feature sets:
Naive Bayes, Decision Tree Classifier, Support Vector Machines, and Euclidean
k-means clustering (see, e.g., [6]).

The results for the binary classifiers for masquerade detection are shown in
Table 3 (the best performance for each format with respect to separating user
roles is shown in boldface). In the table, I(k) and R(k) denote the Initial-k and
Random-k S-Vector approximations. There are two main results. First, the per-
formance of the S-Vector based detection using k-mean clustering is virtually
uniformly better than the syntax-based schemes. In many cases, the detection
rates are approaching 100%. Note also that, the false positive rates is the com-
plement of the entries in the table, as there are only two classes. Second, the
Initial-k and Random-k S-Vector approximations perform very well. This result
is important because the Initial-k representation is the most practical one, as
alluded to earlier.

It is also noteworthy that the performance of syntax-based schemes is rela-
tively poor using the clustering outlier algorithm. There is one abnormal entry
which is the clustering performance of S-V (all) in the “Chair vs. Staff” case,
which most likely is due to overfitting.

6.4 Detecting Type 2b Anomalies and Data Harvesting Attacks

The focus here is on detecting syntactically similar queries, but differ in output
data (data-values, output volume, or both). This is a significant query anomaly
since, in a typical attack, a minor variation of a legitimate query can output a
large volume of data to the attacker. This may go undetected and may be ex-
ploited for the purpose of data-harvesting. In other attack variations, the volume
of the output may be typical, but the data values may be sensitive. These kinds
of attacks fall into Type 2b in Table 2.

Test Setup: Since type-2b anomalous queries are not available from the real query
set, we generate type-2b queries by slightly modifying the normal queries (i.e.
queries normally executed by GradVote users). Thus, this generated “anomaly
set” has approximately the same distribution as the normal queries. Anomalous
queries are generated by varying arithmetic and logical operators and constants.
As an example, consider the query

396 S. Mathew et al.

SELECT *

FROM vApplicants

WHERE reviewStatusID = ‘a’

AND reviewStatusID = ‘b’;

can be slightly modified to become

SELECT *

FROM vApplicants

WHERE reviewStatusID = ‘a’

OR reviewStatusID = ‘b’;

which yields a vastly different result set.
It must be noted that the queries considered here are different from mas-

querade attacks (since they are not representative of any authorized user of the
system) and are thus not available for training QStatProfiler. Hence, supervised
learning is not suitable here. We devise two detection techniques based on a sin-
gle class of normal queries: Cluster-Based Outlier Detection based on Euclidean-
distance clustering, and Attrib-Deviation which is a variation of clustering using
the L∞-norm as the distance function.

Cluster-based Outlier Detection: The set of queries encountered during the train-
ing phase are viewed as points in an m-dimensional Euclidean vector space, where
m is the dimensionality of the S-vectors. For each user cluster, we select a point
in the Euclidean space that is representative of the entire cluster, called the
cluster centroid, which minimizes the sum of the squared Euclidean distances
of the cluster points. For a test vector, the Euclidean distance from the cluster
centroid is computed. The query is flagged as an outlier if the vector distance
is greater than a specified threshold from any user. In our case, the threshold is
chosen to be 3 times the standard deviation.

Attrib-Deviation: Consider, for example, that a user issues an anomalous query
with a different statistic for the same attribute in the result schema as a normal
query. In our representation, this difference shows up in one or more (depending
on whether the attribute is categoric or numeric) dimensions of the S-Vector.
Hence, monitoring for anomalies on per-dimension basis is a promising approach.
Further, if a query generates unusual output for more than one attribute, this
is likely to reflect in anomalous values for several S-Vector dimensions; thus, the
number of anomalous dimensions for the S-Vector is a parameter that can be
used for ranking potential query anomalies (i.e., queries with more anomalous S-
Vector dimensions rank high as likely candidates for possible attacks). We utilize
this approach for testing the custom-developed anomaly set – normal Chair and
Faculty queries are used to compute the mean values of S-Vector attributes;
three times the standard-deviation is again used as an anomaly separator.

A typical performance result with two user roles (Chair and Faculty) and
corresponding anomalous query set is shown in Table 4.

With respect to the performance of the cluster-based outlier detection algo-
rithm, a few points are worth noticing. As expected, the syntax-based schemes

A Data-Centric Approach to Insider Attack Detection in Database Systems 397

show poor performance (since they are essentially ‘blind’ by design to the Type
2b anomalies). The detection rate for the S-Vector (all) is reasonable (83.87%).
However, the Initial-k approximation’s accuracy suffers significantly. Upon care-
ful inspection, we find that many of the user queries make extensive use of the
SQL ORDER-BY clause, which makes the Initial-k statistics unrepresentative
of the overall result set statistics. This is ameliorated to some extent by the
Random-k variation (e.g., for random k = 20, the detection rate improves to
67.7%); however, there is still a marked decline in performance indicating that
the clustering scheme is sensitive to the approximation schemes and is affected
negatively by them. Further analysis into the clustering reveals that this might
not be a good choice for this type of anomaly detection. Although anomalies with
significant variations in multiple dimensions are easily detected by clustering (as
is the case with type-1 and type-2a anomalies), this may not be true with type-
2b anomalies. Euclidean distances in high-dimensional space may be misleading
indicators of anomalies because of the curse of dimensionality. For example, it is
possible to have a highly anomalous value along a single dimension, which may
not translate to a significant Euclidean cluster-distance (and vice-versa).

The results for Attrib-Deviation are much better. The syntax based schemes
still perform poorly as expected. The data-centric schemes are much better,
with detection rates close to 87%, better than the cluster-based schemes. The
more important finding is that the attribute-deviation schemes are remarkably
resilient to the approximation method. Both Initial-k and Random-k perform as
well as the full vector representation; and the Initial-k performs unexpectedly
well even with queries generating specific ordering of results.

The resiliency and accuracy of Attrib-Deviation can partially explained as
follows. First, note that a single anomalous attribute in the result corresponds
to variations in multiple dimensions of the S-Vector, each of which represents
a statistical measurement. Also the extent of the anomaly may vary between
result attributes (e.g., some attributes may have more atypical values). While
a selective ordering (e.g., by SQL ORDER-BY clauses) may offer a skewed
view of overall result statistics, the Attrib-Deviation technique operates on a
per-attribute basis and is thus still able to identify anomalies. Secondly, many
queries have more than one anomalous attribute; hence selective ordering may
mask anomalies in some attributes, but not all of them. Thirdly, the selective
ordering may not affect all statistical measurements of a single attribute equally
(e.g., it may affect Max, but not Median). It is only when k is very low (k =
5) that initial-k performance drops, however Random-k as expected still offers
reasonable performance.

We believe that the good performance of the Initial-k approximation with
this detection technique has several practical implications. First, it indicates
that a fast online anomaly detector can perform well by considering just a few
(as long as it is not too few) initial output tuples. Randomized sampling of
query results may not be feasible in general, especially for queries generating
hundreds or thousands of output tuples (e.g., due to performance constraints),
but our results here indicate that accuracy may not have to be sacrificed always

398 S. Mathew et al.

in the process of giving up random sampling. Further, we also believe that the S-
Vector representation scheme and attribute-deviation based anomaly detection
algorithm are quite resilient to attacks designed to mislead or bypass detection.
It is very difficult for an attacker to craft queries so that multiple statistical
measurements are controlled. A theoretical explanation of this intuition is an
interesting research problem.

On the minus side, the false positive rates are still too high for the Attrib-
Deviation schemes. Reducing the false-positive rates while maintaining/increasing
the accuracy (true positive rates) is an important research question, which we
plan to address in future work.

7 Concluding Remarks and Future Work

Queries: We construct the S-vectors by expressing the schema of each query
result in terms of the attributes of the base schema. For select-project-join
(SPJ) queries on base relations, the base schema is easily determined. When
SPJ queries are also expressed on top of views, then we employed the view un-
folding technique [33] to determine the base schema. View unfolding recursively
replaces references to a view in a query expression with its corresponding view
definition. For a class of queries larger than SPJ queries on base relations and
views, it is not clear if the base schema can be determined. For example, union
queries can map two different attributes in base relations into a single one in the
query result, as the following example shows:

SELECT g.name, g.gpa

FROM GRADS g

UNION

SELECT u.name, u.gpa

FROM UGRADS u;

Here, there is no dimension in the S-vector to accommodate the first attribute
of the query result. The same is true for computed attributes in results of com-
plex (aggregation, group-by) queries. To accommodate such cases, we plan to
investigate data provenance techniques [9] and revise the definition and the use
of the S-vector accordingly.

Databases: The framework proposed in this paper assumes that the underlying
database is static, i.e., there are no updates. Although this assumption is ad-
equate for certain classes of databases (e.g., US census database), we plan to
extend our work to dynamic databases. The first challenge is to determine if
and when updates shift the boundary between normal and abnormal queries. If
the database instance is updated significantly, then the classifiers become obso-
lete and two things need to be done: (a) detect when a phase shift occurs and
re-train, and (b) adopt some form of re-enforcement and/or online learning.

For relatively less dynamic databases where updates are less frequent, such
as OLAP databases that are heavily used for business intelligence and hence
are good targets for insider attacks, it is possible to still apply the data-centric

A Data-Centric Approach to Insider Attack Detection in Database Systems 399

approach, depending on the relative frequency between re-training and data
updates. For instance, one can keep a history of legitimate user queries, re-
execute them on the new data when the data changes are sufficiently heavy, and
use the new result sets to re-train the machine learning model.

Another approach is to separate parts of the schema where data does not
change very often and the part that does. Then, the data-centric approach can
be applied to the ”projection” of the data space which is static, and the syntax-
centric approach can be applied to the dynamic part of the data. This separation
can also be done automatically as one can keep track of the statistics of various
attributes in the universal table. For example, attributes with high variation
over time are more dynamic than others (e.g., Social Security numbers, bank
accounts of existing customers, dates of births, addresses, and similar fields are
mostly static attributes).

Activity context: In our approach, the context of a user’s activity is a set of query
results generated in the past by the same user or the group in which she belongs.
We plan to investigate richer activity contexts and examine their effectiveness
in detecting sophisticated attacks. Such contexts might include statistics of a
user’s session with the database, temporal and spatial correlations of the query
results, and so on.

Performance: In cases where user queries return a significantly large number of
results, computing statistics over the entire query result for anomaly detection
is unacceptable from a performance standpoint. The initial-k approximation
proposed in Section 6 can help improve performance without sacrificing too
much accuracy. One potential drawback of this approach is that the queries in
the training set might sort the results by a different attribute or in different
order (ascending, descending) than an otherwise normal user query, thus leading
to false positives. A possible solution to this problem is to choose one attribute
of each base relation as the default order by attribute. Then, for every query in
the training set add a designated ORDER BY clause that orders the result by
the chosen attribute of the first base relation (alphabetically) used in the query.
When a user query is submitted, the system submits a “shadow query” with the
designated ORDER BY clause and uses this query result for detection.

Another source of performance improvement might be to design a new statis-
tical model based on both the syntax-based and the data-centric approaches. In
cases where we are relatively confident that the syntax-based approach gives a
true positive, we may want to skip the data-centric engine altogether to avoid
the database execution. In terms of accuracy, a good combined classifier might
perform better too.

Although random-k does not markedly outperform initial-k in our experi-
ments, we expect random-k to perform consistently for a wider range of datasets
and queries. Of course, a problem that arises then is how to sample a query
result without computing the complete result, given that RDBMSs follow the
pipelined query execution model. For this hard problem, we plan to leverage

400 S. Mathew et al.

prior work on both SPJ queries [25,12] and queries for data analytics in the area
of approximate query answering [16,3,5].

In conclusion, the techniques that we have presented and analyzed in this
paper show significant potential as practical solutions for anomaly detection
and insider threat mitigation in database systems.

References

1. Owasp top 10 2007 (2007), http://www.owasp.org/index.php/Top_10_2007

2. Owasp-sql injection prevention cheat sheet (2008),

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

3. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join synopses for ap-

proximate query answering. In: SIGMOD Conference, pp. 275–286 (1999)

4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM

SIGMOD Conference on Management of Data (SIGMOD 2000), pp. 439–450 (2000)

5. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approximate

query processing. In: SIGMOD Conference, pp. 539–550 (2003)

6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg

(October 2007)

7. Bishop, M.: The insider problem revisited. In: Proc. of the 2005 Workshop on New

Security Paradigms (NSPW 2005), pp. 75–76 (2005)

8. Brackney, R., Anderson, R.: Understanding the Insider Threat: Proceedings of a

March 2004 Workshop. RAND Corp. (2004)

9. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data

provenance. In: ICDT, pp. 316–330 (2001)

10. Calvanese, D., Giacomo, G.D., Lenzerini, M.: On the decidability of query con-

tainment under constraints. In: Proc. of the ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)

11. Cappelli, D.: Preventing insider sabotage: Lessons learned from actual attacks

(2005),

http://www.cert.org/archive/pdf/InsiderThreatCSI.pdf

12. Chaudhuri, S., Motwani, R., Narasayya, V.R.: On random sampling over joins. In:

SIGMOD Conference, pp. 263–274 (1999)

13. Chung, C.Y., Gertz, M., Levitt, K.: Demids: a misuse detection system for database

systems. In: Integrity and Internal Control Information Systems: Strategic Views

on the Need for Control, pp. 159–178. Kluwer Academic Publishers, Norwell (2000)

14. CSO Magazine, US Secret Service, CERT, Microsoft: 2007 E-Crime Watch Survey

(2007), http://www.sei.cmu.edu/about/press/releases/2007ecrime.html

15. Fonseca, J., Vieira, M., Madeira, H.: Online detection of malicious data access using

dbms auditing. In: Proc. of the 2008 ACM Symposium on Applied Computing

(SAC 2008), pp. 1013–1020 (2008)

16. Haas, P.J., Hellerstein, J.M.: Ripple joins for online aggregation. In: SIGMOD

Conference, pp. 287–298 (1999)

17. Hu, Y., Panda, B.: Identification of malicious transactions in database systems. In:

Proc. of the 7th International Database Engineering and Applications Symposium,

pp. 329–335 (2003)

18. Kamra, A., Terzi, E., Bertino, E.: Detecting anomalous access patterns in relational

databases. The VLDB Journal 17(5), 1063–1077 (2008)

http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.cert.org/archive/pdf/InsiderThreatCSI.pdf
http://www.sei.cmu.edu/about/press/releases/2007ecrime.html

A Data-Centric Approach to Insider Attack Detection in Database Systems 401

19. Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: Proc. of the

ACM Symposium on Principles of Database Systems (PODS 2005), pp. 118–127

(2005)

20. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proc. of the

10th ACM Conference on Computers and Communications Security (CCS 2003),

pp. 251–261 (2003)

21. Lee, S.Y., Low, W.L., Wong, P.Y.: Learning fingerprints for a database intrusion

detection system. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS

2002. LNCS, vol. 2502, pp. 264–280. Springer, Heidelberg (2002)

22. Lee, V.C., Stankovic, J., Son, S.H.: Intrusion detection in real-time database sys-

tems via time signatures. In: Proc. of the Sixth IEEE Real Time Technology and

Applications Symposium (RTAS 2000), p. 124 (2000)

23. Liu, P.: Architectures for intrusion tolerant database systems. In: Proc. of the 18th

Annual Computer Security Applications Conference (ACSAC 2002), p. 311 (2002)

24. Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal relation

model. ACM Trans. on Database Syst. 9(2), 283–308 (1984)

25. Olken, F., Rotem, D.: Simple random sampling from relational databases. In:

VLDB, pp. 160–169 (1986)

26. Ramasubramanian, P., Kannan, A.: Intelligent multi-agent based database hybrid

intrusion prevention system. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.)

ADBIS 2004. LNCS, vol. 3255, pp. 393–408. Springer, Heidelberg (2004)

27. Roichman, A., Gudes, E.: Diweda – detecting intrusions in web databases. In: Proc.

of the 22nd Annual IFIP WG 11.3 Working Conference on Data and Applications

Security, pp. 313–329 (2008)

28. Sandhu, R., Ferraiolo, D., Kuhn, R.: The nist model for role based access control.

In: Proc. of the 5th ACM Workshop on Role Based Access Control (2000)

29. Schneier, B.: Secrets and Lies: Digital Security in a Networked World. John Wiley

and Sons, New York (2000)

30. Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M., Vardi, Y.: Computer

intrusion: Detecting masquerades. Statistical Science 16(1), 58–74 (2001)

31. Spalka, A., Lehnhardt, J.: A comprehensive approach to anomaly detection in

relational databases. In: DBSec, pp. 207–221 (2005)

32. Srivastava, A., Sural, S., Majumdar, A.K.: Database intrusion detection using

weighted sequence mining. Journal of Computers 1(4), 8–17 (2006)

33. Stonebraker, M.: Implementation of integrity constraints and views by query mod-

ification. In: SIGMOD Conference, pp. 65–78 (1975)

34. Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of

sql attacks. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp.

123–140. Springer, Heidelberg (2005)

35. Wenhui, S., Tan, D.: A novel intrusion detection system model for securing web-

based database systems. In: Proc. of the 25th International Computer Software

and Applications Conference on Invigorating Software Development (COMPSAC

2001), p. 249 (2001)

36. Yao, Q., An, A., Huang, X.: Finding and analyzing database user sessions. In: Proc.

of Database Systems for Advanced Applications, pp. 283–308 (2005)

Privilege States Based Access Control for Fine-Grained
Intrusion Response

Ashish Kamra1 and Elisa Bertino2

1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
akamra@purdue.edu

2 School of Computer Science, Purdue University, West Lafayette, IN, USA
bertino@cs.purdue.edu

Abstract. We propose an access control model specifically developed to support
fine-grained response actions, such as request suspension and request tainting, in
the context of an anomaly detection system for databases. To achieve such re-
sponse semantics, the model introduces the concept of privilege states and orien-
tation modes in the context of a role-based access control system. The central idea
in our model is that privileges, assigned to a user or role, have a state attached to
them, thereby resulting in a privilege states based access control (PSAC) system.
In this paper, we present the design details and a formal model of PSAC tailored
to database management systems (DBMSs). PSAC has been designed to also take
into account role hierarchies that are often present in the access control models of
current DBMSs. We have implemented PSAC in the PostgreSQL DBMS and in
the paper, we discuss relevant implementation issues. We also report experimen-
tal results concerning the overhead of the access control enforcement in PSAC.
Such results confirm that our design and algorithms are very efficient.

1 Motivation

An access control mechanism is typically based on the notion of authorizations.
An authorization is traditionally characterized by a three-element tuple of the form
< A, R, P > where A is the set of permissible actions, R is the set of protected re-
sources, and P is the set of principals. When a principal tries to access a protected
resource, the access control mechanism checks the rights (or privileges) of the principal
against the set of authorizations in order to decide whether to allow or deny the access
request.

The main goal of this work is to extend the decision semantics of an access con-
trol system beyond the all-or-nothing allow or deny decisions. Specifically, we provide
support for more fine-grained decisions of the following two forms: suspend, wherein
further negotiation (such as a second factor of authentication) occurs with the princi-
pal before deciding to allow or deny the request, and taint, that allows one to audit the
request in-progress, thus resulting in further monitoring of the principal, and possibly
in the suspension or dropping of subsequent requests by the same principal. The main
motivation for proposing such fine-grained access check decisions is to provide system

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 402–421, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Privilege States Based Access Control for Fine-Grained Intrusion Response 403

Query

User

Features Assessment

Log

T i i

Detection Engine Response EngineFeature Selector

Alert

Drop

No Action, Update
Profiles

Profile CreatorAudit
Log

Training
Queries

TRAINING PHASE

Response
Policy Base

Profiles

Fig. 1. Anomaly Detection and Response System Architecture

support for extending the response action semantics of an application level anomaly
detection (AD) system that detects the anomalous patterns of requests submitted to it.

Consider the architecture of a database specific AD mechanism using fine-grained
response actions as shown in Figure 1 [8,15,14]. The system consists of three main
components: the traditional database server that handles the query execution, the pro-
file creator module for creating user profiles from the training data, and the anomaly
detection and response mechanisms integrated with the core database functionality. The
flow of interactions for the anomaly detection and response process is as follows: Dur-
ing the training phase, the SQL commands submitted to the database (or read from the
audit log) are analyzed by the profile creator module to create the initial profiles of the
database users. In the detection phase, for every SQL command under detection, the
feature selector module extracts the features from the queries in the format expected
by the detection engine. The detection engine then runs the extracted features through
the detection algorithm. If an anomaly detected, the detection mechanism submits its
assessment of the SQL command to the response engine according to a pre-defined in-
terface; otherwise the command information is sent to the profile creator process for
updating the profiles.

The response engine consults a base of response policies to issue a suitable re-
sponse action depending on the assessment of the anomalous query submitted by the
detection engine. The system supports three types of response actions, that we refer
to respectively as conservative actions, fine-grained actions, and aggressive actions.
The conservative actions, such as sending an alert, allow the anomalous request to go
through, whereas the aggressive actions can effectively block the anomalous request.

404 A. Kamra and E. Bertino

Fine-grained response actions, supported by the extended decision semantics of our
access control mechanism, are neither conservative nor aggressive. Such actions may
result in either request suspension (supported by the suspend decision semantics) and
request tainting (supported by the taint decision semantics).

Why do we need to extend the access control mechanism to support such response
actions? Certainly, such responses may also be issued by an AD mechanism working
independently of the underlying access control system. The usefulness of our approach
is evident from the following scenario. Suppose we model a user request as the usage
of a set of privileges in the system where a privilege is defined as an operation on a
resource. For example, the SQL query ‘SELECT * FROM orders, parts’ is modeled
as using the privileges {select,orders} and {select,parts} in the context of a database
management system (DBMS). After detecting such request as anomalous (using any
anomaly detection algorithm), consider that we want to re-authenticate the user and
drop the request in case the re-authentication procedure fails. Suppose that every time
a similar request is detected to be anomalous, we want the same re-authentication pro-
cedure to be repeated. If our response mechanism does not remember the requests,
then the request will always undergo the detection procedure, detected to be anomalous
and then submitted to the response mechanism to trigger the re-authentication proce-
dure. A more generic and flexible approach for achieving such response semantics is
to attach a suspend state to the privileges associated with the anomalous request. Then
for every subsequent similar request (that uses the same set of privileges as the ear-
lier request that was detected to be anomalous), the semantics of the privilege in the
suspend state automatically triggers the re-authentication sequence of actions for the
request under consideration without the request being subjected to the detection mech-
anism. Moreover, if the system is set-up such that the request is always subjected to
the detection mechanism (in case access control enforcement is performed after the in-
trusion detection task), more advanced response logic can be built based on the fact
that a request is detected to be anomalous whose privileges are already in the suspend
state.

In addition to supporting fine-grained intrusion response, manually moving a priv-
ilege to the suspend state (using administrative commands) provides the basis for an
event based continuous authentication mechanism. Similar arguments can be made for
attaching the taint state to a privilege that triggers auditing of the request in progress.
Since we extend the decision semantics of our access control system using privilege
states, we call it a privilege state based access control (PSAC) system. For the com-
pleteness of the access control decisions, a privilege, assigned to a user or role, in PSAC
can exist in the following five states: unassign, grant, taint, suspend, and deny. The priv-
ilege states, the state transition semantics and a formal model of PSAC are described in
detail in Section 2. Note that the PSAC model that we present in Section 2 is flexible
enough to allow more than the above mentioned five states.

We have developed PSAC in the context of a role based access control (RBAC)
system [18]. Extending PSAC with roles presents the main challenge of state conflict
resolution, that is, deciding on the final state of a privilege when a principal receives the
same privilege in different states from other principals. Moreover, additional complexity
is introduced when the roles are arranged in a hierarchy where the roles higher-up in the

Privilege States Based Access Control for Fine-Grained Intrusion Response 405

hierarchy inherit the privileges of the lower level roles. We present precise semantics in
PSAC to deal with such scenarios.

The main contributions of this paper can be summarized as follows:

1. We present the design details, and a formal model of PSAC in the context of a
DBMS.

2. We extend the PSAC semantics to take into account a role hierarchy.
3. We implement PSAC in the PostgreSQL DBMS [5] and discuss relevant design

issues.
4. We conduct an experimental evaluation of the access control enforcement over-

head introduced by the maintenance of privilege states in PSAC, and show that our
implementation design is very efficient.

The rest of the paper is organized as follows. Section 2 presents the details of PSAC
and its formal model; it also discusses how a role hierarchy is supported. Section 3
presents the details of the system implemented in PostgreSQL, and the experimental
results concerning the overhead introduced by the privilege states on the access control
functions. Section 4 discusses the related work in this area. We conclude the paper in
Section 5.

2 PSAC Design and Formal Model

In this section, we introduce the design and the formal model underlying PSAC. We
assume that the authorization model also supports roles, in that RBAC is widely used by
access control systems of current DBMSs [11,4,7]. In what follows, we first introduce
the privilege state semantics and state transitions. We then discuss in detail how those
notions have to be extended when dealing with role hierarchies.

2.1 Privilege States Dominance Relationship

PSAC supports five different privilege states that are listed in Table 1. For each state,
the table describes the semantics in terms of the result of an access check.

A privilege in the unassign state is equivalent to the privilege not being assigned
to a principal; and a privilege in the grant state is equivalent to the privilege being

Table 1. Privilege States

State Access Check Result Semantics
unassign The access to the resource is not granted.
grant The access to the resource is granted.
taint The access to the resource is granted;

the system audits access to the resource.
suspend The access to the resource is not granted until

further negotiation with the principal is satisfied.
deny The access to the resource is not granted.

406 A. Kamra and E. Bertino

granted to a principal. We include the deny state in our model to support the concept of
negative authorizations in which a privilege is specifically denied to a principal [9]. The
suspend and the taint states support the fine-grained decision semantics for the result of
an access check.

In most DBMSs, there are two distinct ways according to which a user/role1 can
obtain a privilege p on a database object o:

1. Role-assignment: the user/role is assigned a role that has been assigned p;
2. Discretionary: the user is the owner of o; or the user/role is assigned p by another

user/role that has been assigned p with the GRANT option2.

Because of the multiple ways by which a privilege can be obtained, conflicts are natural
in cases where the same privilege, obtained from multiple sources, exists in different
states. Therefore, a conflict resolution strategy must be defined to address such cases.
Our strategy is to introduce a privilege states dominance (PSD) relation (see Figure 2).
The PSD relation imposes a total order on the set of privilege states such that any two
states are comparable under the PSD relation. Note the following characteristics of the
semantics of the PSD relation. First, the deny state overrides all the other states to
support the concept of a negative authorization [9]. Second, the suspend, and the taint
states override the grant state as they can be triggered as potential response actions to
an anomalous request. Finally, the unassign state is overridden by all the other states
thereby preserving the traditional semantics of privilege assignment.

The PSD relation is the core mechanism that PSAC provides for resolving conflicts.
For example, consider a user u that derives its privileges by being assigned a role r.
Suppose that a privilege p is assigned to r in the grant state. Now suppose we directly
deny p to u. The question is which is the state of privilege p for u, in that u has received
p with two different states. We resolve such conflicts in PSAC using the PSD relation.
Because in the PSD relation, the deny state overrides the grant state, p is denied to u.

We formally define a PSD relation as follows:

Definition 1. (PSD Relation) Let n be the number of privilege states. Let S =
{s1, s2 . . . sn} be the set of privilege states. The PSD relation is a binary relation (de-
noted by) on S such that for all si, sj , sk ∈ S:

1. si sj means si overrides sj

2. if si sj and sj si, then si = sj (anti-symmetry)
3. if si sj and sj sk, then si sk (transitivity)
4. si sj or sj si (totality) �

2.2 Privilege State Transitions

We now turn our attention to the privilege state transitions in PSAC. Initially, when a
privilege is not assigned to a principal, it is in the unassign state for that principal. Thus,

1 From here on, we use the terms principal and user/role interchangeably.
2 A privilege granted to a principal with the GRANT option allows the principal to grant that

privilege to other principals [2].

Privilege States Based Access Control for Fine-Grained Intrusion Response 407

DENY

SUSPEND

TAINT

UNASSIGN

GRANT

X

means ‘X’ overrides ‘Y’

Y

Fig. 2. Privilege States Dominance Relationship

DENY

SUSPEND

TAINT

UNASSIGN

GRANT

X

means ‘X’ overrides ‘Y’

Y

Fig. 3. Privilege State Transitions

the unassign state is the default (or initial) state of a privilege. The state transitions can
be triggered as internal response actions by an AD system, or as ad-hoc administrative
commands. In what follows, we discuss the various administrative commands available
in PSAC to trigger privilege state transitions.

408 A. Kamra and E. Bertino

The GRANT command is used to assign a privilege to a principal in the grant state
whereas the REVOKE command is used to assign a privilege to a principal in the
unassign state. In this sense, these commands support similar functionality as the SQL-
99 GRANT and REVOKE commands [2]. The DENY command assigns a privilege to
a principal in the deny state. We introduce two new commands in PSAC namely, SUS-
PEND and TAINT, for assigning a privilege to a principal in the suspend and the taint
states, respectively. The privilege state transitions are summarized in Figure 3. Note the
constraint that a privilege assigned to a principal on a DBMS object can only exist in
one state at any given point in time.

2.3 Formal Model

In this section, we formally define the privilege model for PSAC in the context of a
DBMS. The model is based on the following relations and functions:

Relations

1. U , the set of all users in the DBMS.
2. R, the set of all roles in the DBMS.
3. PR = U ∪ R, the set of principals (users/roles) in the DBMS.
4. OT , the set of all DBMS object types such as server, database, schema, table, and

so forth.
5. O, the set of all DBMS objects of all object types.
6. OP , the set of all operations defined on the object types in OT , such as select,

insert, delete, drop, backup, disconnect, and so forth.
7. S = {deny,suspend,taint,grant,unassign}, a totally ordered set of privilege states

under the PSD relation (Definition 2.1).
8. P ⊂OP ×OT , a many-to-many relation on operations and object types represent-

ing the set of all privileges. Note that not all operations are defined for all object
types. For example, tuples of the form (select, server) or (drop, server) are not
elements of P .

9. URA ⊆ U × R, a many-to-many user to role assignment relation.
10. PRUPOSA ⊂ PR × U × P × O × S, a principal to user to privilege to object

to state assignment relation. This relation captures the state of the access control
mechanism in terms of the privileges, and their states, that are directly assigned to
users (assignees) by other principals (assigners) on DBMS objects3.

11. PRRPOSA ⊂ PR × R × P × O × S, a principals to role to privilege to object
to state assignment relation. This relation captures the state of the access control
mechanism in terms of the privileges, and their states, that are directly assigned to
roles (assignees) by principals (assigners).

3 In PSAC, a role can also be an assigner of privileges. Consider a situation when a user u gets
a privilege p (with grant option) through assignment of role r. If u grants p to some other user
u′, PSAC records p as being granted to u′ by r even though the actual GRANT command was
executed by u.

Privilege States Based Access Control for Fine-Grained Intrusion Response 409

These relations capture the state of the access control system in terms of the privilege
and the role assignments. The functions defined below determine the state of a privilege
assigned to a user/role on a DBMS object.

Functions

1. assigned roles(u) : U → 2R, a function mapping a user u to its assigned roles
such that assigned roles(u) = {r ∈ R | (u, r) ∈ URA}. This function returns the
set of roles that are assigned to a user.

2. priv states(pr , r ′, p, o) : PR×R× P ×O→ 2S, a function mapping a principal
pr (privilege assigner), a role r′, a privilege p, and an object o to a set of privilege
states such that priv states(pr , r ′, p, o) = {s ∈ S | (pr, r′, p, o, s) ∈ PRRPOSA}.
This function returns the set of states for a privilege p, that is directly assigned to
the role r′ by the principal pr, on an object o.

3. priv states(pr , u ′, p, o) : PR × U × P × O → 2S, a function mapping a prin-
cipal pr (privilege assigner), a user u′, a privilege p, and an object o to a set of
privilege states such that priv states(pr , u ′, p, o) = {s ∈ S | (pr , u ′, p, o, s) ∈
PRUPOSA} ∪r∈assigned roles(u′) priv states(pr , r , p, o). The set of states re-
turned by this function is the union of the privilege state directly assigned to the
user u′ by the principal pr, and the privilege states (also assigned by pr) obtained
through the roles assigned to u′.

4. priv states(r , p, o) : R× P ×O→ 2S, a function mapping a role r, a privilege p,
and an object o to a set of privilege states such that priv states(r , p, o) = ∪pr∈PR

priv states(pr , r , p, o). This function returns the set of states for a privilege p, that
is directly assigned to the role r by any principal in the DBMS, on an object o.

5. priv states(u ′, p, o) : U × P × O → 2S , a function mapping a user u′, a priv-
ilege p, and an object o to a set of privilege states such that priv states(u ′, p, o)
= ∪pr∈PR priv states(pr , u ′, p, o). This function returns the set of states for a
privilege p, that is directly assigned to the user u′ by any principal in the DBMS,
on an object o.

6. PSD state(2S) : 2S→ S, a function mapping a set of states 2S to a state ∈ S such
that PSD state(2S) = s′ ∈ 2S | ∀s∈2S |s�=s′ s′ s. This function returns the final
state of a privilege using the PSD relation.

2.4 Role Hierarchy

Traditionally, roles can be arranged in a conceptual hierarchy using the role-to-role
assignment relation. For example, if a role r2 is assigned to a role r1, then r1 becomes
a parent of r2 in the conceptual role hierarchy. Such hierarchy signifies that the role
r1 inherits the privileges of the role r2 and thus, is a more privileged role then r2.
However, in PSAC such privilege inheritance semantics may create a problem because
of a deny/suspend/taint state attached to a privilege. The problem is as follows.
Suppose a privilege p is assigned to the role r2 in the deny state. The role r1 will also
have such privilege in the deny state since it inherits it from the role r2. Thus, denying

410 A. Kamra and E. Bertino

a privilege to a lower level role has the affect of denying that privilege to all roles that
inherit from that role. This defeats the purpose of maintaining a role hierarchy in which
roles higher up the hierarchy are supposed to be more privileged than the descendant
roles. To address this issue, we introduce the concept of privilege orientation. We define
three privilege orientation modes namely, up, down, and neutral. A privilege assigned
to a role in the up orientation mode means that the privilege is also assigned to its
parent roles. On the other hand, a privilege assigned to a role in the down orientation
mode means that the privilege is also assigned to its children roles; while the neutral
orientation mode implies that the privilege is neither assigned to the parent roles nor to
the children roles. We put the following two constraints on the assignment of orientation
modes on the privileges.

– A privilege assigned to a role in the grant or in the unassign state is always in
the up orientation mode thereby maintaining the traditional privilege inheritance
semantics in a role hierarchy.

– A privilege assigned to a role in the deny, taint, or suspend state may only be in the
down or in the neutral orientation mode. Assigning such privilege states to a role in
the down or neutral mode ensures that the role still remains more privileged than its
children roles. In addition, the neutral mode is particularly useful when a privilege
needs to be assigned to a role without affecting the rest of the role hierarchy (when
responding to an anomaly, for example).

We formalize the privilege model of PSAC in the presence of a role hierarchy as follows:

1. RRA ⊂ R × R, a many-to-many role to role assignment relation. A tuple of the
form (r1, r2) ∈ R ×R means that the role r2 is assigned to the role r1. Thus, role
r1 is a parent of role r2 in the conceptual role hierarchy.

2. OR = {up, down, neutral}, the set of privilege orientation modes.
3. PRRPOSORA ⊂ PR × R × P × O × S × OR, a principal to role to privilege

to object to state to orientation mode assignment relation. This relation captures the
state of the access control system in terms of the privileges, their states, and their
orientation modes that are directly assigned to roles by principals.

