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0. Introduction

Mean-variance hedging is one of the classical problems frommathematical finance. In financial

terms, its goal is to minimise the mean squared error between a given payoff H and the final

wealth of a self-financing strategy ϑ trading in the underlying assets S. Mathematically,

one wants to project the random variable H in L2(P ) on the space of all stochastic integrals

ϑ.ST =
T∫

0
ϑr dSr, perhaps after subtracting an initial capital x. The contribution of our paper

is to solve this problem via stochastic control methods and stochastic calculus techniques for

the case where the asset prices S are given by a general (locally P -square-integrable) semi-

martingale, under a natural no-arbitrage assumption.

The literature on mean-variance hedging is vast, and we do not try to survey it here;

see Schweizer (2010) for an attempt in that direction. There are two main approaches; one

of them uses martingale theory and projection arguments, while the other views the task as

a linear-quadratic stochastic control problem and uses backward stochastic differential equa-

tions (BSDEs) to describe the solution. By combining tools from both areas, we improve ear-

lier work in two directions — we describe the solution more explicitly than by the martingale

and projection method, and we work in a general semimartingale model without restricting

ourselves to particular setups (like Itô processes or Lévy settings). We show that the value

process of the stochastic control problem associated to mean-variance hedging possesses a

quadratic structure, describe its three coefficient processes by semimartingale BSDEs, and

show how to obtain the optimal strategy ϑ∗ from there. In contrast to the majority of earlier

contributions from the control strand of the literature, we also give a rigorous derivation of

these BSDEs. For comparison, the usual results (especially in settings with Itô processes

or jump-diffusions) start from a BSDE system and only prove a verification theorem that

shows how a solution to the BSDE system induces an optimal strategy. Apart from being

more precise, we think that our approach is also more informative since it shows clearly and

explicitly how the BSDEs arise, and hence provides a systematic way to tackle mean-variance

hedging via stochastic control in general semimartingale models. More detailed comparisons

to the literature are given in the respective sections.

The paper is structured as follows. We start in Section 1 with a precise problem for-

mulation and state the martingale optimality principle for the value process V H(x) of the

associated stochastic control problem. Assuming that each (time t) conditional problem ad-

mits an optimal strategy, we then show that V H(x) is a quadratic polynomial in x whose

coefficients are stochastic processes v(0), v(1), v(2) that do not depend on x. This is a kind of

folklore result, and our only claim to originality is that we give a very simple proof in a very

general setting. We also show that the coefficient v(2) equals the value process V 0(1) for the

control problem with initial value x = 1 and H ≡ 0.

Motivated by the last result, we study in Section 2 the particular problem for x = 1 and
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H ≡ 0. We impose the no-arbitrage condition that there exists an equivalent σ-martingale

measure for S with P -square-integrable density and are then able to characterise the process

v(2) as the solution of a semimartingale BSDE. More precisely, Theorem 2.4 shows that all

conditional problems for x = 1, H ≡ 0 admit optimal strategies if and only if that BSDE

(2.18) has a solution in a specific class, and in that case, the unique solution is v(2) and the

conditionally optimal strategies can be given in terms of the solution to (2.18). In comparison

to earlier work, we eliminate all technical assumptions (like continuity or quasi-left-continuity)

on S, and we also do not need reverse Hölder inequalities for our main results.

Section 3 considers the general case of the mean-variance hedging problem with x ∈ IR

and H ∈ L2(FT , P ). The analogue of Theorem 2.4 is given in Theorem 3.1, where we describe

the three coefficient processes v(2), v(1), v(0) by a coupled system (3.1)–(3.3) of semimartingale

BSDEs. Existence of optimal strategies for all conditional problems for (x,H) is shown to

be equivalent to solvability of the system (3.1)–(3.3), with solution v(2), v(1), v(0), and we

again express the conditionally optimal strategies in terms of the solution to (3.1)–(3.3). As

mentioned above, this is stronger than only a verification result.

In Section 4, we provide equivalent alternative versions for our BSDEs which are more

convenient to work with in some examples with jumps. This also allows us to discuss in more

detail the connections to the existing literature. Finally, Section 5 illustrates the use of our

results and gives further links to the literature by a number of simple examples.

1. Problem formulation and general results

We start with a finite time horizon T ∈ (0,∞) and a filtered probability space (Ω,F , IF, P )

with the filtration IF = (Ft)0≤t≤T satisfying the usual conditions of right-continuity and

P -completeness. Let S = (St)0≤t≤T be an IRd-valued RCLL semimartingale and denote by

Θ = ΘS the space of all predictable S-integrable processes ϑ, ϑ ∈ L(S) for short, such that

the stochastic integral process ϑ.S =
∫
ϑ dS is in the space S2(P ) of semimartingales. Our

basic references for terminology and results from stochastic calculus are Dellacherie/Meyer

(1982) and Jacod/Shiryaev (2003).

For x ∈ IR and H ∈ L2(FT , P ), the problem of mean-variance hedging (MVH) is to

(1.1) minimise E
[
(H − x− ϑ.ST )2

]
over all ϑ ∈ Θ.

The interpretation is that S models the (discounted) prices of d risky assets in a financial

market containing also a riskless bank account with (discounted) price 1. An integrand ϑ

together with x ∈ IR then describes a self-financing dynamic trading strategy with initial

wealth x, and H stands for the (discounted) payoff at time T of some financial instrument.

By using (x,ϑ), we generate up to time T via trading a wealth of x+
T∫

0
ϑr dSr = x+ ϑ.ST ,
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and we want to choose ϑ in such a way that we are close, in the L2(P )-sense, to the payoff

H. We embed this into a stochastic control problem and define for ψ ∈ Θ and t ∈ [0, T ]

V H
t (x,ψ) := ess inf

ϑ∈Θt,T (ψ)
E
[
(H − x− ϑ.ST )

2
∣∣Ft

]

= ess inf
ϑ∈Θt,T (ψ)

E
[(

H − x−
t∫

0
ψr dSr −

T∫

t

ϑr dSr

)2 ∣∣∣Ft

]
,

where Θt,T (ψ) := {ϑ ∈ Θ |ϑ = ψ on [[0, t]]}. Our goal is to study the dynamic value family

(1.2) V H
t (x) := V H

t (x, 0) = ess inf
ϑ∈Θ

E
[(

H − x−
T∫
t

ϑr dSr

)2 ∣∣∣Ft

]
, t ∈ [0, T ],

in order to describe the optimal strategy for the MVH problem (1.1). Observe that with

these notations, we have the identity V H
u

(
x +

u∫

t

ψr dSr

)
= V H

u (x,ψI]]t,T ]]) = V H
u (x,ψI]]t,u]])

for u ≥ t. Because the family of random variables Γt(ϑ) := E
[(

H − x−
T∫
t

ϑr dSr

)2 ∣∣∣Ft

]
for

ϑ ∈ Θ is closed under taking maxima and minima, we have the classical martingale optimality

principle in the following form; see for instance El Karoui (1981) for the general theory, or

Mania/Tevzadze (2003a) for a formulation closer to the present one.

Proposition 1.1. Fix H ∈ L2(FT , P ). For every x ∈ IR and t ∈ [0, T ], we have:

1) The process
(
V H
u

(
x+

u∫
t

ϑr dSr

))

t≤u≤T
is a P -submartingale for every ϑ ∈ Θ.

2) A strategy ϑ∗,t = ϑ∗,t(x,H) ∈ Θt,T (0) is optimal for (1.2) (i.e. attains the essential

infimum there) if and only if
(
V H
u

(
x+

u∫
t

ϑ∗,tr dSr

))

t≤u≤T
is a P -martingale.

3) If ϑ∗ = ϑ∗,0(x,H) solves (1.1), ϑ∗I]]t,T ]] is optimal for V H
t (x+ ϑ∗ .St) = V H

t (x,ϑ∗).

For the special case H ≡ 0, the fact that Θ is a cone immediately gives

(1.3) V 0
t (x) = ess inf

ϑ∈Θ
E
[(

x+
T∫

t

ϑr dSr

)2 ∣∣∣Ft

]
= x2V 0

t (1).

This holds for any random variable x ∈ L2(Ft, P ). So Proposition 1.1 almost directly gives

Corollary 1.2. For every t ∈ [0, T ], we have:

1) The process
((

1 +
u∫

t

ϑr dSr

)2
V 0
u (1)

)

t≤u≤T
is a P -submartingale for every ϑ ∈ Θ.

2) A strategy ϑ∗,t = ϑ∗,t(1, 0) ∈ Θt,T (0) is optimal for V 0
t (1) in (1.3) if and only if the

process
((

1 +
u∫
t

ϑ∗,tr dSr

)2
V 0
u (1)

)

t≤u≤T
is a P -martingale.
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3) If ϑ∗ = ϑ∗,0(1, 0) solves (1.1) for x = 1 and H ≡ 0, then

(1.4)
T∫
t

ϑ∗r dSr = 0 P -a.s. on the set {1 + ϑ∗ .St = 0}.

Proof. Since 1) and 2) are special cases of Proposition 1.1, we only need to prove 3). Fix

t ∈ [0, T ], set Dt := {1 + ϑ∗.St = 0} ∈ Ft and define ϕ := IDc
t
ϑ∗I]]t,T ]]. By part 3) of

Proposition 1.1 with x = 1, H ≡ 0, the strategy ϑ∗I]]t,T ]] is optimal for V 0
t (1 + ϑ

∗ .St) so that

IDt
E
[(

1 + ϑ∗ .St +
T∫

t

ϑ∗r dSr

)2 ∣∣∣Ft

]
≤ IDt

E
[(

1 + ϑ∗.St +
T∫

t

ϕr dSr

)2 ∣∣∣Ft

]
= 0

by the definitions of ϕ and Dt. This yields 0 = IDt

(
1 + ϑ∗ .St +

T∫
t

ϑ∗r dSr

)
= IDt

T∫
t

ϑ∗r dSr

P -a.s. again by the definition of Dt, and so we get (1.4). q.e.d.