4. assigned roles(r ′) : R → 2R, a function mapping a role r′ to its assigned roles
such that assigned roles(r ′) = {r ∈ R | (r′, r) ∈ RRA} ∪ assigned roles(r).
This function returns the set of the roles that are directly and indirectly (through
the role hierarchy) assigned to a role; in other words, the set of descendant roles of
a role in the role hierarchy.

5. assigned roles(u) : U → 2R, a function mapping a user u to its assigned roles
such that assigned roles(u) = {r ∈R | (u, r) ∈ URA} ∪ assigned roles(r). This
function returns the set of roles that are directly and indirectly (through the role
hierarchy) assigned to a user.

6. assigned to roles(r ′) : R→ 2R, a function mapping a role r′ to a set of roles such
that assigned to roles(r ′) = {r ∈ R | (r, r′) ∈ RRA} ∪ assigned to roles(r).
This function returns the set of roles that a role is directly and indirectly (through

Privilege States Based Access Control for Fine-Grained Intrusion Response 411

r_t

r0

r2

r_bot

2

r3

op

r1

2

ttom

2

r4

Fig. 4. A Sample Role Hierarchy

the role hierarchy) assigned to; in other words, the set of ancestor roles of a role in
the role hierarchy.

We redefine the priv states(pr , r ′, p, o) function in the presence of a role hier-
archy taking into account the privilege orientation constraints as follows:

7. priv states(pr , r ′, p, o) : PR × R × P × O → 2S , a function mapping a
principal pr, a role r′, a privilege s, and an object o to a set of privilege states
such that priv states(pr , r ′, p, o) = {s ∈ S | ∀ or ∈ OR, (pr, r′, p, o, s, or)
∈ PRRPOSORA } ∪ {s ∈ {grant, unassign} | ∀ r ∈ assigned roles(r ′),
(pr, r, p, o, s, ‘up′) ∈ PRRPOSORA } ∪ {s ∈ {deny, suspend, taint} | ∀ r
∈ assigned to roles(r ′), (pr, r, p, o, s, ‘down′) ∈ PRRPOSORA }. The set of
privilege states returned by this function is the union of the privilege states directly
assigned to the role r′ by the principal pr, the privilege states in the grant or the
unassign states (also assigned by pr) obtained through the descendant roles of r′,
and the privilege states in the deny, suspend, and taint states (also assigned by pr)
obtained through the roles that are the ancestor roles of r′, and that are in the down
orientation mode.

We now present a comprehensive example of the above introduced relations and func-
tions in PSAC. Consider a sample role hierarchy in Figure 4. Table 2 shows the state of
a sample PRRPOSORA relation.

Table 2. PRRPOSORA relation

PR R P O S OR
SU1 r top select t1 deny neutral

SU1 r0 select t1 taint down

SU1 r bottom select t1 grant up

SU2 r top select t1 suspend down

412 A. Kamra and E. Bertino

Let the role r2 be assigned to the user u1. To determine the final state of the select
privilege on the table t1 for the user u1, we evaluate priv states(u1 , select , t1) as
follows:

priv states(u1, select, t1)
= priv states(SU1, u1, select, t1) ∪

priv states(SU2, u1, select, t1)
= priv states(SU1, r2, select, t1) ∪

priv states(SU2, r2, select, t1)
= {taint} ∪
{grant} ∪ {suspend}

= {taint, grant, suspend}

The final state is determined using the PSD state() function as follows:

PSD state(taint, grant, suspend) = suspend

3 Implementation and Experiments

In this section, we present the details on how to extend a real-world DBMS with PSAC.
We choose to implement PSAC in the PostgreSQL 8.3 open-source object-relational
DBMS [5]. In the rest of the section, we use the term PSAC:PostgreSQL to indi-
cate PostgreSQL extended with PSAC, and BASE:PostgreSQL to indicate the official
PostgreSQL 8.3 release. The implementation of PSAC:PostgreSQL has to meet two
design requirements. The first requirement is to maintain backward compatibility of
PSAC:PostgreSQL with BASE:PostgreSQL. We intend to release PSAC:PostgreSQL
for general public use in the near future; therefore it is important to take into account
the backward compatibility issues in our design. The second requirement is to mini-
mize the overhead for maintaining privilege states in the access control mechanism. In
particular, we show that the time taken for the access control enforcement code in the
presence of privilege states is not much higher than the time required by the access
control mechanism of BASE:PostgreSQL. In what follows, we first present the design
details of PSAC:PostgreSQL, and then we report experimental results showing the effi-
ciency of our design.

3.1 PSAC:PostgreSQL

Access control in BASE:PostgreSQL is enforced using access control lists (ACLs).
Every DBMS object has an ACL associated with it. An ACL in BASE:PostgreSQL is a
one-dimensional array; the elements of such an array have values of the ACLItem data
type. An ACLItem is the basic unit for managing privileges of an object. An ACLItem is
implemented as a structure with the following fields: granter, the user/role granting the
privileges; grantee, the user/role to which the privileges are granted; and privs, a 32 bit
integer (on 32 bit machines) managed as a bit-vector to indicate the privileges granted

Privilege States Based Access Control for Fine-Grained Intrusion Response 413

31 30 . 17 16 15 14 . 1 0

GRANT OPTION BITS PRIVILEGE BITS

Fig. 5. ACLItem privs field

to the grantee. A new ACLItem is created for every unique pair of granter and grantee.
There are 11 pre-defined privileges in BASE:PostgreSQL with a bit-mask associated
with each privilege [6]. As shown in Figure 5, the lower 16 bits of the privs field are
used to represent the granted privileges, while the upper 16 are used to indicate the
grant option4. If the kth bit is set to 1 (0 ≤ k < 15), privilege pk is granted to the
user/role. If the (k + 16)th bit is also set to 1, then the user/role has the grant option
on privilege pk.

Design Details. There are two design options to extend BASE:PostgreSQL to support
privilege states. The first option is to extend the ACLItem structure to accommodate
privilege states. The second option is to maintain the privilege states in a separate data
structure. We chose the latter option. The main reason is that we want to maintain back-
ward compatibility with BASE:PostgreSQL. Extending the existing data structures can
introduce potential bugs at other places in the code base that we want to avoid. In
BASE:PostgreSQL, the pg class system catalog is used to store the metadata informa-
tion for database objects such as tables, views, indexes and sequences. This catalog also
stores the ACL for an object in the acl column that is an array of ACLItems. We extend
the pg class system catalog to maintain privilege states by adding four new columns
namely: the acltaint column to maintain the tainted privileges; the aclsuspend column
to maintain the suspended privileges; the acldeny column to maintain the denied priv-
ileges; and the aclneut column to indicate if the privilege is in the neutral orientation
mode. Those state columns and the aclneut column are of the same data type as the
acl column, that is, an array of ACLItems. The lower 16 bits of the privs field in those
state and aclneut columns are used to indicate the privilege states and the orientation
mode respectively. This strategy allows us to use the existing privilege bit-masks for
retrieving the privilege state and orientation mode from these columns. The upper 16
bits are kept unused. Table 3 is the truth table capturing the semantics of the privs field
bit-vector in PSAC:PostgreSQL.

Authorization Commands. We have modified the BASE:PostgreSQL GRANT and
REVOKE authorization commands to implement the privilege state transitions. In ad-
dition, we have defined and implemented in PSAC:PostgreSQL three new authorization
commands, that is, the DENY, the SUSPEND, and the TAINT commands. As discussed
in the Section 2, the DENY command moves a privilege to the deny state, the SUS-
PEND command moves a privilege to the suspend state, and the TAINT command
moves a privilege to the taint state. The default privilege orientation mode for these

4 Recall that the grant option is used to indicate that the granted privilege may be granted by the
grantee to other users/roles.

414 A. Kamra and E. Bertino

Table 3. Privilege States/Orientation Mode Truth Table for the privs Field in PSAC:PostgreSQL

acl acl acl acl acl pk

taint suspend deny neut state
kth bit kth bit kth bit kth bit kth bit

0 0 0 0 0 unassign/up
1 0 0 0 0 grant/up
0 1 0 0 0 taint/down
0 0 1 0 0 suspend/down
0 0 0 1 0 deny/down
0 1 0 0 1 taint/neutral
0 0 1 0 1 suspend/neutral
0 0 0 1 1 deny/neutral

Rest all other combinations are not allowed by the system.

Table 4. New Authorization Commands in PSAC:PostgreSQL

TAINT {privilege name(s) | ALL} ON {object name(s)}
TO {user/role name(s) | PUBLIC} [NEUT ORNT]

SUSPEND {privilege name(s) | ALL} ON {object name(s)}
TO {user/role name(s) | PUBLIC} [NEUT ORNT]

DENY {privilege name(s) | ALL} ON {object name(s)}
TO {user/role name(s) | PUBLIC} [NEUT ORNT]

commands is the down mode with the option to override that by specifying the neutral
orientation mode. The administrative model for these commands is similar to that of
the SQL-99 GRANT command, that is, a DENY/SUSPEND/TAINT command can be
executed on privilege p for object o by a user u iff u has the grant option set on p for o
or u is the owner of o. The syntax for the commands is reported in Table 4. Note that
in the current version of PSAC:PostgreSQL, the new commands are applicable on the
database objects whose metadata are stored in the pg class system catalog.

Access Control Enforcement. We have instrumented the access control enforcement
code in BASE:PostgreSQL with the logic for maintaining the privilege states and
orientation modes. The core access control function in BASE:PostgreSQL returns a
true/false output depending on whether the privilege under check is granted to the user
or not. In contrast, the core access control function in PSAC:PostgreSQL returns the
final state of the privilege to the calling function. The calling function then executes a
pre-configured action depending upon the state of the privilege. As a proof of concept,
we have implemented a re-authentication procedure in PSAC:PostgreSQL when a
privilege is in the suspend state. The re-authentication procedure is as follows:

Re-authentication Procedure. Recall that when a privilege is in the suspend
state, further negotiation with the end-user must be satisfied before the user-request is
executed by the DBMS. In the current version of PSAC, we implement a procedure that
re-authenticates the user if a privilege, after applying the PSD relationship, is found in

Privilege States Based Access Control for Fine-Grained Intrusion Response 415

the suspend state. The re-authentication scheme is as follows. In BASE:PostgreSQL,
an authentication protocol is carried out with the user whenever a new session is
established between a client program and the PostgreSQL server. In PSAC:Postgresql,
the same authentication protocol is replayed in the middle of a transaction execution
when access control enforcement is in progress, and a privilege is found in the suspend
state. We have modified the client library functions of BASE:PostgreSQL to implement
such protocol in the middle of a transaction execution. If the re-authentication protocol
fails, the user request is dropped. If it succeeds, the request proceeds as usual, and
no changes are made to the state of the privilege. Note that such re-authentication
procedure scheme is implemented as a proof-of-concept in PSAC:Postgresql. More
advanced forms of actions such as a second-factor of authentication can also be
implemented.

Access Control Enforcement Algorithm. The pseudo-code for the access con-
trol enforcement algorithm in PSAC:PostgreSQL is presented in the Listing 1. The
function aclcheck() takes as input a privilege in priv - whose state needs to be
determined, a database object in object - that is the target of a request, and a user
in user - the user exercising the usage of in priv. The output of the algorithm is
the state of the in priv. The algorithm proceeds as follows. Since we define a total
order on the privilege states, it is sufficient to check each state in the order of its
rank in the PSD relation (cfr. Section 2). Thus, we first check for the existence of
in priv in the deny state, followed by the suspend state, the taint state, and then the
grant state. The function for checking the state of in priv (function check priv()) in
an Acl is designed to take into account all the roles that are directly and indirectly
(through a role hierarchy) assigned to the in user. Note that most expensive operation
in the check priv() function is the run-time inheritance check of roles, that is, to check
whether the user role is an ancestor or descendant of the acl role (lines 58 and 62).
We make such check a constant time operation in our implementation by maintaining
a cache of the assigned roles for every user/role in the DBMS. Thus, the running time
of the access control enforcement algorithm is primarily dependent upon the sizes of
various Acls.

If the privilege is not found to be in the above mentioned states, the unassign state is
returned as the output of the access check algorithm.

7 Ou t pu t
8 The p r i v i l e g e s t a t e
9−−

10 f u n c t i o n a c l c h e c k (i n u s e r , i n o b j e c t , i n p r i v) r e t u r n s s t a t e
11 {
12 / / Get t h e n e u t r a l o r i e n t a t i o n ACL f o r i n o b j e c t
13 NeutACL = g e t n e u t o r n t (i n o b j e c t) ;

1−−
2 I n p u t
3 i n u s e r : The u s e r e x e c u t i n g t h e command
4 i n o b j e c t : T a r g e t d a t a b a s e o b j e c t
5 i n p r i v : P r i v i l e g e t o check
6

416 A. Kamra and E. Bertino

14

15 / / Deny i f i n u s e r has i n p r i v i n DENY s t a t e
16 DenyACL = g e t d e n y s t a t e a c l (i n o b j e c t) ;
17 i f (c h e c k p r i v (i n p r i v , DenyACL , i n u s e r , NeutACL ,DENY) == t r u e)
18 re tu rn DENY;
19

20 / / Suspend i f i n u s e r has i n p r i v i n SUSPEND s t a t e
21 SuspendACL = g e t s u s p e n d s t a t e a c l (i n o b j e c t) ;
22 i f (c h e c k p r i v (i n p r i v , SuspendACL , i n u s e r , NeutACL , SUSPEND) ==

t r u e)
23 re tu rn SUSPEND;
24

25 / / T a i n t i f i n u s e r has i n p r i v i n TAINT s t a t e
26 TaintACL = g e t t a i n t s t a t e a c l (i n o b j e c t) ;
27 i f (c h e c k p r i v (i n p r i v , TaintACL , i n u s e r , NeutACL , TAINT) == t r u e

)
28 re tu rn TAINT ;
29

30 / / Grant i f i n u s e r has i n p r i v i n GRANT s t a t e
31 GrantACL = g e t g r a n t s t a t e a c l (i n o b j e c t) ;
32 i f (c h e c k p r i v (i n p r i v , GrantACL , i n u s e r , NeutACL ,GRANT) == t r u e

)
33 re tu rn GRANT;
34

35 / / E l s e r e t u r n UNASSIGN s t a t e
36 re tu rn UNASSIGN;
37 }
38−−
39 f u n c t i o n c h e c k p r i v (i n p r i v , AclToCheck , i n u s e r , NeutACL ,

s t a t e t o c h e c k)
40 r e t u r n s b o o l e a n
41 {
42 / / F i r s t , per form t h e i n e x p e n s i v e s t e p o f c h e c k i n g t h e

p r i v i l e g e s d i r e c t l y a s s i g n e d t o t h e i n u s e r
43 i f (i n u s e r has i n p r i v i n AclToCheck)
44 re tu rn t r u e ;
45

46 / / Get a l l t h e r o l e s d i r e c t l y a s s i g n e d t o i n u s e r
47 u s e r r o l e l i s t = g e t r o l e s (i n u s e r) ;
48

49 / / Do t h e f o l l o w i n g f o r e v e r y r o l e d i r e c t l y a s s i g n e d t o i n u s e r
50 f o r each u s e r r o l e i n u s e r r o l e l i s t
51 {

52 / / Do t h e f o l l o w i n g f o r e v e r y r o l e e n t r y i n AclToCheck
53 f o r each a c l r o l e i n AclToCheck
54 {
55 i f (s t a t e t o c h e c k == GRANT)
56 {

Privilege States Based Access Control for Fine-Grained Intrusion Response 417

57 / / O r i e n t a t i o n o f p r i v i l e g e s i n GRANT s t a t e i s UP
58 i f ((u s e r r o l e == a c l r o l e OR u s e r r o l e i s an ANCESTOR

of a c l r o l e) AND a c l r o l e has i n p r i v)
59

60 re tu rn t r u e ;
61 }
62 e l s e i f ((u s e r r o l e == a c l r o l e OR u s e r r o l e i s a

DESCENDANT of a c l r o l e) AND a c l r o l e has i n p r i v)
63 {
64 i f (a c l r o l e has i n p r i v i n NeutACL)
65 con t i n u e l o o p i n g t h r o u g h AclToCheck ;
66 e l s e
67 re tu rn t r u e ;
68 }
69 }
70 }
71

72 re tu rn f a l s e ;
73 }

Lising 1. Access Control Enforcement Algorithm in PSAC:PostgreSQL

3.2 Experimental Results

In this section, we report the experimental results comparing the performance of the
access control enforcement mechanism in BASE:PostgreSQL and PSAC:PostgreSQL.
Specifically, we measure the time required by the access control enforcement mech-
anism to check the state of a privilege, test priv, for a user, test user, on a
database table, test table. We vary the ACL Size parameter in our experiments. For
BASE:ProstgreSQL, the ACL Size is the number of entries in the acl column of the
pg class catalog. For PSAC:PostgreSQL, the ACL size is the combined number of
entries in the acl, the acldeny, the aclsuspend, and the acltaint columns. Note that
for the purpose of these experiments we do not maintain any privileges in the neutral
orientation mode.

We perform two sets of experiments. The first experiment compares the access con-
trol overhead in the absence of a role hierarchy. The results are reported in Figure 2.
As expected, the access control overhead for both BASE and PSAC PostgreSQL in-
creases with the ACL Size. The key observation is that the access control overhead for
PSAC:PostgreSQL is not much higher than that of BASE:PostgreSQL.

The second experiment compares the access control overhead in the presence of a hy-
pothetically large role hierarchy. We use a role hierarchy of 781 roles with depth equal to
4. The edges and cross-links in the role hierarchy are randomly assigned. The rationale
behind such set-up is that we want to observe a reasonable amount of overhead in the ac-
cess control enforcement code. The role hierarchy is maintained in PSAC:PostgreSQL
in a manner similar to that in BASE:PostgreSQL, that is, a role rp is the parent of a
role rc if rc is assigned to rp using the GRANT ROLE command. A role and its as-
signed roles are stored in the pg auth members catalog [5]. Next, in the experiment,
we randomly assigned 10 roles to the test user. In order to vary the size of the ACL

418 A. Kamra and E. Bertino

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

A
cc

es
s

C
he

ck
 T

im
e

(m
ic

ro
se

co
nd

s)

ACL Size

BASE:PostgreSQL
SAACS:PostgreSQL

Lising 2. Exp 1: Access Control Enforcement Time in BASE and PSAC PostgreSQL in the ab-
sence of a role hierarchy

on the test table, we developed a procedure to assign privileges on the test table to
randomly chosen roles. Figure 3 reports the results of this experiment. First, observe
that the access check time in the presence of a role hierarchy is not much higher than
that in the absence of a role hierarchy. As mentioned before, this is mainly because we
maintain a cache of the roles assigned to a user (directly or indirectly), thus preventing
expensive role inheritance tests at the run-time. Second, the access control enforcement
algorithm of PSAC:PostgreSQL reported in Section 3.1 is very efficient with a maxi-
mum time of approximately 97 microseconds for an ACL of size 512. Also, it is not

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

A
cc

es
s

C
he

ck
 T

im
e

(m
ic

ro
se

co
nd

s)

ACL Size

BASE:PostgreSQL
SAACS:PostgreSQL

Lising 3. Exp 2: Access Control Enforcement Time in BASE and PSAC PostgreSQL in the pres-
ence of a role hierarchy

Privilege States Based Access Control for Fine-Grained Intrusion Response 419

much higher than the maximum access control enforcement time in BASE:PostgreSQL
which stands at approximately 46 microseconds.

Overall, the two experiments confirm the extremely low overhead associated with
our design in PSAC:PostgreSQL.

4 Related Work

Access control models have been widely researched in the context of DBMSs [10]. To
the best of our knowledge, ours is the first solution formally introducing the concept of
privilege states in an access control model.

The implementation of the access control mechanism in the Windows operating sys-
tem [1], and Network File System protocol V4.1 [3] is similar to the semantics of the
taint privilege state. In such implementation, the security descriptor of a protected re-
source can contain two types of ACLs: a Discretionary Access Control List (DACL),
and a System Access Control List (SACL). A DACL is similar to the traditional ACL
in that it identifies the principals that are allowed or denied some actions on a protected
resource. A SACL, on other hand, identifies the principals and the type of actions that
cause the system to generate a record in the security log. In that sense, a SACL ACL
entry is similar to a PSAC ACL entry with taint privilege state. Our concept of priv-
ilege states, however, is more general as reflected by the semantics of the other states
introduced in our work.

The up,down, and neutral privilege orientations (in terms of privilege inheritance)
have been introduced by Jason Crampton [12]. The main purpose for such privilege
orientation in [12] is to show how such scheme can be used to derive a role-based
model with multi-level secure policies. However, our main purpose for introducing the
privilege orientation modes is to control the propagation of privilege states in a role
hierarchy.

Much research work has been carried out in the area of network and host based
anomaly detection mechanisms [16]. Similarly, much work on intrusion response meth-
ods is also in the context of networks and hosts [19,20]. The fine-grained response ac-
tions that we support in this work are more suitable in the context of application level
anomaly detection systems in which there is an end user interacting with the system.
In that context, an approach to re-authenticate users based on their anomalous mouse
movements has been proposed in [17]. In addition, many web applications may force
a re-authentication (or a second factor of authentication) in cases when the original au-
thenticator has gone stale (for example expired cookies) to prevent cross-site request
forgery (CSRF) attacks.

Foo et. al. [13] have also presented a survey of intrusion response systems. How-
ever, the survey is specific to distributed systems. Since the focus of our work is on
fine-grained response actions in the context of an application level anomaly detection
system, most of the techniques described in [13] are not applicable our scenario.

5 Conclusion

In this paper, we have presented the design, formal model and implementation of a priv-
ilege state based access control (PSAC) system tailored for a DBMS. The fundamental

420 A. Kamra and E. Bertino

design change in PSAC is that a privilege, assigned to a principal on an object, has a
state attached to it. We identify five states in which a privilege can exist namely, unas-
sign, grant, taint, suspend and deny. A privilege state transition to either the taint or
the suspend state acts as a fine-grained response to an anomalous request. We design
PSAC to take into account a role hierarchy. We also introduce the concept of privilege
orientation to control the propagation of privilege states in a role hierarchy. We have
extended the PostgreSQL DBMS with PSAC describing various design issues. The low
access control enforcement overhead in PostgreSQL extended with PSAC confirms that
out design is very efficient.

References

1. Access control lists in win32 (June 7, 2009),
http://msdn.microsoft.com/en-us/library/aa374872VS.85.aspx

2. Incits/iso/iec 9075. sql-99 standard (January 2, 2009), http://webstore.ansi.org/
3. Nfs version 4 minor version 1 (June 7, 2009),

http://www.ietf.org/internet-drafts/
draft-ietf-nfsv4-minorversion1-29.txt

4. Oracle database security guide 11g release 1 (11.1) (January 2, 2009),
http://download.oracle.com/docs/cd/B28359 01/
network.111/b28531/toc.htm

5. The postgresql global development group. postgresql 8.3 (June 7, 2009),
http://www.postgresql.org/

6. Postgresql global development group. postgresql 8.3 documentation (January 2, 2009),
http://www.postgresql.org/docs/8.3/static/sql-grant.html

7. Sql server 2008 books online. identity and access control (database engine) (January 2, 2009),
http://msdn.microsoft.com/en-us/library/bb510418(SQL.100).aspx

8. Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion detection in rbac-administered
databases. In: ACSAC, pp. 170–182. IEEE Computer Society, Los Alamitos (2005)

9. Bertino, E., Samarati, P., Jajodia, S.: An extended authorization model for relational
databases. IEEE Transactions on Knowledge and Data Engineering 9(1), 85–101 (1997)

10. Bertino, E., Sandhu, R.: Database security-concepts, approaches, and challenges. IEEE
Transactions on Dependable and Secure Computing 2(1), 2–19 (2005)

11. Chandramouli, R., Sandhu, R.: Role based access control features in commercial database
management systems. In: National Information Systems Security Conference, pp. 503–511

12. Crampton, J.: Understanding and developing role-based administrative models. In: ACM
Conference on Computer and Communications Security, pp. 158–167 (2005)

13. Foo, B., Glause, M., Modelo-Howard, G., Wu, Y.-S., Bagchi, S., Spafford, E.H.: Informa-
tion Assurance: Dependability and Security in Networked Systems. Morgan Kaufmann, San
Francisco (2007)

14. Kamra, A., Bertino, E.: Design and implementation of a intrusion response system for rela-
tional database. IEEE Transactions on Knowledge and Data Engineering, TKDE (to appear
2010)

15. Kamra, A., Bertino, E., Terzi, E.: Detecting anomalous access patterns in relational
databases. The International Journal on Very Large Data Bases, VLDB (2008)

16. Patcha, A., Park, J.-M.: An overview of anomaly detection techniques: Existing solutions
and latest technological trends. Computer Networks 51(12), 3448–3470 (2007)

http://msdn.microsoft.com/en-us/library/aa374872VS.85.aspx
http://webstore.ansi.org/
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://download.oracle.com/docs/cd/B28359_01/network.111/b28531/toc.htm
http://download.oracle.com/docs/cd/B28359_01/network.111/b28531/toc.htm
http://www.postgresql.org/
http://www.postgresql.org/docs/8.3/static/sql-grant.html
http://msdn.microsoft.com/en-us/library/bb510418(SQL.100).aspx

Privilege States Based Access Control for Fine-Grained Intrusion Response 421

17. Pusara, M., Brodley, C.E.: User re-authentication via mouse movements. In: ACM Workshop
on Visualization and Data Mining for Computer Security (VizSEC/DMSEC), pp. 1–8. ACM,
New York (2004)

18. Sandhu, R., Ferraiolo, D., Kuhn, R.: The nist model for role-based access control: Towards
a unified standard. In: ACM Workshop on Role-based Access Control, pp. 47–63 (2000)

19. Somayaji, A., Forrest, S.: Automated response using system-call delays. In: Proceedings of
the 9th USENIX Security Symposium, p. 185. USENIX Association, Berkeley (2000)

20. Toth, T., Krügel, C.: Evaluating the impact of automated intrusion response mechanisms, pp.
301–310. IEEE Computer Society, Los Alamitos (2002)

Abusing Social Networks for Automated User Profiling

Marco Balduzzi1, Christian Platzer2, Thorsten Holz2,
Engin Kirda1, Davide Balzarotti1, and Christopher Kruegel3

1 Institute Eurecom, Sophia Antipolis
2 Secure Systems Lab, Technical University of Vienna

3 University of California, Santa Barbara

Abstract. Recently, social networks such as Facebook have experienced a huge
surge in popularity. The amount of personal information stored on these sites calls
for appropriate security precautions to protect this data.

In this paper, we describe how we are able to take advantage of a common
weakness, namely the fact that an attacker can query popular social networks for
registered e-mail addresses on a large scale. Starting with a list of about 10.4 mil-
lion email addresses, we were able to automatically identify more than 1.2 million
user profiles associated with these addresses. By automatically crawling and cor-
relating these profiles, we collect detailed personal information about each user,
which we use for automated profiling (i.e., to enrich the information available
from each user). Having access to such information would allow an attacker to
launch sophisticated, targeted attacks, or to improve the efficiency of spam cam-
paigns. We have contacted the most popular providers, who acknowledged the
threat and are currently implementing our proposed countermeasures. Facebook
and XING, in particular, have recently fixed the problem.

1 Introduction

With the introduction of social networks such as Facebook, the Internet community ex-
perienced a revolution in its communication habits. What initially began as a simple
frame for social contacts quickly evolved into massively-used platforms where net-
working and messaging is only one of the multiple possibilities the users can call upon.
While basic messaging is still one of the key features, it is clear that the participants see
the main advantage in the well-organized representation of friends and acquaintances.

For such an organization to work properly, it is imperative to have certain knowl-
edge about the participants. Suggesting users from the same area with the same age,
for instance, can lead to a renewed childhood friendship, while a detailed work history
might open unexpected business opportunities. On the other hand, this kind of informa-
tion is also of great value to entities with potentially malicious intentions. Hence, it is
the responsibility of the service provider to ensure that unauthorized access to sensitive
profile information is properly restricted. In fact, various researchers (e.g., [1,2,3]) have
shown that social networks can pose a significant threat to users’ privacy. The main
problem is twofold:

– Many users tend to be overly revealing when publishing personal information. Al-
though it lies in the responsibility of each individual to assess the risk of pub-
lishing sensitive information, the provider can help by setting defaults that restrict

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 422–441, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Abusing Social Networks for Automated User Profiling 423

the access to this information to a limited number of individuals. A good exam-
ple is Facebook, where detailed information is only exchanged between already
connected users.

– Information exists in social networks that a user cannot directly control, and may
not even be aware of. The best example is the use of the information provided
during the registration phase (e.g., name, contact e-mail address, and birthday).
Even though this data may never be shown in the public user profile, what most
users do not realize is the fact that this information is still often used to provide
other functionality within the social network (e.g., such as determining which users
might know each other).

In this paper, we describe a novel, practical attack that impacts thousands of users.
Moreover, we have shown that this attack is effective against eight of the most popu-
lar social networks: Facebook, MySpace, Twitter, LinkedIn, Friendster, Badoo, Netlog,
and XING. We discovered that all of these social networks share a common weak-
ness, which is inherent in a feature that is particularly useful for newly-registered users:
Finding friends. With the functionality to search for friends, social networks need to
walk the thin line between revealing only limited information about their users, and
simplifying the process of finding existing friends by disclosing the personal details of
registered users. A common functionality among these popular social networks is to let
users search for friends by providing their e-mail addresses. For example, by entering
“gerhard@gmail.com”, a user can check if her friend Gerhard has an account on the
social network so that she can contact and add him to her friend list. Note that an e-mail
address, by default, is considered to be private information, and social networks take
measures not to reveal this information. That is, one cannot typically access a user’s
profile and simply gain access to his personal e-mail address. One of the main purposes
of protecting e-mail addresses is to prevent spammers from crawling the network and
collecting e-mail to user mappings. With these mappings at hand, the attacker could
easily construct targeted spam and phishing e-mails (e.g., using real names, names of
friends, and other personal information [4]). This kind of profiling is also interesting for
an attacker to perform a reconnaissance prior to attacking a company. By correlating
mappings from different social networks, it is even possible to identify contradictions
and untruthfully entered information among profiles.

In our experiments, we used about 10.4 million real-world e-mail addresses that were
left by attackers on a dropzone on a compromised machine (which was taken down).
We built a system to automatically query each social networking site with these ad-
dresses, just as an adversary would, and we were able to identify around 876,000 of
these addresses on at least one of the investigated social networks. Furthermore, we im-
plemented a simple guesser that we used to create new e-mail addresses (e.g., for John
Doe, addresses such as john.doe@gmail.com, john@gmail.com, jdoe@yahoo.com, etc.
would be created) and show that this is an effective and simple technique in practice to
find thousands of more accounts.
In summary, we make the following three contributions:

– We describe a real-world, common weakness in eight popular social networks con-
sisting of millions of users, and present a system that automatically takes advantage
of this weakness on a large-scale.

424 M. Balduzzi et al.

– By using e-mail addresses as a unique identifier, we demonstrate that it is possi-
ble to correlate the information provided by thousands of users in different social
networks. This is a significant privacy threat, because it allows to link profiles that
otherwise have no common information. Furthermore, adversaries can leverage this
information for sophisticated attacks.

– We present our findings and propose mitigation techniques to secure social net-
works against such attacks. Our findings were confirmed by all social network
providers we contacted. Some of them have already addressed the problem.

The remainder of the paper is structured as follows: In Section 2, we briefly discuss
ethical and legal considerations. In Section 3, we explain our attack and how we im-
plemented it for the social networks under examination. In Section 4, we present our
findings and assess the potential threat to social networking users. Section 5 discusses
possible mitigation solutions. In Section 6, we present related work, with a special focus
on privacy-related issues in social networks. We conclude our paper in Section 7.

2 Ethical and Legal Considerations

Crawling and correlating data in social networks is an ethically sensitive area. Similar to
the experiments conducted by Jakobsson et al. in [5,6], we believe that realistic exper-
iments are the only way to reliably estimate success rates of attacks in the real-world.
Nevertheless, our experiments were designed to protect the users’ privacy.

First, for the crawling and correlation experiments we conducted, we only accessed
user information that was publicly available within the social networks. Thus, we never
broke into any accounts, passwords, or accessed any otherwise protected area or infor-
mation. Second, the crawler that we developed was not powerful enough to influence
the performance of any social network we investigated. Third, we used MD5 on the real
names of users to anonymize them properly and handled this data carefully.

We also consulted the legal department of our university (comparable to the IRB in
the US), and received a legal statement confirming that our privacy precautions were
deemed appropriate and consistent with the European legal position.

3 Abusing E-Mail Querying

Many social network providers such as Facebook, MySpace, XING, or LinkedIn offer a
feature that allows a user to search for her friends by providing a list of e-mail addresses.
In return, she receives a list of accounts that are registered with these e-mail addresses.
From a user’s point of view, this feature is valuable: A user can simply upload her
address book, and the social network tells her which of her friends are already registered
on the site. The feature enables a user to quickly identify other users she knows, and
with which she might be interested in establishing a connection.

While the e-mail search functionality commonly available in social networks is con-
venient, a closer examination reveals that it also has some security-relevant drawbacks.
We show that an attacker can misuse this feature by repeatedly querying a large number
of e-mail addresses using the search interface as an oracle to validate users on the social
network. This information can then be abused in many ways, for example:

Abusing Social Networks for Automated User Profiling 425

– A spammer can automatically validate his list of e-mail addresses (e.g., find out
which addresses are most probably real and active) by querying a social network,
and only send spam e-mails to those users [7].

– The previous attack can be combined with social phishing, i.e., the spammer crawls
the profile of a user and uses this information to send targeted phishing e-mails (if
the user has a public profile and a public friend list) [4].

– An attacker can generate detailed profiles of the employees of a company and use
this information during the reconnaissance phase prior to the actual attack.

Note that it has been recently reported that spammers have started to shift their attention
to social networking sites to collect information about users that they can then use
for targeted e-mails [8]. The report states that spammers have been using bots to spy
information from social networks that they can then use for launching attacks such as
guessing passwords (i.e., using reminder hints such as “What is my favorite pet?”). The
prerequisite for these current attacks, however, is that a bot is installed on the victim’s
machine. In comparison, we describe the exploitation of a common weakness in a social
network functionality that allows us to retrieve information about users even if they are
not infected by a bot.

In each of these cases, the attack is only feasible since the social network provider
enables a large-scale query of e-mail addresses. Before going into details on how this
feature can be abused in practice, we provide an overview of the context of this type of
attacks and previous instances of similar problems.

3.1 Historical Context

Historically, a user search/verification feature was available in many different protocols
and services, as we discuss in this section.

SMTP. The Simple Mail Transfer Protocol (SMTP) provides two commands, VRFY and
EXPN, to verify a user name or to obtain the content of a mailing list, respectively [9].
A VRFY request asks the mail server to verify a given e-mail address, and if a normal
response is returned, it must include the mailbox of the user. In addition, an EXPN
request asks the server for the membership in a mailing list, and a successful response
must return the mailboxes on the mailing list.

Spammers began to abuse these two commands to query mail servers for a list of
valid e-mail addresses, and to verify if a given e-mail address was in use. Due to this
abuse by spammers, SMTP servers now commonly do not provide these two commands
anymore (at least not to unauthenticated users).

Finger User Information Protocol. This protocol is used to query a remote server for
status and user information [10]. The finger daemon typically returns information such
as the full name, whether a user is currently logged-on, e-mail address, or similar data.
While providing this kind of information is useful in general, an attacker can collect
information about a specific user based on the finger protocol, and then use this infor-
mation for social engineering attacks. Furthermore, the public exposure of the informa-
tion is questionable from a privacy and security point of view. For these reasons, the
majority of Internet hosts does not offer the finger service anymore.