As in Proposition A.2 of Mania/Tevzadze (2003a) or Théorème 2.28 of El Karoui (1981),

we also obtain

Proposition 1.3. Fix H ∈ L2(FT , P ). For every x ∈ IR, t ∈ [0, T ] and ψ ∈ Θ, there exists

an RCLL version of the P -submartingale
(
V H
u

(
x +

u∫

t

ψr dSr

))

t≤u≤T
. Moreover, for each

x ∈ IR, the family {V H
t (x) | t ∈ [0, T ]} of random variables can be aggregated into an RCLL

process, which we again call V H(x) = (V H
u (x))0≤u≤T .

In the sequel, we always choose and work with the RCLL versions from Proposition 1.3.

For easier discussion of the next result, we introduce some more terminology. We denote

by IP 2
e,σ(S) the (a priori possibly empty) set of all probability measures Q equivalent to P on

FT such that S is a Q-σ-martingale and dQ
dP ∈ L2(P ). Assuming that IP 2

e,σ(S) is nonempty

is one way of imposing absence of arbitrage for our financial market and also fits naturally

with the fact that our basic problem is cast in quadratic terms. The density process of Q

with respect to P is denoted by ZQ = (ZQ
t )0≤t≤T , and we say that Q ∈ IP 2

e,σ(S) satisfies

the reverse Hölder inequality R2(P ) if there is a constant C with EP [(Z
Q
T )2 | Fτ ] ≤ C(ZQ

τ )2

P -a.s. for all stopping times τ ≤ T . It is well known that if there is some Q ∈ IP 2
e,σ(S)

satisfying R2(P ), then GT (Θ) = {ϑ.ST |ϑ ∈ Θ} as well as L2(Ft, P ) +GT (Θt,T (0)) for each

t are closed in L2(P ) so that both (1.1) and (1.2) for each t have a solution; see Theorem

5.2 of Choulli/Krawczyk/Stricker (1998). Moreover, for any Q ∈ IP 2
e,σ(S) and any ϑ ∈ Θ,

the product of ZQ and ϑ.S is a P -σ-martingale with P -integrable supremum; so ϑ.S is a

true Q-martingale, and ϑ.ST = 0 a.s. implies that ϑ = 0 in L(S). This is used later several
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times to argue that a self-financing strategy is uniquely determined by its wealth process

(i.e. stochastic integral).

Our main result in this section now provides the basic structure of the process V H(x)

and of the optimal strategies for (1.2).

Theorem 1.4. Fix H ∈ L2(FT , P ). Suppose that for each t ∈ [0, T ], (1.2) has a solution

ϑ∗,t = ϑ∗,t(x,H) for every x ∈ IR. Suppose also that for any ϑ ∈ Θ, ϑ.ST = 0 a.s. implies

that ϑ = 0 in L(S). Then each ϑ∗,t(x,H) is of the affine form

(1.5) ϑ∗,t(x,H) = ϑ0,t + xϑ1,t for some ϑ0,t,ϑ1,t ∈ Θt,T (0)

and each V H
t (x) has the quadratic form

(1.6) V H
t (x) = v(0)t − 2v(1)t x+ v(2)t x2

for RCLL processes v(0), v(1), v(2) not depending on x. Moreover, ϑ1,t = ϑ∗,t(1, 0) is the

solution of (1.3), and the quadratic coefficient v(2)t equals V 0
t (1) from (1.3) and does not

depend on H.

Proof. Fix t ∈ [0, T ]. Denote by Gt,T = GT (Θt,T (0)) =
{ T∫

t

ϑr dSr

∣∣∣ϑ ∈ Θ
}

the space of all

stochastic integrals on ]]t, T ]] of ϑ ∈ Θ and by Gt,T its closure in L2(P ). Since the problems

(1.2) with payoff H for x = 1 and x = 0 have solutions (which are given by projections),

so does the problem (1.2) for x = 1 and payoff H ′ ≡ 0 by taking differences, and the latter

problem is identical to (1.2) for x = 0, H ′ ≡ −1 so that ϑ∗(0,−1) = ϑ∗(1, 0). Both here and

in the next argument, we exploit our assumption that a self-financing strategy is uniquely

determined by its wealth process. If Π is the projection in L2(P ) on Gt,T , then clearly

ϑ∗,t(x,H).ST = Π(H − x) = Π(H) + xΠ(−1) = ϑ∗,t(0, H).ST + xϑ∗,t(0,−1).ST ,

and so (1.5) follows with ϑ0,t = ϑ∗,t(0, H) and ϑ1,t = ϑ∗,t(0,−1) = ϑ∗,t(1, 0). This gives

V H
t (x) = E

[(
H−x−

T∫
t

ϑ∗,tr (x,H) dSr

)2 ∣∣∣Ft

]
= E

[(
H−

T∫
t

ϑ0,tr dSr−x
(
1+

T∫
t

ϑ1,tr dSr

))2 ∣∣∣Ft

]
,

and hence we directly obtain the expression (1.6) with v(0)t = E
[(

H−
T∫

t

ϑ∗,tr (0, H) dSr

)2 ∣∣∣Ft

]
,

v(1)t = E
[(

H −
T∫
t

ϑ∗,tr (0, H) dSr

)(
1 +

T∫
t

ϑ∗,tr (1, 0) dSr

) ∣∣∣Ft

]
and

(1.7) v(2)t = E
[(

1 +
T∫
t

ϑ∗,tr (1, 0) dSr

)2 ∣∣∣Ft

]
= V 0

t (1).
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Since the families {V H
t (x) | t ∈ [0, T ]} aggregate into an RCLL process, the same holds for

the families v(0), v(1), v(2) from (1.6). The last assertion is clear from the above proof. q.e.d.

Remarks. 1) As mentioned above, one sufficient condition for all assumptions of Theorem

1.4 is the existence of some Q ∈ IP 2
e,σ(S) satisfying the reverse Hölder inequality R2(P ); see

Choulli/Krawczyk/Stricker (1998).

2) The particular choice of Θ = ΘS for the space of integrands is convenient and also

exploited later, but not crucially important for the conclusion of Theorem 1.4 to hold. All we

need is that there exist for all t solutions ϑ∗,t(x,H) for all x, that the martingale optimality

principle from Proposition 1.1 holds, and that Θ (or GT (Θ), which must be a subset of

L2(P )) is a linear space. Of course, existence of solutions for all x and all H is equivalent to

closedness of GT (Θ) in L2(P ); and the key point for the martingale optimality principle is

closedness under bifurcation of Θ.

3) We emphasise that Theorem 1.4 is a bit of a folklore result in the literature on mean-

variance hedging, and we do not claim any great originality here. Variants in different levels

of generality can be found in Gugushvili (2003), Mania/Tevzadze (2003a), Bobrovnytska/

Schweizer (2004), Černý (2004), to name but a few. However, we think that it is useful to

have a presentation which is as general and yet as simple as possible. '

Our goal in the sequel is to study the dynamics of the coefficient processes v(0), v(1), v(2)

and use them to express the optimal strategies ϑ∗,t(x,H). Let us first simplify things a

little. Because ϑ∗,t(1, 0) is the solution (minimiser) of (1.3), the first order condition for

that quadratic optimisation problem implies that E
[ T∫

t

ϑr dSr

(
1 +

T∫

t

ϑ∗,tr (1, 0) dSr

) ∣∣∣Ft

]
= 0

P -a.s. for each t ∈ [0, T ] and ϑ ∈ Θ. We note for later use that this allows us to write

(1.8) v(1)t = E
[
H
(
1 +

T∫
t

ϑ∗,tr (1, 0) dSr

) ∣∣∣Ft

]
.

Also for later use, we give some additional results for the coefficients v(0), v(1), v(2).

Lemma 1.5 Under the assumptions of Theorem 1.4, we have:

1) v(2) is a P -submartingale with 0 ≤ v(2) ≤ 1.

2) v(0) is a P -submartingale with 0 ≤ v(0)t ≤ E[H2 | Ft], 0 ≤ t ≤ T , hence of class (D).

3) v(1) is a P -special semimartingale with |v(1)|2 of class (D). Therefore v(1) is in S2
loc(P )

and for its canonical decomposition v(1) = v(1)0 +m(1) + a(1), we have m(1) ∈M2
0,loc(P ).

Proof. 1) By Theorem 1.4 and (1.7), we have v(2) = V 0(1), and this is a P -submartingale

by part 1) of Corollary 1.2 (for ϑ ≡ 0). Because ϑ ≡ 0 is in Θ, we get 0 ≤ V 0(1) ≤ 1 directly

from (1.3).
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2) Theorem 1.4 gives v(0) = V H(0), and this is a P -submartingale by part 1) of Propo-

sition 1.1 (for x = 0,ϑ ≡ 0) and nonnegative by the definition in (1.2). Since ϑ ≡ 0 is in Θ,

(1.2) also gives V H
t (0) ≤ E[H2 | Ft] for all t.

3) By part 1) of Proposition 1.1, V H(x) is a P -submartingale, hence a P -special semi-

martingale, and so are v(2) and v(0) by 1) and 2). Because V H(x) = v(0) − 2v(1)x + v(2)x2

by Theorem 1.4, also v(1) is then a P -special semimartingale. Moreover, V H(x) ≥ 0 for all

x due to (1.2) implies that |v(1)t |2 ≤ v(2)t v(0)t ≤ v(0)t ≤ E[H2 | Ft], 0 ≤ t ≤ T , by 1) and 2) so

that |v(1)|2 is of class (D). The rest of part 3) is then clear. q.e.d.

2. Pure investment: the special case x = 1, H ≡ 0

In this section, we give a description of (the RCLL version of) the value process

(2.1) V 0
t (1) = ess inf

ϑ∈Θ
E
[(

1 +
T∫

t

ϑr dSr

)2 ∣∣∣Ft

]
, 0 ≤ t ≤ T

of the problem (1.3). Since this is by (1.7) and Theorem 1.4 the quadratic coefficient in the

representation (1.6), we use in this section the shorter notation

qt := V 0
t (1) = v(2)t , 0 ≤ t ≤ T .