426 M. Balduzzi et al.

Secure Shell. Certain versions of the OpenSSH server allowed a remote attacker to
identify valid users via a timing attack: By analyzing the response time during authenti-
cation, an attacker could determine whether or not the supplied username is valid [11].
By adjusting the timing for both successful and failed user verification, this flaw was
fixed. A similar flaw can be used to reveal private information with the help of timing
attacks against web applications [12].

Note that, as discussed above, the conceptual problem that we address in this paper
is not necessarily new, but its implications are novel and are far greater because of the
large amount of sensitive information contained in user profiles on social networks. We
believe that history is repeating itself and that it is only a matter of time before attackers
start making use of such features for malicious purposes.

3.2 Automated Profiling of Users

As explained previously, a user can typically send a list of e-mail addresses to a social
network and, in return, she receives a mapping of which of these e-mail addresses have
a corresponding account on the site. An attacker can abuse this and query for a large
number of e-mail addresses on many different social networks (see Figure 1a). As a
result, she learns on which social networks the specific address is registered.

In the second step, the attacker retrieves the user’s profile from the different networks
in an automated way (see Figure 1b). From each profile, she extracts the (publicly-
accessible) information she is interested in, for example, age, location, job/company,
list of friends, education, or any other information that is publicly available. This infor-
mation can then be aggregated and correlated to build a rich user profile.

Throughout the rest of this paper, we show that the two steps can indeed be auto-
mated to a high degree. Furthermore, we demonstrate that this attack is possible with
only very limited resources. In fact, by using a single machine over a few weeks only,
we collected hundreds of thousands of user profiles, and queried for millions of e-mail
addresses (i.e., each social network was successfully queried for 10.4 million addresses,

List of E-Mail
Addresses

MySpace

Facebook

LinkedIn

...
@

@

@

(a) Querying social networks for registered e-
mail addresses on a large scale.

Registered
Users

MySpace

Facebook

LinkedIn

...
?

?

?

(b) Crawling every profile found in the first
step to collect personal information.

Fig. 1. Automated user profiling based on information collected on social networks

Abusing Social Networks for Automated User Profiling 427

adding up to a total of about 82.3 million queries). This emphasizes the magnitude and
the significance of the attack since a more powerful, sophisticated, and determined at-
tacker could potentially extract even more information (e.g., by using a large botnet).

An attacker can also abuse the search feature in a completely different way, extend-
ing the attack presented in the previous section. During the profiling step, an attacker
can learn the names of a user’s friends. This information is often available publicly,
including social networking sites such as Facebook and Twitter. An attacker can thus
obtain the tuple (first name, last name) for each friend of a given user, but not the e-mail
addresses for these friends: The e-mail address itself is considered private information
and not directly revealed by the social networking sites. However, an attacker can auto-
matically try to guess the e-mail addresses of the friends of a user by abusing the search
feature. We implemented two different, straight-forward techniques for generating new
e-mail addresses, based on user names.

For the first technique, for each friend, we build 24 addresses. Given a name in
the form “claudio bianchi”, we generate six prefixes as “claudio.bianchi,” “claudio-
bianchi,” “claudio bianchi,” “c.bianchi,” “c bianchi,” and “cbianchi”. Then, we ap-
pend the four most popular free e-mail domains “gmail.com,” “yahoo.com,” “aol.com,”
and “hotmail.com.”

For the second technique, we use context information for generating e-mail ad-
dresses: If a user has an e-mail address with a certain structure (e.g., automatically
generated e-mail accounts often include the last name of the user and a static prefix),
we try to detect this structure by searching the user’s first and last name within the e-
mail address. If we identify a pattern in the address, we use this match and generate two
additional e-mail addresses that follow the same pattern (including both the first and
last name) for each friend. If we do not detect a pattern, we generate e-mail addresses
similar to the first algorithm. However, instead of appending common prefixes, we use
the prefix of the user on the assumption that the friends of a user might be a member of
the same e-mail provider.

3.3 Implementation of the Attack

Our prototype system has been implemented as a collection of several components. One
component queries the social networks, one extracts and stores the identified informa-
tion from user profiles, and one automatically correlates the information to discover as
much information as possible about a user. An overview of the system and the relation-
ship of the components is shown in Figure 2.

We designed our system to be efficient and stealthy at the same time. Therefore,
we had to find a compromise between normal user behavior, which is stealthy, and
brute-force crawling, which is efficient but bears the danger of frequently-suspended
accounts. Our solution was tweaked for each social network, to find the right combi-
nation of timeouts and number of requests. Furthermore, our solutions was carefully
designed not to overwhelm the tested networks.

In the following, we describe the system and its components in more detail.

Address Prober. The Address Prober is an HTTP client that is responsible for upload-
ing the list of e-mail addresses to be queried to the social network. The social network,

428 M. Balduzzi et al.

Social Network
Profiles

Address
Prober

List of E-Mail
Addresses

Profile
Crawler Correlator

External
E-Mail Provider

Facebook

MySpace

...

...

User
Profiles

Fig. 2. Overview of system architecture

in return, sends back the list of accounts that are registered with those addresses. The
data we are interested in is the profile ID and, if possible, the name, which is attached
to the source e-mail address. At this point, some of the processed networks offer some
additional data, such as the location or a brief job description.

The client itself is implemented in Python, and embeds an extension to the stan-
dard urllib library [13] that supports postings in the multipart/form-data format. We
adopted such encoding to be able to send to the social networking site a file containing
the list of addresses. Typically, this file is required to be formatted in the standard CSV
format. On some other networks, for example in Badoo, the list of emails need to be
passed as a string of comma-separated addresses.

The Address Prober also supports external e-mail providers such as, for example,
Google’s webmail service Gmail, and permits to upload lists of e-mail addresses to such
accounts. The motivation behind this feature is that some social networks only support
e-mail queries if the source is an external e-mail account with an attached address book.
Hence, we automatically upload (and afterwards delete again) contacts from specific
webmail accounts, before querying the social network.

With this technique, in the worst case (i.e., some sites such as Facebook allow
lookups of up to 5,000 addresses), we are able to check sets of around 1,000 e-mail
addresses at once. With a short delay, which we set to 30 seconds to ensure that all data
is correctly processed and not to overwhelm the network, the prober is able to process
data with an overall average speed of 500,000 e-mail addresses per day. A positive side-
effect of this technique is that we can query social networks that support Gmail imports
in parallel, resulting in a higher overall throughput.

Profile Crawler. The Profile Crawler is responsible for a deeper investigation of the
user profiles discovered in the previous step. The goal is to gather as much informa-
tion about a single user as possible. For this purpose, it is mandatory to implement
tailored solutions for each supported social network. In the first round, the crawler vis-
its iteratively the user’s profile pages for all the social networks, and stores them in a
database. On average, we were able to visit 50,000 pages in a single day from a single
machine with a single IP address. Some networking sites provided mechanisms to limit
the number of profiles visited per day from a single account, while others did not have
any limitation mechanism in place. Finally, the crawler automatically parses the data

Abusing Social Networks for Automated User Profiling 429

that has been retrieved and extracts the information of interest, such as sex, age, loca-
tion, job, and sexual preferences. That is, the Profile Crawler enriches the user profiles
discovered by the Address Prober with a set of general and sensitive information.

Correlator. After the crawling phase, the Correlator component combines and corre-
lates the profiles that have been collected from the different social networks. The goal
of the Correlator is to use the email address as a unique identifier to combine together
different profiles and identify the ones that belong to the same person.

When it finds two profiles associated with the same e-mail address, the Correlator
compares all the information in the two profiles to identify possible inconsistencies. In
particular, it compares all the fields that can assume a small set of values, e.g., sex (either
male or female), age (a positive integer number), and current relationship (married,
single, or in a relationship).

Using the Correlator, it is possible to automatically infer information that the user
might have wanted to keep private. In particular, the correlator has two main goals:

– Identity Discovery - If a person provides his full name in social network A, but
registers a profile in the network B using a pseudonym, by cross-correlating the
two profiles, we can automatically associate the real user’s name also to the account
B. We are even able to correlate the information about a given person that uses two
different pseudonyms by linking the two accounts with the help of the provided e-
mail address, which is not possible with the technique proposed by Irani et al. [14].
The combination of information from different sources can be even more worri-
some if this information is privacy-relevant. For example, Alice could have a busi-
ness profile on LinkedIn, and another profile on a dating site in which she does
not reveal her real name, but she provides other private information such as her
sexual preferences. It is very likely that Alice assumed that it was not possible to
link the two “identities” together because there is no public information on the two
networks that can be used to match the profiles.

– Detection of Inconsistent Values - Sometimes, the information extracted from dif-
ferent social networks is contradictory. For example, Bob can provide his real age
on his profile on social network A, while pretending to be 10 years younger on
social network B. Again, we can identify this kind of fraudulent (or embellished)
profiles in an automated way by cross-correlating the information extracted during
crawling the different networks.

4 Evaluation with Real-World Experiments

We performed several experiments on different social networks. As a starting point,
we used a set of 10,427,982 e-mail addresses, which were left on a dropzone on a
compromised machine that was taken down by law enforcement officials. Based on
the log files of this machines, we saw that these e-mail addresses had been used for
spamming, and thus, they provided a real-world test case for our system.

430 M. Balduzzi et al.

4.1 Results for E-Mail Queries

We used our Address Prober component on eight social networks, namely Facebook,
MySpace, Twitter, LinkedIn, Friendster, Badoo, Netlog, and XING. These networks
were chosen because they provide a representative mix of different types of social net-
works (e.g., business, friendship, and dating). Furthermore, all of these sites have mil-
lions of registered users and operate in different countries. Of course, they also vary in
their popularity. Facebook, for example, is the most popular social networking site and
reports to have more than 400 million active users [15].

Table 1. Discovered profiles

Network Query method E-mail list length # queried e-mails # identified Percentage
method size efficiency speed efficiency accounts

1 Facebook Direct 5000 10M/day 517,747 4.96%
2 MySpace GMail 1000 500K/day 209,627 2.01%
3 Twitter GMail 1000 500K/day 124,398 1.19%
4 LinkedIn Direct 5000 9M/day 246,093 2.36%
5 Friendster GMail 1000 400K/day 42,236 0.41%
6 Badoo Direct 1000 5M/day 12,689 0.12%
7 Netlog GMail 1000 800K/day 69,971 0.67%
8 XING Direct 500 3.5M/day 5,883 0.06%

Total of 1,228,644 11.78%

Table 1 shows the profiles that have been discovered by the e-mail queries that we
performed on these sites. Clearly, direct queries to the social networking sites yield
faster results than those that are coupled with GMail accounts. Also, while we were
able to query 5,000 e-mail addresses at once on Facebook, the best results for XING
were 500 addresses per query. The scan method and e-mail list length directly affect
the speed of the queries. In general, direct queries are about one order of magnitude
faster, and we can check several million e-mail addresses per day. For social networks
on which we need to use the GMail support, we can still probe several hundred thousand
addresses per day. Also, note that we only adopted a single machine in our tests, while
an attacker could perform such an attack in parallel using many machines. In total, we
were able to identify 1,228,644 profiles that are linked to one of the e-mail addresses
we probed. Most profiles were found on Facebook (4.96%), LinkedIn (2.36%), and
MySpace (2.01%).

Table 2 shows the number of profiles that were created with the same e-mail address
on different networks. For example, one can see that there are almost 200,000 users who
were registered in at least two social networks. In sum, a total of 876,941 unique e-mail
addresses we had access to were covered by one or more of the listed social networks.

Table 3 shows the top ten combinations among social networks. That is, the table
shows which combinations of networks we typically encountered when we identified
a user who is registered on different sites with the same e-mail address. The two most
popular combinations are Facebook with MySpace, and Facebook with LinkedIn. Note
that the more diverse information a social networking site offers about users as pub-
lic information, the more significant our attack becomes. In the case of LinkedIn and

Abusing Social Networks for Automated User Profiling 431

Table 2. Overlap for profiles between different networks

Number of Social Networks Number of Profiles
1 608,989
2 199,161
3 55,660
4 11,483
5 1,478
6 159
7 11
8 0

Total unique 876,941

Table 3. Top ten combinations

Combination Occurrences
Facebook - MySpace 57,696
Facebook - LinkedIn 49,613
Facebook - Twitter 25,759
Facebook - MySpace - Twitter 13,754
Facebook - LinkedIn - Twitter 13,733
Facebook - NetLOG 12,600
Badoo - FriendSter 11,299
Facebook - MySpace - LinkedIn 9,720
LinkedIn - Twitter 8,802
MySpace - Twitter 7,593

Facebook, we have two social networking sites with different goals. Whereas Face-
book aims to foster friendship, LinkedIn aims to foster business collaborations. Hence,
we can combine the business information about a user with the more personal, private
information they may provide on the friendship site (e.g., under a nickname).

These results of our experiment clearly demonstrates that a potential attacker can
easily abuse social networks to enrich his spamming list with the information retrieved
from different networks.

4.2 Extracted Information from Profiles

In this section, we provide statistics about the information collected when the Profile
Crawler visited the user profiles. We present for each of the social networks an overview
of what kind of information is available, and also for what percentage of users we were
able to extract this information.

Table 4 provides an overview of general information such as profile photo, location,
and friends available on the different networks. The column profiles are open shows the
percentage of how many profiles the crawler was able to access, and validate against the
name and surname already extracted from the Address Prober. Profiles that are closed
include profiles that are configured to be completely private, or that are not accessible

432 M. Balduzzi et al.

Table 4. Crawling results (values are in percentage): general information

Network Name Profiles Photo Location Friends Average Last Profile
Surname are open friends login visitors

Facebook ✓ 99.89 76.40 0.48 81.98 142 n/a n/a
MySpace ✓ 96.26 55.29 63.59 76.50 137 94.87 n/a
Twitter ✓ 99.97 47.59 32.84 78.22 65 n/a n/a
LinkedIn ✓ 96.79 11.80 96.79 96.75 37 n/a n/a
Friendster ✓ 99.72 47.76 99.51 50.23 37 8.79 n/a
Badoo ✓ 98.61 70.86 95.23 n/a n/a 92.01 n/a
Netlog ✓ 99.98 43.40 77.54 64.87 31 n/a 73.33
XING ✓ 99.88 57.20 96.04 47.25 3 n/a 96.83

Table 5. Crawling results (values are in percentage): sensitive information

Age Sex Spoken Job Education Current Searched Sexual
language relation relation preference

Facebook 0.35 0.50 n/a 0.23 0.23 0.44 0.31 0.22
MySpace 82.20 64.87 n/a 3.08 2.72 8.41 4.20 4.07
Twitter n/a n/a n/a n/a n/a n/a n/a n/a
LinkedIn n/a n/a n/a 96.79 60.68 0.00 n/a n/a
Friendster 82.97 87.45 n/a 30.88 2.72 64.59 77.76 n/a
Badoo 98.61 98.61 47.81 17.06 19.92 22.48 n/a 22.80
Netlog 97.66 99.99 44.56 43.40 1.64 25.73 23.14 29.30
XING n/a n/a 84.54 99.87 49.21 n/a n/a n/a

anymore. In Facebook, more than 99% of the profiles are open, but only little informa-
tion is shown by default to anonymous users and persons that are not a friend of the
user. On the contrary, the profile photo and the list of friends are usually accessible.

Typically, the different pieces of information can be either private or public, and the
social network provider assigns a default value for the privacy setting of them. From
our observations, it seems that many users do not change the default privacy settings
for a specific type of information. Note that when some data is not accessible, it either
means that the user has not set such a value (it is optional) or that is not accessible due
to privacy reasons.

Table 5 shows the availability of sensitive information on the individual networks.
Depending on the purpose of the social network, different types of information are made
public by default. Dating platforms, for instance, focus on personal information such as
age, sex, or current relationship status, while business networks emphasize educational
and work-related aspects. However, all of these details are more sensitive and can be
used for the accurate profiling of an account. Precise values such age and sex can easily
be correlated across different social networks, essentially forming richer sets of publicly
available data than initially desired by the user. We provide a detailed overview of this
aspect in Section 4.4.

Abusing Social Networks for Automated User Profiling 433

Table 6. Crawling results: extra information

Network Personal Phone Birthday IMs Physical Income Prof. Interests
homepage appearance skills Hobbies

Facebook ✓ ✓ ✓ ✓ ✓ ✓

MySpace ✓ ✓ ✓ ✓

Twitter ✓ ✓ ✓

LinkedIn ✓ ✓ ✓ ✓ ✓ ✓

Friendster ✓

Badoo ✓ ✓ ✓ ✓

Netlog ✓ ✓

XING ✓ ✓ ✓ ✓ ✓ ✓

Finally, Table 6 shows what kind of additional information each social network sup-
ports. We refrain from providing a percentage for these fields, because this type of
information is only available for a minority of the sampled cases.

4.3 Automated Guessing of User Profiles

While it is useful for the attacker to have access to e-mail lists that she can readily query,
it is also interesting for her to automatically generate new e-mail addresses that she
could then re-validate against the social networks. Using the e-mail guesser as discussed
earlier, we are able to generate addresses that we do not previously know, and verify
their existence in social networks. By starting with 650 profiles and using straight-
forward automated e-mail guessing techniques, we were able to identify the e-mails of
about 20,000 users along with their associated profiles (a thirty-fold increase compared
to the initial profile set). Hence, our experiment demonstrated that even if the attacker
does not have access to a large e-mail database, by starting with a small set, she can still
successfully guess addresses and identify thousands of new profiles.

4.4 Detecting Anomalous Profiles by Cross-Correlation

In the following, we present the output of the correlation phase, and we discuss sev-
eral interesting examples of anomalous profiles we automatically discovered during our
empirical experiments.

Discovering Mismatched Profiles. Based on the data provided by the different social
networks, we configured the Correlator to analyze six information fields that are popular
among the different social networks we examined: Name, location, age, sex, current
relationship, and sexual preference.

Before proceeding to the comparison, we had to normalize the values provided in
the different social networks to a common dictionary. For example, sex was translated
to either “male” or “female,” while the current relationship and the sexual preference’s
values were translated into a set of common keywords built from an analysis of the en-
tire dataset. For instance, values like “heterosexual,” “straight,” and “man looking for
women” were all translated into the keyword “heterosexual.” Likewise, we normalized

434 M. Balduzzi et al.

Table 7. Information provided on multiple profiles belonging to the same user

of Occurrences on X networks
Information 2 3 4 5 6 7 Total
Name 199,161 55,660 11,483 1,478 159 11 267,952
Location 22,583 2,102 174 11 3 24,873
Age 19,135 887 36 20,085
Sex 17,282 854 34 18,170
Sexual preference 760 13 773
Current relation 1,652 38 1 1,691

the current relationship field to one of the four following values: “Single,” “in a rela-
tionship,” “married,” and “complicated.” Finally, we filtered the geographical location
by comparing the field (or part of it) against a dictionary of more than 260,000 cities.

Table 7 shows the number of users that provide a certain information on multiple
social networks. For example, 22,583 users included their location on two networks,
2,102 on three networks, and 174 on four networks. Since the name is a mandatory
field, the first line of the table matches the number of profiles reported in Table 2.

For each field, the Correlator computed the total number of distinct values provided
by the same users across different networks. For example, if Alice is registered on three
social networks where she provides as age 26, 26, and 22 the Correlator reports two
mismatched values.

Table 8. Overview of profiles where a mismatch was detected - Data are normalized.

% Total % of mismatched values
Information Value mismatches 2 3 4+
Name string 72.65 62.70 35.37 17.66
Location city 53.27 51.74 16.24 3.72
Age 0 < n < 100 34.49 33.58 17.84 30.56
Sex m, f 12.18 12.18
Sexual preference hetero, homo, bi 7.63 7.63
Current relation single, relationship, 35.54 35.42 5.13

married, complicated

Table 8 summarizes the results. The first column shows the percentage of profiles,
from the total shown in Table 7, for which the Correlator found mismatching values.
About one-third of the people seems to misrepresent their current relationship status,
declaring, for example, to be single on one network and to be married on a second one.
It is also interesting to note that 2,213 users (12% of the ones registered in more than
one network) pretend to be male on a network and female on a different one. The very
high percentage of people using different names is a consequence of various factors.
First, the name comparison is more problematic because, as explained in Section 2, we
only store the MD5 of the names to preserve the users privacy. This means that we
lose the ability to distinguish between small differences and completely fake names.
Second, in some social networks, it is very common to provide a nickname instead of

Abusing Social Networks for Automated User Profiling 435

the real user name. For example, John Doe on LinkedIn may appear simply as JDoe77
on MySpace.

The last three columns in Table 8 show how many unique values where provided by
the same user (either two, three, or more) on different social networks. These percent-
ages are normalized by the number of accounts owned by the user. That is, a value of
10% in Column 3 means that 10% of the people that own an account on at least three
social networks provided three different values for that specific field.

Mismatches in Provided Age Information. Five of the eight social networks we ex-
amined either offer the possibility for a user to specify his age, or automatically com-
pute this information from the user’s birthday. During our experiments, the Correlator
automatically found a total of more than 20,000 users for which we had at least two
profiles on different networks which also included the person’s age. Surprisingly, about
one-third of these users (6,919) showed a mismatch for the age information provided in
the different profiles (see Table 9 for details). This number only includes those profiles
in which the difference of age is at least two years. In fact, a mismatch of only one year
is likely to be the consequence of outdated profiles (i.e., if a user needs to manually
specify his age, he might forget to update the value at each birthday).

Table 9. Overview of profiles where a mismatch was detected in the age.

Range # %
2 - 10 4,163 60.17
11 - 30 1,790 25.87
31 + 966 13.96
Profiles with Age 20,085
Total mismatched 6,919

Among the profiles with an age that differs more than two years, we were able to
identify 712 users (10% of this set) who claim to be underage, even though they appear
to be more than 18 years old in another networks (or vice versa). For example, we
observed that many teenagers increase their age to register to Badoo, since the site
restricts its access to adults only.

A Short Glimpse into Hidden Profiles. Probably the most serious consequence of
the attack presented in this paper is the ability to uncover hidden relationships between
different profiles, allowing an attacker to infer private information about a subject.

By looking at the results of our experiments, it is possible to find examples of pos-
sibly hidden profiles and online identities that users probably wish to keep secret. As a
proof of concept of the impact that correlating profile information can have on a user’s
privacy, we picked some random profiles that showed mismatching values. In one case,
a married person owned an account on a dating-related social network under a different
name, with a list of friends who were much younger. While such information may be
a complete misinterpretation, nevertheless, there may be many cases where an attacker
may try to use the information to his advantage.

436 M. Balduzzi et al.

Because of the ethically sensitive aspects of analyzing this kind of interconnections,
we did not perform an in-depth investigation of the problem, limiting the result of our
analysis to aggregated figures.

5 Countermeasures

In this section, we present several mitigation strategies that can be used to limit the
extent of our attack. Each approach has its own advantages and limitations, which we
review in the rest of the section. We discussed the different countermeasures with sev-
eral popular social network providers to incorporate also their view of the problem,
especially considering the operational practicability of each proposed solution.

1) Raising Awareness: Mitigation From the User’s Perspective. Clearly, if users were to
use a different e-mail address on each social networking site, it would become more dif-
ficult for the attacker to automatically correlate the extracted information. Because the
e-mail address is the unique ID that identifies a specific user, an effective defense tech-
nique would be to educate users to use a different e-mail address each time they register
for and enter personal information into a social networking site. Unfortunately, educat-
ing users on security and privacy issues is not an easy task. Often, users may choose
to ignore the risks and opt for the ease of use (e.g., analogous to users using the same
password across many web sites – which has been reported to be quite common [16]).

2) Possible Solution: CAPTCHAs. When searching for e-mail addresses, a user could
be forced to solve a CAPTCHA (i.e., a type of challenge-response test which is hard
to solve for a computer [17]). This would prohibit automated, large-scale queries to a
certain extent since CAPTCHAs cannot be (easily) solved by a computer.

However, introducing this kind of countermeasure has three main drawbacks. First,
the user experience is reduced if a user needs to solve a CAPTCHA frequently, and
this should be avoided by all means. Even if solving a CAPTCHA is only required
for users that perform many queries, the network operators tend to dislike this mitiga-
tion strategy due to a potential negative user experience. Second, using this approach
is not a real solution to the problem since an attacker can also hire real people to solve
the challenge-response tests. This type of service is surprisingly cheap on the under-
ground market, with 1,000 solved CAPTCHAs costing about $2 [18]. Third, different
CAPTCHA systems are prone to attack such that a computer can solve the test with a
reasonable success rate, completely defeating the countermeasure [19,20,21].

3) Possible Solution: Contextual Information. Another potential approach to mitigate
the problem is to require contextual information for each query. If a user U wishes to
search for his friends F1, F2, . . . Fn, he has some context information for each of them
that he should include in his query. For example, a user knows the full name of each
friend, he can estimate their age, or knows their approximate location. It is probable
that the attacker lacks this kind of information.

Unfortunately, it is inconvenient for a user to provide contextual information to per-
form a query. While a user can, for example, store the full name together with the e-mail

Abusing Social Networks for Automated User Profiling 437

address within the address book application, this information might no be available for
all friends. Furthermore, additional contextual information such as age or location needs
to be provided manually. As a result, this solution is likely not feasible from an opera-
tional point of view.

4) Possible Solution: Limiting Information Exposure. Our attack is possible since the
search result contains a mapping between the queried e-mail address and the profile
name (if an account with this e-mail address is registered). Thus, a viable option to
prevent our attack is to not return a mapping between e-mail address and profile name
in the search result. This could, for example, be implemented by simply returning a
list of registered accounts in a random order, without revealing which e-mail address
belongs to which account. Note that a user typically does not need the correct mapping,
he is only interested in the fact that one of his friends is registered on the social network
such that she can add him to his friends list.

5) Possible Solution: Incremental Updates. Another fact that enables our attack is the
huge number of searches we can perform: We can query thousands of e-mail addresses
at once, and also repeat this process as often as we wish. A natural approach for miti-
gation is, thus, to implement some kind of limitation for the queries a user is allowed to
perform. For example, by enforcing incremental updates, a user is allowed to initially
query many e-mail addresses, but this step can only be performed once. This enables
a user to search for his current friends on the given social network in the beginning.
Afterwards, the number of queries can be restricted to only a small number of e-mail
addresses (for example only 50). This enables a user to incrementally extend his net-
work, but also limits the number of e-mail addresses a user can search for.

6) Possible Solution: Rate-limiting Queries. Another viable option to limit our attack
is rate-limiting the number of queries: That is, we restrict the (total) number of queries
a user can send to the social network, therefore limiting the amount of e-mail addresses
a given user can check. An option could be to either rate-limit the number of queries
(e.g., only two large queries per week) or have a total upper bound of e-mail addresses
a user can search for (e.g., a total of 10K e-mail addresses a user can check).

Most social network providers already have different kinds of rate-limiting in place.
For example, rate-limiting is used to prohibit automated crawling of their site, or reg-
ulating how many messages a given user can send per day to stop spamming attacks.
Therefore, rate-limiting the number of e-mail searches a user is allowed to perform fits
into the operational framework of these sites. When we contacted the most popular so-
cial network providers, the majority of them preferred this solution. In the meantime,
Facebook and XING have already implemented this countermeasure and now limit the
number of lookups that can be performed by a single source.

Limitations of the Countermeasures. Note that although there is much room for im-
provement in defending against e-mail-to-account mapping information leakage at-
tacks, the attacker could still extract information from the social networking site for
specific, targeted users (e.g., by only sending e-mail queries consisting of a single user).
Hence, if social networking sites choose to provide e-mail searching functionality, there

438 M. Balduzzi et al.

is always a potential for misuse and the privacy of the users may be at risk. However,
the countermeasures we described in this section raise the difficulty bar for the attacker,
mitigating the problem at least on a large scale.

6 Related Work

The large popularity of social networks and the availability of large amounts of personal
information has been unprecedented on the Internet. As a result, this increasing popu-
larity has lead to many recent studies that examine the security and privacy aspects of
these networks (e.g., [3,4,7,22,23,24,25,26]). As more and more Internet users are reg-
istering on social networking sites and are sharing private information, it is important
to understand the significance of the risks that are involved.

The structure and topology of different social networks was examined by different
research groups (e.g., [27,28,29,30]). The main focus of previous work was either on
efficient crawling or on understanding the different aspects of the graph structure of
social networks. We extend previous work by contributing a novel way to enumerate
users on social networks with the help of e-mail lookups. Furthermore, we implemented
several efficient crawlers for social networks and – to the best of our knowledge – we
are the first to perform large-scale crawls of eight social networks.

Our attack is facilitated by the fact that an attacker can use an e-mail address to link
profiles on different social networks to a single user. The idea of correlating data from
different sources to build a user profile has been studied in different contexts before.
For example, Griffith and Jakobsson showed that it is possible to correlate informa-
tion from public records to better guess the mother’s maiden name for a person [31].
Heatherly et al. [32], and Zheleva and Getoor [33] recently showed that hidden infor-
mation on a user’s profile can also be inferred with the help of contextual information
(e.g., the political affiliation of a user can be predicted by examining political affiliation
of friends).

Concurrently and independently of our work, Irani et al. [14] performed a similar
study of social networks. They showed that it is straightforward to reconstruct the iden-
tify (what they call the social footprint) of a person by correlating social network pro-
files of different networks. The correlation is done either by using the user’s pseudonym
or by inferring it from the user’s real name. In contrast, our work focuses on automated
techniques to find profiles of the same person on different networks. In fact, due to the
friend-finder weakness that we discovered on all tested networks, we are able to asso-
ciate profiles by e-mail addresses. As a result, we produce a more precise correlation:
On one hand, we can make sure that different profiles belong to the same individual
(Irani et al. have a positive score of only 40% for the pseudonym match and 10%-30%
for the real name match). On the other hand, we can reveal the “‘hidden profiles” of
users that they may actually wish to hide. Indeed, this is a major advantage of our
approach; we can link profiles that are registered using different pseudonyms or infor-
mation, but based on the same e-mail address. Finally, we conducted our studies on a
larger set of data by crawling 876,941 unique profiles (versus 21,764 profiles studied
by Irani et al.) and extracting up to 15 information fields from each profile (versus 7).

Also, note that our work is also related to the area of de-anonymization, where an
attacker tries to correlate information obtained in different contexts to learn more about

Abusing Social Networks for Automated User Profiling 439

the identity of a victim. Narayanan and Shmatikov showed that by combining data with
background knowledge, an attacker is capable of identifying a user [34]. They applied
their technique to the Internet movie database (IMDb) as background knowledge and
the Netflix prize dataset as an anonymized dataset, and were indeed able to recognizes
users. Furthermore, the two researchers applied a similar technique to social networks
and showed that the network topology in these networks can be used to re-identify
users [35]. Recently, Wondracek et al. [36] introduced a novel technique based on social
network groups as well as some traditional browser history-stealing tactics to reveal
the actual identity of users. They based their empirical measurements on the XING
network, and their analysis suggested that about 42% of the users that use groups can
be uniquely identified.

In this paper, we continue this line of work and show that an attacker can cross-
correlate information between different social networking sites in an automated way.
The collected information reveals the different online identities of a person, sometimes
uncovering “secret” profiles.

7 Conclusion

In this paper, we presented a novel attack that automatically exploits a common weak-
ness that is present in many popular social networking sites. We launched real-world ex-
periments on eight distinct social networks that have user bases that consist of millions
of users. We leverage the fact that an attacker can query the social network providers
for registered e-mail addresses on a very large scale. Starting with a list of about 10.4
million e-mail addresses, we were able to automatically identify more than 1.2 million
user profiles associated with these addresses.

We can automatically crawl the user profiles that we map to e-mail addresses, and
collect personal information about each user. We then iterate through the extracted
friend lists to generate an additional set of candidate email addresses that can then be
used to discover new profiles. Our attack is significant because we are able to correlate
information about users across many different social networks. That is, users that are
registered on multiple social networking web sites with the same e-mail address are
vulnerable. Our experiments demonstrate that we are able to automatically extract in-
formation about users that they may actually wish to hide certain online behavior. For
example, we can identify users who are potentially using a different name on a dating
web site, and are pretending to be younger than they really are. The correlation that we
are able to do automatically has a significant privacy impact.

After we conducted our experiments and verified the feasibility of our attack, we con-
tacted the most popular social network providers such as Facebook, MySpace, XING
and Twitter, who all acknowledged the threat, and informed us that they are going to
adopt some of our countermeasures. By now, Facebook and XING have already fixed
the problem by limiting the number of requests that a single source can perform, and
we expect that other social networks will also implement countermeasures.

440 M. Balduzzi et al.

Acknowledgments. This work has been supported by Secure Business Austria, by the
European Commission through project FP7-ICT-216026-WOMBAT, by the POLE de
Competitivite SCS (France) through the MECANOS project and by the French National
Research Agency through the VAMPIRE project.

References

1. Dwyer, C., Hiltz, S.: Trust and Privacy Concern Within Social Networking Sites: A Compar-
ison of Facebook and MySpace. In: Proceedings of the Thirteenth Americas Conference on
Information Systems, AMCIS (2007)

2. Fogel, J., Nehmad, E.: Internet social network communities: Risk taking, trust, and privacy
concerns. Comput. Hum. Behav. 25(1), 153–160 (2009)

3. Gross, R., Acquisti, A., Heinz III, H.J.: Information revelation and privacy in online social
networks. In: ACM Workshop on Privacy in the Electronic Society, WPES (2005)

4. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. ACM Com-
mun. 50(10), 94–100 (2007)

5. Jakobsson, M., Finn, P., Johnson, N.: Why and How to Perform Fraud Experiments. IEEE
Security & Privacy 6(2), 66–68 (2008)

6. Jakobsson, M., Ratkiewicz, J.: Designing ethical phishing experiments: a study of (ROT13)
rOnl query features. In: 15th International Conference on World Wide Web, WWW (2006)

7. Brown, G., Howe, T., Ihbe, M., Prakash, A., Borders, K.: Social networks and context-aware
spam. In: ACM Conference on Computer Supported Cooperative Work, CSCW (2008)

8. News, H.: Spam-Bots werten soziale Netze aus (September 2009), http://www.
heise.de/security/Spam-Bots-werten-soziale-Netze-aus-/news/
meldung/145344

9. Klensin, J.: Simple Mail Transfer Protocol. RFC 5321 (Draft Standard) (October 2008)
10. Zimmerman, D.: The Finger User Information Protocol. RFC 1288 (Draft Standard) (De-

cember 1991)
11. Bugtraq: OpenSSH-portable Enabled PAM Delay Information Disclosure Vulnerability

(April 2003), http://www.securityfocus.com/bid/7467
12. Bortz, A., Boneh, D.: Exposing private information by timing web applications. In: 16th

International Conference on World Wide Web (2007)
13. Python Software Foundation: Python 2.6 urllib module, http://docs.python.org/

library/urllib.html
14. Irani, D., Webb, S., Li, K., Pu, C.: Large online social footprints–an emerging threat. IEEE

International Conference on Computational Science and Engineering 3, 271–276 (2009)
15. Facebook: Statistics (April 2010),

http://www.facebook.com/press/info.php?statistics
16. Florencio, D., Herley, C.: A large-scale study of web password habits. In: 16th International

Conference on World Wide Web (WWW), New York, NY, USA (2007)
17. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI Problems

for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg
(2003)

18. Danchev, D.: Inside India’s CAPTCHA solving economy (August 2008),
http://blogs.zdnet.com/security/?p=1835

19. Chellapilla, K., Simard, P.Y.: Using Machine Learning to Break Visual Human Interaction
Proofs (HIPs). In: Neural Information Processing Systems, NIPS (2004)

20. Mori, G., Malik, J.: Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA. In: IEEE Conference on Computer Vision & Pattern Recognition, CVPR (2003)

http://www.heise.de/security/Spam-Bots-werten-soziale-Netze-aus-/news/meldung/145344
http://www.heise.de/security/Spam-Bots-werten-soziale-Netze-aus-/news/meldung/145344
http://www.heise.de/security/Spam-Bots-werten-soziale-Netze-aus-/news/meldung/145344
http://www.securityfocus.com/bid/7467
http://docs.python.org/library/urllib.html
http://docs.python.org/library/urllib.html
http://www.facebook.com/press/info.php?statistics
http://blogs.zdnet.com/security/?p=1835

Abusing Social Networks for Automated User Profiling 441

21. Yan, J., El Ahmad, A.S.: A low-cost attack on a Microsoft CAPTCHA. In: 15th ACM Con-
ference on Computer and Communications Security, CCS (2008)

22. Bilge, L., Strufe, T., Balzarotti, D., Kirda, E.: All Your Contacts Are Belong to Us: Au-
tomated Identity Theft Attacks on Social Networks. In: 18th International Conference on
World Wide Web, WWW (2009)

23. Bonneau, J., Preibusch, S.: The Privacy Jungle: On the Market for Privacy in Social Net-
works. In: Workshop on the Economics of Information Security, WEIS (2009)

24. Chew, M., Balfanz, D., Laurie, B.: (Under)mining Privacy in Social Networks. In: Proceed-
ings of Web 2.0 Security and Privacy Workshop, W2SP (2008)

25. Jones, S., Millermaier, S., Goya-Martinez, M., Schuler, J.: Whose space is MySpace? A
content analysis of MySpace profiles. First Monday 12(9) (August 2008)

26. Krishnamurthy, B., Wills, C.E.: Characterizing Privacy in Online Social Networks. In: Work-
shop on Online Social Networks, WOSN (2008)

27. Bonneau, J., Anderson, J., Danezis, G.: Prying Data out of a Social Network. In: First Inter-
national Conference on Advances in Social Networks Analysis and Mining (2009)

28. Chau, D.H., Pandit, S., Wang, S., Faloutsos, C.: Parallel Crawling for Online Social Net-
works. In: 16th International Conference on World Wide Web, WWW (2007)

29. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and
Analysis of Online Social Networks. In: ACM SIGCOMM Conference on Internet Measure-
ment, IMC (2007)

30. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User Interactions in Social
Networks and their Implications. In: 4th ACM European Conference on Computer Systems
(EuroSys). ACM, New York (2009)

31. Griffith, V., Jakobsson, M.: Messin’ with texas, deriving mother’s maiden names using public
records. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 91–103. Springer, Heidelberg (2005)

32. Raymond Heatherly, M.K., Thuraisingham, B.: Preventing private information inference at-
tacks on social networks. Technical Report UTDCS-03-09, University of Texas at Dallas
(2009)

33. Zheleva, E., Getoor, L.: To Join or Not To Join: The Illusion of Privacy in Social Networks
with Mixed Public and Private User Profiles. In: 18th International Conference on World
Wide Web, WWW (2009)

34. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Datasets. In: IEEE
Symposium on Security and Privacy (2008)

35. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: IEEE Symposium on
Security and Privacy (2009)

36. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A Practical Attack to De-Anonymize Social
Network Users. In: IEEE Symposium on Security and Privacy (2010)

An Analysis of Rogue AV Campaigns�

Marco Cova1, Corrado Leita2, Olivier Thonnard3,
Angelos D. Keromytis4, and Marc Dacier2

1 University of California Santa Barbara, Santa Barbara, USA

marco@cs.ucsb.edu
2 Symantec Research Labs, Sophia Antipolis, France

{corrado leita,marc dacier}@symantec.com
3 Royal Military Academy, Brussels, Belgium

olivier.thonnard@rma.ac.be
4 Columbia University, New York, USA

angelos@cs.columbia.edu

Abstract. Rogue antivirus software has recently received extensive at-

tention, justified by the diffusion and efficacy of its propagation. We

present a longitudinal analysis of the rogue antivirus threat ecosystem,

focusing on the structure and dynamics of this threat and its economics.

To that end, we compiled and mined a large dataset of characteristics of

rogue antivirus domains and of the servers that host them.

The contributions of this paper are threefold. Firstly, we offer the first,

to our knowledge, broad analysis of the infrastructure underpinning the

distribution of rogue security software by tracking 6,500 malicious do-

mains. Secondly, we show how to apply attack attribution methodologies

to correlate campaigns likely to be associated to the same individuals or

groups. By using these techniques, we identify 127 rogue security software

campaigns comprising 4,549 domains. Finally, we contextualize our find-

ings by comparing them to a different threat ecosystem, that of browser

exploits. We underline the profound difference in the structure of the

two threats, and we investigate the root causes of this difference by ana-

lyzing the economic balance of the rogue antivirus ecosystem. We track

372,096 victims over a period of 2 months and we take advantage of this

information to retrieve monetization insights. While applied to a specific

threat type, the methodology and the lessons learned from this work are

of general applicability to develop a better understanding of the threat

economies.

� This work has been partially supported by the European Commission through

project FP7-ICT-216026-WOMBAT funded by the 7th framework program. The

opinions expressed in this paper are those of the authors and do not necessarily re-

flect the views of the European Commission. This work was also partly supported by

ONR through Grant N00014-07-1-0907 and the NSF through Grant CNS-09-14845.

Any opinions, findings, and conclusions or recommendations expressed in this ma-

terial are those of the author(s) and do not necessarily reflect the views of the ONR

or the NSF. The work of Marco Cova was supported by a fellowship made possible

by Symantec Research Labs.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 442–463, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Analysis of Rogue AV Campaigns 443

1 Introduction

A rogue security software program is a type of misleading application that pre-
tends to be legitimate security software, such as an anti-virus scanner, but which
actually provides the user with little or no protection. In some cases, rogue se-
curity software (heretofore referred to as “rogue AV”) actually facilitates the
installation of the very malicious code that it purports to protect against.

Rogue AVs typically find their way into victim machines in two ways. First,
social engineering techniques can be used to convince inexperienced users that
a rogue tool is legitimate and that its use is necessary to remediate often non-
existent or exaggerated threats found on the victim’s computer. A second, stealth-
ier technique consists of attracting victims to malicious web sites that exploit
vulnerabilities in the client software (typically, the browser or one of its plug-
ins) to download and install the rogue programs without any user intervention
(e.g., through drive-by downloads). After a rogue AV is installed on a victim’s
machine, it uses a number of techniques to convince (or force) a user to pay for
additional tools or services, such as a “full version” of the program or the sub-
scription to an update service. The cost of these additional programs or services
ranges from $30–$100 [8].

In the last few years, rogue AVs have become a major security threat, both in
terms of their pervasiveness and their financial impact. For example, over a 1-year
period, Symantec’s sensors detected 43 million installation attempts, covering
over 250 distinct families of rogue AV software [8]. In addition, an investigation
by Krebs revealed that affiliate programs alone can generate upward of $300,000
a month for the individuals that distribute rogue AVs [14].

As a consequence, different companies in the computer security industry have
recently focused their attention on this threat [1,4,8]. Most of the existing works
have considered individual facets of the rogue AV problem, for example, the
malware code (e.g., the installation techniques it employs), the sites involved
in its distribution (e.g., their number and geolocation), and the victims that it
affects. However, little has been done to understand the rogue AV phenomenon
as a whole, that is, relating how these individual pieces become combined in
rogue AV campaigns.

We seek to fill this gap by providing a better understanding of the organization
and dynamics of rogue AV campaigns. In particular, we focus on characterizing
the infrastructure used in a campaign (e.g., its web servers, DNS servers, and
web sites) and the strategies used to create and manage it. We also investigate
the uniqueness of our findings to this very specific threat type, and we investigate
the motivations underneath these differences by exploring its economics.

The key of our approach is a method that, given a list of individual AV-hosting
sites, allows us to group them into campaigns, each characterized by coherent fea-
tures. More precisely, we use an extensive dataset including network and domain
registration information, as well as network-observable temporal characteristics
of a large number of domains that are associated with rogue AV advertising and
distribution. To that dataset we apply a multi-criteria fusion algorithm to group
together nodes based on a certain number of common elements likely due to the

444 M. Cova et al.

same root cause (e.g., the same rogue AV campaign). This attribution method
uses a combination of unsupervised, graph-based clustering combined with a
data aggregation method inspired by multi-criteria decision analysis (MCDA).
On the one hand, our approach enables the identification of rogue AV campaigns
and the analysis of the modus operandi of the individuals controlling them. On
the other hand, this approach enables the execution of comparative analyses and
the assessment of the uniqueness of the findings to the specific threat landscape.

The specific contributions of our work described in this paper include:

– The first, to our knowledge, large-scale analysis of the rogue AV threat and
of its distribution infrastructure, conducted by tracking 6,500 malicious do-
mains.

– A demonstration of the usefulness of attack attribution approaches to the
problem of mining large security datasets. We show how, by using MCDA, we
are able to discover specific campaigns likely to be associated to the action
of a specific individual or group.

– The first characterization of the behavior of rogue AV campaigns and their
economics. We reveal insights on the automated deployment of large amounts
of domains, and we demonstrate their specificity to the threat landscape by
comparing the results to those associated with other web-born threats. We
collect information on 372,096 users (clients) interacting with some rogue AV
domains to generate information on the average conversion rate of a rogue AV
campaign. We demonstrate the existence of a very specific economic balance,
that justifies a bigger investment in the deployment and maintenance of such
large-scale campaigns.

The remainder of this paper is organized as follows. Section 2 describes the state
of the art on tracking and mitigating the rogue AV threat. Section 3 describes
the features we used in our analysis, as well as the clustering technique itself.
Section 4 highlights our most interesting insights following the analysis, while
Section 5 assesses the specificity of our findings to the rogue AV threat, and
looks into their economic motivations. Finally, Section 6 summarizes some of
the lessons we learned from this study, and Section 7 concludes the document.

2 State of the Art

The presence of rogue security software has been observed (at least) as early
as 2005 [28]. More in-depth reports of rogue security software have ranged from
analyses on the diffusion of such threats [1], to studies on their social aspects
and their comparison to traditional malware economies [18]. Recently, security
industry reports [4,8] have presented thorough descriptions of various instances
of rogue software, their look and feel as well as some tactics they use. By focusing
on a large-scale study of the structure of the distribution infrastructure for rogue
AV domains, this work complements previous analyses on rogue security software
by offering new lessons on this threat ecosystem and its peculiarities.

An Analysis of Rogue AV Campaigns 445

We previously provided a preliminary, high-level overview of some of the re-
sults obtained with the method described in this paper [8]. The novel contribu-
tions of this paper with respect to that technical report are threefold. First, we
provide a precise description of the experimental setup and the analysis method.
Second, we give a comparison, thanks to a novel experimental dataset, with
other kinds of web-based threats. Third, we supply an ensemble of insights on
the economic rationales explaining the identified differences.

Concurrently to our work, Google published a study on the distribution of
rogue AV software [21], which focuses on the prevalence of rogue AV software and
on its distribution mechanisms. In this paper, we also uncovered the campaigns
underlying rogue AV sites and performed an initial study of their victims.

These economic insights contribute at completing the picture on the under-
ground economy and its dynamics. This complements previous works on the
topic. Similarly to what is presented here, Moore et al. [16] have collected client
volume information for a different threat landscape, that of the phishing web-
sites. Holz et al. [11] have instead infiltrated some weakly configured drop-zones
to study the extent and the economic aspects of phishing and attack campaigns.
Finally, previous work [7,9] has monitored the type of transactions carried out
by cyber-criminals through underground channels.

Different techniques have been proposed to study the structure and the
diffusion of specific threats. Moshchuk et al. [17] have crawled 18 million URLs
to quantify the nature and the extent of the spyware problem. Provos et al. [19]
have analyzed billions of URLs and used a combination of machine learning tech-
niques and crawlers to analyze the infrastructure underneath drive-by downloads.
McGrath et al. [15] have studied the dynamics associated to the registration of
phishing domains. Stone-Gross et al. [24] have infiltrated the Torpig botnet and
gathered information on its size and dynamics. In all these cases, the authors have
used different data collection techniques to generate high-level overviews on spe-
cific threats. While this work complements the state of the art by providing an
analysis of a previously unexplored threat landscape, that of the rogue security
software, our contribution goes beyond that. We show the usefulness of multi-
criteria analysis techniques to mine these large datasets and discover specific cam-
paigns within the multitude of domains under observation. We also demonstrate
our ability to leverage these techniques to compare different threat landscapes,
and identify specific behaviors that are a characteristic of a given threat.

3 Methodology

In this Section, we begin by describing our methodology for collecting informa-
tion about the rogue AV distribution infrastructure. We then discuss the analysis
techniques that we used on the collected data. The data collection itself was car-
ried out over three separate phases: the collection of rogue AV-related domain
names, the collection of information on each domain and the discovery of spe-
cific campaigns leveraging attack attribution tools developed in the context of
the WOMBAT project1.
1 http://www.wombat-project.eu

http://www.wombat-project.eu

446 M. Cova et al.

3.1 Rogue AV Domains

To build an initial seed of domains associated to the rogue AV distribution, we
aggregated information from a number of different sources:

– Norton Safeweb (http://safeweb.norton.com)
– Malware Domain List (http://malwaredomainlist.com)
– Malware URL (http://www.malwareurl.com)
– Hosts File (http://www.hosts-file.net)

All these sources offer at least a rough categorization of the type of each malicious
domain they are listing, and allowed us to systematically collect all the domains
that were believed to be correlated to the rogue AV distribution by means of
simple heuristics.

To complete our picture on the collected domains, we have integrated our do-
main list with the information generated by freely accessible IP-NAME mapping
datasets (http://www.robtex.com). This allowed us to discover all the domain
names hosted on each IP where at least one rogue domain had been found.

3.2 Rogue Server Information

Once the initial list of domains was created, we have collected as much infor-
mation as possible on each of them, on their relation with the associated web
servers, and on their dynamics. To do so, we have taken advantage of HAR-
MUR, a Historical ARchive of Malicious URLs also developed in the WOM-
BAT project.

HARMUR enables us to study the relation between client side threats and
the underlying server infrastructure, and their evolution over time. Instead of de-
veloping new detection technologies (e.g., based on honeyclients, or special web
crawlers), HARMUR integrates multiple information sources and takes advan-
tage of various data feeds that are dedicated to detecting Web threats. By doing
so, HARMUR aims at enabling the creation of a “big picture” of the client-side
threat landscape and its evolution.

In the specific context of this work, HARMUR generated the necessary con-
textual information on the identified rogue AV domains, and on all the other
domains that were discovered to be sharing the same server as rogue AV do-
mains thanks to DNS mapping information. In order to generate a dynamic
perspective on the characteristics of the observed domains, HARMUR imple-
ments a set of analysis modules that are re-iterated on each tracked domains on
a daily basis:
– Information on the security state of a domain.
• Norton Safeweb information. For each domain, we have queried its

security status taking advantage of the Norton Safeweb website repu-
tation service2. This allowed us to retrieve information on a variety of
threats known to be present on each domain, ranging from browser ex-
ploits, to malware samples, to phishing sites.

2 http://safeweb.norton.com

http://safeweb.norton.com
http://malwaredomainlist.com
http://www.malwareurl.com
http://www.hosts-file.net
http://www.robtex.com
http://safeweb.norton.com

An Analysis of Rogue AV Campaigns 447

• Google Safe Browsing information. We have taken advantage of the
Google Safe Browsing API3 to detect the presence of threats within a
given domain.

– Information on the domain.
• Registration information. We have parsed the registration data ob-

tained via the WHOIS protocol in order to get information on the iden-
tity of the registrant and of the provided contact email address, as well
as the name of the registrar4.
• DNS relations. By means of DNS queries, we have retrieved for each

domain the associated NS records and all the A records associated to all
the hostnames known to belong to it. Whenever only one domain name
was available and we had no information on the associated hostnames,
we considered as hostnames the domain name itself and the hostname
generated by prepending the standard “www” name.

– Information on the servers.
• Geolocation and AS information. For each web server associated to

the rogue domain through a DNS A record, we have collected information
on its geographical location as well as its associated Autonomous System
number.
• Server uptime and version string. By means of HTTP HEAD pack-

ets, we have tested the responsiveness of the discovered servers and, by
looking at the HTTP response headers, we have collected information
on the server configuration by looking at the advertised server version
string.

3.3 Limitations

Despite our efforts to maximize the threat coverage by aggregating as many
information sources as possible, we are fully aware of the limitations of the
dataset at our disposal. Due to the nature of our observational ability and the
way the rogue AV ecosystem operates, it is impossible to know with certainty
what fraction of the total rogue AV providers across the whole Internet we have
been able to observe. For instance, we have noticed a predominance of servers
physically located in US. This result might be skewed by the type of heuristics
used for identifying rogue AV sites, that could overlook rogue AV servers that
are primarily marketed to non-English languages. Moreover the identification
of rogue domains is itself a potential source of bias. Our analysis is based on
the identification of rogue AV domains performed by third party sources, and
does not provide any guarantee in terms or precision of classification. We have
3 http://code.google.com/apis/safebrowsing/
4 The WHOIS specification [6] requires WHOIS records to be human readable, and

does not specify their syntax and their semantics. As a consequence, the data stored

by different registrars is often in different formats. We have built a generic parser

that handles a vast number of registrars and 17 specific parser for other common

registrars, but despite of this effort registration information is not available for all

the domains taken into consideration.

http://code.google.com/apis/safebrowsing/

448 M. Cova et al.

indeed identified through manual inspection of our feeds a limited number of
domains that did not seem to be actually related to the rogue AV threat type.
However, the number of such misclassifications is negligible relative to the size
of the dataset. Moreover, when mining the different rogue AV campaigns, any
possible pollution of the dataset has been implicitly filtered out by our clustering
techniques, as described later.

3.4 Multi-criteria Decision Analysis

To analyze the campaigns through which rogue AV software is distributed, we
have used an attack attribution method that relies on a multi-criteria fusion
algorithm that has proven to bring several advantages with respect to more
traditional clustering methods [25]. Thanks to this method, rogue AV domains
are automatically grouped together based upon common elements likely due
to the same root cause, i.e., same rogue campaign. This attribution method
is based on a combination of a graph-based clustering technique with a data
aggregation method inspired by multi-criteria decision analysis (MCDA). This
method has been successfully used previously to analyze other types of attack
phenomena [5,26,27], namely attack events found in honeypot traces.

Generally speaking, the method systematically combines different viewpoints
such that the behavioral properties of given phenomena are appropriately mod-
eled by the aggregation of all features.

The attribution method used in this paper consists of three components:

1. Feature selection: we determine which relevant features we want to in-
clude in the overall analysis, and we characterize each element of the dataset
according to each extracted feature denoted by Fk, k = 1, . . . , n (e.g., by
creating feature vectors for each element).

2. Graph-based clustering: an undirected edge-weighted graph is created
regarding every feature Fk, based on an appropriate distance for measuring
pairwise similarities.

3. Multi-criteria aggregation: we combine the different graphs of features
using an aggregation function that models the expected behavior of the phe-
nomena under study.

The approach is mostly unsupervised, i.e., it does not rely on a preliminary
training phase.

Feature selection. Among the different information tracked through HAR-
MUR, we have selected a number of features that we believed to be likely to
reveal the organized operation of one specific individual or group.
– Registrant email address (FReg). Whenever available, the email address

provided upon registration of the domain.
– Web Server IP addresses (FIP), class C (FCl.C), class B (FCL.B)

subnets. To allow the identification of servers belonging to the same infras-
tructure, we have separately considered three features corresponding to the
full IP address, its /24 and its /16 network prefix.

An Analysis of Rogue AV Campaigns 449

– Nameserver IP address (FNS). The IP address of the authoritative name-
server(s).

– Registered domain name (FDom). We decided to consider as a feature
the domain name itself to be able to detect common naming schemes.

In summary, by analyzing the available features, we have defined the following
feature set: F = {FReg, FIP , FCl.C , FCl.B, FNS , FDom}, which will be used by the
multi-criteria method to link rogue domains to the same campaign.

Graph-based representation. In the second phase of our attack attribution
method, an undirected edge-weighted similarity graph is created regarding each
selected feature Fk, based on an appropriate distance for measuring pairwise
similarities. A specific definition of similarity had to be defined for each of the
considered features.

Since feature vectors defined for FIP , FCl.C , FCl.B and FNS are simply sets of
IP addresses (or sets of IP subnets), it is relatively easy to calculate a similarity
between two sets by using the Jaccard similarity coefficient. This coefficient is
commonly used to estimate the amount of overlap between two sets of data.

While simple equality would have been sufficient, we wanted to incorporate
into FReg some additional semantics, taking into consideration the usage of spe-
cific email domains or the usage of specific keywords. For this reason, we have
given maximum similarity score to identical email addresses, and non-null simi-
larity scores to email addresses sharing same username, same email domain, or
both containing popular AV keywords. For the sake of conciseness we refer the
interested reader to [25] for more detailed information on this measure.

Finally, we wanted to define a notion of similarity for FDom able to catch
commonalities between rogue domain names having similar patterns, or common
sequences of the very same tokens. We have accomplished this goal by using the
Levenshtein distance5. To normalize the Levenshtein distance to a similarity
metric, we have used a commonly-used transformation [23] that maps a generic
distance value to a similarity score within the interval [0, 1].

Multi-criteria aggregation. As a final step of the multi-criteria analysis,
we have used an aggregation function that defines how the criteria (i.e., the
site features) must be combined to group rogue domains as a function of their
common elements.

An aggregation function is formally defined as a function of n arguments
(n > 1) that maps the (n-dimensional) unit cube onto the unit interval: f :
[0, 1]n −→ [0, 1]. To model complex requirements, such as “most of” or “at least
two” criteria to be satisfied in the overall decision function, we have used Yager’s
Ordered Weighted Averaging (OWA) [30].

Other possible aggregation functions that allow for more flexible modeling,
such as the Choquet integral, may also be used and have been considered else-
where [25].
5 Levenshtein distance corresponds to the minimum number of operations needed to

transform one string into the other (where an operation is an insertion, deletion, or

substitution of a single character).

450 M. Cova et al.

Definition 31 (OWA) [2,30] For a given weighting vector w, wi ≥ 0,
∑

wi =
1, the OWA aggregation function is defined by:

OWAw(z) =
n∑

i=1

wiz(i) =< w, z↘ > (1)

where we use the notation z↘ to represent the vector obtained from z by arrang-
ing its components in decreasing order: z(1) ≥ z(2) ≥ . . . ≥ z(n).

In our application, the vector z represents the set of similarity values obtained
by comparing a given pair of domains with respect to all site features Fk, as
defined previously. By associating weights to the magnitude of the values rather
than their particular inputs, OWA aggregation allows us to define a weighting
vector w that gives lower weights to the two highest scores:

w = [0.10, 0.10, 0.20, 0.30, 0.20, 0.10]

In other words, we assign more importance to features starting from the third
highest position. The two highest scores will have lower weights (0.10), and thus
at least three strong correlations will be needed to have a global score above 0.3
or 0.4, which will be used as a decision threshold to keep a link between two
domains. A sensitivity analysis has been performed on this decision threshold to
determine appropriate ranges of values [25]; however, due to space constraints,
we do not provide further details in this paper.

4 Insights on the Rogue Security Software Threat
Economy

We will now look into the details of the dataset presented in the previous section
and try to infer information regarding the modus operandi of the individuals at
the root cause of these businesses.

4.1 High-Level Overview

The dataset at our disposal consists of 6,500 DNS entries, collected between
June and August 2009, pointing to 4,305 distinct IP addresses hosting rogue
AV servers. At least 45% (2,935) of all domains were registered through only 29
Registrars.

As a first step, we have taken advantage of the DNS information at our dis-
posal to set apart generic hosting services, hosting both rogue AV domains and
benign sites, from servers specifically deployed for hosting Rogue AV content. We
identified all DNS entries resolving to the same IP address, and correlated these
with lists of known rogue AV- and malware-serving domains. A total of 2,677
IP addresses (web servers) host only domains that are known to serve rogue AV
software. An additional 118 IPs provide services for both rogue-AV and other
malware-serving domains. The remaining 1,510 IP addresses host both malicious
and benign domains, and are therefore likely to be associated to hosting services
unaware of the illicit use of their infrastructure.

An Analysis of Rogue AV Campaigns 451

Table 1. Top 10 server version strings

Version string # servers
Apache 610
Microsoft-IIS/6.0 218
Apache/2.2.3 (CentOS) 135
Apache/2.2.3 (Red Hat) 123
Apache/2 100
Apache/2.2.11 (Unix) mod ssl/2.2.11
OpenSSL/0.9.8i DAV/2
mod auth passthrough/2.1
mod bwlimited/1.4 FrontPage/5.0.2.2635 69
Apache/2.0.52 (Red Hat) 49
nginx 33
Apache/2.2.11 (Unix) mod ssl/2.2.11
OpenSSL/0.9.8e-fips-rhel5
mod auth passthrough/2.1
mod bwlimited/1.4 FrontPage/5.0.2.2635 32
LiteSpeed 26
Others 1498

Table 2. Top 10 registrant email

domains

Domain # registered domains
gmail.com 1238 (30.52%)
id-private.com 574 (14.15%)
yahoo.com 533 (13.14%)
whoisprivacyprotect.com 303 (7.47%)
privacyprotect.com 125 (3.08%)
mas2009.com 101 (2.49%)
space.kz 90 (2.22%)
NameCheap.com 85 (2.10%)
domainsbyproxy.com 62 (1.53%)
hotmail.com 59 (1.45%)

Rogue AV servers localization. Mapping the 2,677 IPs hosting only rogue
AV software to Autonomous System (AS) numbers, we identified a total of 509
ASes. Interestingly, but yet not surprisingly, the distribution of servers over
ASes is skewed towards some specific ASes: approximately 37% (984 servers)
are hosted by only 10 particularly popular ASes. As previously pointed out, the
geographical distribution of these servers is heavily skewed towards US locations:
approximately 53% (1,072 servers) are hosted in the USA.

Rogue AV server versions. When looking at the web server type and version
for the 2,677 rogue AV web servers, in some cases we see some very specific
configurations that may be indicative of the use of standardized templates or
of a single entity/operator using a fixed configuration. Table 1 reports some of
the most popular observed version strings. Overall, Apache (in various configu-
rations) seems to be used in well over 40% of the rogue AV servers.

Rogue AV domain registrations. We also looked at the email addresses pro-
vided by all Registrants of rogue AV domains. The list of most popular domains,
shown in Table 2, contains some of the obvious email hosting services (Gmail,
Yahoo! Mail, Lycos, etc.). More interestingly, we see that 26% of the analyzed
domains make use of anonymous domain registration services such as domains-
byproxy.com, whoisprivacyprotect.com, id-private.com, and space.kz. We also see
some cases of ISPs that do not formally offer anonymous domain registration
services, but are rather lax in their verification of registrant identities and email
addresses. For instance, Namecheap.com is often associated to registrant names
ranging from “Kyle” to “AA”.

Rogue AV domains and browser exploits. While rogue AV software seems
to be primarily trying to lure users into downloading software to stop non-
existing security issues on their systems (scareware), we found it interesting to

452 M. Cova et al.

evaluate the presence of other threats on the domains by correlating them with
information provided by web crawlers. We determined that 814 of the rogue AV
domains were serving malware of various types; 417 domains attempted to use
browser exploits; 12 domains led to the installation of spyware, and 19 domains
would cause the installation of a trojan. This result underlines the use, in a
minority of cases, of more aggressive strategies for the monetization of clients
lured into visiting the domains.

Towards the big picture. Given the size of the dataset, it is beyond the scope
of this work to describe all the relationships we discovered in the course of our
analysis. We have although tried to generate a “big picture” of the landscape by
plotting in Figure 1 the relationships between servers hosting rogue AV content
and all the domains known to be hosted on them, a total of 235,086 domains. Due
to the complexity of the landscape, we have tried to simplify the visualization
by omitting all IPs that were associated to less than 100 different domains. The
represented domains comprise both known rogue AV domains and unrelated
domains that have been discovered as being hosted on the same server thanks to

Fig. 1. Relationships between observed domains and the servers hosting them. Darker

nodes represent rogue AV domains, while lighter nodes indicate benign domains.

An Analysis of Rogue AV Campaigns 453

robtex.com. We have used darker colors to differentiate rogue AV domains from
the others.

The subset represented in Figure 1 consists of 174 servers that were hosting
a total of 30,632 distinct domain names. In this observed domain set, 15% of
the total hosted rogue security software, while 9% were observed to host other
types of threats. Interestingly, most of the domain names are linked to a single
web server, but some rogue AV domains were associated, over time, to several
distinct IP addresses, creating some complex subgraphs such as those in the
middle of Figure 1.

Figure 1 shows the complexity of the problem of the identification of mali-
cious domains. It highlights the challenges of protecting the web clients from
potentially dangerous sites through IP-based blacklisting methods. Indeed, the
coexistence of both rogue and legitimate domains on the same server IP un-
dermine the applicability of such approaches since it would be detrimental to
perfectly benign sites. We will explore this issue further in Section 6.

4.2 The Campaigns

To get a better understanding of the modus operandi of the rogue AV opera-
tors, we have taken advantage of the multi-criteria decision analysis (MCDA)
described in Section 3.4 to mine the dataset and identify separate campaigns
likely to be generated by the action of a single individual or group.

The application of the method has led to the identification of 127 separate
campaigns grouping a total of 4,549 domains. The identified campaigns have
an average size of 35.8 domains, but with a significant variance in size. More
specifically, 4,049 domains are associated to the 39 biggest campaigns, with the
largest comprising 1,529 domains.

In the rest of this Section we will look more closely at three of these campaigns
and we will show through their analysis the value of the MCDA in getting insights
on the dynamics of the rogue AV threat landscape.

Large-scale campaigns. Some of the campaigns identified by our attribution
method consisted of several hundreds domains. One of such examples is repre-
sented graphically in Figure 2. The graph represents the relationship between
domains (clustered in big, dense groups of small rectangles), the subnets of their
hosting servers (represented with larger, lighter rectangles) and the registrant
email addresses (represented with large, dark rectangles). The nodes at the bot-
tom of the graph represent instead domain registration dates.

Figure 2 groups about 750 rogue domains that have been registered in the
.cn TLD (resolving to 135 IP addresses in 14 subnets), on eight specific dates
over a span of eight months. However, despite the apparent link to China, the
majority of the IP addresses of the hosting servers were hosted in the United
States, Germany, and Belarus. In fact, no server could be identified as being
located in China.

Interestingly, the same Chinese registrar (Era of the Internet Technology)
was used for the registration of all domain names. All of the domain names are

454 M. Cova et al.

Fig. 2. Graphical representation of a long lasting, larger campaign

composed of exactly 5 alphanumeric characters, apparently chosen in a random
fashion (wxe3x.cn, owvmg.cn,...), which indicates the use of automated tools
to create those domains. Another noteworthy characteristic of this campaign is
that the registrant responsible for 76% of the domains makes use of a WHOIS
domain privacy protection service (cn@id-private.com), which we have said to
be a commonly observed characteristic in certain rogue campaigns.

Finally, a manual analysis of the domains represented in Figure 2 revealed a
more complex underlying ecosystem. These domains were in fact linking to a fake
scan page hosted on a server belonging to a separate campaign. Such discovery
underlines the existence of complex interrelations in this threat ecosystem, inter-
relations that would have been impossible to discover without the employment
of data mining techniques able to reduce a corpus of thousands of domains to
few, large campaigns carried out by specific individuals.

PC-Security and PC-Anti-Spyware campaigns. One very good example of
such interrelation can be found when looking at two other distinct clusters iden-
tified by our approach. The multi-criteria decision algorithm correctly identified

An Analysis of Rogue AV Campaigns 455

them as two distinct campaigns, as they involve different features (different tim-
ings, different web servers, etc.). However, the analysis of both clusters reveals
a common modus operandi used in both cases.

Indeed, the two clusters were composed of a relatively low number of domains
(16 and 14) that were clearly referring to anti-virus or anti-spyware “products”
(e.g., pcsecurity-2009.com, homeav-2010.com, pc-antispyware2010.com). A num-
ber of similarities could be identified in their deployment strategy:

– Both clusters use the exact same domain naming scheme, consisting of the in-
sertion of dashes among a set of fixed words (e.g., pc-anti-spyware-2010.com,
pc-anti-spyware-20-10.com, and pc-antispyware-2010.com).

– All of the domains in each cluster use the same registrar (OnlineNIC) and
are serviced by the same two ISPs.

– The email addresses of all domain registrants are in “.ru” domains.
– The servers were on consecutive IP addresses, although the two clusters were

associated to servers in completely different networks.

Perhaps even more conclusively, upon manual inspection we found that the con-
tent of each site was identical, with the exception of one differing image. All this
leads us to assume that the deployment of the rogue AV domains was carried out
with a good degree of automation by interacting with a single registrar. It is also
worth noting that both clusters are split between two different ISPs, suggesting
an attempt to provide some level of redundancy in case a cluster is taken offline
by the ISP. Finally, we observed that all of the hosting web servers were located
in the US. We refer the interested reader to [25] for a more detailed presentation
of these two results, as well as other interesting ones.

5 Landscape Characteristics

Section 4 provided an in-depth overview of the rogue AV threat landscape, and
showed our ability to identify within such landscape articulated campaigns de-
ployed via a certain level of automation. The specificity of these characteristics to
the Rogue AV landscape stays although unproved so far. This Section addresses
this problem by performing a comparative analysis of the results obtained for the
Rogue AV landscape with those obtained by looking at a completely different
web-borne threat: drive-by downloads. We will show that the complexity of the
identified campaigns is a very specific characteristic of the rogue AV landscape,
and we will go further by looking into the economics of this landscape, showing
that the particularly large return on investment largely justifies the complexity
of the observed infrastructure.

5.1 Comparison with Drive-By Downloads

The methodology proposed so far is completely generic, and can be utilized
equivalently to study the characteristics of the infrastructure underlying any
web-borne threat. We have therefore decided to leverage this fact to compare

456 M. Cova et al.

our findings for the rogue AV threat with those of a specific type of drive-by
download. To do so, we have constructed a second dataset taking advantage
of data generated by some internal web crawlers and used it as an additional
URL feed for HARMUR. Among all the exposed threats, we have chosen to
focus on all the landing sites (we use “landing site” as in [19] to denote the
site that initiates a drive-by download) that exploited a very specific weakness,
namely the Internet Explorer ADODB.Stream Object File Installation Weakness
(CVE-2006-0003). We have thus repeated the very same experiment as the one
performed on the rogue AV dataset, collecting information on the very same
network observables and using such information to build domain features for the
multi-criteria analysis technique.

While the multi-criteria approach could successfully identify 127 distinct clus-
ters in the rogue AV dataset, 39 of which accounted for more than 60% of the
domains, the clustering profile is very different when looking at the browser
exploits web sites. Only 15 small clusters have been identified, accounting for
only 201 domains (3.8%). This means that the vast majority of domains (96.2%)
did not end up in any cluster. In other words, the very same approach that
allowed us to identify large correlations within the rogue AV domains seems
to be incapable of detecting any significant correlation in the browser exploit
landscape. The reason for this striking difference can be found in the different
modus operandi associated to these two threat classes. Our methodology aims
at identifying correlations indicative of a shared ownership and management of a
set of domains. In rogue security software, the infrastructure in charge of luring
the victims into installing the products is maintained by the criminals them-
selves. This includes both the cost of registering the domains and maintaining
the hardware, but also the effort of attracting the users towards it.

This does not seem to happen in the drive-by downloads threat landscape: in
the vast majority of cases, the landing pages in charge of exploiting the clients
are owned and maintained by uncorrelated individuals. As showed also in [19],
drive-by downloads mainly operate by compromising legitimate domains that
implement weak security practices. What motivates the individuals at the root
of the rogue AV threat infrastructure to sustain the additional cost of directly
deploying and maintaining these domains? Providing an answer to this question
requires a better understanding on the costs and the revenues associated to the
deployment of a rogue AV campaign.