We also remark that q coincides with the opportunity process from Černý/Kallsen (2007),

although the latter is defined there with a different space Θ of integrands ϑ for S.

Let us first prove strict positivity of q, as well as of q−.

Lemma 2.1. Suppose IP 2
e,σ(S) (= ∅. Then q and q− are both strictly positive, in the sense

that P [qt > 0 and qt− > 0 for 0 ≤ t ≤ T ] = 1. If there is some Q ∈ IP 2
e,σ(S) satisfying the

reverse Hölder inequality R2(P ), we even have q ≥ δ > 0 P -a.s. for some constant δ.

Proof. For Q ∈ IP 2
e,σ(S) with density process Z = ZQ = ZQ;P , define as in Gouriéroux/

Laurent/Pham (1998) a new probability R ≈ P by dR
dP

:= Z2
T

E[Z2
T
]
. Then the Bayes rule gives

ZR;P
t :=

dR

dP

∣∣∣
Ft

=
E[Z2

T | Ft]

E[Z2
T ]

,(2.2)

ZR;Q
t :=

dR

dQ

∣∣∣
Ft

=
EQ[ZT | Ft]

E[Z2
T ]

=
1

Zt
ZR;P
t .(2.3)
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Using the Bayes rule and (2.2), Jensen’s inequality, again the Bayes rule and (2.3) yields

E
[(

1 +
T∫

t

ϑr dSr

)2 ∣∣∣Ft

]
= ZR;P

t E[Z2
T ]ER

[
(Z2

T )
−1

(
1 +

T∫

t

ϑr dSr

)2 ∣∣∣Ft

]

≥ ZR;P
t E[Z2

T ]
(
ER

[
(ZT )−1

(
1 +

T∫
t

ϑr dSr

) ∣∣∣Ft

])2

= ZR;P
t E[Z2

T ]
(
(ZR;Q

t )−1EQ

[
(E[Z2

T ])
−1

(
1 +

T∫
t

ϑr dSr

) ∣∣∣Ft

])2
.

But as already noted before Theorem 1.4,
∫
ϑ dS is a Q-martingale whenever Q ∈ IP 2

e,σ(S)

and ϑ ∈ Θ. So we get by using (2.3) and (2.2) that

(2.4) E
[(

1 +
T∫

t

ϑr dSr

)2 ∣∣∣Ft

]
≥

ZR;P
t E[Z2

T ]

(ZR;Q
t E[Z2

T ])
2
=

Z2
t

E[Z2
T | Ft]

,

and the first assertion follows since inf
0≤t≤T

Zt > 0 P -a.s. by the minimum principle for su-

permartingales and sup
0≤t≤T

E[Z2
T | Ft] <∞ P -a.s. by the martingale maximal inequality. If Q

satisfies R2(P ) with constant C, we can take δ = 1/C for the second claim. q.e.d.

Remark. Strict positivity of the opportunity process and its left limits (hence of q and q−)

is also proved in Lemma 3.10 of Černý/Kallsen (2007). However, the above short proof seems

to us more transparent. '

The optimisation problem in (2.1) has a (well-known) dual formulation as follows. Ex-

tending IP 2
e,σ(S) a little, we denote by IP 2

s,σ(S) the set of all signed measures Q + P on FT

with Q[Ω] = 1 and such that the product of S and the density process ZQ of Q with respect to

P is a P -σ-martingale. We call Q̃ ∈ IP 2
s,σ(S) variance-optimal if ‖dQ̃

dP ‖L2(P ) ≤ ‖dQ
dP ‖L2(P ) for

all Q ∈ IP 2
s,σ(S), and we say that the variance-optimal martingale measure (VOMM) exists

if Q̃ ∈ IP 2
e,σ(S) is variance-optimal. (In particular, Q̃ is then by definition equivalent to P .)

If S is continuous, Theorem 1.3 of Delbaen/Schachermayer (1996) shows that IP 2
e,σ(S) (= ∅ is

sufficient for the VOMM to exist; but if S can have jumps, the situation is more complicated.

The dynamic problem of finding the VOMM has the value process

Ṽt := ess inf
Q∈IP 2

e,σ(S)
E
[(
ZQ
T /ZQ

t

)2 ∣∣Ft

]
, 0 ≤ t ≤ T .

Then we have the following direct connection to V 0(1) and (2.1).

Proposition 2.2. Suppose S ∈ S2
loc(P ) and that the VOMM exists. Then Ṽ = 1/V 0(1).
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Proof. We know from (2.4) in the proof of Lemma 2.1 that for ϑ ∈ Θ and Q ∈ IP 2
e,σ(S),

E
[(

1 +
T∫
t

ϑr dSr

)2 ∣∣∣Ft

]
≥ 1

/
E
[(
ZQ
T /ZQ

t

)2 ∣∣Ft

]
, 0 ≤ t ≤ T .

Taking the ess inf over ϑ ∈ Θ and the ess sup over Q ∈ IP 2
e,σ(S) gives V 0(1) ≥ 1/Ṽ .

Conversely, since V 0
T (1) = 1, the martingale optimality principle in Corollary 1.2 gives

(2.5)
(
1 +

t∫

0
ϑr dSr

)2
V 0
t (1) ≤ E

[(
1 +

T∫

0
ϑr dSr

)2 ∣∣∣Ft

]
, 0 ≤ t ≤ T

for every ϑ ∈ Θ = ΘS . But if we define, as in Gouriéroux/Laurent/Pham (1998),

ΘGLP := {ϑ ∈ L(S) |ϑ.ST ∈ L2(P ) and ZQ(ϑ.S) is a P -martingale for all Q ∈ IP 2
s,σ(S)},

then Corollary 2.9 of Černý/Kallsen (2007) says that GT (ΘGLP) := {ϑ.ST |ϑ ∈ ΘGLP} is

the closure of GT (ΘS) in L2(P ), and this allows us to extend (2.5) to every ϑ ∈ ΘGLP.

Indeed, for a sequence (ϑn) in ΘS with GT (ϑn) → GT (ϑ) in L2(P ), the right-hand side of

(2.5) for ϑn converges in L1(P ) to the right-hand side of (2.5) for ϑ, and because we have

ZQ
t

(
1 +

t∫

0
ϑr dSr

)
= E

[
ZQ
T

(
1 +

T∫

0
ϑr dSr

) ∣∣∣Ft

]
for ϑ ∈ ΘGLP ⊇ ΘS and Q ∈ IP 2

e,σ(S), the

left-hand side of (2.5) for ϑn converges in probability to the left-hand side of (2.5) for ϑ. We

remark that the use of Corollary 2.9 in Černý/Kallsen (2007) exploits that S ∈ S2
loc(P ).

By assumption, the VOMM Q̃ exists. A slight modification of the proof of Lemma 2.2

in Delbaen/Schachermayer (1996) (since S is in S2
loc(P ) instead of locally bounded) yields

ZQ̃
T = c +

T∫

0
ϑ̃r dSr for some c > 0 and ϑ̃ ∈ ΘGLP and thus E

Q̃
[ZQ̃

T | Ft] = c +
t∫

0
ϑ̃r dSr,

0 ≤ t ≤ T . Applying (2.5) with ϑ := ϑ̃/c and using the Bayes rule therefore gives

(ZQ̃
t )2E

[(
ZQ̃
T

)2 ∣∣Ft

]
≥ (ZQ̃

t )2
(
E

Q̃

[
ZQ̃
T

∣∣Ft

])2
V 0
t (1) =

(
E
[(
ZQ̃
T

)2 ∣∣Ft

])2
V 0
t (1)

and hence

1/V 0
t (1) ≥ E

[(
ZQ̃
T /ZQ̃

t

)2 ∣∣Ft

]
≥ Ṽt, 0 ≤ t ≤ T .

This completes the proof. q.e.d.

Remark. For experts on mean-variance hedging, Proposition 2.2 is also a kind of folklore

result. For the case where the filtration is continuous, it can for instance be found in Propo-

sition 4.2 of Mania/Tevzadze (2003a) (with the remark that it extends to general IF if S is

continuous). But we do not know a reference for the level of generality given here. '
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We often use below the following simple fact:

(2.6) If B,C are of locally integrable variation and B + C, then also Bp + Cp.

In (2.6), the (right) superscript p denotes the compensator or dual predictable projection.

This should not be confused with the predictable projection of a process Y which is denoted

by pY , with a left superscript. The most frequent application of (2.6) will be for C = [M ],

where Cp = [M ]p = 〈M〉 when M is a locally square-integrable local martingale.

In the sequel, we focus on the case d = 1 so that S is one-dimensional. One can

obtain analogous results for d > 1 (and we shall comment on this later), but the arguments

and formulations look more technical without providing extra insight. When S ∈ S2
loc(P )

so that S is in particular a P -special semimartingale, we write S = S0 + M + A for its

P -canonical decomposition and note that M ∈M2
0,loc(P ) and A is predictable and of locally

square-integrable (or even locally bounded) variation. If we also have IP 2
e,σ(S) (= ∅, then it is

well known that S satisfies the so-called structure condition, i.e. that S has the form

(2.7) S = S0 +M + A = S0 +M +
∫
λ d〈M〉

with M ∈M2
0,loc(P ) and λ ∈ L2

loc(M); see Theorem 1 of Schweizer (1995). This implies that

[A] =
[ ∫
λ d〈M〉

]
=

∑
(λs∆〈M〉s)2 = (λ2∆〈M〉).〈M〉 + 〈M〉.

Because A is predictable, [M,A] is a local P -martingale by Yoeurp’s lemma so that

(2.8) [S]p = ([M ] + [A])p = (1 + λ2∆〈M〉).〈M〉.