5.2 Rogue AV Monetization

Data collection. The problem of studying the victims of online attacks has
received much attention in the past few years. The crux of the problem is that
attacks and victims are geographically and temporally distributed, and, as a
consequence, there is generally no natural vantage point that researchers can
leverage to perform their monitoring.

One approach to overcome this problem consists of performing passive mea-
surements of the secondary effects of victims’ activity. For example, in the
context of spam botnets, researchers have used spam messages [31] and DNS

An Analysis of Rogue AV Campaigns 457

queries [20,22] as proxy indicators of infected machines. Active approaches are
also possible. For example, in some cases, researchers have been able to infil-
trate part of the attackers’ infrastructure, and, thus, gain visibility of its victims
directly from “the inside” [12,24].

These are interesting approaches, yet sometimes difficult to implement for
practical or legal reasons. Therefore, we decided to use a novel approach to
collect information “remotely from the inside”.

Indeed, we observed that, in a number of cases, the servers hosting rogue AV
sites were configured to collect and make publicly available statistics about their
usage. These servers were Apache web servers using the mod status module,
which provides a page (by default, reachable at the /server-status location)
with real-time statistics about the server status, such as the number of workers
and the count of bytes exchanged. When the module is configured to generate
“extended status” information, it also provides information about the requests
being currently processed, in particular, the address of the client issuing a request
and the URL that was requested.

We note that the server status data source has a few limitations. In particular,
it does not give access to the content of the communications between clients and
servers. As a result, we cannot be certain of the outcome of any access: often-
times, we will see that the same web page (URL) is accessed, without knowing if
the access was successful or not. Second, the server status page only provides the
IP address of each victim. It is well known that, mostly due to NAT and DHCP
effects, IP addresses are only an approximate substitute for host identifiers, and,
due to the lack of visibility into the client-server traffic, we cannot use existing
techniques to mitigate this problem [3,29]. Despite these limitations, the server
status data allows us to gain some visibility into the access behavior of rogue
AV clients.

Victim access dataset. In total, we identified 30 servers that provided status
information. Of these, 6 also provided information about client requests, which is
critical for our analysis. We continuously sampled the server status pages of each
of these 6 servers over a period of 44 days and stored the access time, source IP
address of the client, and the specific URL on the server that was accessed. The 6
servers hosted 193 active rogue AV domains, and an additional 4,031 domains, 62
of which were also rogue AV sites but did not receive any traffic. The remaining
3,969 co-located domains are a mix of malware-serving and benign sites. We
then removed from our dataset requests that were not directed at rogue AV sites
or that consisted only of probing or scanning attempts. After this filtering, we
identified 372,096 distinct client IP addresses that interacted with the rogue AV
servers during our observation period.

Localization and server usage. Clients from all around the world interacted with
the rogue AV servers. The countries that were most visiting them were USA
(147,729 distinct client IPs), UK (20,275), and Italy (12,413). Some rogue AV
sites appear to be more popular than others, in terms of the distinct client IP
addresses that were served by each. A number of sites only received a handful of

458 M. Cova et al.

Home page
Email Link
Redirect
Link from other site

Fake scan

Purchase
Purchase confirmation

Download

Report

Update check

Fig. 3. Typical sequence of accesses by client

clients; in fact, 27 of the rogue AV sites were visited by only 1 client (probably
an indication that these sites were no longer, or not yet, actively used). The
average number of distinct client IP addresses per rogue AV site was 2,557, with
a median of 560 and a standard deviation of 5,405. The 10 most popular rogue
AV sites are listed in Table 3.

Access behavior. By clustering the requests issued by the clients according to the
requested URL’s path, we identified 6 different request types: scan, purchase,
purchase confirmation, download, report, and update check. Figure 4 presents
the cumulative count of distinct clients (IP addresses) that were observed issuing
each type of request. (The presence of the same type of requests on different sites
is probably an indication that many rogue AV sites are built on top of the same
“rogue AV toolkit.”)

As represented in Figure 3, these requests correspond to distinct phases with
respect to the interaction of victims with rogue AV sites. A user that is somehow
redirected to one of these servers is typically presented with the option to run

Table 3. Most accessed rogue AV sites

Rank Site Clients (#)

1 windoptimizer.com 55,889

2 inb4ch.com 23,354

3 scan6lux.com 21,963

4 gobackscan.com 19,057

5 pattle.info 14,828

6 goscansnap.com 14,590

7 goscanback.com 11,347

8 tranks.info 10,050

9 cherly.info 9,875

10 phalky.info 9,836
Fig. 4. Cumulative clients activity

An Analysis of Rogue AV Campaigns 459

a scan (typically perfunctory) of their computer. The goal of the scan is to
scare users into downloading the rogue AV, by reporting that a large number of
malware (viruses, Trojans, etc.) and other threats are present on their computers.
If the scan is successful in this goal, the user will click through to a purchase page,
or to a “free” download page. In the former case, users enter their information,
including payment details (typically a credit card), and are presented with a
purchase confirmation page. If the charge is successful, or for sites that offer a
free “trial” version of rogue AV software, the user is redirected to a download
page. Once it is successfully installed on the user’s computer, the rogue AV
software will periodically check for updates by querying a specific URL on the
server. In certain cases, it will also report back to the server the occurrence
of specific events (e.g., the download of new updates). During our monitoring,
each site handled only a few types of requests. More precisely, a large number of
sites were devoted to handling only scan requests, while payment requests were
directed at only 7 sites. We speculate that this separation of tasks simplifies
the management of the campaign: even when a scan site is taken down, the
processing of payments remains unaffected.

Monetization. To determine the success rate of rogue AV servers in convincing
clients to download their software, we have counted the number of IPs that had
performed, on the same day, a scan followed by a download. We have also counted
those that did not perform a download after a scan. Doing so, we observed 25,447
successful and 306,248 unsuccessful scans, leading to the estimation of a 7.7%
conversion rate from scan to download.

Similarly, our access data indicates a 1.36% conversion rate from scan to pay-
ment. Given an average price for rogue AV software of between $30 and $50, our
analysis indicates that these 6 servers (which may be controlled by the same en-
tity, or 6 distinct entities) may generate a gross income of between $111,000 and
$186,000 in a period of 44 days. However, this is a best-case scenario; it is likely
that at least some of the accesses to the payment URL represented failed or non-
existent payments (recall that we do not have access to the actual server response).
If we use a more conservative conversion rate between web server access and ac-
tual purchase of 0.26%, estimated by others in the context of email spam [13], the
gross income for rogue AV site operators in the same period would range between
$21,000 and $35,000. The total operational costs for these rogue AV sites would
consist of the cost of hosted web servers and the cost of registering the 193 DNS
domains. An informal survey of the providers hosting rogue AV sites indicates that
the average monthly cost of a hosted web server is $50. Similarly, the annual do-
main registration costs vary between $3 and $10. Thus, the costs to the rogue AV
operators would range between $1,179 and $2,530 (potentially under $400, if we
pro-rate the domain registration for a 44-day period).

While the above cost estimate does not take into consideration the additional
cost of advertising the maintained domains through different techniques, the
costs are easily covered by the (unknown) income from other illicit activities that
piggy-back on the rogue AV distribution flow (e.g., keystroke loggers installed
through drive-by downloads by the rogue AV servers).

460 M. Cova et al.

Ultimately, the easiness with which rogue AV campaigns manage to success-
fully lure users into purchasing their products generates a return on investment
that fully justifies the deployment and the management of complex infrastruc-
tures such as those studied in this work.

6 Lessons Learned and Countermeasures

This work leverages the analysis of real data to study the general characteris-
tics and dynamics of a specific threat landscape, that of rogue security software.
We identify the specificities of such threat landscape and their foundations in a
particularly favorable market. Such knowledge has direct repercussions on nowa-
days security practices, and helps underlining weaknesses in currently employed
techniques as well as potentials for new research avenues.

Users. Despite of a minor number of cases in which rogue AV domains were ob-
served also in association to other type of threats such as drive-by downloads, the
main propagation vector for this type of threat is the psychological impact on the
user. The in-depth study of the reasons for the successfulness of the interaction be-
tween victims and rogue campaigns is out of the scope of this work,but our analysis
clearly shows that users have an important role in the successfulness of rogue AV
campaigns. As suggested in [10], the cost-benefit tradeoff associated to the offering
of security services is oftenbadly receivedby the users, that tend to reject theneces-
sity of performing monetary investments to be shielded from hypothetical security
threats. Rogue security software leverages this social reality to its own advantage.
Increasing user awareness on the cost implicitly associated to security may have
an impact on the relatively high conversion rates observed in this study, and may
impact the return on investment associated to rogue AV campaigns.

Blacklisting is strained. Our study revealed two characteristics of the infras-
tructure used to spread rogue AV that have important consequences on the
effectiveness of countermeasures against this threat, and, specifically, of black-
listing, a technique commonly used to prevent end users from accessing malicious
resources.

As Figure 1 showed, the rogue AV infrastructure comprises both servers that
exclusively host a very large number of rogue AV sites and servers where rogue
AV sites coexist with legitimate ones. This situation is a worst case for black-
listing. In fact, IP-based blacklisting (where access to a specific web server IP is
blocked) is bound to generate many false positives, thus preventing users from
visiting benign sites that happen to be hosted on server IPs that also serve mali-
cious sites. In fact, a naive IP-based blacklisting approach, listing all the servers
we identified, would have incorrectly blocked access to 129,476 legitimate web
sites. Conversely, domain name-based blacklisting (where access to a specific do-
main is blocked) is undermined by the easiness with which malicious actors can
register large batches of domains. The registration of hundreds of automatically
generated domain names observed in the different campaigns is likely to be an
active attempt to evade such lists. For example, 77 of the rogue-specific servers

An Analysis of Rogue AV Campaigns 461

that we tracked were associated with more than twenty different domains, with
a maximum of 309 domains associated to a single server.

Taking-down rogue AV campaigns. What would be a good strategy then to ef-
fectively fight rogue AV campaigns? Our analysis of the victim access dataset
hinted at one possible direction: taking down payment processing sites. In fact,
these appeared to be less in number than other rogue AV sites (recall that 7
payment sites supported almost 200 front-end “scanning” sites) and seemed to
change less frequently. Furthermore, by disrupting the sites generating revenue,
defenders are likely to significantly affect also other parts of the rogue AV oper-
ations (e.g., registering new sites and paying for hosting).

DNS-based threat detection. This study has highlighted once more the important
role of the DNS infrastructure in Internet threats. Rogue AV campaigns often
rely on misleading DNS names to lure victims into trusting their products (e.g.,
pcsecurity-2009.com). Also, we have seen how such campaigns often lead to the
automated deployment of large numbers of domains pointing to a few servers
and following well-defined patterns in their naming schema. For all these reasons,
as already noted in [20] for other type of threats, DNS seems to be a promising
point of view for the detection of such anomalies.

7 Conclusion

We presented a longitudinal analysis on the infrastructure and the dynamics
associated with an increasingly popular threat, that of rogue security software.

The contributions of this paper are threefold. Firstly, we provide the first
quantitative high-level analysis of the rogue AV threat landscape and the under-
pinning infrastructure. We detail the relationships between rogue AV domains
and the web servers hosting them, and we delve into their characteristics to ex-
tract high-level information on the structure of these threats. Secondly, we apply
a threat attribution methodology to 6,500 domains under observation and we
automatically extract information on large-scale campaigns likely to be associ-
ated to the operation of a single individual or group, likely through the help of
automated tools. Finally, we provide insights on the economy of the rogue AV
threat landscape by leveraging information on the interaction of victim clients
with several rogue AV servers over a period of 44 days. We show how the rogue
AV distributors are able to generate considerable revenues through their activi-
ties, which fully justifies their investment in the deployment of the distribution
infrastructures.

While this paper targets specifically the rogue antivirus threat, we believe
that the methodologies and the lessons learnt from our work can be of value to
the study of other threats (e.g., phishing and other scams). More specifically,
we show how the combination of clustering and data aggregation methods can
be leveraged to profile different threat landscapes and, by comparison, offer a
valuable tool to the study of threat economies.

462 M. Cova et al.

References

1. Microsoft Security Intelligence Report, volume 7. Technical report, Microsoft

(2009)

2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practi-

tioners. Springer, Berlin (2007)

3. Bellovin, S.: A Technique for Counting NATted Hosts. In: Proc. of the Internet

Measurement Conference (2002)

4. Correll, S.P., Corrons, L.: The business of rogueware. Technical Report, PandaLabs

(July 2009)

5. Dacier, M., Pham, V., Thonnard, O.: The WOMBAT Attack Attribution method:

some results. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905,

pp. 19–37. Springer, Heidelberg (2009)

6. Daigle, L.: WHOIS protocol specification. RFC 3912 (September 2004)

7. Fossi, M., Johnson, E., Turner, D., Mack, T., Blackbird, J., McKinney, D., Low,

M.K., Adams, T., Laucht, M.P., Gough, J.: Symantec Report on the Underground

Economy. Technical Report, Symantec (2008)

8. Fossi, M., Turner, D., Johnson, E., Mack, T., Adams, T., Blackbird, J., Low, M.K.,

McKinney, D., Dacier, M., Keromytis, A., Leita, C., Cova, M., Overton, J., Thon-

nard, O.: Symantec report on rogue security software. Whitepaper, Symantec (Oc-

tober 2009)

9. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An Inquiry into the Nature and

Causes of the Wealth of Internet Miscreants. In: Proc. of the ACM Conference on

Computer and Communications Security (2007)

10. Herley, C.: So long, and no thanks for the externalities: the rational rejection of

security advice by users. In: Proc. of the 2009 New Security Paradigms Workshop

(NSPW), pp. 133–144. ACM, New York (2009)

11. Holz, T., Engelberth, M., Freiling, F.: Learning More about the Underground Econ-

omy: A Case-Study of Keyloggers and Dropzones. In: Backes, M., Ning, P. (eds.)

ESORICS 2009. LNCS, vol. 5789, pp. 1–18. Springer, Heidelberg (2009)

12. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and Miti-

gation of Peer-to-Peer-based Botnets: A Case Study on Storm Worm. In: Proc. of

the USENIX Workshop on Large-Scale Exploits and Emergent Threats (2008)

13. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G., Paxson, V.,

Savage, S.: Spamalytics: An Empirical Analysis of Spam Marketing Conversion.

In: Proc. of the ACM Conference on Computer and Communications Security

(2008)

14. Krebs, B.: Massive Profits Fueling Rogue Antivirus Market. In: Washington Post

(2009)

15. McGrath, K., Gupta, M.: Behind Phishing: An Examination of Phisher Modi

Operandi. In: Proc. of the USENIX Workshop on Large-Scale Exploits and Emer-

gent Threats (2008)

16. Moore, T., Clayton, R.: Examining the Impact of Website Take-down on Phishing.

In: Proc. of the APWG eCrime Researchers Summit (2007)

17. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A Crawler-based Study of

Spyware on the Web. In: Network and Distributed System Security Symposium,

pp. 17–33 (2006)

18. O’Dea, H.: The Modern Rogue — Malware With a Face. In: Proc. of the Virus

Bulletin Conference (2009)

An Analysis of Rogue AV Campaigns 463

19. Provos, N., Mavrommatis, P., Rajab, M., Monrose, F.: All Your iFRAMEs Point

to Us. In: Proc. of the USENIX Security Symposium (2008)

20. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A Multifaceted Approach to Un-

derstanding the Botnet Phenomenon. In: Proc. of the Internet Measurement Con-

ference (2006)

21. Rajab, M.A., Ballard, L., Mavrommatis, P., Provos, N., Zhao, X.: The Nocebo

Effect on the Web: An Analysis of Fake Anti-Virus Distribution. In: Proc. of the

USENIX Workshop on Large-Scale Exploits and Emergent Threats (2010)

22. Ramachandran, A., Feamster, N., Dagon, D.: Revealing Botnet Membership Using

DNSBL Counter-Intelligence. In: Proc. of the Workshop on Steps to Reducing

Unwanted Traffic on the Internet, SRUTI (2006)

23. Shepard, R.N.: Multidimensional scaling, tree fitting, and clustering. Science 210,

390–398 (1980)

24. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,

R., Kruegel, C., Vigna, G.: Your Botnet is My Botnet: Analysis of a Botnet

Takeover. In: Proc. of the ACM Conference on Computer and Communications

Security (2009)

25. Thonnard, O.: A multi-criteria clustering approach to support attack attribution

in cyberspace. PhD thesis, École Doctorale d’Informatique, Télécommunications

et Électronique de Paris (March 2010)

26. Thonnard, O., Mees, W., Dacier, M.: Addressing the attack attribution problem

using knowledge discovery and multi-criteria fuzzy decision-making. In: KDD 2009,

15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Work-

shop on CyberSecurity and Intelligence Informatics, Paris, France, June 28-July 1

(December 2009)

27. Thonnard, O., Mees, W., Dacier, M.: Behavioral Analysis of Zombie Armies. In:

Czossek, C., Geers, K. (eds.) The Virtual Battlefield: Perspectives on Cyber War-

fare. Cryptology and Information Security Series, vol. 3, pp. 191–210. IOS Press,

Amsterdam (2009)

28. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R.: Automated Web Patrol with Strider

HoneyMonkeys. Technical Report MSR-TR-2005-72, Microsoft Research (2005)

29. Xie, Y., Yu, F., Achan, K., Gillum, E., Goldszmidt, M., Wobber, T.: How Dynamic

are IP Addresses? In: Proc. of the Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM (2007)

30. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria

decision-making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

31. Zhuang, L., Dunagan, J., Simon, D., Wang, H., Osipkov, I., Hulten, G., Tygar,

J.: Characterizing Botnets from Email Spam Records. In: Proc. of the USENIX

Workshop on Large-Scale Exploits and Emergent Threats (2008)

Fast-Flux Bot Detection in Real Time

Ching-Hsiang Hsu1, Chun-Ying Huang2, and Kuan-Ta Chen1

1 Institute of Information Science, Academia Sinica
2 Department of Computer Science and Engineering,

National Taiwan Ocean University

Abstract. The fast-flux service network architecture has been widely

adopted by bot herders to increase the productivity and extend the lifes-

pan of botnets’ domain names. A fast-flux botnet is unique in that each

of its domain names is normally mapped to different sets of IP addresses

over time and legitimate users’ requests are handled by machines other

than those contacted by users directly. Most existing methods for de-

tecting fast-flux botnets rely on the former property. This approach is

effective, but it requires a certain period of time, maybe a few days,

before a conclusion can be drawn.

In this paper, we propose a novel way to detect whether a web service

is hosted by a fast-flux botnet in real time. The scheme is unique because

it relies on certain intrinsic and invariant characteristics of fast-flux bot-

nets, namely, 1) the request delegation model, 2) bots are not dedicated

to malicious services, and 3) the hardware used by bots is normally infe-

rior to that of dedicated servers. Our empirical evaluation results show

that, using a passive measurement approach, the proposed scheme can

detect fast-flux bots in a few seconds with more than 96% accuracy, while

the false positive/negative rates are both lower than 5%.

Keywords: Botnet, Request delegation, Document fetch delay, Process-

ing delay, Internet measurement, Supervised classification.

1 Introduction

A botnet is a collection of compromised Internet hosts (a.k.a. bots), that have
been installed with remote control software developed by malicious users. Such
software usually starts automatically when a parasite host boots. As a result,
malicious users (a.k.a. bot herders), can coordinate large-scale Internet activities
by controlling the bots (the victims). Bot herders always attempt to compromise
as many hosts as possible. According to the report of the FBI’s “Operation Bot
Roast” project [7], more than one million victim IP addresses had been identified
on the Internet by the end of 2007, and the number continues to increase. Botnets
allow bot herders to engage in various malicious activities, such as launching
distributed denial of service (DDoS) attacks, sending spam mails [24], hosting
phishing sites [13], and making fraudulent clicks [5]. Statistics show that botnets
yield great economic benefits for bot herders [16, 15]; for example, Gartner [8]
estimated that the economic loss caused by phishing attacks alone is as much as
US$3 billion per year.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 464–483, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast-Flux Bot Detection in Real Time 465

To help legitimate users avoid malicious services (mostly in the form of web-
sites) hosted on a bot, researchers and practitioners have investigated ways to
determine whether a host is part of a botnet [10, 11, 9,20]. If a bot is detected,
the host owner can remove the remotely controlled software by using malicious
software removal tools, or the network ISP can disconnect the bot if the host
owner does not take appropriate action. Obviously, bot herders take counter-
measures to keep their botnets alive and productive. Particularly, the Fast-Flux
Service Network (FFSN) architecture has been used to increase the productivity
and extend the lifetime of domain names linked to the bots.

Usually, a bot herder applies for a domain name for each of his bots and dis-
tributes the domain names (normally in the form of URLs) via various channels,
such as spam mails or web blogs. However, if a machine is in down time, the
bot cannot be controlled and the URL will be temporarily unavailable. More-
over, control of the bot may be lost due to removal of the malicious software. In
this case, the bot herder will not gain any more benefits from the domain name
unless it is re-mapped to another IP address (of another bot).

An FFSN-based botnet (called a fast-flux botnet for short), solves the above-
mentioned problems because of two architectural innovations: 1) the mapping
between domain names and IP addresses, and 2) the way legitimate users’ re-
quests are processed.

– First, in a fast-flux botnet, a domain name is mapped to a number of IP
addresses (possibly hundreds, or even thousands) rather than a single IP
address. As a result, if the mapping is handled properly, i.e., a domain name
is always resolved to a controllable and live bot, the productivity (in terms
of the access rate of malicious services) will be higher than that of a tradi-
tional botnet. In addition, if it is known that a bot has been detected, the
domain name’s link to the bot can be terminated immediately so that their
relationship cannot be discovered.

– Second, legitimate users’ requests are indirectly handled by other machines
called motherships, rather than the bots the users contact. In other words,
when a legitimate user accesses a service provided by a fast-flux botnet via
a URL, the bot that the URL connects to and receives requests from does
not handle the requests itself. Instead, it serves as a proxy by delegating the
requests to a mothership, and then forwarding the mothership’s responses
to the user. By so doing, bot herders can update a malicious service (and
the content it offers) anytime because they have more control over the moth-
ership and the number of mothership nodes is relatively small compared to
that of bots. In addition, since malicious services do not reside on bots, it
is easier for bot herders to reduce the footprint of the malicious software so
that it is less likely to be detected by anti-malware solutions.

To obscure the link between a domain name and the IP addresses of available
bots, fast-flux botnets often employ a strategy that resolves a domain name
to different sets of IP addresses over time. For example, we observed that the
malicious service f07b42b93.com, which hosts a phishing webpage that deceives

466 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

— Returned DNS records at time t —

;; ANSWER SECTION:

f07b42b93.com. 300 IN A 68.45.212.84

f07b42b93.com. 300 IN A 68.174.233.245

f07b42b93.com. 300 IN A 87.89.53.176

f07b42b93.com. 300 IN A 99.35.9.172

f07b42b93.com. 300 IN A 116.206.183.29

f07b42b93.com. 300 IN A 174.57.27.8

f07b42b93.com. 300 IN A 200.49.146.20

f07b42b93.com. 300 IN A 204.198.77.248

f07b42b93.com. 300 IN A 207.112.105.241

f07b42b93.com. 300 IN A 209.42.186.67

— Returned DNS records at time t+300 second —

;; ANSWER SECTION:

f07b42b93.com. 300 IN A 64.188.129.99

f07b42b93.com. 300 IN A 69.76.238.227

f07b42b93.com. 300 IN A 69.225.51.55

f07b42b93.com. 300 IN A 76.10.12.224

f07b42b93.com. 300 IN A 76.106.49.207

f07b42b93.com. 300 IN A 76.127.120.38

f07b42b93.com. 300 IN A 76.193.216.140

f07b42b93.com. 300 IN A 99.35.9.172

f07b42b93.com. 300 IN A 200.49.146.20

f07b42b93.com. 300 IN A 204.198.77.248

Fig. 1. An example of how a fast-flux botnet rapidly changes the mapping of IP ad-

dresses to its domain names. These two consecutive DNS lookups are 300 seconds

apart.

users by getting them to reveal their iPhone serial numbers, adopts this strategy.
As shown in Fig. 1, during a DNS query at time t, the domain’s DNS server
replies with 10 A records, any of which will lead users to the phishing webpage.
The short time-to-live (TTL) value, i.e., 300 seconds, indicates that the records
will expire after 300 seconds, so a new DNS query will then be required. At
t+300 seconds, we re-issued the same query and obtained another set of IP
addresses. In total, there are 19 IP addresses with one duplication in the two sets,
which indicates that the bot herder currently owns a minimum of 19 bots. The
duplication could occur because the DNS server returns IP addresses randomly,
or the bot herder does not have enough bots and cannot provide any more unseen
IP addresses. A single fast-flux botnet domain name may be resolved to a huge
number of IP addresses. For example, we observed a total of 5, 532 IP addresses
by resolving the domain name nlp-kniga.ru between October 2009 and March
2010. The larger the IP address pool, the higher will be the “productivity” of
the botnet. As a result, the link between any two bots that serve the same bot
herders will be less clear, which is exactly what the bot herders desire.

Fast-Flux Bot Detection in Real Time 467

A number of approaches have been proposed to detect fast-flux botnets. By
definition, a fast-flux botnet domain name will be resolved to different IP ad-
dresses over time because 1) bots may not be alive all the time; and 2) bot herders
want the links between the bots to be less obvious. Therefore, most studies rely
on the number of IP addresses of a domain name by actively querying a certain
domain name [3, 12] or passively monitoring DNS query activities for a specific
period [25] (normally a few days). This approach is straightforward and robust;
however, the time required to detect bots is simply too long. A bot herder may
only require a few minutes to set up a new domain name and a malicious ser-
vice to deceive legitimate users; therefore, we cannot spend a few days trying to
determine whether a certain domain hosts malicious services. In order to fully
protect legitimate users so that they do not access malicious services unknow-
ingly, we need a scheme that can detect whether a service is hosted by a fast-flux
botnet in real time.

In this paper, we propose such a scheme. The key features of the scheme are
as follows:

1. The scheme can work in either a passive or an active mode. In the passive
mode, it works when users are browsing websites; while in the active mode,
it can also issue additional HTTP requests and thereby derive more accurate
decisions. Irrespective of the mode used, the scheme can determine whether
a website is hosted by a fast-flux bot within a few seconds with a high degree
of accuracy.

2. The scheme relies on certain intrinsic and invariant characteristics of fast-
flux botnets, namely, i) the request delegation model; ii) bots have “owners,”
so they may not be dedicated to malicious services; and iii) the network
links of bots are not normally comparable to those of dedicated servers.
Among the characteristics, the first one exists by definition; while the other
two, fortunately, cannot be manipulated by bot herders. Consequently, bot
herders cannot implement countermeasures against the scheme.

3. The scheme does not assume that a fast-flux botnet owns a large number
of bots (IP addresses). Thus, even if a botnet only owns a few bots, as long
as it adopts the “request delegation” architecture, our scheme can detect it
without any performance degradation.

The remainder of this paper is organized as follows. In Section 2, we discuss
existing solutions for detecting fast-flux botnets. The intrinsic properties of fast-
flux botnets are analyzed in Section 3. The proposed solution is introduced in
Section 4. Section 5 evaluates the proposed solution. Section 6 considers practi-
cal issues related to the proposed solution. Section 7 contains some concluding
remarks.

2 Related Work

To the best of our knowledge, the Honeynet project [22] was the first research to
study the abuse of fast-flux botnets. The authors explained the hidden operations

468 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

of botnets by giving examples of both single and double fast-flux mechanisms.
Single fast-flux mechanisms change the A records of domains rapidly, while double
fast-flux techniques change both the A records and the NS records of a domain
frequently.

Holz et.al. [12] monitored domain name service (DNS) activities over a seven-
week period and proposed a fast-flux botnet domain name detection scheme
based on the fluxy-score. The score is computed by counting the number of
unique A records in all DNS lookups, the number of NS records in a single DNS
lookup, and the number of unique autonomous system numbers (ASNs) for all
DNS A records. A number of detection schemes [17, 18, 25, 14] detect fast-flux
botnet domain names by monitoring how frequently a domain name changes
its corresponding IP addresses. However, these solutions often have to observe
DNS activities for a long time (months). Although the observation period can be
reduced by using both active and passive monitoring techniques [3], the approach
still needs several minutes along with the help of a data center to determine
whether a domain name is controlled by a botnet.

The proposed fast-flux botnet detection scheme is fundamentally different
from all previous approaches. Since DNS-based detectors often require a long
time to identify fast-flux botnets, the proposed solution does not monitor DNS
activities. Instead, it relies on several basic properties that are measured at the
network level with a short period of time. As a result, it can detect fast-flux
botnets accurately and efficiently.

3 Intrinsic Characteristics of Fast-Flux Bots

In this section, we consider the intrinsic characteristics of fast-flux bots, which
serve as the basis of the proposed detection method described in Section 4.
Since these characteristics are intrinsic and invariant, they are common to fast-
flux bots. Therefore, bot herders cannot manipulate them in order to evade
detection by the proposed scheme.

3.1 Request Delegation

As mentioned in Section 1, a fast-flux bot does not process users’ requests itself.
Instead, it acts as a proxy by delegating requests to the mothership, and then
forwards responses from the mothership to the users. The purpose of this design
is twofold: 1) to protect the mothership from being exposed or detected; and 2)
to avoid having to replicate malicious services and content to every bot, which
would increase the risk of being detected and also slow down the collection of
fraudulent information (e.g., obtaining users’ confidential data via phishing).
The request delegation design is illustrated in Fig. 2. When a client sends a
request to a fast-flux bot, the request is redirected to a mothership node, as
shown in the figure. The node processes the request (mostly by reading a static
webpage from a hard disk), and sends the response to the bot. The bot, as a
proxy, forwards the response to the requester as if it had handled the request
itself.

Fast-Flux Bot Detection in Real Time 469

Client Fast-flux bot Mothership

1. HTTP GET 2. GET redirected

3. Response content4. Response content

Fig. 2. An example of how a fast-flux botnet delivers malicious content secretly to a

client

Because of this design, a client may perceive a slightly longer delay between
issuing a request and receiving the response when the “service provider”1 is
a fast-flux bot. The increase in the response time is roughly the same as the
message forwarding delay between the bot and the mothership. As long as the
request delegation model is employed, technically, the increase in response time
cannot be avoided.

3.2 Consumer-Level Hardware

Bot herders expand their collection of bots by compromising as many comput-
ers as possible. Most botnets are comprised of residential PCs [23]. One reason is
that such PCs are not well-maintained normally; e.g., the anti-virus software may
be out-of-date and/or the operating system and applications may not be patched.
Residential PCs are normally equipped with consumer-level hardware and usually
connect to the Internet via relatively low-speed network links, e.g., ADSL and a
cable modem. As a result, compared to dedicated web servers, like those of Google
and Yahoo, most bots have relatively low computation power and network band-
width to access the Internet, which may cause the following phenomena:

– Because of a bot’s relatively low computation power, the message forward-
ing operation at a bot may experience significant delays if any foreground
application is running at the same time (see the next subsection).

– Because of a bot’s relatively low network bandwidth, and the fact that resi-
dential network links are normally shared by a number of users (e.g., users
in the same building), it is likely that significant network queuing will occur.
This will induce variable queuing time and make a request’s response time
more fluctuating.

Obviously, bot herders cannot alter the level of a bot’s equipment for network
bandwidth access. For this reason, we consider such characteristics intrinsic and
the phenomena are unalterable by external parties; in other words, longer mes-
sage forwarding delays and more variable network delays should be widely ob-
servable in fast-flux botnets.
1 We use the term “service provider” because, although a fast-flux bot is the ser-

vice provider from the end-user’s viewpoint, the actual service is provided by the

mothership behind the bot.

470 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

3.3 Uncontrollable Foreground Applications

Ideally, bot herders should be able to control bots via remote control software;
however, bots are not controlled exclusively by bot herders: They are personal
computers that may be used by the owners at the same time. For example, a bot
may be serving phishing webpages for bot herders at exactly the same time that
the PC owner is playing an online game or watching a movie. This possibility
indicates that foreground applications run by bot owners and background mali-
cious processes run by bot herders may compete for computing resources, such
as the CPU, memory, disk space, and network bandwidth. In other words, if the
workloads of bot owners and bot herders compete for resources, the performance
of both applications may suffer.

This characteristic implies that the delay incurred by the message forward-
ing operation at a bot, i.e., the time taken to forward a user’s request to the
mothership and the time taken to forward the mothership’s response to the user,
may vary according to the instantaneous foreground workload on the bot. This
effect would be especially significant if a bot’s computation power is low (due
to consumer-level hardware). In this case, any foreground workload would slow
the above message forwarding operation, so a high level of variability in message
forwarding delays will be observed.

Bot herders cannot avoid this situation because malicious software would be
easily detected if it affects the performance of bot owners’ foreground appli-
cations. More specifically, if a bot herder’s malicious software requests a high
priority for computation, bot owners may notice that the performance of their
foreground applications deteriorates and run a scan, which would detect and
remove the malicious software.

3.4 Summary

In Table 1, we list the characteristics that are intrinsic to fast-flux bots, and also
compare fast-flux bots with dedicated severs and traditional bots (i.e., bots that
malicious services are running on, but they do not delegate users’ requests). It
is clear that dedicated servers do not have any of the characteristics of fast-flux

Table 1. Comparison of the intrinsic characteristics of bots (dedicated servers, tradi-

tional bots and fast-flux bots)

Dedicated Traditional Fast-flux
Consequence

servers bots bots

Requests
✕ ✕ ✔

Long delays in

delegated fetching documents

Comsumer-level
✕ ✔ ✔

Low bandwidth &

hardware variable network delays

Uncontrollable
✕ ✔ ✔ Long processing delays

foreground tasks

Fast-Flux Bot Detection in Real Time 471

bots. Traditional bots, on the other hand, are similar to fast-flux bots, except
that they do not delegate requests.

The effects of these intrinsic characteristics are also summarized in Table 1.
Because of these properties, we expect to see long delays in fetching documents
(called document fetch delays hereafter), variable network queuing delays, and
long processing delays when users make requests to a malicious service hosted by
a fast-flux bot. Measuring the three types of delay form the basis of our fast-flux
bot detection scheme, which we discuss in detail in the next section.

4 The Proposed Solution

In this section, we introduce the proposed solution for detecting fast-flux bots.
Our scheme assumes that bot herders exploit the bots to execute web-based
malicious services, e.g., phishing pages or other types of fraudulent webpages.
Specifically, the malicious software on the bots includes a HTTP server that
listens to TCP ports 80/443 and accepts HTTP/HTTPS requests. Before de-
scribing the proposed scheme, we explain the rationale behind our design:

– Realtimeness. We expect the scheme to be able to detect fast-flux bots in
real time, e.g., within a few seconds, so that we can prevent legitimate users
from proceeding with malicious services in time.

– Robustness. We expect that the scheme will not be dependent on the sig-
natures of certain botnet implementations. The scheme must be signature-
independent in order to cope with updates from existing botnets as well
as new, unknown botnet implementations without degrading the detection
performance.

– Lightweight. We expect the scheme to be as lightweight as possible so that
it can be deployed on any type of device without using too many computing
resources.

Given the above guidelines, we propose a real-time, signature-less, and lightweight
detection scheme for fast-flux bots based on their intrinsic characteristics (cf. Sec-
tion 3). Under the scheme, if a client tries to download webpages from a web server
suspected of being a fast-flux bot, the scheme will monitor the packet exchanges
between the client and the server and issue additional HTTP requests if neces-
sary. The decision about whether the server is part of a fast-flux botnet is based
on measurements of the packet transmission and receipt times observed at the
client. We call the web server that the client sends HTTP requests to a “suspect
server” or simply a “server.” However, the machine may only be a proxy, so it does
not handle HTTP requests itself (e.g., in the case of fast-flux bots).

Next, we define the three delay metrics used to determine whether a suspect
server is a fast-flux bot.