Now suppose that S ∈ S2
loc(P ) and IP 2

e,σ(S) (= ∅. To describe the process q = V 0(1) by

a BSDE, we first introduce an auxiliary operation. Suppose Y is a P -special semimartingale

with canonical decomposition Y = Y0 + NY + BY . Then [Y, [S] ] = [NY , [S] ] + ∆BY .[S],

and if [NY , [S] ] is of locally P -integrable variation, we have by (2.8) and (2.6) that

(2.9)
[
Y, [S]

]p
=

[
NY , [S]

]p
+ ∆BY .[S]p + 〈M〉.

Note also that the predictable stopping theorem gives ∆BY = p∆Y = pY − Y− so that

(2.10) Y− + ∆BY = pY.

The auxiliary quantity we need is the predictable Radon–Nikodým derivative

(2.11) gt(Y ) :=
d
[
NY , [S]

]p
t

d〈M〉t
, 0 ≤ t ≤ T .

Finally, we introduce the notation

(2.12) N(Y ) := pY (1 + λ2∆〈M〉) + g(Y ).

10



The condition that [NY , [S] ] is in Aloc(P ) (and hence has a compensator) is for instance

satisfied if Y is bounded, hence in particular for Y = q.

Remark. In the context of the equations we study, the operation N(Y ) in (2.12) can

sometimes be simplified. If S is continuous, then so are [S] and 〈M〉, due to (2.7); so g(Y )

and ∆〈M〉 then both vanish and (2.12) reduces to N(Y ) = pY = Y− +∆BY . Looking ahead

at (2.18), however, we see that we are interested in the case where BY + 〈M〉, and so we

then also get ∆BY = 0 and hence NY = Y−. Finally, if even the filtration IF is continuous,

then L in (2.18) is continuous; so is then Y , and we end up with N(Y ) = Y . '

Our next result shows that N(q) = N (v(2)) is always strictly positive. This is important

since we later need to divide by N(q).

Lemma 2.3. Suppose IP 2
e,σ(S) (= ∅ and S ∈ S2

loc(P ). If q ≥ δ > 0 for some constant δ, then

(2.13) N(q) = pq (1 + λ2∆〈M〉) + g(q) ≥ δ P ⊗ 〈M〉-a.e. on [[0, T ]].

In general, we still have

(2.14) N(q) > 0 P ⊗ 〈M〉-a.e. on [[0, T ]].

Moreover, N(q) is locally bounded away from 0 (uniformly in t,ω).

Proof. If q ≥ δ, then B := q.[S] − δ[S] is in A+
loc(P ) and hence also Bp ∈ A+

loc(P ). But

B + [S], hence Bp + [S]p = (1 + λ2∆〈M〉).〈M〉 by (2.6) and (2.8), and so

Bp = (q.[S])p − δ(1 + λ2∆〈M〉).〈M〉 =
∫ (d(q.[S])p

d〈M〉 − δ(1 + λ2∆〈M〉)
)
d〈M〉 ∈ A+

loc(P ).

Writing q = q− + ∆q and ∆q.[S] = [q, [S] ] and using (2.8)–(2.12) yields

(q.[S])p = q− .[S]p +
[
N q, [S]

]p
+ ∆Bq .[S]p(2.15)

=
(
pq (1 + λ2∆〈M〉) + g(q)

)
.〈M〉

= N(q).〈M〉.

Thus we obtain Bp = {N(q)− δ(1+ λ2∆〈M〉)}.〈M〉 ∈ A+
loc(P ), and this implies (2.13) since

λ2∆〈M〉 ≥ 0. In general, setting τn := inf{t ≥ 0 | qt < 1
n} ∧ T (with inf ∅ = +∞) gives

τn ↗ T stationarily because q > 0 by Lemma 2.1, and q ≥ 1
n
on Dn := [[0, τn[[∪(Ω × {T})

since qT = 1. The argument for (2.13) now implies that N(q) ≥ 1
n
holds P ⊗〈M〉-a.e. on Dn,

and (2.14) follows since
⋃

n∈IN

Dn = [[0, T ]]. For the final assertion, note that the preceding

11



proof shows that N(q)τn− ≥ 1
n so that the nonnegative process 1/N(q) is prelocally bounded.

Since 1/N(q) is like N(q) predictable, it is therefore by Dellacherie/Meyer (1982), VIII.11

also locally bounded, and this means that N(q) is locally bounded away from 0. q.e.d.

Remark. If d > 1, both [S] and 〈M〉 have to be replaced by matrix-valued processes

([Si, Sj])i,j=1,...,d and (〈M i,M j〉)i,j=1,...,d. We then take a predictable B ∈ A+
loc(P ) with

〈M i,M j〉 = µij .B + B and define the matrix-valued predictable process g(q) by

(2.16) gijt (q) :=
d
[
N q, [Si, Sj]

]p
t

dBt
, 0 ≤ t ≤ T .

Analogously to Lemma 2.3, one can then prove that

(2.17) N(q) := pq
(
µ+ (µλ)trµλ∆B

)
+ g(q) is positive definite P ⊗B-a.e.

'

Recalling the notation (2.12), we now consider the backward equation

Yt = Y0 +

t∫

0

(ψs + λspYs)2

Ns(Y )
d〈M〉s +

t∫

0
ψs dMs + Lt(2.18)

= Y0 +

t∫

0

(ψs + λspYs)2

pYs(1 + λ2s∆〈M〉s) + gs(Y )
d〈M〉s +

t∫

0
ψs dMs + Lt, YT = 1.

A solution of (2.18) is a triple (Y,ψ, L), where L is a local P -martingale which is strongly

P -orthogonal to M , ψ is in L1
loc(M), and Y = Y0 +NY +BY is a P -special semimartingale

with [NY , [S] ] ∈ Aloc(P ). Note that λ and M come from S via (2.7). With a slight abuse

of terminology, we sometimes call Y instead of the whole triple (Y,ψ, L) a solution; any

properties then only refer to Y .

Denoting the stochastic exponential started at time t of a semimartingale X by

tE(X)u = 1 +
u∫

t

tE(X)r− dXr = E(X −Xt)u, t ≤ u ≤ T ,

our first main result is the following description of V 0(1) = q via a BSDE.

Theorem 2.4. Suppose that S ∈ S2
loc(P ) and IP 2

e,σ(S) (= ∅. Then:

1) The following two assertions are equivalent:

a) For every t ∈ [0, T ], there exists an optimal strategy ϑ∗,t(1, 0) ∈ Θt,T (0) for (1.2)

with x = 1, H ≡ 0.

b) There exists a solution (Y,ψ, L) to the BSDE (2.18) having L ∈ M2
0,loc(P ),

ψ ∈ L2
loc(M), Y bounded and strictly positive, and such that for every t ∈ [0, T ],

the process (tE(−ψ+λpY
N(Y )

.S)u)t≤u≤T is in S2(P ).

12



If a) or b) hold, then the optimal ϑ∗,t(1, 0) is for every t given by

(2.19) ϑ∗,tu (1, 0) = −
ψu + λupYu

Nu(Y )
tE
(
−
ψ + λ pY

N(Y )
.S

)

u−
, t ≤ u ≤ T ,

and q = V 0(1) is the unique bounded strictly positive solution of (2.18).

2) Suppose in addition that there is some Q ∈ IP 2
e,σ(S) satisfying the reverse Hölder

inequality R2(P ). Then q = V 0(1) is the unique solution to the BSDE (2.18) in the class of

processes satisfying c ≤ Y ≤ C for positive constants c, C. Moreover, the optimal ϑ∗,t(1, 0)

exist and are given by (2.19).

Proof. Throughout this proof, we write ϑ∗,t for ϑ∗,t(1, 0) and denote by m a generic local

P -martingale that can change from one appearance to the next.

1) For part 1), we start by deriving the BSDE (2.18). By part 1) of Lemma 1.5,

q = v(2) is a P -submartingale, hence a P -special semimartingale with canonical decompo-

sition q = q0 +N q +Bq, and 0 ≤ q ≤ 1 implies that q ∈ S2
loc(P ) and N q has bounded jumps

and is inM2
0,loc(P ). The Galtchouk–Kunita–Watanabe decomposition thus allows us to write

(2.20) q = q0 + ϕ.M + Lq +Bq

with ϕ ∈ L2
loc(M) and Lq ∈ M2

0,loc(P ) strongly P -orthogonal to M . Combining this with

(2.7) and Yoeurp’s lemma then gives

(2.21) [q, S] = m+ ϕ.[M ] + [A,Bq] = m+ (ϕ+ λ∆Bq).〈M〉.

We now apply Itô’s formula to the process Xϑ
t,u := x+

u∫

t

ϑr dSr, t ≤ u ≤ T , for x ∈ IR,

t ∈ [0, T ] and ϑ ∈ Θ. (We sometimes omit writing the dependence of Xϑ on t.) This gives

(2.22) (Xϑ
u )

2 = x2 + 2
u∫
t

Xϑ
r−ϑr dSr +

u∫
t

ϑ2r d[S]r.

Next we apply the product rule with (2.22), (2.20), (2.7), (2.21) and then use A =
∫
λ d〈M〉

and q− .[S]+ [q, [S] ] = (q−+∆q).[S] = q.[S] as well as (2.8), (2.10) for q and (2.15) to obtain

(Xϑ
t,u)

2qu − x2qt = mu −mt +
u∫

t

(Xϑ
r−)

2 dBq
r + 2

u∫

t

qr−Xϑ
r−ϑr dAr +

u∫

t

qr−ϑ2r d[S]r(2.23)

+ 2
u∫

t

Xϑ
r−ϑr(ϕr + λr∆Bq

r) d〈M〉r +
u∫

t

ϑ2r d
[
q, [S]

]
r

= mu −mt +
u∫
t

(Xϑ
r−)

2 dBq
r

+
u∫
t

(
2Xϑ

r−ϑr(ϕr + λrpqr) + ϑ2r Nr(q)
)
d〈M〉r

= mu −mt +
u∫
t

f(r,Xϑ
t,r−;ϑ) dCr,
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where C ∈ A+
loc(P ) is a predictable process with Bq =

∫
β dC, 〈M〉 =

∫
ν dC and

(2.24) f(r, y;ϑ) := y2βr +Gr(y,ϑr)νr := y2βr +
(
2yϑr(ϕr + λr

pqr) + ϑ
2
rNr(q)

)
νr

is a quadratic polynomial in y with random processes as coefficients. Replacing Ct by Ct + t,

we can assume that C as well as its continuous part Cc is strictly increasing.

By Corollary 1.2, ((Xϑ
t,u)

2qu)t≤u≤T is a P -submartingale for every ϑ ∈ Θ and a P -mar-

tingale for the optimal ϑ∗,t ∈ Θ, if that exists. This means that the dC-integral in (2.23) is

increasing for every ϑ ∈ Θ and identically 0 for ϑ = ϑ∗,t, and the same then applies separately

for the corresponding integrals with respect to the continuous and purely discontinuous parts

Cc and Cd of C. Similarly as in Mania/Tevzadze (2003a), we therefore obtain for each x ∈ IR

(2.25) ess inf
ϑ∈Θ

f(r, x;ϑ) = x2βr + νr ess inf
ϑ∈Θ

Gr(x,ϑr) = 0 P ⊗ C-a.e.;

the details for this step are a bit more technical and postponed to step 2). Using the definition

of Gr(y,ϑr) in (2.24) and completing the square gives

(2.26) Gr(x,ϑr) = Nr(q)
(
ϑr + x

ϕr + λrpqr
Nr(q)

)2
− x2 (ϕr + λrpqr)2

Nr(q)
,

and we claim that for a localising sequence (τn)n∈IN ,

(2.27) ϑn := −x
ϕ+ λ pq

N(q)
I[[0,τn]] ∈ Θ.

Indeed, N(q) is locally bounded away from 0 by Lemma 2.3, and pq is bounded like q due to

Lemma 1.5. Moreover,
∫
λ2 d〈M〉 is locally bounded since it is predictable and RCLL, and

ϕ is locally in L2(M) by construction. Thus we obtain via Cauchy–Schwarz that both ϕ and

λ, and then also the ratio in (2.27), are locally in L2(M)∩L2(A) = Θ, as claimed. Inserting

ϑn into (2.26) makes the first term in (2.26) vanish for n→∞ and thus yields

ess inf
ϑ∈Θ

Gr(x,ϑr) = −x2 (ϕr + λrpqr)2

Nr(q)
P ⊗ C-a.e.

Plugging this into (2.25) and integrating gives Bq =
∫
β dC =

∫ (ϕ+λpq)2

N(q) d〈M〉, and plugging

that in turn into (2.20) shows that the triple (q,ϕ, Lq) solves the BSDE (2.18). Moreover, we

see from Lemma 2.1 and q ≤ 1 that q is strictly positive and bounded.

2) To prove (2.25), we use the same basic approach as in Mania/Tevzadze (2003a), but

we must be more careful and handle jumps since S is not continuous. For ease of notation,

we sometimes omit the third argument ϑ of f . We first write C = Cc + Cd and denote

by (τk)k∈IN a sequence of stopping times exhausting the jumps of Cd (or C). Each τk is
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predictable because C is predictable. By Corollary 1.2, we then have with probability 1 that

C.(ω) is RCLL and simultaneously for all rational s ∈ [0, T ] that

u∫

s

f(r,Xϑ
s,r−;ϑ) dCr, s ≤ u ≤ T , is increasing,(2.28)

u∫

s

f(r,Xϑ
s,r−;ϑ) dC

c
r , s ≤ u ≤ T , is increasing,(2.29)

for each ϑ ∈ Θ, and for the optimal ϑ∗,s, the processes in (2.28) and (2.29) vanish identically.

Indeed, (2.29) follows from (2.28) since the process in (2.29) is simply the continuous part of

the process in (2.28). For any τk, we thus have with probability 1 that

τk(ω)∫
s

f(r,Xϑ
s,r−;ϑ)(ω) dCr(ω) ≥ 0 for all rational s < τk(ω).

Because τk is predictable, there are stopping times (σ(n)k )n∈IN taking only rational values and

such that lim
n→∞

σ(n)k = τk and σ(n)k < τk on {τk > 0} = Ω; see Theorem IV.77 in Dellacherie/

Meyer (1978). Thus we obtain for P -almost all ω that

τk(ω)∫

σ
(n)
k

(ω)

f
(
r,Xϑ

σ
(n)
k

,r−
;ϑ

)
(ω) dCr(ω) ≥ 0 for all k and n.

As n → ∞, these integrals tend to f(τk, Xϑ
τk−,τk−;ϑ)(ω)∆Cτk(ω) = f(τk, x;ϑ)(ω)∆Cτk(ω)

because Xϑ
τk−,τk− = x, and so we get

(2.30) f(τk, x;ϑ)∆Cτk ≥ 0 for all k ∈ IN , P -a.s.,

which means that f( · , x;ϑ) ≥ 0 P ⊗ Cd-a.e., for each ϑ ∈ Θ. For the optimal ϑ∗,s, we get

the null process in (2.28), hence equality in (2.30), and so we have

(2.31) ess inf
ϑ∈Θ

f( · , x;ϑ) = 0 P ⊗ Cd-a.e.

For the continuous part Cc, (2.29) gives with τs(ε) := inf{t ≥ s |Cc
t ≥ Cc

s + ε} that

(2.32)
τs(ε)∫
s

f(t, Xϑ
s,t−;ϑ) dC

c
t ≥ 0 for all rational s ∈ [0, T ], P -a.s.

We claim that for each u ≥ s,

(2.33) s 7→
u∫
s

f(t, Xϑ
s,t−;ϑ) dC

c
t is P -a.s. right-continuous.
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Postponing the argument for the moment, we obtain that the inequality in (2.32) also holds

for all s ∈ [0, T ], P -a.s. Setting σt(ε) := inf{s ≥ 0 |Cc
s ≥ Cc

t − ε}, we then get as in Appendix

B of Mania/Tevzadze (2003a) via Fubini’s theorem that (dropping arguments ϑ from f)

T∫

0

∣∣∣1ε
τs(ε)∫

s

f(t, Xϑ
s,t−) dC

c
t − f(s, x)

∣∣∣dCc
s ≤

T∫

0

1
ε

t∫

σt(ε)

|f(t, Xϑ
s,t−)− f(t, x)| dCc

s dC
c
t(2.34)

+
T∫

0

1
ε

τs(ε)∫
s

|f(t, x)− f(s, x)| dCc
t dC

c
s ;

this uses that Cc
τs(ε)

− Cc
s = ε by continuity of Cc. The second term on the right-hand side

of (2.34) tends to 0 as ε↘ 0 by Corollary B.1 in Mania/Tevzadze (2003a). Writing

bεt := sup
{
|Xϑ

s,t− − x|
∣∣σt(ε) < s < t

}
= sup

{∣∣
t−∫

s

ϑr dSr

∣∣
∣∣∣σt(ε) < s < t

}
,

we have σt(ε) ↗ t for ε ↘ 0 by continuity of Cc and therefore bεt ↘ 0 as ε ↘ 0. Moreover,

we have (uniformly in ε and t) bεt ≤ 2 sup
0≤r≤T

|ϑ.Sr| which is in L2(P ), hence P -a.s. finite, for

ϑ ∈ Θ. The first term on the right-hand side of (2.34) can now be estimated above by

T∫

0
sup

{
|f(t, y;ϑ)− f(t, x;ϑ)|

∣∣ |y − x| ≤ bεt
}
dCc

t =:
T∫

0
hε(t;ϑ) dCc

t

since Cc
t −Cc

σt(ε)
= ε by continuity of Cc. Now we use the definition of f in (2.24) to obtain

hε(t;ϑ) ≤ (bεt )
2|βt|+ bεt

(
2|βt||x|+ 2νt|ϑt|(|ϕt|+ |λt|

pqt)
)
.

This shows that P -a.s., hε(t;ϑ)→ 0 for all t as ε↘ 0. Moreover, bεt can be bounded uniformly

in ε and t, P -a.s., and using

T∫

0
|βt| dCc

t ≤
T∫

0
|dBq

t |,(2.35)

T∫

0
νt|ϑt|(|ϕt|+ |λt| pqt) dCc

t ≤
( T∫

0
ϑ2t d〈M〉t

) 1
2
(
2

T∫

0
(ϕ2

t + λ
2
t ) d〈M〉t

) 1
2

(2.36)

shows that we can apply dominated convergence to get
T∫

0
hε(t;ϑ) dCc

t −→ 0 as ε↘ 0, P -a.s.

With a similar argument, we can prove (2.33). Indeed, for sn ↘ s, we have

∣∣∣
u∫
s

f(t, Xϑ
s,t−) dC

c
t −

u∫
sn

f(t, Xϑ
sn,t−) dC

c
t

∣∣∣ ≤
sn∫
s

|f(t, Xϑ
s,t−)| dC

c
t

+
u∫

sn

|f(t, Xϑ
s,t−)− f(t, Xϑ

sn,t−)| dC
c
t
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and the first term on the right-hand side tends to 0 P -a.s. as n → ∞ by continuity of Cc.

Writing hn(t) := |f(t, Xϑ
s,t−) − f(t, Xϑ

sn,t−)|, we have hn(t) → 0 as n → ∞ by the right-

continuity of the stochastic integral and since f from (2.24) is continuous with respect to the

second argument y. So (2.33) will follow by dominated convergence as soon as we show that

(2.37)
T∫

0
sup
n∈IN

hn(t) dCc
t <∞ P -a.s.

But the definition of f in (2.24) yields that

hn(t) ≤ 4|βt|
(
|x|2 + sup

0≤r≤T
|ϑ.Sr|

2
)
+ 2|νt||ϑt|(|ϕt|+ |λt|

pqt) sup
0≤r≤T

|ϑ.Sr|,

and so (2.37) follows again by (2.35) and (2.36) because sup
0≤r≤T

|ϑ.Sr| < ∞ P -a.s. This

establishes (2.33).