1. Network delay (ND): The time required to transmit packets back and
forth over the Internet between the client and the server.

472 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

Suspect serverClient

HTTP response

Document
fetch delay

Mothership

HTTP response

Estimated
processing delay

Estimated
network delay

HTTP GET

Reject response

Processing
delay

HTTP HI

Estimated
document fetch delay

TCP SYN+ACK

TCP SYN+ACK

?

RedirectedHTTP request(if any)

Fig. 3. The measurement techniques used to estimate network delays, processing de-

lays, and document fetch delays based on HTTP requests

2. Processing delay (PD): The time required for the server to process a
dummy HTTP request that does not incur any additional computation and
I/O operations.

3. Document fetch delay (DFD): The time required for the server to fetch
a webpage (either from a hard disk or from a back-end mothership).

Network delays occur at the network-level, while the processing delays occur
at the host-level (i.e., at the suspect server). Document fetch delays are more
complicated in that they may occur at the host-level only (at the suspect server)
if the request delegation model is not employed, or they may arise if the server
delegates received requests to a mothership via the Internet. In the latter case,
DFDs involve host-level delays (at the suspect server and the mothership node)
and network-level delays (between the suspect server and the mothership node).
The measurement techniques used to estimate the three types of delay are shown
in Fig. 3. We discuss the techniques in detail in the following sub-sections.

4.1 Network Delay Measurement

Network delay (ND) is defined as the difference between the time a client sends
out the first TCP SYN packet to the suspect server and the time the client
receives the corresponding TCP SYN+ACK packet from the server. By using

Fast-Flux Bot Detection in Real Time 473

this estimate, a TCP connection only yields one network delay sample. To collect
more samples, when appropriate, our scheme temporarily disables the persistent
connection option in HTTP 1.1, which ensures a separate TCP connection for
each HTTP request; thus, the number of ND samples will be the same as the
number of HTTP requests.

4.2 Processing Delay Measurement

Measuring processing delays (PD) at the suspect server is not straightforward
because HTTP does not support such operations naturally. We need a HTTP
command that will respond to the client without contacting the back-end moth-
ership (if any), irrespective of whether the suspect server is a fast-flux bot. For
this purpose, we attempted to make the following requests:

1. Valid HTTP requests with methods other than GET, e.g., OPTIONS and HEADER
methods.

2. HTTP requests with an invalid version number.
3. HTTP requests with incomplete headers.
4. HTTP requests with an undefined method, e.g., a nonsense HI method.

Our experiments showed that most fast-flux bots still contacted their mothership
in the first three scenarios. On the other hand, most of them rejected HTTP
requests with undefined methods directly by sending back a HTTP response,
usually with the status code 400 (Bad Request) or 405 (Method Not Allowed).

Consequently, we estimate the processing delay at the server by subtracting
the network round-trip time from the application-level message round-trip time.
Specifically, assuming AD is the difference between the time a client sends out
a HTTP request with an undefined method and the time the client receives the
corresponding HTTP response (code 400 or 405), then a PD sample is estimated
by subtracting ND (the network delay) from AD.

4.3 Document Fetch Delay Measurement

We define the document fetch delay (DFD) as the time required for the suspect
server to “fetch” a webpage. Since the fetch operation occurs at the server side,
we cannot know exactly what happens on the remote server. Thus, we employ
the following simple estimator. Assuming RD is the difference between the time
a client sends out a successful HTTP GET request and the time the client
receives the corresponding HTTP response (code 200), then a DFD sample is
estimated by subtracting ND (the network delay) from RD. Figure 4 shows the
distribution of DFD, PD and their respective standard deviations measured for
benign servers, traditional bots, and fast-flux bots.

4.4 Decision Algorithm

In this sub-section, we explain how we utilize the three delay metrics in our
decision algorithm.

474 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

DFD

P
D

1e−04 1e−02 1e+00

1e
−

04
1e

−
02

1e
+

00

Benign Server
Fast−flux bot
Traditional bot

DFD

sd
(D

F
D

)

1e−04 1e−02 1e+00

1e
−

04
1e

−
02

1e
+

00

DFD

sd
(P

D
)

1e−04 1e−02 1e+00

1e
−

04
1e

−
02

1e
+

00

PD

sd
(D

F
D

)

1e−04 1e−02 1e+00

1e
−

04
1e

−
02

1e
+

00

Fig. 4. Scatter plots of processing delays, document fetch delays, and their respective

standard deviations. Both the x- and y-axis are in log scale.

– The objective of measuring network delays is to capture the level of network
congestion between a client and the suspect server. As per Section 3.2, the
ND and sd(ND), where sd(·) denotes the standard deviation, tend to be
(relatively) large if the suspect server is a fast-flux bot rather than a benign,
dedicated web server.

– The processing delay helps us determine the server’s workload and the re-
quired computation power. If there are other workloads on the server, the
estimated processing delays would be high and fluctuate over time. Thus, as
per Section 3.2 and Section 3.3, the PD and sd(PD) tend to be large if the
suspect server is a fast-flux bot.

– The document fetch delay indicates how much time the server takes to fetch
a webpage. Because of the request delegation model (Section 3.1), DFD and
sd(DFD) tend to be large if the suspect server is a fast-flux bot.

For a suspect server, we collect six feature vectors (ND, PD, DFD, and their
respective standard deviations), each of which contains n elements assuming n
HTTP GET requests are issued. For the PD samples, another n HTTP requests
with an undefined method must also to be issued.

To determine whether a suspect server is a fast-flux bot, which is a binary
classification problem, we employ a supervised classification framework and use
linear SVM [4] as our classifier. A data set containing the delay measurement
results for both benign web servers and web servers hosted on fast-flux bots is
used to train the classifier. When a client wishes to browse pages on an unknown
website, our scheme collects the delay measurements and applies the classifier
to determine whether the suspect server is part of a fast-flux botnet.

Fast-Flux Bot Detection in Real Time 475

Benign domain

unique ASN per domain

D
en

si
ty

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fast−flux domain

unique ASN per domain
D

en
si

ty

0 200 400 600 800

0.
00

0
0.

00
5

0.
01

0
0.

01
8

Fig. 5. The distribution of unique autonomous system numbers (ASNs) per domain

name in the dataset of benign servers and fast-flux bots

5 Methodology Evaluation

In this section, we evaluate the performance of the proposed fast-flux bot detec-
tion scheme. First, we describe the data set and examine whether the derived
features differ significantly according to the type of suspect server. Then, we
discuss the detection performance of the scheme and consider a passive use of
the scheme.

5.1 Data Description

To evaluate the performance of the proposed scheme in real-life scenarios, we
need a set of URLs that legitimate users can browse. Our dataset contains the
following three categories of URLs, which point to different kinds of servers:

– Benign servers : The top 500 websites listed in the Alexa directory [1].
– Traditional bots : URLs that appear in the PhishTank database [19] with

suspicious fast-flux domains removed (see below).
– Fast-flux bots : URLs that appear in the ATLAS Global Fast Flux database [2]

and the FastFlux Tracker at abuse.ch [6].

Between January and April 2010, we used wget to retrieve the URLs in our
dataset at hourly intervals. During the web page retrieval process, we ran tcpdump
to monitor all the network packets sent from and received by the client. After re-
trieving each web page, we sent out a HTTP request with the undefined method
“HI” to measure the processing delays that occurred at the suspect server, as
described in Section 4.2.

We found that some URLs in the PhishTank database actually point to fast-
flux bots, and some URLs listed as pointers to fast-flux bots may actually point

476 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

Table 2. The trace used to evaluate the detection performance of the proposed scheme

Host type #domain #IP address #session #connection

Benign servers 500 3,121 60,936 565,466

Traditional bots 16,317 9,116 79,694 943,752

Fast-flux bots 397 3,513 213,562 726,762

to traditional bots. Therefore, after collecting the data, we performed a post
hoc check based on the number of distinct autonomous system numbers (ASNs).
Figure 5 shows the distributions of distinct ASNs of benign domain names and
fast-flux domain names over the trace period. Nearly all the benign domain
names were associated with three or fewer ASNs, while most fast-flux domain
names were associated with many more ASNs over the three-month period.
Based on this observation, we set 3 ASNs as the threshold to determine whether
or not a domain name was associated with a fast-flux botnet. Thus, if a do-
main name was reported as a non-fast-flux bot, but it was associated with four
or more ASNs (or vice versa), we regarded the domain name as questionable.
We simply removed such domain names from our trace to ensure its clarity and
correctness. In addition, if a URL was unavailable due to domain name resolu-
tion failures, packet unreachable errors, HTTP service shutdown, or removal of
corresponding web services for 10 successive attempts, we removed it from the
dataset.

The three-month trace is summarized in Table 2, where a connection refers to
a TCP connection, a session refers to a complete web page transfer (including the
HTML page and its accessory files, such as images and CSS files). As we turned
off the HTTP 1.1 persistent connection option in order to acquire more samples
for the delay metrics (cf. Section 4), the number of connections is much higher
than that of sessions because a web page often contains several accessory files

Fig. 6. (a) The top 10 top-level domains and (b) the top 20 countries associated with

the fast-flux domain names in our dataset.

Fast-Flux Bot Detection in Real Time 477

(maybe even dozens). Figure 6 shows the top 10 (out of 19) top-level domains
and the top 20 (out of 127) countries associated with the observed fast-flux bots.

5.2 A Closer Look at the Derived Features

We now examine whether the empirical delay measurements derived during
web browsing can be used to distinguish between fast-flux bots and benign
servers. First, we investigate whether, as expected, consumer-level hosts incur
higher and more variable processing delays and more variable network delays (cf.
Section 3.4). To do this, we use a common technique that infers whether a host is
associated with dial-up links, dynamically configured IP addresses, or other low-
end Internet connections based on the domain name of reverse DNS lookups [21].
For example, if a host’s domain name contains strings like “dial-up,” “adsl,” and
“cable-modem,” we assume that the host is for residential use and connects to
the Internet via relatively slow links. Figure 7 shows the distributions of the
six features for normal and consumer-level hosts. The plots fit our expectation
that consumer-level hosts of fast-flux botnet incur more variable network de-
lays, longer processing delays, and more variable processing delays than those
of dedicated servers. In addition, we consider that the longer and more variable
document fetch delays are due to lower computation power and longer disk I/O
access latency on the consumer-level hosts.

Figure 8 shows the distributions of the six features for benign servers, tra-
ditional bots, and fast-flux bots. Clearly, fast-flux bots lead to much higher
magnitudes for all six features compared with the other two server categories,

ND

Seconds

C
D

F
0.

0
0.

5
1.

0

5e−03 5e−02 5e−01

Normal
Consumer−level

PD

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−04 1e−02

DFD

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−02 1e+00

sd(ND)

Seconds

C
D

F
0.

0
0.

5
1.

0

5e−05 5e−03

sd(PD)

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−04 1e−02 1e+00

sd(DFD)

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−04 1e−02 1e+00

Fig. 7. The cumulative distribution functions of network delays, processing delays,

and document fetch delays, and their respective standard deviations of normal and

consumer-level hosts were measured based on 5 probes.

478 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

ND

Seconds

C
D

F
0.

0
0.

5
1.

0

5e−04 5e−03 5e−02 5e−01

Benign servers
Fast−flux bots
Traditional bots

PD

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−04 1e−02 1e+00

DFD

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−04 1e−02 1e+00

sd(ND)

Seconds

C
D

F
0.

0
0.

5
1.

0

5e−05 5e−03 5e−01

sd(PD)

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−04 1e−02 1e+00

sd(DFD)

Seconds

C
D

F
0.

0
0.

5
1.

0

1e−04 1e−02 1e+00

Fig. 8. The cumulative distribution functions of network delays, processing delays,

and document fetch delays, and their respective standard deviations of three server

categories were measured based on 5 probes

manifesting the effects of the intrinsic characteristics of fast-flux bots. The mag-
nitudes of the six features of traditional bots are generally lower than those of
fast-flux bots, but higher than those of benign servers except for the standard
deviation of network delays. We believe this is because benign servers usually
have more visitors than the other two categories of servers; therefore, network
links to benign servers tend to be busy and it is more likely that a slightly higher
degree of network queuing and delay variations will be observed.

5.3 Detection Performance

The graphs in Figure 8 confirm that the six features we derived may vary signifi-
cantly according to the type of web server a user browses. In this sub-section, we
perform supervised classification using SVM based on the derived six features.

Although we focus on the detection of fast-flux bots, we also include tradi-
tional bots in our evaluation. This is because, according to our analysis
(Section 3), traditional bots also behave differently to benign servers in terms
of most of the defined delay metrics. We perform two types of binary classifica-
tion using SVM, namely, benign servers vs. fast-flux bots and benign servers vs.
traditional bots. Figure 9(a) shows the relationship between the classification
accuracy and the number of samples observed (which may vary according to the
number of accessory files of webpages), where the accuracy is derived using 10-
fold cross validation. The results show that our scheme achieves more than 95%
accuracy when we try to distinguish fast-flux bots from benign servers, even when
only one sample (i.e., the TCP connection) is observed. We find that it is more

Fast-Flux Bot Detection in Real Time 479

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

samples

A
cc

ur
ac

y

1 5 10 15 20

B.S. v.s. Fast−flux bots
B.S. v.s. Traditional bots

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B.S. v.s. Fast−flux bots
B.S. v.s. Traditional bots

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

samples

A
re

a
un

de
r

cu
rv

e

1 5 10 15 20

B.S. v.s. Fast−flux bots
B.S. v.s. Traditional bots

Fig. 9. (a) The relationship between the classification accuracy and the number of sam-

ples; (b) the ROC curve of the SVM classifier using 5 probes; and (c) the relationship

between the area under the curve and the number of probes.

difficult to distinguish between benign servers and traditional bots because the
classification accuracy is only 70%–80%; however, the accuracy rate increases
when more samples are observed.

Figure 9(b) shows the ROC curves of the two types of classification based
on 5 samples. The area under the curve (AUC), which distinguishes between
benign servers and fast-flux bots, is 0.993; hence, the proposed detection scheme
performs almost perfectly in this scenario. The AUC degrades to 0.83 when
we try to classify traditional bots from benign servers, which implies that our
detection scheme can detect traditional bots with a moderate degree of accuracy.
As the number of samples may affect the classification performance, we plot the
relationship between the AUC and the number of samples in Fig. 9(c). The graph
shows that the detection performance remains nearly constant regardless of the
number of samples used for fast-flux bot detection (the AUC is always higher
than 0.99). In contrast, the number of samples is more important when we try to
detect traditional bots, as the AUC increases above 0.8 if more than 10 samples
are observed before classification is performed.

5.4 Passive Mode

The network delay and document fetch delay can be measured by passive mea-
surements when users are browsing webpages, but an active approach must be
used to measure the processing delay (i.e., by sending HTTP requests with an un-
defined method). Since active measurements incur additional overhead, to keep
our method lightweight whenever possible, we consider that a “passive mode”
would be quite useful when traffic overhead is a major concern.

In the passive mode, instead of using all six features, we only use the average
and standard deviations of network delays and document fetch delays in the
supervised classification. The classification accuracy is plotted in Fig. 10. We
observe that the classification between fast-flux bots and benign servers is hardly
affected by the removal of the “active features,” i.e., processing delays and their
standard deviations, except when the number of samples is quite small. We
believe this indicating that document fetch delays already serve as a powerful
indicator for distinguishing the two server categories. On the other hand, the

480 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

samples

A
cc

ur
ac

y

1 5 10 15 20

B.S. v.s. Fast−flux bots
B.S. v.s. Traditional bots

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B.S. v.s. Fast−flux bots
B.S. v.s. Traditional bots

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

samples

A
re

a
un

de
r

cu
rv

e

1 5 10 15 20

B.S. v.s. Fast−flux bots
B.S. v.s. Traditional bots

Fig. 10. (a) The relationship between the classification accuracy and the number of

samples, (b) the ROC curve of the SVM classifier using 5 probes, and (c) the rela-

tionship between the area under the curve and the number of probes in the passive

mode.

classification accuracy between benign servers and traditional bots is slightly
affected by the removal of active features, as processing delays play an important
role in distinguishing between the two types of servers. The ROC curves and the
AUCs of different numbers of samples shown in Figure 10 also indicate that the
passive mode of our scheme yields accurate detection results, especially when a
fast-flux-bot detection method is required.

6 Discussion

In this section, we discuss several issues that are worth investigating further.

6.1 Content Delivery Network

One concern raised in a previous work on fast-flux bot detection [17] is that
content delivery networks (CDNs) share a similar property with fast-flux botnets;
that is, the nodes in CDNs and fast-flux botnets are associated with multiple IP
addresses rather than a single IP address. This leads to confusion if a fast-flux
botnet detection scheme is based on a number of IP addresses (or autonomous
systems) that are associated with a certain domain name [25,17,12,3]. However,
this is not a problem in our proposed method because it does not count the
number of IP addresses.

6.2 Proxy Server

Although proxy servers also employ the request delegation model, we argue
that the proposed scheme does not confuse fast-flux bots with proxy servers.
The reason is that proxy servers are clearly visible to the end users, and the
users’ clients are aware that they are fetching web documents from a web server
with the help of a proxy server. On the other hand, a fast-flux bot does not
pretend to be a proxy server because the HTTP proxy protocol does not hide
the identity of back-end web servers unless a transparent proxy is used; therefore,
the mothership nodes will be revealed, which is a situation that bot herders strive

Fast-Flux Bot Detection in Real Time 481

to avoid. Furthermore, if a transparent proxy is used, the proposed method will
not be affected because the roles in the request delegation model are different.
This is because the suspect servers contacted by users do not delegate requests
to others; instead, the request-delegation operation is performed by a hidden
man-in-the-middle (i.e., a transparent proxy server), which may only reduce
document fetch delays. Therefore, proxy servers along the paths between users
and suspect servers will not be detected as fast-flux bots.

6.3 Deployment

Our scheme can be deployed in a number of approaches. First, because of its
lightweightness, it can run on end-users’ machines, such as personal computers
or even mobile devices. In this case, it can be implemented as a browser add-on
or stand-alone software that monitors users’ web browsing activities and warns
users when they are browsing a website hosted by fast-flux bots.

Second, it may be more convenient if the scheme is deployed at a gateway
router to protect all the users in a local area network. Since the transmission
latency between a gateway router and a host is usually negligible, the delay
metrics measured on the router would be roughly the same as those measured on
users’ computers. Therefore, we can simply monitor all outgoing HTTP requests,
measure the delays, and notify users if the measurements indicate that a certain
HTTP request has been sent to a fast-flux bot. We consider this to be an efficient
way to deploy the proposed detection scheme to protect legitimate users.

6.4 Limitations

Although the proposed detection scheme achieves high accuracy, as shown by
the results in Section 5, it has some limitations. Recall that fast-flux bots are
normally equipped with consumer-level hardware and connect to the Internet
with (relatively) narrower network links. The proposed scheme may fail in the
following cases:

1. A bot herder may compromise powerful servers and incorporate them into
a fast-flux botnet.

2. A benign server may not be equipped with high-level hardware like the
dedicated web servers provided by Internet service providers.

In the first case, we believe that bots with consumer-level hardware would still
dominate because high-level and high-connectivity servers are normally well-
maintained and patched; hence, they are less likely to be infected and controlled
by malicious software. If this should happen, we would observe short processing
delays at the suspect server. The second case may occur when web servers are
set up for amateur and casual use. Then, we would observe long and variable
processing delays and network delays when users access webpages via such web
servers. In both cases, as our method relies on all three intrinsic characteristics in
the active mode (or two in the passive mode) rather than a single characteristic, a
compromised server could still be detected using other characteristics, especially
the “long document fetch delay” property.

482 C.-H. Hsu, C.-Y. Huang, and K.-T. Chen

7 Conclusion

We have proposed a novel scheme for detecting whether a web service is hosted
by a fast-flux botnet in real time. Evaluations show that the proposed solution
achieves a high detection rate and low error rates. Unlike previous approaches,
our scheme does not assume that a fast-flux botnet owns a large number of bots
(IP addresses). Thus, even if a botnet only owns a few bots, as long as it adopts
the “request delegation” architecture, the proposed scheme can detect the botnet
without any performance degradation.

In addition to being efficient and robust, the proposed solution is lightweight
in terms of storage and computation costs. Therefore, it can be deployed on
either fully fledged personal computers or resource-constrained devices to provide
Internet users with complete protection from botnet-hosted malicious services.

Acknowledgment

This research was supported in part by National Science Council under the
grant NSC 97-2218-E-019-004-MY2 and by Taiwan Information Security Center
at NTUST (TWISC@NTUST) under the grant NSC 99-2219-E-011-004.

References

1. Alexa: Alexa the web information company, http://www.alexa.com

2. ATLAS: Arbor networks, inc., http://atlas.arbor.net/

3. Caglayan, A., Toothaker, M., Drapeau, D., Burke, D., Eaton, G.: Real-time detec-

tion of fast flux service networks. In: Proceedings of the Cybersecurity Applications

& Technology Conference for Homeland Security, pp. 285–292 (2009)

4. Chang, C., Lin, C.: Libsvm: a library for support vector machines (2001)

5. Click Forensics, I.: Botnets accounted for 42.6 percent of all click fraud in Q3 2009

(2009), http://www-staging.clickforensics.com/newsroom/press-releases/

146-botnets-accounted.html

6. dnsbl.abuse.ch: abuse.ch fastflux tracker (2010), http://dnsbl.abuse.ch/

fastfluxtracker.php

7. FBI: Over 1 million potential victims of botnet cyber crime (2007), http://www.

fbi.gov/pressrel/pressrel07/botnet061307.htm

8. Gartner: Gartner survey shows phishing attacks escalated in 2007; more than

$3 billion lost to these attacks (2007), http://www.gartner.com/it/page.jsp?

id=565125

9. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network

traffic for protocol-and structure-independent botnet detection. In: Proceedings of

the 17th USENIX Security Symposium (2008)

10. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting

malware infection through IDS-driven dialog correlation. In: Proceedings of the

16th USENIX Security Symposium, pp. 167–182 (2007)

11. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command and control

channels in network traffic. In: Proceedings of the 15th Annual Network and Dis-

tributed System Security Symposium (2008)

http://www.alexa.com
http://atlas.arbor.net/
http://www-staging.clickforensics.com/newsroom/press-releases/146-botnets-accounted.html
http://www-staging.clickforensics.com/newsroom/press-releases/146-botnets-accounted.html
http://dnsbl.abuse.ch/fastfluxtracker.php
http://dnsbl.abuse.ch/fastfluxtracker.php
http://www.fbi.gov/pressrel/pressrel07/botnet061307.htm
http://www.fbi.gov/pressrel/pressrel07/botnet061307.htm
http://www.gartner.com/it/page.jsp?id=565125
http://www.gartner.com/it/page.jsp?id=565125

Fast-Flux Bot Detection in Real Time 483

12. Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring and detecting fast-flux

service networks. In: Proceedings of the Network & Distributed System Security

Symposium (2008)

13. Ianelli, N., Hackworth, A.: Botnets as a vehicle for online crime. CERT Coordina-

tion Center (2005)

14. McGrath, D., Kalafut, A., Gupta, M.: Phishing infrastructure fluxes all the way.

IEEE Security & Privacy, 21–28 (2009)

15. Moore, T., Clayton, R.: Examining the impact of website take-down on phish-

ing. In: Proceedings of the Anti-Phishing Working Groups 2nd Annual eCrime

Researchers Summit (2007)

16. Namestnikov, Y.: The economics of Botnets (2009)

17. Nazario, J., Holz, T.: As the net churns: Fast-flux botnet observations. In: Inter-

national Conference on Malicious and Unwanted Software, MALWARE (2008)

18. Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.: FluxOR: detecting and mon-

itoring fast-flux service networks. In: Detection of Intrusions and Malware, and

Vulnerability Assessment, pp. 186–206 (2008)

19. PhishTank, http://www.phishtank.com

20. Shadowserver, http://www.shadowserver.org

21. Spamhaus, http://www.spamhaus.org

22. The Honeynet Project: Know your enemy: Fast-flux service networks (2007)

23. The Honeynet Project: Know your enemy: Tracking botnets (2008)

24. TRACELabs, M.: Marshal8e6 security threats: Email and web threats (2009)

25. Zhou, C., Leckie, C., Karunasekera, S., Peng, T.: A self-healing, self-protecting

collaborative intrusion detection architecture to trace-back fast-flux phishing do-

mains. In: Proceedings of the 2nd IEEE Workshop on Autonomic Communication

and Network Management (2008)

http://www.phishtank.com
http://www.shadowserver.org
http://www.spamhaus.org

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 484–485, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Client-Based and Server-Enhanced Defense
Mechanism for Cross-Site Request Forgery*

Luyi Xing, Yuqing Zhang**, and Shenlong Chen

National Computer Network Intrusion Protection Center, GUCAS, Beijing 100049, China
Tel.: +86-10-88256218; Fax: +86-10-88256218

zhangyq@gucas.ac.cn
State Key Laboratory of Information Security, GUCAS, Beijing 100049, China

A common-sense CSRF attack involves more than one domain. In this paper, we’ll
cover both cross-domain and same-domain CSRF which overlaps with Cross-Site
Scripting (XSS). If a XSS instructs victims to send requests to the same domain, it is
also a CSRF—same-domain CSRF. Such sort of XSS-CSRF exists extensively and
even high profile sites cannot always avoid such vulnerabilities.

There exist mainly 3 defenses: Referer Header checking, secret validation token
and CAPTCHA. The Referer Header is sometimes missing [1], the secret token be-
comes totally futile when XSS exists and the CAPTCHA is too bothering. Besides,
[2-3] brings about some client-taking actions yet pure client checking is not credible
enough from server side perspective. And they still suffer from the Referer-missing
problem. Moreover, all of [1-3] have nothing to do with same-domain CSRF. So a
client-initialized and server-accomplished defense mechanism (CSDM) is proposed.

Definition: The super-referer of a request is made up of its Referer and all URLs of
the Referer’s ancestor frames, excluding the querying part. E.g., the Referer
http://site/1.php?id=123 is cut to http://site/1.php.

CSDM proposes a new HTTP Header Super-referer-header, containing super-referer.
E.g.: Super-referer-header: http://site1/index.php, http://hack/attack.aspx. Considering

privacy, the URL in the new Header
should be hashed with strong one-way
algorithm and MD5 is one choice.

Consider POST-based CSRF first.
The client defence is shown in Fig. 1.
A POST request must satisfy all the
qualifications in Fig.1 before being
sent out, or else it will be cancelled.
In step 3 and 4, a configurable “im-
portant-sites list” is proposed. POST
requests sending to important sites for
users can be further confirmed by
offering users a “Send or Cancel?”
dialog. CSRF requests are generally
sent silently and users have no idea of

* This work is supported by the National Natural Science Foundation of China under Grant No.

60970140, No.60773135 and No.90718007.
** Corresponding author.

Fig. 1. Client checking of POST Request

5.Send request with super-
referer-header

1.Referer empty ?

2.Cross-domain request?

3.Destination in important-site list ?

no

CancelSend

no

yes
no

6.Reject to send

A POST request

4.User chooses
‘ Send’ or‘ Cancel’

 A Client-Based and Server-Enhanced Defense Mechanism 485

it. If users didn’t click any submitting button before seeing the confirming dialog,
“Cancel” is preferred.

An important observation shows that POST target URL generally needs only a
small number of different intended source URLs, so a policy file is used at server
side. For example, POST: {

Dest1: /profile.php
Same Domain1: /chgpfl.php
Cross Domain1: trust.com/chg.aspx
Dest2: /blog.php
Same Domain2: subdomain.sns.com/*}

Requests sending to profile.php should only origin from chgpfl.php or
trust.com/chg.aspx. The policy file should cover all POST target pages. So when
addressing a request, servers examine the super-referer-header, checking whether all
source URLs of the request are allowable. The server solution is deployed as part of a
web application firewall, making it compatible with current websites. And we can
trade space for time when decoding the MD5 value as every site has limited URLs
(excluding querying parts).

Cross-domain and almost all same-domain CSRF can be prevented as their source
URLs are illegal. In step 4 of Fig. 1, even attackers trigger a malicious script in paral-
lel to the submitting of a legitimate form or the users cannot make right decisions
when choosing “Send” or “Cancel”, a further checking at server side will still guaran-
tee the security. Same-domain CSRF can only happen when an allowable source page
towards a specific CSRF target page happens to host some XSS vulnerability. But the
chances are low and the destructiveness can be expected to be minimized or limited as
only the specific target page and no others can be aimed at.

The super-referer is helpful in accurately depicting the sources of requests and pre-
venting same-domain CSRF, as attackers can embed some permissible page in XSS-
infected pages. Besides, such a concept can help preventing clickjacking [2].

GET-based CSRF deserves less attention, as all state-modifying requests should
use POST and real world GET CSRF is far less destructive. At client, GET requests
with HTTPS or Authorization Header are blocked if without Referrer. At server side,
super-referer checking is used for sensitive target URL.

The CSDM client prototype is implemented as a Firefox browser extension. Real
world tests with popular sites including iGoogle, yahoo, facebook and a vulnerable
sample site show that it prevents all kinds of CSRF attacks reproduced in lab envi-
ronment with no obvious compatibility problems or user experience degradation.

References

1. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery. In:
15th ACM Conference on Computer and Communications Security (2008)

2. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with browser-
enforced authenticity protection. In: 13th International Conference on Financial Cryptogra-
phy and Data Security (2009)

3. Maes, W., Heyman, T., Desmet, L., et al.: Browser protection against cross-site request for-
gery. In: 1st ACM Workshop on Secure Execution of Untrusted Code, Co-located with the
16th ACM Computer and Communications Security Conference (2009)

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 486–487, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Distributed Honeynet at KFUPM: A Case Study

Mohammed Sqalli, Raed AlShaikh, and Ezzat Ahmed

Department of Computer Engineering
King Fahd University of Petroleum and Minerals

{sqalli,g199607190,g200804300}@kfupm.edu.sa

1 Introduction and Design Setup

The main objectives of this work is to present our preliminary experience in simulat-
ing a virtual distributed honeynet environment at King Fahd University of Petroleum
and Minerals (KFUPM) using Honeywall CDROM [1], Snort, Sebek and Tcpreplay
[3] tools. In our honeynet design, we utilized the Honeywall CDROM to act as a cen-
tralized logging center for our distributed high-interaction honeypots. All honeypot
servers, as well as the Honeywall CDROM itself, were built on top of a virtualized
VMWare environment, while their logs were forwarded to the centralized server. This
setup is illustrated in figure 1.

Fig. 1. The proposed distributed design of KFUPM honeynet

2 Preliminary Evaluation and Results

Since honeypots do not offer any useful services to Internet users and the Internet
addresses of the honeypots are not publicly known, most traffic on the honeynet is
suspicious. However, not all traffic is malicious. Therefore, the traffic we observed on
our honeypots falls into three different categories:

- Network scans by KFUPM Information Technology Center.
- Traffic generated by honeypots due to normal network operations (e.g. traffic

to maintain the network connection).
- Network broadcasts, such as BitTorrent requests.

At KFUPM, more than 30,000 activities were captured in the given 30-hours interval.
Tale 1 shows the distribution of these types of activities in more details.

 A Distributed Honeynet at KFUPM: A Case Study 487

Table 1. The traffic distribution as it was detected by KFUPM honeynet in a 30-hours interval

Name Protocol Severity Total
IIS view script source code vulnerability attack TCP Medium 8
MS Uni Plug and Play UDP UDP Medium 30
NBT(NetBIOS) Datagram Service UDP Low 399
Bit Torrent requests TCP Medium 19098
DHCP requests UDP Low 9938

In terms of severity, around 65% of the traffic was considered medium risk, while

the remaining 35% was considered low. The high percentage of the medium-level
category was due to the fact that the system classifies BitTorrents file sharing, which
makes around 70% of the total traffic, as medium risk. This percentage is of no sur-
prise since BitTorrent accounts for an astounding 40-55% of all the traffic on the
Internet [5], and it is expected to be high in the students’ living campuses.

Another interesting finding is the detection of a vulnerability attack on the Internet
Information Service (IIS) that was installed on the Windows-based honeypots. This
vulnerability has the signature KFAGC165421, and indicates that IIS contains a flaw
that allows an attacker to cause IIS to return the source code for a script file instead of
processing the script. This vulnerability attack traffic was generated by one of the
systems in the students’ living campus.

3 Conclusion and Future Work

Our experience so far shows that Honeywall CDROM proved to be a solid tool that is
capable of capturing great deal of information and assisting in analyzing traffic on the
distributed honeypots. The honeynet designer, nevertheless, needs to consider few
issues related to scalability and resource utilization.

Out future work includes expanding our honeynet network to include other col-
leges and campuses in the university and have wider honeynet coverage. This will
also require increasing our logging disk space to allow for more logging time, longer
logging intervals and thus broader analysis.

References

1. The Honeywall CDROM, https://projects.honeynet.org/honeywall/
2. Argus: The Network Activity Auditing Tool, http://www.qosient.com/argus
3. TCPreplay, http://tcpreplay.synfin.net/
4. WireShark, http://www.wireshark.org/
5. Le Blond, S., Legout, A., Dabbous, W.: Reducing BitTorrent Traffic at the Internet Scale. A

Presentation at the Internet Research Task Force, IRTF (March 2010)

Aspect-Based Attack Detection in Large-Scale

Networks

Martin Drašar, Jan Vykopal, Radek Krejč́ı, and Pavel Čeleda

Masaryk University, Botanická 68a, 61200, Brno, Czech Republic

<surname>@ics.muni.cz

Abstract. In this paper, a novel behavioral method for detection of at-

tacks on a network is presented. The main idea is to decompose a traffic

into smaller subsets that are analyzed separately using various mecha-

nisms. After analyses are performed, results are correlated and attacks

are detected. Both the decomposition and chosen analytical mechanisms

make this method highly parallelizable. The correlation mechanism al-

lows to take into account results of detection methods beside the aspect-

based detection.

1 Introduction

With the advent of multigigabit networks, the task to detect attacks becomes
more and more challenging. The deep packet inspection and the pattern match-
ing are reaching their limits. Not only hardware requirements are becoming more
demanding than what can be supplied. Also a steady influx of new attacks makes
all signature sets outdated by the time they are released. This situation actuated
a development of new signature-less attack detection methods, namely the net-
work behavioral analysis. The principle of such analysis is to reveal a potentially
harmless behavior of network hosts by detecting deviations in traffic patterns.
These methods are e. g., based on the Holt-Winters method [1] or the principal
component analysis [2] and are successful in a detection of both existing and
previously unknown attacks.

In the following text a new behavioral method called the aspect-based detec-
tion that offers a high speed and an ability to detect new attacks is proposed.

2 Aspect-Based Detection

Various network devices like switches or probes are able to store a set of traffic
descriptors, like IP addresses, ports and transferred data for each connection. A
combination of one or more of these descriptors represents one aspect of traffic,
e. g., i) amount of traffic from one address (source address, payload size, time)
or ii) traffic volume on given port over the time (destination port, payload size,
time).

Every aspect can be represented as a multidimensional matrix where each
element stands for one connection. These matrices are subject to analysis. This

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 488–489, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Aspect-Based Attack Detection in Large-Scale Networks 489

approach has several advantages. First, by splitting the entire traffic into its
aspects the volume of data that has to be processed at one time is lowered,
thus relaxing hardware requirements. Aspects also conserve relations in traffic
patterns. Second, by representing traffic data as a matrix, fast and specialized
algorithms from the area of the digital signal processing can be used.

The core operation in the aspect-based detection is an application of linear
and non-linear filters on aspect matrices. Non-linear filters are mainly used for
thresholding – representing static anomaly checks, e. g., one computer connects
to a hundred other computers. Linear filters are used to tackle dynamic aspects
of a traffic. A convolution with Sobel-like operators that approximate the second
derivation can effectively discover sudden changes in traffic, that can e. g., point
to an activation of infected computer. Aspect matrices or the entire traffic can
also be fed to other detection mechanisms, provided their result can be converted
to a matrix with values comparable to other transformed aspect matrices.