Putting together all the results so far, (2.34) therefore yields that with probability 1, we

have 1
ε

τs(ε;ϑ)∫
s

f(t, Xϑ
s,t−;ϑ) dC

c
t −→ f(s, x;ϑ) in L1(dCc) as ε↘ 0. Together with (2.32), this

gives f( · , x;ϑ) ≥ 0 P ⊗ Cc-a.e., for each ϑ ∈ Θ. For the optimal ϑ∗,s, we again get equality

so that finally

ess inf
ϑ∈Θ

f( · , x;ϑ) = 0 P ⊗ Cc-a.e.,

and combining this with (2.31) yields (2.25).

3) We next show that ϑ∗,t for fixed t is given by (2.19). Since (q,ϕ, Lq) satisfies (2.18),

Itô’s formula gives via (2.22) and (2.8)–(2.11) like in (2.23) for any ϑ ∈ Θ that

(Xϑ
u )

2qu − x2qt = mu −mt +

u∫

t

(
(Xϑ

r−)
2 (ϕr + λrpqr)2

Nr(q)
+ 2qr−X

ϑ
r−ϑrλr(2.38)

+ qr−ϑ
2
r(1 + λ

2
r∆〈M〉r) + 2Xϑ

r−ϑr(ϕr + λr∆Bq
r )

+ ϑ2r
(
∆Bq

r (1 + λ
2
r∆〈M〉r) + gr(q)

))
d〈M〉r

= mu −mt +

u∫

t

(
ϑr

√
Nr(q) +Xϑ

r−
ϕr + λrpqr√

Nr(q)

)2

d〈M〉r.

By Corollary 1.2, the process in (2.38) is a martingale on [[t, T ]] for the optimal ϑ∗,t, and so

(2.39) ϑ∗,t = −Xϑ∗,t

−
ϕ+ λ pq

N(q)
P ⊗ 〈M〉-a.e. on ]]t, T ]].
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Integrating with respect to S thus shows for x = 1 that Xϑ∗,t

= 1 +
.∫
t

ϑ∗,t dS satisfies the

linear SDE Xϑ∗,t

u = 1−
u∫
t

Xϑ∗,t

r−
ϕr+λr

pqr
Nr(q)

dSr for t ≤ u ≤ T , and this implies that

(2.40) Xϑ∗,t

= tE
(
−
ϕ+ λ pq

N(q)
.S

)
.

Because ϑ∗,t is in Θ, we have Xϑ∗,t

∈ S2(P ) so that the stochastic exponential is indeed

in S2(P ); and plugging (2.40) into (2.39) yields the expression (2.19) for ϑ∗,t. Since t was

arbitrary, we have now shown that a) implies b) and that we then have (2.19).

4) Conversely, let us start from b). Again fix t. Using the fact that (Y,ψ, L) solves the

BSDE (2.18), we obtain completely analogously as for (2.38) for any ϑ ∈ L(S) that

(2.41) (Xϑ
u )

2Yu − x2Yt = mu −mt +

u∫

t

(
ϑr

√
Nr(Y ) +Xϑ

r−
ψr + λrpYr√

Nr(Y )

)2

d〈M〉r

for t ≤ u ≤ T . So (Xϑ)2Y is a local P -submartingale on [[t, T ]]; but since Y is bounded

and 1 + ϑ.S ∈ S2(P ) for ϑ ∈ Θ, we get that (Xϑ)2Y is actually a true P -submartingale on

[[t, T ]] so that YT = 1 gives Yt ≤ E
[(

1 +
T∫
t

ϑr dSr

)2 ∣∣∣Ft

]
for any ϑ ∈ Θ. The definition in

(2.1) thus yields Yt ≤ V 0
t (1) = qt for all t ∈ [0, T ]. To prove the converse inequality, define

the predictable process ϑ̃(t) by the right-hand side of (2.19). Integrating then shows as for

(2.40) that X ϑ̃(t)
= tE(−ψ+λpY

N(Y )
.S), and because this stochastic exponential is in S2(P ) by

the assumption in b), we see that ϑ̃(t) coming from (2.19) is actually in Θ. Plugging ϑ̃(t)

into (2.41) shows by (2.19) that the d〈M〉-integral vanishes; so (X ϑ̃(t)
)2Y is a P -martingale

on [[t, T ]] and hence Yt = E
[(

1 +
T∫

t

ϑ̃(t)r dSr

)2 ∣∣∣Ft

]
≥ V 0

t (1) = qt by (2.1). So we obtain

Y = q, hence also ψ.M = ϕ.M , L = Lq, and this shows that any solution of (2.18) with

the properties in b) coincides with (q,ϕ, Lq), giving uniqueness. Finally, Y = q shows that

(Xϑ)2q is a P -submartingale on [[t, T ]] for any ϑ ∈ Θ and a P -martingale for ϑ = ϑ̃(t) ∈ Θ; so

ϑ̃(t) is optimal by Corollary 1.2 and in particular, an optimal ϑ∗,t(1, 0) = ϑ̃(t) exists. Since t

was arbitrary, we have also shown that b) implies a), and part 1) of Theorem 2.4 is proved.

5) It remains to prove part 2). But if there is some Q ∈ IP 2
e,σ(S) with R2(P ), the space

L2(Ft, P ) +Gt,T (Θ) = {X + ϑ.ST |X ∈ L2(Ft, P ),ϑ ∈ Θt,T } is closed in L2(P ) by Theorem

5.2 of Choulli/Krawczyk/Stricker (1998), for every t, so that an optimal ϑ∗,t exists. Moreover,

we then have q ≥ δ > 0 by Lemma 2.1, and so part 2) follows directly from part 1). q.e.d.

Remark. If d > 1, the backward equation (2.18) looks more complicated. Using the notation
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from the remark before Theorem 2.4, in particular (2.16) and (2.17), the equation reads

Yt = Y0 +
t∫

0
(ψs + λspYs)trµs

(
Ns(Y )

)−1
µs(ψs + λspYs) dBs +

t∫

0
ψs dMs + Lt, YT = 1,

where Ns(Y ) := pYs (µs + (µsλs)trµsλs∆Bs) + gs(Y ). We do not give details. '

For later use, we record the following consequence of Theorem 2.4.

Corollary 2.5. Under the assumptions of Theorem 2.4, suppose a) or b) there hold. Define

(2.42) γ := −
ψ + λ pY

N(Y )
= −

ψ + λ pY
pY (1 + λ2∆〈M〉) + g(Y )

,

where (Y,ψ, L) is the solution of the BSDE (2.18), and recall the process v(1) from the

quadratic representation (1.6) of V H . For every t ∈ [0, T ], we then have

(2.43) v(1)t = E
[
H tE(γ .S)T

∣∣Ft

]
P -a.s.

and the process (tE(γ .S)u v
(1)
u )t≤u≤T is a P -martingale on [[t, T ]].

Proof. Fix t. Because we have 1 +
T∫

t

ϑ∗,tr (1, 0) dSr = Xϑ∗,t

T = tE(γ .S)T by (2.40) and the

definition (2.42) of γ, (2.43) follows directly from (1.8). Moreover, it is easy to check that for

any semimartingale X and any u ≤ T , we have uE(X)T = E(X)T
E(X)u

P -a.s. on {E(X)u (= 0} and

E(X)T = 0 P -a.s. on {E(X)u = 0}. Taking X := γ .S − (γ .S)t, u ≥ t and setting for brevity

Du := {tE(γ .S)u (= 0} therefore gives the desired martingale property via

tE(γ .S)u v
(1)
u = IDu

tE(γ .S)uE
[
H uE(γ .S)T

∣∣Fu

]

= IDu
E
[
H tE(γ .S)T

∣∣Fu

]

= E
[
H tE(γ .S)T

∣∣Fu

]
;

integrability holds since H ∈ L2(P ) and tE(γ .S) ∈ S2(P ) by part 1b) of Theorem 2.4. q.e.d.

As before, we can connect our results to the dual problem, as follows.

Proposition 2.6. Under the assumptions of Theorem 2.4, suppose a) or b) there hold. Then

the variance-optimal signed martingale measure Q̃ ∈ IP 2
s,σ(S) is given by

(2.44)
dQ̃

dP
=

1

Y0
E
(
−
ψ + λ pY

N(Y )
.S

)

T
=

1

Y0
E(γ .S)T ,
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where (Y,ψ, L) is the solution of the BSDE (2.18). If we have in addition that

(2.45) γt∆St = −
ψt + λtpYt

pYt(1 + λ2t∆〈M〉t) + gt(Y )
∆St > −1 P -a.s. for 0 ≤ t ≤ T ,

then the VOMM exists and is given by Q̃ from (2.44).

Proof. From the BSDE (2.18) and Itô’s formula, we obtain by straightforward computation

that the product Y E(−ψ+λpY
N(Y )

.S) is a local P -martingale. But it is even a true P -martin-

gale since Y is bounded and the stochastic exponential is in S2(P ), and so (2.44) defines

a signed measure Q̃ + P with P -square-integrable density process ZQ̃ = Y
Y0
E(−ψ+λpY

N(Y )
.S)

and Q̃[Ω] = 1. Note for (2.44) that YT = 1. Another straightforward but slightly lengthier

computation shows that ZQ̃S is a local P -martingale so that Q̃ ∈ IP 2
s,σ(S). Finally, the

representation (2.44) of dQ̃
dP as a constant plus a “good” stochastic integral of S implies that

Q̃ is variance-optimal; see for instance Lemma 2.1 in Delbaen/Schachermayer (1996). Note

here that the same argument as in step 4) of the proof of Theorem 2.4 implies that the

integrand ϑ := 1
Y0
γE(γ .S)− is in Θ so that ϑ.S is a Q-martingale for every Q ∈ IP 2

e,σ(S). If

(2.45) holds, then clearly ZQ̃ > 0; so Q̃ is then equivalent to P , hence in IP 2
e,σ(S), and is the

VOMM. q.e.d.

Remark. From (2.43), the proof of Proposition 2.6 and Y = v(2), we can see that under the

assumptions of Theorem 2.4 and (2.45), the process v(1)E(γ .S) = v(1)Y0ZQ̃/Y is a P -mar-

tingale with final value HE(γ .S)T = HY0Z
Q̃
T . This implies that

v(1)t

v(2)t

=
v(1)t

Yt
= E

Q̃
[H | Ft], 0 ≤ t ≤ T .

'

3. Mean-variance hedging: from (1, 0) to (x,H)

Recall from Theorem 1.4 that the dynamic value process of the mean-variance hedging prob-

lem has the quadratic form

V H(x) = v(0) − 2v(1)x+ v(2)x2.

Our goals in this section are to describe the coefficient processes v(0), v(1), v(2) via backward

stochastic differential equations (BSDEs) and to give explicit expressions for the optimal

strategies ϑ∗,t(x,H). This will be done under the same assumptions as in Section 2.
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A general solution for the MVH problem has been given by Černý/Kallsen (2007) in

their Theorem 4.10 and Corollary 4.11. However, that solution involves either a process N

which is very hard to find (see Černý/Kallsen (2007), Definition 3.12) or the variance-optimal

martingale measure (called Q∗ in Černý/Kallsen (2007), see their Proposition 3.13) which is

also notoriously difficult to determine. With our approach, we can be more explicit.

To formulate our main result, we introduce the system of BSDEs

dY (2)
s =

(ψ(2)
s + λspY

(2)
s )2

Ns(Y (2))
d〈M〉s + ψ

(2)
s dMs + dL(2)

s , Y (2)
T = 1,(3.1)

dY (1)
s =

(ψ(2)
s + λspY

(2)
s )(ψ(1)

s + λspY
(1)
s )

Ns(Y (2))
d〈M〉s + ψ

(1)
s dMs + dL(1)

s , Y (1)
T = H,(3.2)

dY (0)
s =

(ψ(1)
s + λspY

(1)
s )2

Ns(Y (2))
d〈M〉s + dN (0)

s , Y (0)
T = H2.(3.3)

A solution of this system consists of tuples (Y (2),ψ(2), L(2)), (Y (1),ψ(1), L(1)), (Y (0), N (0))

where ψ(2),ψ(1) are in L1
loc(M); L(2), L(1) are in M0,loc(P ) and strongly P -orthogonal to

M ; N (0) is a local P -martingale; and Y (2), Y (1), Y (0) are P -special semimartingales with

[NY (2)
, [S] ] ∈ Aloc(P ). We point out that (3.1) is the same equation as (2.18) before Theorem

2.4. Note also that (given Y (2),ψ(2), L(2)) the equation (3.2) is linear and can therefore be

solved explicitly; and Y (0) and N (0) for (3.3) can even be written down directly. In the case

where S is continuous, this system has been obtained and studied in Mania/Tevzadze (2003a)

or (under the additional assumption that IF is continuous) in Bobrovnytska/Schweizer (2004).

For a Markovian setting within a Brownian filtration, the corresponding PDEs can also be

found in Bertsimas/Kogan/Lo (2001), with a heuristic treatment.

Theorem 3.1. Suppose (as in Theorem 2.4) that S ∈ S2
loc(P ) and IP 2

e,σ(S) (= ∅, and fix

H ∈ L2(FT , P ). Then:

1) The following two assertions are equivalent:

a) For every t ∈ [0, T ], there exists an optimal ϑ∗,t(x,H) ∈ Θt,T (0) for (1.2) for

every x ∈ IR.

b) For each x ∈ IR, there is a solution to the BSDE system (3.1)–(3.3) with

(i) L(2) ∈ M2
0,loc(P ), ψ(2) ∈ L2

loc(M), Y (2) bounded and strictly positive, and

such that for every t ∈ [0, T ], the process (tE(−ψ(2)+λ pY (2)

N (Y (2))
.S)u)t≤u≤T is in

S2(P );

(ii) L(1) ∈ M2
0,loc(P ), ψ(1) ∈ L2

loc(M), |Y (1)|2 of class (D), and such that for

every t ∈ [0, T ], the solution X(t) of the linear SDE

(3.4) X(t)
u = x+

u∫

t

ψ(1)
r + λrpY

(1)
r

Nr(Y (2))
dSr −

u∫

t

ψ(2)
r + λrpY

(2)
r

Nr(Y (2))
X(t)

r− dSr
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on [[t, T ]] is in S2(P );

(iii) Y (0) is a true P -submartingale and (hence) of class (D).

If a) or b) hold, then the value process V H from (1.2) admits the representation

(3.5) V H(x) = v(0) − 2v(1)x+ v(2)x2,

where the processes v(2), v(1), v(0) satisfy the BSDE system (3.1)–(3.3), and for every t ∈ [0, T ],

the optimal wealth process Xϑ∗,t

u = x +
u∫

t

ϑ∗,tr (x,H) dSr, t ≤ u ≤ T , satisfies the SDE (3.4)

and ϑ∗,t = ϑ∗,t(x,H) is given by the feedback formula

(3.6) ϑ∗,tu =
ψ(1)
u + λupY

(1)
u

Nu(Y (2))
−
ψ(2)
u + λupY

(2)
u

Nu(Y (2))
Xϑ∗,t

u− , t ≤ u ≤ T .

2) Suppose in addition that there is some Q ∈ IP 2
e,σ(S) satisfying the reverse Hölder

inequality R2(P ). Then the value process V H from (1.2) has the form (3.5), where the

processes v(2), v(1), v(0) are those unique solutions of the BSDE system (3.1)–(3.3) for which

Y (0) and |Y (1)|2 are of class (D) and c ≤ Y (2) ≤ C for constants C ≥ c > 0. Moreover, for

every t ∈ [0, T ], the optimal strategy ϑ∗,t(x,H) for (1.2) exists, and its wealth process Xϑ∗,t

satisfies the SDE (3.4).

Remark. The integrability condition on the exponential in (i) is not really needed. In fact,

like in the proof of Theorem 1.4, one can argue that ϑ∗,t(1, 0) = ϑ∗,t(1, H) − ϑ∗,t(0, H) so

that the integrability required in (i) follows from that in (ii). But for simpler comparison

with Theorem 2.4, we have kept the formulation as a condition. '

Proof of Theorem 3.1. As in the proof of Theorem 2.4, we denote by m a generic local

P -martingale that can change from one appearance to the next.

1) We first note that as in Theorem 1.4, the existence of optimal strategies ϑ∗,t(1, 0) (for

x = 1, H ≡ 0) follows from a) and is by Theorem 2.4 equivalent to the solvability of (3.1)

such that (i) holds in b). So let us start from a), note that (3.5) holds due to Theorem 1.4,

and first derive the BSDE for v(1). By Lemma 1.5 and the Galtchouk–Kunita–Watanabe

decomposition, we have

(3.7) v(1) = v(1)0 +m(1) + a(1) = v(1)0 + ψ(1).M + L(1) + a(1)

with ψ(1) ∈ L2
loc(M), L(1) ∈M2

0,loc(P ) strongly P -orthogonal to M , and a(1) predictable and

of finite variation. Exactly as for (2.21), this yields

(3.8) [v(1), S] = m+ (ψ(1) + λ∆a(1)).〈M〉.
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Now fix t, recall γ from (2.42) in Corollary 2.5 and write E := tE(γ .S) for brevity. Then

combining dE = E−γ dS with the product rule, (3.7), (2.7), (3.8) and (2.10) yields

Ev(1) = m+ E− .a(1) + (v(1)− E−γλ).〈M〉+
(
E−γ(ψ

(1) + λ∆a(1))
)
.〈M〉(3.9)

= m+ E− .
(
a(1) +

(
γ(ψ(1) + λ pv(1))

)
.〈M〉

)
.

But we know from Corollary 2.5 that Ev(1) is a P -martingale on [[t, T ]], and so the pre-

dictable finite variation term on the right-hand side of (3.9) must be identically zero. With

C ∈ A+
loc(P ) predictable and such that a(1) + C, 〈M〉 + C, we thus obtain that the process

∫
tE(γ .S)−{da(1)

dC
+ γ(ψ(1) + λ pv(1))d〈M〉

dC
} dC vanishes identically. Since tE(γ .S)t = 1, we

can argue analogously to steps 1) and 2) in the proof of Theorem 2.4 to get

da(1)

dC
+ γ(ψ(1) + λ pv(1))

d〈M〉

dC
= 0 P ⊗ C-a.e.

Integrating with respect to C gives

a(1) = −
∫
γ(ψ(1) + λ pv(1)) d〈M〉 =

∫
(ψ(2) + λ pY (2))(ψ(1) + λ pv(1))

N (Y (2))
d〈M〉,

and plugging this into (3.7) shows that (v(1),ψ(1), L(1)) satisfies the BSDE (3.2). Moreover,

as already used, we know from Lemma 1.5 that |v(1)|2 is of class (D), and it only remains for

(ii) to check the last integrability property.

2) We next argue that the BSDE (3.3) has a solution, starting with a calculation that

is used again later. Fix t, take any ϑ in Θ and consider as in the proof of Theorem 2.4 the

process Xϑ
t,u := x +

u∫

t

ϑr dSr, t ≤ u ≤ T . (Again, we usually do not explicitly indicate the

dependence of Xϑ on the starting time t, nor on x.) Lemma 1.5 yields v(0) = m(0)+a(0), and

as v(2) satisfies the BSDE (3.1), the same computation as for (2.38) gives with (2.42) that

(Xϑ
u )

2v(2)u − x2v(2)t = mu −mt +
u∫
t

(ϑr − γrXϑ
r−)

2Nr(v(2)) d〈M〉r.