Each transformed aspect matrix can identify an ongoing attack, but it is more
likely to only highlight traffic deviations. To discover more stealthy attacks, it
is necessary to correlate these matrices. This is done by constructing a resulting
matrix which dimensions are sum of dimensions of transformed aspect matrices.
Individual matrices are added to the resulting one in a manner that influences
also dimensions the added matrix is not defined for. This addition is best de-
scribed by an example. Let Ra,b,c,d be a four-dimensional resulting matrix and
Aa,c,d, Ba,b and Cc,d be transformed aspect matrices. A calculation of one ele-
ment goes like this: Rax,by,cz,dw = Aax,cz,dw + Bax,by + Ccz,dw .

The resulting matrix describes traffic in terms of identified deviations. There
are likely to be three kinds of areas in this matrix – where a deviation going over
certain thresholds i) indicates an attack, ii) is harmless, iii) is suspicious. These
thresholds have to be hand selected at least for known attacks. But for unknown
attacks these thresholds might be derived e. g., from a distance from a known
attack in the resulting matrix. Distance metrics are to be modified according to
a collected data.

3 Future Work

The research of the aspect-based detection has to focus on several key areas. Main
task is to create appropriate data structures that will allow effective processing
of aspect matrices. Also the previously mentioned areas in the resulting matrix
must be identified and metric-derived thresholds investigated.

References

1. Li, Z., Gaoa, Y., Chen, Y.: HiFIND: A high-speed flow-level intrusion detection

approach with DoS resiliency. Computer Networks 54(8), 1282–1299 (2010)

2. Lakhina, A., Crovella, M., Diot, C.: Anomaly Detection via Over-Sampling Principal

Component Analysis Studies. Computational Intelligence 199, 449–458 (2009)

Detecting Network Anomalies in Backbone

Networks

Christian Callegari, Loris Gazzarrini, Stefano Giordano,
Michele Pagano, and Teresa Pepe

Dept. of Information Engineering, University of Pisa, Italy

{c.callegari,l.gazzarrini,s.giordano,m.pagano,t.pepe}@iet.unipi.it

1 Extended Abstract

The increasing number of network attacks causes growing problems for network
operators and users. Thus, detecting anomalous traffic is of primary interest in
IP networks management. As it appears clearly, the problem becomes even more
challenging when taking into consideration backbone networks that add strict
constraints in terms of performance.

In recent years, Principal Component Analysis (PCA) has emerged as a very
promising technique for detecting a wide variety of network anomalies. PCA is
a dimensionality-reduction technique that allows the reduction of the dataset
dimensionality (number of variables), while retaining most of the original vari-
ability in the data. The set of the original data is projected onto new axes, called
Principal Components (PCs). Each PC has the property that it points in the
direction of maximum variance remaining in the data, given the variance already
accounted for in the preceding components.

In this work, we have focused on the development of an anomaly based Net-
work Intrusion Detection System (IDS) based on PCA. The starting point for our
work is represented by the work by Lakhina et al. [1], [2]. Indeed, we have taken
the main idea of using the PCA to decompose the traffic variations into their
normal and anomalous components, thus revealing an anomaly if the anomalous
components exceed an appropriate threshold. Nevertheless, our approach intro-
duces several novelties in the method, allowing great improvements in the system
performance. First of all we have worked on four distinct levels of aggregation,
namely ingress router, origin-destination flows, input link, and random aggre-
gation performed by means of sketches, so as to detect anomalies that could be
masked at some aggregation level. In this framework, we have also introduced a
novel method for identifying the anomalous flows inside the aggregates, once an
anomaly has been detected. To be noted that previous works are only able to
detect the anomalous aggregate, without providing any information at the flow
level. Moreover, in our system PCA is applied at different time-scales. In this
way the system is able to detect both sudden anomalies (e.g. bursty anomalies)
and “slow” anomalies (e.g. increasing rate anomalies), which cannot be revealed
at a single time-scale. Finally, we have applied, together with the entropy, the
Kullback-Leibler divergence for detecting anomalous behavior, showing that our

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 490–491, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Detecting Network Anomalies in Backbone Networks 491

Netflow ASCIIData
Formatting

Flow Aggregation

Aggregate?

OD IL IR random

Time-series construction

Metrics?

K-L DivergenceEntropy

Anomaly Detector

PCs

computation
Detection

ξ

Identification

Fig. 1. System Architecture

choice results in better performance and more stability for the system. Figure 1,
shows the architecture of the proposed system.

The proposed system has been tested using a publicly available data-set, com-
posed of traffic traces collected in the Abilene/Internet2 Network [3], that is a
hybrid optical and packet network used by the U.S. research and education com-
munity. Since the data provided by the Internet2 project do not have a ground
truth file, we are not capable of saying a priori if any anomaly is present in the
data. For this reason we have partially performed a manual verification of the
data, analyzing the traces for which our system reveals the biggest anomalies.
Moreover we have synthetically added some anomalies in the data (mainly rep-
resentative of DoS and DDoS attacks), so as to be able to correctly interpret the
offered results, at least partially. The performance analysis has highlighted that
the implemented system obtains very good results, detecting all the synthetic
anomalies.

References

1. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies in

traffic flows. In: ACM Internet Measurement Conference, pp. 201–206 (2004)

2. Lakhina, A.: Diagnosing network-wide traffic anomalies. In: ACM SIGCOMM, pp.

219–230 (2004)

3. The Internet2 Network, http://www.internet2.edu/network/

http://www.internet2.edu/network/

Detecting the Onset of Infection for Secure

Hosts

Kui Xu1, Qiang Ma2, and Danfeng (Daphne) Yao1

1 Department of Computer Science, Virginia Tech

{xmenxk,danfeng}@cs.vt.edu
2 Department of Computer Science, Rutgers University

qma@cs.rutgers.edu

Abstract. Software flaws in applications such as a browser may be ex-

ploited by attackers to launch drive-by-download (DBD), which has be-

come the major vector of malware infection. We describe a host-based

detection approach against DBDs by correlating the behaviors of human-

user related to file systems. Our approach involves capturing keyboard

and mouse inputs of a user, and correlating these input events to file-

downloading events. We describe a real-time monitoring system called

DeWare that is capable of accurately detecting the onset of malware

infection by identifying the illegal download-and-execute patterns.

Analysis based on the arrival methods of top 100 malware infecting the most
number of systems discovered that 53% of infections are through download [1]. In
another study, 450,000 out of 4.5 millions URLs were found to contain drive-by-
download exploits that may be due to advertisement, third-party contents, and
user-contributed contents [2]. Drive-by-download (DBD) attacks exploit the vul-
nerabilities in a browser or its external components to stealthily fetch malicious
executables from remote malware-hosting server without proper permission of
the user.

We present DeWare – a host-based security tool for detecting the onset of
malware infection at real time, especially drive-by-download attacks. Deware
is application independent, thus it is capable of performing host-wide moni-
toring beyond the browser. DeWare’s detection is based on observing stealthy
download-and-execute pattern, which is a behavior virtually all active malware
exibits at its onset.

However, the main technical challenge to successful DBD detection is to tell
DBDs apart from legal downloads. Our solution is based on monitoring relevant
file-system events and correlating them with user inputs at the kernel level. In
contrast to DBDs, legitimate user download activities are triggered by explicit
user requests. Also, browser itself may automatically fetch and create temporary
files which are not directly associated with user actions. To that end, we grant
browser access to limited folders with additional restrictions.

Security and attack models. We assume that the browser and its components
are not secure and may have software vulnerabilities. The operating system
is assumed to be trusted and secure, and thus the kernel-level monitoring of

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 492–493, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Detecting the Onset of Infection for Secure Hosts 493

file-system events and user inputs yields trusted information. The integrity of
file systems defined in our model refers to the enforcement of user-intended or
user-authorized file-system activities; the detection and prevention of malware-
initiated tampering.

DeWare Archietecture Overview. The DeWare monitoring system is de-
signed to utilize a combination of three techniques, including input logger, sys-
tem monitor, and execution monitor. Following are the main components.
– Input logger that intercepts user inputs at the kernel level with timestamp

and process information (i.e., to which process the inputs go to). User in-
puts are viewed as trusted seeds in our analysis, which are used to identify
legitimate system behaviors.

– System logger which intercepts system calls for file creations, and probes
kernel data structures to gather process information. Timestamps can be
obtained from input logger at runtime to perform temporal correlation.

– Access control framework that specifies (1)accessible area: where an applica-
tion is allowed to make file creations, (2)downloadable area: places a user can
download files into via an application.

– Execution monitor which gives additional inspection to areas where access
is granted to an application or user downloads.

Capturing all file-creation events related to processes generates an overwhelm-
ingly large number of false alarms. The purpose of our access control framework
is to reduce the white noise, by granting a process access to certain folders, which
are defined as accessible area. For example, Temporary Internet Files folder is
modifiable by IE – in contrast, system folder is not. Execution monitor is to
prevent malware executables from being run at accessible area.

Prototype Implementation in Windows Our implementation and experi-
ments are built with Minispy, a kernel driver for Windows operating systems. It
is able to monitor all events where system is requesting to open a handle to a file
object or device object, and further find out the file creations. Logged activities
are reported to user mode where the access control policy, input correlation, file
extension check are performed. We record user inputs at the kernel level through
hooks SetWindowsHookex provided by Windows OS. The execution monitor is re-
alized with Microsoft PsTools and the process tracking in local security settings.
We have carried out a study with 22 users to collect real-world user download
behavior data. We will also use DeWare to evaluate a large number of both
legitimate and malware-hosting websites for testing its detection accuracy.

References

1. Macky Cruz. Most Abused Infection Vector,

http://blog.trendmicro.com/most-abused-infection-vector/
2. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost

in the browser analysis of web-based malware. In: Hot-Bots 2007: Proceedings of

the First Conference on First Workshop on Hot Topics in Understanding Botnets.

USENIX Association, Berkeley (2007)

http://blog.trendmicro.com/most-abused-infection-vector/

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 494–495, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Eliminating Human Specification in Static Analysis*

Ying Kong, Yuqing Zhang**, and Qixu Liu

National Computer Network Intrusion Protection Center, GUCAS, Beijing 100049, China
Tel.: +86-10-88256218; Fax: +86-10-88256218

zhangyq@gucas.ac.cn
State Key Laboratory of Information Security, GUCAS, Beijing 100049, China

Abstract. We present a totally automatic static analysis approach for detecting
code injection vulnerabilities in web applications on top of JSP/servlet frame-
work. Our approach incorporates origin and destination information of data
passing in information flows, and developer’s beliefs on vulnerable information
flows extracted via statistical analysis and pattern recognition technique, to in-
fer specifications for flaws without any human participation. According to ex-
periment, our algorithm is proved to be able to cover the most comprehensive
range of attack vectors and lessen the manual labor greatly.

Published static approaches for detecting code injection vulnerabilities depend on
human work heavily to specify flaws and to build auditing model. This leads to much
omission in tagging attack vectors due to the erratic nature of human judgment, fur-
thermore, the omission in flaw report. In this paper, we present a novel approach
named injection vulnerability checking tool (IVCT) to solve this problem.

We consider the attack against code injection vulnerability as an improper commu-
nication procedure among three components including the front-end web server, the
back-end database and the underlying operating system. Return from method invoked
on web server forms the message, and is finally accepted by another method invoked
on one of the three components. We treat the former method as taint source, and the
latter as vulnerable receiver. Data flow of the message, which starts with taint source
and ends at vulnerable receiver, is regarded as possible candidate of vulnerable flow
in this paper. Such model covers the most comprehensive range of attack vectors.

IVCT framework consists of four phases, which are illustrated in Fig 1. We take
advantage of the slicing technique [1] described in [2] to track propagation of un-
trusted input, and enhance the dataflow analysis with indirect propagation which
models the relationship between the data passing into and out of a library method and
abstracts away the concrete operations on data therein. Such abstraction is based on
the insight that most library code won’t modify data structure from customer code.
Before tracking, just those sensitive components’ jar paths are required be specified in
advance to locate the candidate information flows. During tracking, we can collect
tainted information propagated via library invocation directly instead of tracking into
the implementation. For example, in the statement “str2=a.fun(str1)”, data “str1”

* This work is supported by the National Natural Science Foundation of China under Grant No.

60970140, No.60773135 and No.90718007.
** Corresponding author.

 Eliminating Human Specification in Static Analysis 495

Fig. 1. IVCT Workflow

Table 1. Experimental Results Comparing with
TAJ and bddbddb

passes into library invocation “a.fun”, then reference variable “a” and “str2” will be
treated as tainted data passing out of the invocation. Such enhancement are expected
to simplify the tracking process, and hence to improve the scalability.

We manually inspected two web applications “Webgoat5.3RC” and “blojsom-
3.3b”, both of which are used by tools TAJ in Tripp [2] and bddbddb in [3] for ex-
periment data. In the analysis, IDE “Eclipse” is utilized to locate grammar element of
java code, the rest operations are rigorously adhered to IVCT’s instructions. There-
fore, no human judgments have been involved into the inspection. According to the
experimental results illustrated in Table 1, our approach is proved to be better in two
factors. First, no human participation is required by IVCT. In contrast, TAJ and
bddbddb require checkers to read the libraries used by targeted web applications thor-
oughly to flag taint sources and sinks. Second, IVCT captures more vulnerabilities
with fewer false positives. We own the bigger number to the fact that IVCT’s candi-
date flows cover all the attack vectors. In fact, every method returning variable possi-
ble to carry string value in web server library is potential taint source, but TAJ limits
taint source only in form input and upload file data. Additionally, variables propa-
gated by sinks’ reference variables are potential vulnerable receivers. However, such
propagation is ignored by both [2] and [3]. In the future, we plan to implement our
approach in a tool to be used in real code. In addition, try to extract other beliefs bur-
ied in program code which can be used as flaw specification.

References

1. Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, vol. 42(6), pp. 112–122 (2007)

2. Tripp, O., Pistoia, M., Fink, S., Sridharan, M., Weisman, O.: TAJ: Effective Taint Analysis
of Web Applications. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 87–97 (2009)

3. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications with static
analysis. In: The 14th USENIX Security Symposium, pp. 271–286 (2005)

Evaluation of the Common Dataset Used in

Anti-Malware Engineering Workshop 2009

Hosoi Takurou and Kanta Matsuura

Institute of Industrial Science, The University of Tokyo

4-6-1, Komaba, Meguro-ku, Tokyo 153-8585, Japan

Abstract. Anti-Malware Engineering Workshop 2009 provided a com-

mon dataset for all the authors there. In order to understand research-

promotion effects in the network-security community, we evaluate the

dataset through observations and a questionnaire.

Keywords: malware, evaluation dataset, network security.

1 Introduction

Evaluation by using datasets is a major approach in network security due to the
difficulty of theoretical evaluation. If a common dataset is available, we can have
more reliable comparison among different technologies. And if the dataset is bet-
ter maintained, the absolute quality of each evaluation gets better. A Japanese
domestic workshop on network security, called anti-Malware engineering Work-
Shop 2009 (MWS2009) [3], was challengingly designed in a way that all the 28
authors should use a common dataset (CCC DATAset 2009 [2]). In order to un-
derstand effects of this challenge on research promotion, we evaluate the dataset
through observations and a questionnaire.

2 Observations

A well-known example of commonly available datasets is DARPA dataset [1]
which is basically for intrusion-detection evaluation. By contrast, CCC DATAset
2009 has a more comprehensive nature with the following three classes of data:

(S) malware specimen information (on 10 malwares),
(T) attack traffic data (by 2 hosts, 2 days long), and
(A) attack source log (by 94 hosts, 1 year long).

These data were captured at 94 honeypots during one year from the middle of
2008 to the middle of 2009, and were provided along with the dataset used in
the previous year’s edition of MWS. This comprehensiveness is an advantage;
the more researchers join the chellenging workshop, the higher the productivity
of the challenge is.

Another remarkable feature of the dataset is operational efforts for organiz-
ing the workshop (e.g. carefully-designed contracts among stakeholders). The
realization of the workshop itself and its sustainability (in fact, the Japanese
community is preparing MWS2010) suggests benefits from this feature.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 496–497, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Evaluation of the Common Dataset in MWS2009 497

3 Questionnaire-Based Evaluation

3.1 Questionnaire

We sent a questionnaire to all the users of the dataset, and received 27 responses.
The questionnaire consists of 89 questions, which are on the role of replying
person and other administrative aspects (8 questions), on technical aspects in
general (14 questions), on the data of class (S) (17 questions), on the data of
class (T) (29 questions), and on the data of class (A) (21 questions). The large
number of questions on technical aspect were designed in a systematic manner;
many of them ask “expectation before use” as well as “evaluation after use”,
and “absolute evaluation considering their demand” as well as “comparison of
the absolute evaluation with their own dataset (i.e. not the common dataset but
the dataset which the researcher prepared by themselves)”.

3.2 Result

Due to the page limitation, we here show some remarkable results only.

The rate of deployment: The ratio of the number of users who used each
class of data to the number of users who planned to use them before starting
their research are: 〈8/11〉 for the class (S), 〈17/20〉 for the class (T), and
〈10/13〉 for the class (A). It should be noted that the ratio is 〈9/16〉 for
responses from researchers who used data of multiple classes. The importance
of dataset comprehensiveness is thus suggested.

The usefulness of the dataset: Regarding the usefulness of the dataset of
each class, the negative answers are very few: 1 out of 8 for class (S), 0 out
of 17 for class (T), and 0 out of 10 for class (A). The high productivity of
the project is thus suggested.

4 Concluding Remarks

Through observations and a questionnaire-based evaluation, we found that CCC
DATAset 2009 has many good features and is supported by participating re-
searchers. It is suggested that the comprehensiveness of the dataset brings a
large impact. In the poster, more details will be described.

References

1. DARPA intrusion detection evaluation dataset, http://www.ll.mit.edu/mission/

communications/ist/corpora/ideval/data/index.html

2. Hatada, M., Nakatsuru, Y., Terada, M., Shinoda, Y.: Dataset for anti-malware re-

search and research achievements shared at the workshop. In: Computer Security

Symposium 2009 (CSS 2009), Anti-Malware Engineering WorkShop 2009 (MWS

2009), IPSJ, Japan, pp. 1–8 (2009) (in Japanese)

3. anti-Malware engineering WorkShop 2009 (MWS 2009),

http://www.iwsec.org/mws/2009/en.html

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html

Inferring Protocol State Machine from

Real-World Trace

Yipeng Wang12, Zhibin Zhang1, and Li Guo1

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2 Graduate University, Chinese Academy of Sciences, Beijing, China

wangyipeng@software.ict.ac.cn

Abstract. Application-level protocol specifications are helpful for

network security management, including intrusion detection, intrusion

prevention and detecting malicious code. However, current methods for

obtaining unknown protocol specifications highly rely on manual oper-

ations, such as reverse engineering. This poster provides a novel insight

into inferring a protocol state machine from real-world trace of a applica-

tion. The chief feature of our method is that it has no priori knowledge

of protocol format, and our technique is based on the statistical na-

ture of the protocol specifications. We evaluate our approach with text

and binary protocols, our experimental results demonstrate our proposed

method has a good performance in practice.

1 Introduction and System Architecture

Finding protocol specifications is a crucial issue in network security, and detailed
knowledge of a protocol specification is helpful in many network security appli-
cations, such as intrusion detection systems and vulnerability discovery etc. In
the context of extracting protocol specifications, inferring the protocol state ma-
chine plays a more important role in practice. ScriptGen [1] is an attempt to infer
protocol state machine from network traffic. However, the proposed technique is
limited for no generalization.

This poster provides a novel insight into inferring a protocol state machine
from real-world packet trace of an application. Moveover, we propose a system
that can automatically extract protocol state machine for stateful network pro-
tocols from Internet traffic. The input to our system is real-world trace of a
specific application, and the output to our system is the protocol state machine
of the specific application. Furthermore, our system has the following features,
(a) no knowledge of protocol format, (b) appropriate for both text and binary
protocols, (c) the protocol state machine we inferred is of good quality.

The objective of our system is to infer the specifications of a protocol that is
used for communication between different hosts. To this end, our system carries
on the whole process in four phases, which are shown as follows:
Network data collection. In this phase, network traffic of a specific application
(such as SMTP, DNS etc.) is collected carefully. In this poster, The method of
collecting packets under specific transport layer port is adopted.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 498–499, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Inferring Protocol State Machine from Real-World Trace 499

EHLO
/

HELO

MAIL
FROM

:

RCPT
TO: < DATA

RCPT TO:
<

QUITRSET
M

AI
L

FR
O

M
:

220 250

250

550
x

25
0- 25

0

q0 q1 q2 q3 q4

q6 q7

q9
(0)

q12

q13

q10

250-

q8

x

q5

C
O

N
TE

N
T

q11

CONTENT

q0 q1

q2

q3

q4

q5

a

d c

b

dd c

a

e d

e

e
b

a 0x32 0x00 0x00 0x00 0x06 0x00 0x00

b 0x32 0x00 0x00 0x00 0x07

c 0x32 0x00 0x00 0x00 0x08

d 0x32 0x00 0x00 0x00 0x11

e 0x32 0x00 0x00 0x00 0x12

c

e

Fig. 1. The Protocol State Machine of SMTP and XUNLEI Protocol

Packet analysis. During the part of packet analysis, we first look for high fre-
quency units from off-line application-layer packet headers, which is obtained by
the phase of network data collection. Then, we employ Kolmogorov-Smirnov(K-S)
test to determine the optimal number of units. Finally, we replay each application-
layer packet header and construct protocol format messages with objective units.

Message clustering. In this phase, we extract the feature from each protocol
format message. The feature is used to measure the similarity between messages.
Then, the partitioning around medoids (PAM) clustering algorithm is applied to
group similar messages into a cluster. Finally, the medoid message of a cluster
will become a protocol state message.

State machine inference. In order to infer protocol state machine, we should
be aware of the packet state sequence of flows. For the purpose of labeling the
packet state, initially we have to find the nearest medoid message of each packet
and assign the identical label type to the packet. Then, by finding the relationship
between different state types, a protocol machine is constructed. After state
machine minimization, we will get the ultimate protocol state machine.

2 Evaluation

We make use of SMTP (text protocol) and XUNLEI (binary protocol) to test
and verify our method. The protocol state machine of SMTP we inferred is shown
in Fig. 1 left, and XUNLEI in right. Moreover, our evaluation experiments show
that our system is capable of parsing about 86% flows of SMTP protocol and
about 90% flows of XUNLEI protocol.

Reference

1. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: an automated script generation tool

for honeyd. In: Annual Computer Security Applications Conference (2005)

MEDUSA:

Mining Events to Detect Undesirable uSer
Actions in SCADA

Dina Hadžiosmanović, Damiano Bolzoni and Pieter Hartel

Distributed and Embedded Security, University of Twente

{dina.hadziosmanovic,damiano.bolzoni,pieter.hartel}@utwente.nl

Abstract. Standard approaches for detecting malicious behaviors, e.g.

monitoring network traffic, cannot address process-related threats in

SCADA(Supervisory Control And Data Acquisition) systems. These

threats take place when an attacker gains user access rights and performs

actions which look legitimate, but which can disrupt the industrial pro-

cess. We believe that it is possible to detect such behavior by analysing

SCADA system logs. We present MEDUSA, an anomaly-based tool for

detecting user actions that may negatively impact the system.

1 Problem

There is a wide range of possible attacks that can be carried out against SCADA
environments [1,2]. We classify possible threats in two groups: system- and
process-related. System-related threats are typical of “regular” computer net-
works, e.g., malware or Denial of Service attacks. Attackers leverage vulnerabil-
ities in networked systems and programmable logic controllers (PLCs) to alter
or disrupt the industrial process. Process-related threats imply that an attacker
gains user access rights (e.g., through social engineering) and performs legiti-
mate SCADA commands which will negatively affect the industrial processes.
Typical security countermeasures, e.g., antivirus or network IDSes, can hardly
detect process-related threats, as they lack process semantic.

In this work, we focus on the detection of process-related threats. Based on in-
terviews with stakeholders, we distinguish two types of threat scenarios, namely
1) an attacker impersonates a system user or 2) a legitimate system user makes
an operational mistake. A SCADA engineer manages object libraries and user
interfaces, sets working ranges for devices, etc. If an attacker succeeds in acquir-
ing the access rights of an engineer, she is then able to perform actions such
as altering a device parameter (e.g., change capacity of a tank) or altering the
system topology (e.g. some devices become “invisible”, and thus inaccessible).
A SCADA operator monitors the system status and reacts to events, such as
alarms, so that the process runs correctly. An attacker, impersonating an op-
erator or an engineer, can generate a sequence of actions where each action is
legitimate, but the combination (or even a single action) can damage the process.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 500–501, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

MEDUSA: Mining Events to Detect Undesirable uSer Actions in SCADA 501

We argue that to detect process-related attacks one needs to analyse data
passed through the system (Bigham et al. [1]) and include a semantical un-
derstanding of the process and user actions. This can be achieved either by
employing a tool such Bro, which requires the network protocol specifications
(but those could be hard to obtain due to the closeness of SCADA systems), or
by analysing system logs.

2 Solution

Typically, SCADA system logs provide detailed information about industrial
processes. However, based on interviews with stakeholders, logs are not nor-
mally processed. The reason for this is that system engineers lack time, skills
and specific tools for performing a thorough analysis. The size and high dimen-
sionality of the logs make manual inspection infeasible. For instance, a SCADA
system for a water treatment process in a medium-size city, depending on daily
activities, records between 5.000 and 15.000 events per day.

We believe that system logs can be used to detect process-related threats and
user mistakes automatically. We propose a visualization tool, MEDUSA(Mining
Events to Detect Undesirable uSer Actions in SCADA), whose engine is based on
anomaly detection. MEDUSA automatically analyses system logs, detects and
alerts users about situations in which the system behaves unconsistently with
past behavior. As a result, the number of security-related alarms that operators
have to look at is decreased. The anomaly detection models in MEDUSA are
built using two data mining techniques. First, we use algorithms for mining
outliers to detect individual actions and events that are significantly different
from previous entries. Secondly, we analyse sequences of events and actions in
the logs to provide a better view on the situation context. Once we train our
model on history logs of a particular system, we plan to use the model in real-
time analysis a SCADA system.

Preliminary results show that our approach is feasible. The initial dataset con-
sists of 100.000 entries which correspond to approximatively 15 days of process
work. The attributes are mostly categorical. The goal of our initial analysis was
to transform the dataset in such a way that anomalous entries are highlighted.
We managed to extract several events that may semantically represent suspi-
cious behavior (eg., a previously unseen engineer activity in late night hours,
user expression errors when connecting to critical communication backbones).

References

1. Bigham, J., Gamez, D., Lu, N.: Safeguarding scada systems with anomaly detection.

In: MMMACNS 2003: Proc. 2nd International Workshop on Mathematical Meth-

ods, Models and Architectures for Computer Network Security. LNCS, pp. 171–182.

Springer, Heidelberg (2003)

2. Chittester, C.G., Haimes, Y.Y.: Risks of terrorism to information technology and

to critical interdependent infrastructures. Journal of Homeland Security and Emer-

gency Management, Article 402 1(4), 341–348 (2004)

On Estimating Cyber Adversaries’ Capabilities:

A Bayesian Model Approach�

Jianchun Jiang1, Weifeng Chen2, and Liping Ding1

1 National Engineering Research Center of Fundamental Software,

Institute of Software, Chinese Academy of Sciences, Beijing, China

jianchun@nfs.iscas.ac.cn, dlp@iscas.ac.cn
2 Dept. of Math and Computer Science, California University of PA, USA

chen@calu.edu

1 Introduction

Cyber adversaries refer to people or groups who do harm to the information
system, such as hackers, espionage persons, and terrorists. Different Cyber ad-
versaries have different motivations, and obviously, have different resources and
attack techniques. The resource and attack techniques are referred to as adver-
saries’ capacities. Accurate estimation of adversaries’ capacities can help net-
work administrator to use different approaches to prevent potential attacks or
respond to emerging attacks. However, cyber adversaries’ capabilities are hidden,
dynamic and difficult to observe directly. This poster aims to take a systemic
approach to estimate adversaries’ capacities. Since we cannot obtain complete
information about the adversaries, a reasonable approach is to estimate adver-
saries’ capabilities using partial information that has been observed. The esti-
mation hypothesis, initially stating that the adversary has equal probabilities to
have high level capacities and low level capacities, will be refined using Bayesian
rules as we collect more evidences from network data.

2 A Bayesian Model

We use H to represent the hypothesis “The cyber adversary’s capability is high
level”. Based on Bayes’ theorem, we can update the degree of belief of hypothesis
H given an evidence E in the following way:

P (H |E) =
P (E|H)
P (E)

× P (H) (1)

� This work is supported in part by the National High-Tech Research and Development

Plan of China under Grant No.2007AA010601 and the Knowledge Innovation Key

Directional Program of Chinese Academy of Sciences under Grant No. KGCX2-

YW-125. The authors would like to thank Dr. Peng Ning at North Carolina State

University for his insightful discussion.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 502–504, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Estimating Cyber Adversaries’ Capabilities 503

3 Extracting Evidences from Network Data

Transferring from network data to evidences plays an essential role in this refin-
ing process. We divide network data into different categories and build a database
that correlates the data categories with attack scenarios. Due to the space limita-
tion, here we only describe the “Exploit” evidence as an example. The “Exploit”
category describes an adversary’s characteristics of exploiting vulnerabilities of
the target. Let Vd be the publication date of the vulnerability that is exploited
by the adversary. Let Vc be the date when the vulnerability is exploited by the
adversary. Generally, if Vc − Vd is small, it means that the adversary has strong
capability in exploring the target, e.g., the zero-day attack. We then use the
ratio 1

Vc−Vd
to represent exploit capability of the adversary.

{
P (Exploit|H) ≈ 1

Vc−Vd
where Vc − Vd �= 0 and Vc > Vd

P (Exploit|H) ≈ 1 otherwise

4 Case Study

More and more Cyber adversaries are interested in attacking popular Web sites,
commonly by exploring vulnerabilities of the Web sites. Based on the network

Table 1. Selected vulnerabilities and their “Exploit” values in year 2007.

Adversary Vulnerability Vd (dd.mm.yyyy) Vc(dd.mm.yyyy) Vc − Vd

A1 MS07-004 09.01.2007 26.01.2007 17
A2 MS07-009 24.10.2006 28.03.2007 158
A3 MS07-017 28.03.2007 30.03.2007 2
A4 MS07-020 10.04.2007 15.09.2007 155
A5 MS07-033 14.03.2007 07.07.2007 113
A6 MS07-035 12.06.2007 11.07.2007 29
A7 MS07-045 15.08.2007 02.09.2007 17
A8 CVE-2007-3148 06.06.2007 08.06.2007 2
A9 CVE-2007-4105 02.08.2007 18.08.2007 16
A10 CVE-2007-4748 19.08.2007 19.08.2007 0
A11 CVE-2007-5017 19.09.2007 26.09.2007 7
A12 CVE-2007-3296 30.05.2007 25.06.2007 25
A13 CVE-2007-5064 30.08.2007 30.08.2007 0

Fig. 1. Different Capabilities for Cyber Adversary Hacking Website

504 J. Jiang, W. Chen, and L. Ding

data about the Chinese Web sites [1] for selected vulnerabilities in the year
2007, we extract the “Exploit” evidence and use this evidence to illustrate the
application of our model. Table 1 shows 13 adversaries, vulnerabilities exploited
by each adversary, and their Vc and Vd.

Based on this information, we applied our model described in this poster and
obtain the P (H) for the 13 adversaries, as shown in Figure 1.

Reference

1. Zhuge, J., Holz, T., Song, C., Guo, J., Han, X., Zou, W.: Studying Malicious Web-

sites and the Underground Economy on the Chinese Web. In: 7th Workshop on the

Economics of Information Security (WEIS 2008), Hanover, NH, USA (June 2008)

Security System for Encrypted Environments

(S2E2)

Robert Koch and Gabi Dreo Rodosek

Universität der Bundeswehr München, 85577 Neubiberg, Germany

{Robert.Koch,Gabi.Dreo}@UniBw.de

Abstract. The percentage of encrypted network traffic increases steadily

not only by virtual private networks of companies but also by proto-

cols like SSH or SSL in the private sector. Traditional intrusion detec-

tion systems (IDS) are not able to cope with encrypted traffic. There

are a few systems which are able to handle encrypted lines but none

of them is applicable in general because of changed network protocols,

a restricted application range (e.g., only able to find protocol-specific

attacks) or very high false alarm rates. We propose a new IDS for non-

intrusive, behavior-based intrusion- and extrusion detection in encrypted

environments.

Keywords: intrusion detection, payload encryption, non-intrusive mea-

surement, user strategy, traffic clustering, extrusion detection, data leak-

age detection.

1 Background

Signature-based IDSs (misuse detection) are widely used for the protection of
networks. Because patterns of the malware must be available in the database of
the IDS, only already known threats can be found. A study of the Massachusetts
Institute of Technology in the year 2002 unfoldes, that software patches are
often available at the same time as the signatures for IDSs are [1], therefore
reducing the advantages of the IDS. Even more, the increasing percentage of
encrypted network traffic additionally limits the detection capability of those
systems, because they have to analyze the payload and are not able to cope
with encrypted traffic. Unlike the misuse detection, anomaly-based systems are
able to detect new or unknown threats. E.g., the spreading of new worms can
be detected, but attacks inside the encrypted traffic (on application layer) are
still not detectable. Currently, there are only few IDSs able to cope with en-
crypted traffic but none of them is applicable in general. [2] gives an overview of
available systems and also proposes a new one (which also has the same
restrictions).

2 S2E2 System Architecture

S2E2 is an anomaly-based system. All parts of the system are working non-
intrusive, a decryption is not necessary. Based on the observable encrypted

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 505–507, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

506 R. Koch and G.D. Rodosek

network traffic, the user input is identified and weighted. Concurrently, the user
generating the network traffic is identified by keystroke dynamics. The therefor
necessary features are recovered by the timing of the network packets. The sys-
tem architecture consists of the following modules:

Traffic Clustering: The system records the timestamps of the network packets,
the payload sizes and the transmission directions. The gathered data is grouped
into clusters, whereas a cluster consists of an user input and the corresponding
answer of the server.

Command Evaluation: This is done by analysing the consecutive payload sizes
of the network packets. Timestamps are taken into consideration as well, e.g. for
the detection of server delays (for example, the delay when requesting the listing
of a directory is all the longer with the number of files in the directory). In the
first step, probabilities for single command-answer-combinations are calculated.
Best values for each cluster are selected. After that, the probabilities for different
sequences are generated. So, the ranking of the identified commands can change
based on the whole sequence of commands.

Strategy Analysis: Based on the identified commands, the strategy of the user
is being analysed: Different sub-goals are defined in an attack-tree by multiple
steps. E.g., the sub-goal root privileges can be achieved by exploitation, miscon-
figured programs, etc. Series of logically related but not necessarily complete
intrusion steps are being searched. If a number of subgoals can lead to an intru-
sion attempt, an alarm is raised.

User Identification: Users of an encrypted connection are identified based on
their keystroke dynamics recovered from the encrypted network packets.

Policy Conformation: Based on the used sources, commands and the identified
user, the accounting and allowed resource usage is verified.

3 Results and Further Work

The modules Command Evaluation and User Identification had been imple-
mented in a first prototype. Our experiments have shown that both command
evaluation and user identification are possible with our proposed method. For
the command evaluation, only a limited set is implemented at the moment.
This will be advanced especially to the system- and therefore attack-relevant
commands. For the strategy analysis, multiple attack-trees will be defined and
integrated. After that, a summarizing evaluation will be implemented. The
completed prototype will be put into a broad test in the data center of the
University.

Security System for Encrypted Environments (S2E2) 507

References

1. Lippmann, R., Webster, S., Stetson, D.: The Effect of Identifying Vulnerabilities

and Patching Software on the Utility of Network Intrusion Detection. In: Wespi, A.,

Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, p. 307. Springer, Heidelberg

(2002)

2. Goh, V.T., Zimmermann, J., Looi, M.: Experimenting with an Intrusion Detection

System for Encrypted Networks. Int. J. Business Intelligence and Data Mining 5(2),

172–191 (2010)

Towards Automatic Deduction and Event
Reconstruction Using Forensic Lucid and Probabilities

to Encode the IDS Evidence

Serguei A. Mokhov, Joey Paquet, and Mourad Debbabi

Concordia University, Montréal, Québec, Canada,
{mokhov,paquet,debbabi}@encs.concordia.ca

Introduction. We apply the theoretical framework and formal model of the observation
tuple with the credibility weight for forensic analysis of the IDS data and the corre-
sponding event reconstruction. Forensic Lucid – a forensic case modeling and specifica-
tion language is used for the task. In the ongoing theoretical and practical work, Forensic
Lucid is augmented with the Dempster-Shafer theory of mathematical evidence to in-
clude the credibility factors of the evidential IDS observations. Forensic Lucid’s toolset
is practically being implemented within the General Intensional Programming System
(GIPSY) and the probabilistic model-checking tool PRISM as a backend to compile the
Forensic Lucid model into the PRISM’s code and model-check it. This work may also
help with further generalization of the testing methodology of IDSs [10].

Overview. Encoding and modeling large volumes of network and other data related to
intrusion detection with Forensic Lucid for the purpose of event correlation and recon-
struction along with trustworthiness factors (e.g. the likelihood of logs being altered by
an intruder) in a common specification of the evidential statement context and a digital
crime scene is an important step in the incident analysis and response. One goal is to
able to collect the intrusion-related evidence as the Forensic Lucid’s evidential state-
ment from diverse sources like Snort, netflows, pcap’s data, etc. to do the follow up
investigation and event reconstruction. Another goal is to either be interactive with an
investigator present, or fully automated in an autonomous IDS with self-forensics [9].

Background. In the first formal approach about automated cyberforensic case reason-
ing and event reconstruction, Gladyshev et al. created a finite-state automata (FSA)
model [3] to encode the evidence and witness accounts of an incident in order to com-
bine them into an evidential statement. Then, they modeled the FSA of a particular case,
and, verified if certain claim agrees with the evidential statement, and if it does, list pos-
sible event sequences that explain that claim [3]. This was followed by the formal log
analysis approach by Arasteh et al [1]. Another earlier work suggested a mathematical
theory of evidence by Dempster, Shafer and others [4,12], where factors like credi-
bility play a role in the evaluation, which Gladyshev lacked. Thirdly, another earlier
work on intensional logics and programming provided a formal model that through-
out its evolution placed the context as a first-class value in language expressions in the
system, called Lucid that has produced various Lucid dialects and context-aware sys-
tems, such as GIPSY [2,13,11]. Thus, we blended the three together – we augmented the
Gladyshev’s formalization with the credibility weights and we encode the IDS evidence
as a higher-order context (HOC) in the Forensic Lucid language. We then translate a

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 508–509, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Analysis and Credibility in IDS Evidence Modeling with Forensic Lucid 509

Forensic Lucid specification into the PRISM specification, which is a probabilistic au-
tomata evaluation and model-checking system and building a PoC expert system bound
to it in CLIPS. Some own work done includes [7,5,8,9].

Computing credibility weights. The notion of an observation is formalized in Equa-
tion 1 where w is the credibility weight of that observation, and t is an optional wall-

o = (P, min, max, w, t) (1) Wnaive =

∑
(wi)

n
(2)

clock timestamp. With w = 1 the o would be equivalent to the original model proposed
by Gladyshev. We then define the total credibility of an observation sequence as an
average of all the weights in this observation sequence. The IDS evidence with higher
scores of W have higher credibility.

Higher-order context. HOCs represent nested contexts, e.g. as shown in Equation 3 by
modeling the evidential statement es containing observation sequences os containing
observations o for forensic specification evaluation. In Forensic Lucid it is expressed
following the traditional Lucid syntax with modifications adapted from MARFL [6].

es os1 o1 (P, min, max, w, t) o2 o3 . . . os2 os3 . . . (3)

References

1. Arasteh, A.R., Debbabi, M., Sakha, A., Saleh, M.: Analyzing multiple logs for forensic evi-
dence. Digital Investigation Journal 4(1), 82–91 (2007)

2. Ashcroft, E.A., Faustini, A., Jagannathan, R., Wadge, W.W.: Multidimensional, Declarative
Programming. Oxford University Press, London (1995)

3. Gladyshev, P., Patel, A.: Finite state machine approach to digital event reconstruction. Digital
Investigation Journal 2(1) (2004)

4. Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumentation systems. Tech. rep., Insti-
tute of Informatics, University of Fribourg, Fribourg, Switzerland (October 1999)

5. Mokhov, S.A.: Encoding forensic multimedia evidence from MARF applications as Forensic
Lucid expressions. In: CISSE 2008, pp. 413–416. Springer, Heidelberg (December 2008)

6. Mokhov, S.A.: Towards syntax and semantics of hierarchical contexts in multimedia process-
ing applications using MARFL. In: COMPSAC, pp. 1288–1294. IEEE CS, Los Alamitos
(2008)

7. Mokhov, S.A., Paquet, J., Debbabi, M.: Formally specifying operational semantics and lan-
guage constructs of Forensic Lucid. In: IMF 2008, pp. 197–216. GI (September 2008)

8. Mokhov, S.A., Paquet, J., Debbabi, M.: Reasoning about a simulated printer case investiga-
tion with Forensic Lucid. In: HSC 2009. SCS (October 2009) (to appear)

9. Mokhov, S.A., Vassev, E.: Self-forensics through case studies of small to medium software
systems. In: IMF 2009, pp. 128–141. IEEE CS, Los Alamitos (2009)

10. Otrok, H., Paquet, J., Debbabi, M., Bhattacharya, P.: Testing intrusion detection systems in
MANET: A comprehensive study. In: CNSR 2007, pp. 364–371. IEEE CS, Los Alamitos
(2007)

11. Paquet, J., Mokhov, S.A., Tong, X.: Design and implementation of context calculus in the
GIPSY environment. In: COMPSAC 2008, pp. 1278–1283. IEEE CS, Los Alamitos (2008)

12. Shafer, G.: The Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

13. Wan, K.: Lucx: Lucid Enriched with Context. Ph.D. thesis, Department of Computer Science
and Software Engineering, Concordia University, Montreal, Canada (2006)

Toward Specification-Based Intrusion Detection

for Web Applications

Salman Niksefat, Mohammad Mahdi Ahaniha, Babak Sadeghiyan,
and Mehdi Shajari

Amirkabir University of Technology

{niksefat,mm.ahaniha,basadegh,mshajari}@aut.ac.ir

1 Introduction

In specification-based detection the correct behavior of a system is modeled for-
mally and would be later verified during system operation for detecting anoma-
lies. In this paper we argue that comparing to anomaly and signature-based
approaches, specification-based approach is an appropriate and precise way to
build IDSes for web applications. This is due to standardized nature of web archi-
tecture including protocols (HTTP, SOAP) and data formats (HTML, XHTML,
XML), which makes the challenging task of formal specification feasible. In this
paper we propose a novel architecture based on ICAP protocol for a specification-
based web application IDS, in which input parameters as well as the output
content of a web application are specified formally by regular expressions and
the IDS verifies the specification when users have interactions with the
application.

A more precise and comprehensive specification makes the IDS engine more
powerful and increase the detection rate while decrease the false alarms. A cor-
rect specification that exactly matches the real behavior of the system is very
important. If the specification is so strict then some normal behavior of the sys-
tem may be detected as malicious activity and false positives arise. On the other
hand, If the specification is so loose or general, then some abnormal behavior of
the system may be considered as normal activity and it causes false negatives.
Because of the variety of systems and normal behaviors, designing a general
specification-based IDS with formal specifications of all normal activities is gen-
erally so complicated and imprecise. So researchers mainly focus on a specific
system or network protocol and try to formalize the specifications in order to
build a specification-based IDS[1].

2 Formal Specification of Web Applications

The standardized nature of web application protocols and data formats makes
the challenging work of specification feasible. For building a specification-based
IDS for a web application we propose to create the formal specification in the
following areas:

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 510–511, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Toward Specification-Based Intrusion Detection for Web Applications 511

– Input Parameters and Values: Each web application has a number of
input parameters. These input parameters and their associated valid values
can be identified from design or implementation documents or can be possi-
bly extracted by code analysis tool. To formally specify the input parameters
we can utilize various computation models used in computability theory such
as regular expressions, finite state machines or push-down automata.

– OutputContent:By formal specification of the output content and enforcing
this specification on our IDS it is possible to detect and prevent attacks such as
cross-site scripting (XSS), SQL Injection and information leakages(directory
traversal, error pages, etc). Similar to specification of input parameters, the
output content can be specified using various computation models.

3 Proposed Architecture

Our idea for building a specification-based IDS is using the Internet Content
Adaptation Protocol (ICAP) as well as a middle proxy system such as Squid to
deliver the requests and responses to the IDS analysis engine. This idea maximize
the interoperability and minimize the implementation overhead of our proposed
architecture. This architecture allows the detection ans also prevention of attacks
on web applications (Fig.1). When a web client sends a request, the middle proxy
machine receives this request, encapsulates it in an ICAP request and sends it
the IDS analysis engine. The IDS analysis engine verifies the correctness of the
request and either rejects it or forward it to the target web server. The correctness
of the responses is verified in the same way.

Web Server +
Web Application

SQUID+
ICAP Client

Analysis Engine

Request (Mod)

Response (Orig)

Specifications
DB

Request (Orig)
Response (Mod)

Response(Mod) Request(Orig)

SSO

Alerts

Web Application
User

Fig. 1. Proposed Architecture

Reference

1. Orset, J., Alcalde, B., Cavalli, A.: An EFSM-based intrusion detection system for ad

hoc networks. In: Automated Technology for Verification and Analysis, pp. 400–413

(2005)

Toward Whole-System Dynamic Analysis for

ARM-Based Mobile Devices

Ryan Whelan and David Kaeli

Department of Electrical and Computer Engineering

Northeastern University

Boston, MA, USA

rwhelan@coe.neu.edu, kaeli@ece.neu.edu

Abstract. The ARM architecture is presently the chipset of choice for

today’s smartphones - this demand has spurred new advances in func-

tionality and services, and as the number of smartphones increases, so

has the number of applications being migrated to them. As a result, the

amount of malware targeting them will also increase. We present our pre-

liminary work on an ARM-based dynamic profiling platform that allows

analysts to study malware that targets ARM-based smartphone systems.

Mobile malware exploits have only begun to appear recently, but analysts expect
this trend to accelerate in future years as smartphones begin to dominate the
mobile communications market. Smartphones introduce additional attack vec-
tors unavailable on PCs, including Short Messaging Service (SMS), Multimedia
Messaging Service (MMS), and Bluetooth. While security experts (especially
white hat hackers) have begun to exploit and disclose these vulnerabilities so
they can be patched, a new group of embedded systems black hat hackers will
soon emerge given the personal and financial data being managed from these
systems. As new mobile malware culture continues to mature, security analysts
will need a platform that will allow them to study exploits and intrusions. At
the moment, a complete ARM-based security analysis platform does not exist
that is appropriate for studying mobile malware.

In this paper we report on our implementation of such a platform that is
based on QEMU [1]. QEMU provides a whole-system emulator for many guest
architectures, including ARM. Since the open source development emulator for
the Android smartphone operating system is based on QEMU with an ARM
guest, we have chosen this environment to develop deep introspection and anal-
ysis capabilities for Android. The design of our environment leverages TEMU, an
open source dynamic analysis platform based on QEMU for x86 guests [3]. Us-
ing QEMU for instrumentation is ideal since it uses dynamic binary translation,
which translates execution on the guest architecture to the host architecture at
runtime (e.g., ARM on x86). This level of implementation granularity presents
an opportunity for fine-grained instrumentation, profiling, and information flow
tracking where custom analysis code can be executed along with each guest in-
struction. Dynamic information flow tracking (i.e., taint tracking) can provide
insight into specific events on a system given that data in memory, disk, and

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 512–513, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Toward Whole-System Dynamic Analysis for ARM-Based Mobile Devices 513

registers are instrumented. Any input to the system can then be tracked accord-
ing to the implemented policy. Given the fact that Android is one of the most
popular operating systems on smartphones today, we anticipate that our fully
instrumented Android system will be adopted by the mobile security community
to study new classes of malware and assist with making tomorrow’s smartphones
more secure.

On our platform, we have implemented the necessary extensions to dynam-
ically inspect the internal state of an Android guest, and we have begun to
evaluate a number of potential threats on ARM-based mobile devices such as
alphanumeric ARM shellcode [5], and a kernel module (similar to a rootkit) that
hides processes [4]. With our trusted view into the system, we can identify the
shell spawned by the shellcode, list processes we’ve hidden, and generate a rich
instruction trace. We obtain our trusted view into the system by analyzing the
memory image of the guest and reconstructing the relevant kernel data struc-
tures. Our current focus is to address SMS workloads as a portal for additional
attack vectors. Recent work has shown that certain SMS messages can render
phones inoperable [2], and that worm propagation over Bluetooth is a serious
problem that needs to be addressed.

Since the Android emulator provides a mechanism to send SMS messages
to the guest, we are approaching the SMS problem by implementing an SMS
fuzzing utility, along with a tainting scheme that keeps track of the SMS data
propagation through the system. Our preliminary SMS fuzzing can repeatedly
and reliably crash the Android process that handles SMS and MMS messages.
Once our tainting scheme is fully implemented, it will mark all data derived
from SMS input as untrusted and carefully inspect the guest for execution of
instructions possessing tainted operands. We will then be provided with a rich
profile that will allow the analyst to identify the root cause of this attack (and
the associated software bug or vulnerability). We feel it is critical to have the
ability to carefully inspect mobile malware before it becomes widespread and
disables large segments in this market. Our implementation is the first whole-
system platform that allows for dynamic analysis of malware and the potential
for discovery of new vulnerabilities on popular mobile devices.

References

1. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX 2005 (April

2005)

2. Mulliner, C., Miller, C.: Fuzzing the phone in your phone. In: Black Hat (June 2009)

3. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,

Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer

security via binary analysis. In: Proceedings of the 4th International Conference on

Information Systems Security, Hyderabad, India (December 2008)

4. ubra: Process hiding and the linux scheduler. In: Phrack, vol. 63 (January 2005)

5. Younan, Y., Philippaerts, P.: Alphanumeric risc arm shellcode. In: Phrack, vol. 66

(November 2009)

Using IRP for Malware Detection

FuYong Zhang, DeYu Qi, and JingLin Hu

Research Institute of Computer Systems at South China University of Technology,

510640 GuangZhou, GuangDong, China

{z.fuyong,qideyu,h.jinglin}@mail.scut.edu.cn

Abstract. Run-time malware detection strategies are efficient and ro-

bust, which get more and more attention. In this paper, we use I/O

Request Package (IRP) sequences for malware detection. N-gram will be

used to analyze IRP sequences for feature extraction. Integrated use of

Negative Selection Algorithm (NSA) and Positive Selection Algorithm

(PSA), we get more than 96% true positive rate and 0% false positive

rate, by a selection of n-gram sequences which only exist in malware IRP

sequences.

1 Introduction

The rapid increase in the number of malware has made manual methods of
disassembly or reverse engineering can’t afford. So security experts focus on the
efficient and robust run-time malware detection strategies, by analyzing API calls
of real malware and benign processes running on operating system. However,
some researchers [2] use the API call capture tool run in user mode, which only
can capture API calls in user mode, but not work with API calls in kernel
mode. So they can’t detect malware which run in kernel mode. Regardless of the
program to run in user mode or kernel mode, as long as it exists I/O request
will generate the IRP, so we can analyze IRP sequences to distinguish malware
and benign.

2 Our Method

We developed an IRP capture tool MBMAS [1] based on kernel driver technology.
It can capture processes information created by running programs and the IRPs
of each running processes. The statistical analysis of IRPs reveals a total of 30
different types of IRP.

We use 4-gram as detector. As long as there is a sequence has the 4-gram
as subsequence, they are match. In the beginning, all permutation of 4-grams
are generated as candidate detectors. The first method is, using only NSA to
filter out detectors which match self, the rest are mature detectors. The second
method is, first using NSA to filter out detectors which match self, then using
PSA to select detectors which match nonself. The final detectors are only exist
in nonself sequences. Figure 1 is the statistics of unique 4-gram sequences with
the total number of IRP growing.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 514–515, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using IRP for Malware Detection 515

Fig. 1. Unique 4-gram sequences with the total number of IRP growing

3 Experiment

We have collected 600 malware and 300 benign Windows executables. 300 mal-
ware come from VX Heaven [3], another 300 are collected from Internet. All 900
files are divided into 2 groups, grpup1 has 200 benign, 200 malware from VX
Heaven and 200 malware from Internet, and group2 has 100 benign, 100 malware
from VX Heaven and 100 malware from Internet. Group1 will serve as training
data and group2 will serve as testing data. In the test, we divide group2 into
two groups, benign + VX Heaven malware and benign + Internet malware.

We use 200 benign files in group1 to do self-tolerance and get 807368 mature
detectors. Using group2 as testing data, we get 96% true positive rate for benign
+ VX Heaven malware, 99% true positive rate for benign + Internet malware,
and 9% false positive rate. Using the 807368 detectors as candidate detectors,
we selected 311 detectors which match at least one of 400 malware in group1 by
PSA. Using group2 as testing data, we get exactly the same true positive rate
as before, and the false positive rate is 0%.

References

1. Zhang, F.Y., Qi, D.Y., Hu, J.L.: MBMAS: A System for Malware Behavior Monitor

and Analysis. In: International Symposium on Computer Network and Multimedia

Technology (CNMT 2009), pp. 1–4 (2009)

2. Manzoor, S., Shafiq, M.Z., Tabish, S.M., Farooq, M.: A sense of ‘danger’ for windows

processes. In: Andrews, P.S., Timmis, J., Owens, N.D.L., Aickelin, U., Hart, E.,

Hone, A., Tyrrell, A.M. (eds.) Artificial Immune Systems. LNAI, LNBI, vol. 5666,

pp. 220–233. Springer, Heidelberg (2009)

3. VX Heaven, http://vx.netlux.org

http://vx.netlux.org

Author Index

Ahaniha, Mohammad Mahdi 510

Ahmed, Ezzat 486

Aiken, Alex 360

Ali, Sardar 1

AlShaikh, Raed 486

Antonakakis, Manos 18

Asplund, Mikael 339

Bailey, Michael 138

Balduzzi, Marco 422

Balzarotti, Davide 422

Bellmor, Justin 18

Bertino, Elisa 402

Bolzoni, Damiano 500

Bowen, Brian M. 118

Braje, Timothy 218

Callegari, Christian 490

Cavallaro, Lorenzo 297

Čeleda, Pavel 488

Chen, Kuan-Ta 464

Chen, Shenlong 484

Chen, Weifeng 502

Connelly, Christopher 218

Cova, Marco 442

Crispo, Bruno 198

Cucurull, Jordi 339

Cunningham, Robert K. 218

Dacier, Marc 442

Dagon, David 18

Debbabi, Mourad 508

Ding, Liping 502

Drašar, Martin 488

Dreo Rodosek, Gabi 505

Fattori, Aristide 297

Ganapathy, Vinod 58

Gao, Debin 238

Gazzarrini, Loris 490

Ghosh, Anup 158

Giffin, Jonathon 97

Giordano, Stefano 490

Giuffrida, Cristiano 198

Giura, Paul 277

Guo, Li 498

Hadžiosmanović, Dina 500

Haq, Irfan Ul 1

Hartel, Pieter 500

Holz, Thorsten 422

Hsu, Ching-Hsiang 464

Huang, Chun-Ying 464

Hu, JingLin 514

Ioannidis, Sotiris 79

Jahanian, Farnam 138

Jiang, Jianchun 502

Jiang, Xuxian 178

Kaeli, David 512

Kamra, Ashish 402

Karim, Rezwana 58

Kemerlis, Vasileios P. 118

Keromytis, Angelos D. 118, 442

Khan, Hassan 1

Khayam, Syed Ali 1

Killourhy, Kevin 256

Kirda, Engin 422

Koch, Robert 505

Kong, Ying 494

Krejč́ı, Radek 488

Kruegel, Christopher 422

Kulkarni, Ashutosh V. 360

Lee, Wenke 18

Leita, Corrado 442

Li, Jun 38

Li, Peng 238

Liu, Limin 238

Liu, Qixu 494

Luo, Xiapu 18

Ma, Qiang 492

Martignoni, Lorenze 297

Mathew, Sunu 382

Matsuura, Kanta 496

518 Author Index

Maxion, Roy 256

Memon, Nasir 277

Miller, Barton P. 317

Mokhov, Serguei A. 508

Nadjm-Tehrani, Simin 339

Ngo, Hung Q. 382

Niksefat, Salman 510

Oliner, Adam J. 360

Ortolani, Stefano 198

Pagano, Michele 490

Paleari, Roberto 297

Paquet, Joey 508

Pepe, Teresa 490

Perdisci, Roberto 18

Petropoulos, Michalis 382

Platzer, Christian 422

Prabhu, Pratap 118

Qi, DeYu 514

Rabek, Jesse C. 218

Reiter, Michael K. 238

Rhee, Junghwan 178

Riley, Ryan 178

Rossey, Lee M. 218

Roundy, Kevin A. 317

Sadeghiyan, Babak 510

Shajari, Mehdi 510

Sidiroglou, Stelios 118

Smith, Randy 58

Sqalli, Mohammed 486

Srivastava, Abhinav 97

Stafford, Shad 38

Stavrou, Angelos 158

Stolfo, Salvatore J. 118

Takurou, Hosoi 496

Thonnard, Olivier 442

Upadhyaya, Shambhu 382

Vander Weele, Eric 138

Vasiliadis, Giorgos 79

Vykopal, Jan 488

Wang, Jiang 158

Wang, Yipeng 498

Whelan, Ryan 512

Wright, Charles V. 218

Xing, Luyi 484

Xu, Dongyan 178

Xu, Kui 492

Xu, Yunjing 138

Yang, Liu 58

Yao, Danfeng (Daphne) 492

Zhang, FuYong 514

Zhang, Yuqing 484, 494

Zhang, Zhibin 498

	Title Page
	Preface
	Organization
	Table of Contents
	Network Protection
	What Is the Impact of P2P Traffic on Anomaly Detection?
	Introduction
	Related Work and Background
	Dataset Description
	Normal Traffic
	P2P Traffic
	Attack Traffic

	Investigating the Torrent Effect
	How Much Degradation Does p2p Traffic Induce in Anomaly Detection Accuracy?
	Which Anomaly Detection Metrics/Principles Are More Sensitive to p2p Traffic and Why?
	Does the Aggressive Nature of p2p Traffic Dominate Some/All Attack Classes and High-/Low-Rate Attacks?
	Can an Anomaly Detector Handle p2p Traffic if It Is Trained on a Dataset Containing p2p Traffic?

	Mitigating the Torrent Effect
	Can a Pragmatic Solution Be Designed to Make an Anomaly Detector Insensitive to p2p Traffic?
	Can Existing Public p2p Traffic Classifiers Mitigate the Torrent Effect?

	What Are the Open Problems in Designing Future Anomaly Detectors?
	References

	A Centralized Monitoring Infrastructure for Improving DNS Security
	Introduction
	Background and Related Work
	Background on DNS Poisoning
	Related Work

	Methodology
	Abnormality in DNS Answers Due to Cache Poisoning
	Probes and Measurements

	Dataset Evaluation
	Dataset Labeling

	Detection Model and Results
	Categories of Resource Records
	CIDR Analysis Module
	Anax 2-Class Classifier
	Model Selection and Detection Results

	Conclusion
	References

	Behavior-Based Worm Detectors Compared
	Introduction
	Detector Selection
	The Selected Worm Detectors
	Performance Metrics
	Experiment Design
	Evaluation Environment and Background Traffic
	Worm Parameters
	Experiment Procedure

	Results
	False Positives against Legitimate Traffic
	Detector Performance against Random Worm
	Detector Performance against Local-Preference Worms
	Detector Performance against Topo Worms
	Summary

	Related Work
	Conclusions
	References

	High Performance
	Improving NFA-Based Signature Matching Using Ordered Binary Decision Diagrams
	Introduction
	Ordered Binary Decision Diagrams
	Representing and Operating NFAs
	Implementation and Evaluation
	Matching Multiple Input Symbols
	Related Work
	Summary
	References

	GrAVity: A Massively Parallel Antivirus Engine
	Introduction
	Background
	GPU Programming
	Virus Scanning and ClamAV

	Design and Implementation
	Basic Mechanisms
	Parallelizing DFA Matching on the GPU
	Optimized Memory Management
	Other Optimizations

	Performance Evaluation
	Experimental Environment
	Microbenchmarks
	Application Performance
	Scaling Factor
	Peak Performance

	Related Work
	Conclusions
	References

	Malware Detection and Defence
	Automatic Discovery of Parasitic Malware
	Introduction
	Related Work
	Parasitic Malware
	Threat Model
	Malware Behaviors

	Architecture
	Network Attribution Sensor
	Host Attribution Sensor
	Correlation Engine

	Low-Level Implementation Details
	Fast Network Flow Discovery
	Introspection
	System Call Interpositioning and Parameter Extraction
	Address Space Construction and Switching
	Interception of Driver Loading

	Evaluation
	User-Level Malware Identification
	Kernel-Level Malware Identification
	Performance
	False Positive Analysis

	Conclusions
	References

	BotSwindler: Tamper Resistant Injection of Believable Decoys in VM-Based Hosts for Crimeware Detection
	Introduction
	Overview of Results
	Summary of Contributions

	Related Work
	BotSwindler Components
	VMSim
	Virtual Machine Verification
	Trap-Based Decoys

	Experimental Results
	Statistical and Information Theoretic Analysis
	Decoy Turing Test
	Virtual Machine Verification Overhead
	PayPal Decoy Analysis
	Detecting Real Malware with Bait Exploitation

	Applications of BotSwindler in an Enterprise
	Limitations and Future Work
	Conclusion
	References

	CANVuS: Context-Aware Network Vulnerability Scanning
	Introduction
	Related Work
	Motivation
	Architecture and Design
	Sources of Data
	Context Manager
	Network State Database

	CANVuS
	Evaluation
	Experimental Methodology
	CANVuS Evaluation
	Timeout-Based Scanning In CANVuS
	Exploring the Impact of Various Data Sources and Triggers
	Scalability Requirements of the Context-Aware Architecture

	Risk Mitigation and Analysis
	Limitations and Future Work
	Conclusion
	References

	HyperCheck: A Hardware-Assisted Integrity Monitor
	Introduction
	Related Work
	Threat Model
	Background of System Management Mode
	Attacker's Capabilities
	General Assumptions
	In-Scope Attacks
	Limitations

	System Architecture
	Acquiring the Physical Memory
	Translating the Physical Memory
	Reading and Verifying the CPU Registers

	Implementation
	Memory Acquiring Module
	Analysis Module
	CPU Register Checking Module
	HyperCheck-II

	Evaluation
	Verifying the Static Property
	Detection
	Monitoring Overhead

	Security Analysis and Limitations
	Conclusions
	References

	Kernel Malware Analysis with Un-tampered and Temporal Views of Dynamic Kernel Memory
	Introduction
	Background – Kernel Memory Mapping
	Static Type-Projection Mapping
	Dynamic Type-Projection Mapping

	Design of LiveDM
	Allocation-Driven Mapping Scheme
	Techniques

	Implementation
	Evaluation
	Case Studies
	Hidden Kernel Object Detector
	Temporal Malware Behavior Monitor

	Discussion
	Related Work
	Conclusion
	References

	Bait Your Hook: A Novel Detection Technique for Keyloggers
	Introduction
	Our Approach
	Architecture
	Injector
	Monitor
	Pattern Translator
	Detector
	Pattern Generator

	Evaluation
	Keylogger Detection
	False Negatives
	False Positives

	Evasion Techniques
	Related Work
	Conclusions
	References

	Evaluation
	Generating Client Workloads and High-Fidelity Network Traffic for Controllable, Repeatable Experiments in Computer Security
	Introduction
	Related Work
	Traffic and Workload Generation Techniques
	Client-Side Workload Generation
	Server Side Techniques

	An Example Experiment
	Testbed Setup
	Experimental Methods
	Experimental Results

	Conclusions and Future Work
	References

	On Challenges in Evaluating Malware Clustering
	Introduction
	Classification and Clustering of Malware
	A Potential Hazard of Anti-virus Voting
	Plagiarism Detectors
	Results

	Replicating Our Analysis on a New Dataset
	The New Dataset and BCHKK-algo Clustering
	Validation on BCHKK-Data
	Results on VXH-Data

	Effects of Cluster-Size Distribution
	Conclusion
	References

	Why Did My Detector Do $That$?! Predicting Keystroke-Dynamics Error Rates
	Introduction
	Problem and Approach
	Experiment
	Experimental method
	Results

	Statistical Analysis
	Procedure
	Results

	Validation
	Procedure
	Results

	Related Work
	Discussion and Future Work
	Conclusion
	References

	Forensics
	NetStore: An Efficient Storage Infrastructure for Network Forensics and Monitoring
	Introduction
	Related Work
	Architecture
	Network Flow Data
	Column Oriented Storage
	Compression
	Query Processing

	Evaluation
	Parameters
	Queries
	Compression
	Comparison with Other Systems

	Conclusion and Future Work
	References

	Live and Trustworthy Forensic Analysis of Commodity Production Systems
	Introduction
	Overview
	HyperSleuth Architecture
	HyperSleuth Trusted Launch
	Requirements and Threat Model

	Implementation
	Intel VT-x
	HyperSleuth VMM

	Live Forensic Analysis
	Physical Memory Dumper
	Lie Detector
	System Call Tracer

	Experimental Evaluation
	HyperSleuth Launch and Lazy Dump of the Physical Memory
	Lie Detection

	Discussion
	Related Work
	Conclusion
	References

	Hybrid Analysis and Control of Malware
	Introduction
	Related Work
	Technical Overview
	Parsing
	Dynamic Capture
	Response to Overwritten Code
	Response to the Initial Access-Rights Violation
	Updating the Control Flow Graph

	Signal- and Exception-Handler Analysis
	Experimental Results
	Analysis of Packer Tools
	Malware Analysis

	Conclusion
	References

	Anomaly Detection
	Anomaly Detection and Mitigation for Disaster Area Networks
	Introduction
	Related Work
	Protocol Description and Threat Model
	Protocol Description
	Threat Model

	Anomaly Detection and Mitigation
	Detection Algorithm
	Features
	Alert Aggregation
	Mitigation

	Evaluation
	Simulation Setup
	Generated Attacks
	Implemented Mitigations
	Evaluation Metrics
	Detection and Mitigation Results
	Locality and Classic Metrics

	Conclusions
	References

	Community Epidemic Detection Using Time-Correlated Anomalies
	Introduction
	Related Work
	Syzygy
	Model
	Anomaly Signal
	Epidemic Detection

	Detection Experiments
	Model
	Results

	Deployment Experiments
	Model
	Distributed Training
	Distributed Monitoring

	Controlled Experiments
	Data
	Detection Performance
	Parameter Sensitivity
	Client Variation
	Mimicry and Tainting

	Scalability
	Contributions
	References

	A Data-Centric Approach to Insider Attack Detection in Database Systems
	Introduction
	Main Ideas
	Contributions

	 Related Work
	 Limitations of Syntax-Centric Approach
	 Data-Centric User Profiles
	 A Data-Centric Taxonomy of Query Anomalies
	 Experimental Validation
	The Test Environment
	Approximating S-Vectors
	Detecting Type 1 and 2a Anomalies, and Masquerade Attacks
	Detecting Type 2b Anomalies and Data Harvesting Attacks

	 Concluding Remarks and Future Work
	References

	Privilege States Based Access Control for Fine-Grained Intrusion Response
	Motivation
	PSAC Design and Formal Model
	Privilege States Dominance Relationship
	Privilege State Transitions
	Formal Model
	Role Hierarchy

	Implementation and Experiments
	PSAC:PostgreSQL
	Experimental Results

	Related Work
	Conclusion
	References

	Web Security
	Abusing Social Networks for Automated User Profiling
	Introduction
	Ethical and Legal Considerations
	Abusing E-Mail Querying
	Historical Context
	Automated Profiling of Users
	Implementation of the Attack

	Evaluation with Real-World Experiments
	Results for E-Mail Queries
	Extracted Information from Profiles
	Automated Guessing of User Profiles
	Detecting Anomalous Profiles by Cross-Correlation

	Countermeasures
	Related Work
	Conclusion
	References

	An Analysis of Rogue AV Campaigns
	Introduction
	State of the Art
	Methodology
	Rogue AV Domains
	Rogue Server Information
	Limitations
	Multi-criteria Decision Analysis

	Insights on the Rogue Security Software Threat Economy
	High-Level Overview
	The Campaigns

	Landscape Characteristics
	Comparison with Drive-By Downloads
	Rogue AV Monetization

	Lessons Learned and Countermeasures
	Conclusion
	References

	Fast-Flux Bot Detection in Real Time
	Introduction
	Related Work
	Intrinsic Characteristics of Fast-Flux Bots
	Request Delegation
	Consumer-Level Hardware
	Uncontrollable Foreground Applications
	Summary

	The Proposed Solution
	Network Delay Measurement
	Processing Delay Measurement
	Document Fetch Delay Measurement
	Decision Algorithm

	Methodology Evaluation
	Data Description
	A Closer Look at the Derived Features
	Detection Performance
	Passive Mode

	Discussion
	Content Delivery Network
	Proxy Server
	Deployment
	Limitations

	Conclusion
	References

	Posters
	A Client-Based and Server-Enhanced Defense Mechanism for Cross-Site Request Forgery
	References

	A Distributed Honeynet at KFUPM: A Case Study
	Introduction and Design Setup
	Preliminary Evaluation and Results
	Conclusion and Future Work
	References

	Aspect-Based Attack Detection in Large-Scale Networks
	Introduction
	Aspect-Based Detection
	Future Work
	References

	Detecting Network Anomalies in Backbone Networks
	Extended Abstract
	References

	Detecting the Onset of Infection for Secure Hosts
	References

	Eliminating Human Specification in Static Analysis
	References

	Evaluation of the Common Dataset Used in Anti-Malware Engineering Workshop 2009
	Introduction
	Observations
	Questionnaire-Based Evaluation
	Questionnaire
	Result

	Concluding Remarks
	References

	Inferring Protocol State Machine from Real-World Trace
	Introduction and System Architecture
	Evaluation
	Reference

	MEDUSA: Mining Events to Detect Undesirable uSer Actions in SCADA
	Problem
	Solution
	References

	On Estimating Cyber Adversaries’ Capabilities: A Bayesian Model Approach
	Introduction
	A Bayesian Model
	Extracting Evidences from Network Data
	Case Study
	Reference

	Security System for Encrypted Environments (S2E2)
	Background
	S2E2 System Architecture
	Results and Further Work
	References

	Towards Automatic Deduction and Event Reconstruction Using Forensic Lucid and Probabilities to Encode the IDS Evidence
	References

	Toward Specification-Based Intrusion Detection for Web Applications
	Introduction
	Formal Specification of Web Applications
	Proposed Architecture
	Reference

	Toward Whole-System Dynamic Analysis for ARM-Based Mobile Devices
	References

	Using IRP for Malware Detection
	Introduction
	Our Method
	Experiment
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