Finally, using the product rule, (2.7), the BSDE (3.2) for v(1), (3.8) and (2.10) leads to

d(v(1)Xϑ) = v(1)− ϑ dS +Xϑ
− dv(1) + ϑ d[v(1), S]

= dm+ v(1)− ϑλ d〈M〉 −Xϑ
−γ(ψ

(1) + λ pv(1)) d〈M〉+ ϑ(ψ(1) + λ∆a(1)) d〈M〉

= dm+ (ψ(1) + λ pv(1))(ϑ− γXϑ
−) d〈M〉.

Using (3.5) and adding up therefore gives

V H
u (Xϑ

u ) = v(0)u − 2v(1)u Xϑ
u + v(2)u (Xϑ

u )
2(3.10)

= V H
t (x) + a(0)u − a(0)t −

u∫
t

2(ψ(1)
r + λrpv

(1)
r )(ϑr − γrXϑ

r−) d〈M〉r

+
u∫
t

(ϑr − γrXϑ
r−)

2Nr(v(2)) d〈M〉r +mu −mt.
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Now choose x = 0 and ϑ of the form ϑ = yI]]t,)t]] for some constant y ∈ IR, where the

stopping time -t > t is chosen such that ϑ is in Θ; this is possible because S is in S2
loc(P ).

Then ϑr = yI{t<r≤)t} and Xϑ
r− = y(Sr− − St)I{t<r≤)t}, and plugging this into (3.10) and

collecting terms gives

V H
u (Xϑ

u )− V H
t (0) = a(0)u − a(0)t − 2

u∧)t∫

t

y(ψ(1)
r + λrpv

(1)
r )

(
1− (Sr− − St)γr

)
d〈M〉r

+
u∧)t∫

t

y2
(
1− (Sr− − St)γr

)2
Nr(v(2)) d〈M〉r +mu −mt.

By Proposition 1.1, this process is always a P -submartingale on [[t, T ]]. So if we take a

predictable C ∈ A+
loc(P ) with 〈M〉 + C and a(0) + C, we obtain that the process

u∧)t∫

t

((
y2
(
1−γr(Sr−−St)

)2
Nr(v

(2))−2y(ψ(1)
r +λr

pv(1)r )
(
1−γr(Sr−−St)

))d〈M〉r
dCr

+
da(0)r

dCr

)
dCr

for t ≤ u ≤ T is for all t ∈ [0, T ] and y ∈ IR an increasing process. Again arguing as in steps

1) and 2) of the proof of Theorem 2.4 and using that Sr− − Ss → 0 when s increases to r

(used for the jumps) or when r decreases to s (used for the continuous part), we get

y2N (v(2))
d〈M〉

dC
− 2y(ψ(1) + λ pv(1))

d〈M〉

dC
+

da(0)

dC
≥ 0 for all y ∈ IR, P ⊗ C-a.e.

Because N (v(2)) > 0 by Lemma 2.3, we conclude that

(3.11)
(ψ(1) + λ pv(1))2

N (v(2))

d〈M〉

dC
≤

da(0)

dC
P ⊗ C-a.e.

This implies that
∫
{da(0) − (ψ(1)+λ pv(1))2

N (v(2))
d〈M〉} is an increasing process, and since a(0) is

P -integrable because v(0) is a P -submartingale by Lemma 1.5, we obtain that

E

[ T∫

0

(ψ(1)
r + λrpv

(1)
r )2

Nr(v(2))
d〈M〉r

]

<∞.

So if we define

Y (0)
t := E

[
H2 −

T∫

t

(ψ(1)
r + λrpv

(1)
r )2

Nr(v(2))
d〈M〉r

∣∣∣∣∣Ft

]
(3.12)

=: N (0)
t +

t∫

0

(ψ(1)
r + λrpv

(1)
r )2

Nr(v(2))
d〈M〉r,
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then clearly (Y (0), N (0)) solves (3.3) and Y (0) is a true P -submartingale. This shows that

there exists a solution to (3.3) with (iii), but we do not know yet if v(0) = Y (0).

3) To finish the implication “a) =⇒ b)”, we now want to prove that each Xϑ∗,t(x,H)

satisfies (3.4) and that v(0) = Y (0). We again fix t, take ϑ ∈ Θ and do the same calculation

as in (3.10). Completing the square then gives

V H
u (Xϑ

u ) = V H
t (x) +mu −mt +

u∫

t

(
da(0)r −

(ψ(1)
r + λrpv

(1)
r )2

Nr(v(2))
d〈M〉r

)
(3.13)

+

u∫

t

(
(ϑr − γrX

ϑ
r−)

√
Nr(v(2))−

ψ(1)
r + λrpv

(1)
r√

Nr(v(2))

)2

d〈M〉r.

By Proposition 1.1, this process must be a P -martingale on [[t, T ]] if we plug in for ϑ the

optimal ϑ∗,t(x,H). Because both integral terms on the right-hand side are increasing due to

(3.11), they must then both vanish identically, on [[t, T ]] for every t. This firstly gives that

(3.14) a(0) =

∫
(ψ(1) + λ pv(1))2

N (v(2))
d〈M〉,

and as v(0) = m(0)+a(0) is a P -submartingale, comparing (3.12) and (3.14) yieldsm(0) = N (0),

hence v(0) = Y (0), and so (v(0), m(0)) solves the BSDE (3.3) and also is the unique solution

satisfying (iii). Secondly, we obtain for the optimal strategy ϑ∗,t = ϑ∗,t(x,H) that

ϑ∗,tu =
ψ(1)
u + λupv

(1)
u

Nu(v(2))
+ γuX

ϑ∗,t

u− ,

which is (3.6) in view of the definition (2.42) of γ; recall that (v(2),ψ(2), L(2)) solves (2.18).

Integrating with respect to S shows that Xϑ∗,t

satisfies the SDE (3.4) on [[t, T ]], and since

ϑ∗,t is in Θ, the unique solution of (3.4) is in S2(P ). So we have now proved that a) implies

b), and also that we then have (3.5) and (3.6).

4) Conversely, let us start with b); then we have to prove the existence of an optimal

ϑ∗,t(x,H). Fix t, set Wu(x) := Y (0)
u − 2Y (1)

u x+ Y (2)
u x2 for t ≤ u ≤ T and use (2.22) and the

BSDEs (3.1)–(3.3) for Y (2), Y (1), Y (0) to compute as for (3.10) and (3.13) that for any ϑ ∈ Θ,

(3.15) Wu(X
ϑ
u ) = Wt(x)+mu−mt+

u∫

t

(
(ϑr−γrX

ϑ
r−)

√
Nr(Y (2))−

ψ(1)
r + λrpY

(1)
r√

Nr(Y (2))

)2

d〈M〉r

for t ≤ u ≤ T . So W (Xϑ) is a local P -submartingale on [[t, T ]]; but we also know from b)

that Y (0) is of class (D), Y (2) is bounded and |Y (1)|2 is of class (D). Since Xϑ is in S2(P ) for

every ϑ ∈ Θ, we see that W (Xϑ) is thus of class (D), hence a true P -submartingale, and so

Wt(x) ≤ E
[
WT (X

ϑ
T )

∣∣Ft

]
= E

[(
H − x−

T∫
t

ϑr dSr

)2 ∣∣∣Ft

]
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for any ϑ ∈ Θ. This yields Wt(x) ≤ V H
t (x) by (1.2). Conversely, if we take the solution X(t)

of (3.4) and define

ϑ̃(t) :=
ψ(1) + λ pY (1)

N (Y (2))
−
ψ(2) + λ pY (2)

N (Y (2))
X(t)

− ,

then integrating with respect to S shows that X ϑ̃(t)
= x+

.∫
t

ϑ̃(t)r dSr equals X(t), since both

satisfy (3.4), and is in S2(P ) due to b) so that ϑ̃(t) is in Θ. Moreover, plugging in ϑ̃(t) for ϑ

shows like for (3.15) that W (X ϑ̃(t)
) is a (true) P -martingale on [[t, T ]]. This implies that

Wt(x) = E
[(

H − x−
T∫
t

ϑ̃(t)r dSr

)2 ∣∣∣Ft

]
≥ V H

t (x),

and so we conclude that Wt(x) = V H
t (x) and that ϑ̃(t) is optimal for (1.2), giving existence of

ϑ∗,t(x,H) := ϑ̃(t). This proves that b) implies a) and that we then also have W (x) = V H(x)

for all x, hence Y (i) = v(i) for i = 0, 1, 2. This ends the proof of 1).

5) Finally, the assertion of part 2) follows like in Theorem 2.4 from the proof of part 1);

we only need to notice again that L2(Ft, P ) +Gt,T (Θ) is closed in L2(P ) for every t. q.e.d.

4. Alternative versions for the BSDEs

In this section, we give equivalent alternative versions for the BSDEs obtained in Sections 2

and 3. One reason is that in some models, these versions are more convenient to work with;

a second is that it allows us to discuss how our results relate to existing literature.

For reasons of space, we only look at (2.18) or (3.1) in detail; this is the most complicated

equation. Throughout this section, we assume as in Theorem 2.4 that S ∈ S2
loc(P )

and IP 2
e,σ(S) (= ∅. For convenience, we recall that (2.18) reads

(4.1) Yt = Y0 +

t∫

0

(ψs + λspYs)2

Ns(Y )
d〈M〉s +

t∫

0
ψs dMs + Lt, YT = 1,

where N(Y ) = pY (1 + λ2∆〈M〉) + g(Y ) and g(Y ) =
d[NY ,[S]]p

d〈M〉 as in (2.12) and (2.11). A

solution of (4.1) is a priori a tuple (Y,ψ, L) with L ∈M0,loc(P ) strongly P -orthogonal to M ,

ψ ∈ L1
loc(M), and Y a P -special semimartingale such that [NY , [S] ] ∈ Aloc(P ). In view of

Theorem 2.4 (where Y is bounded), we restrict ourselves to solutions with ψ ∈ L2
loc(M) and

L ∈ M2
0,loc(P ). For better comparison with (3.1), we really ought to write a superscript (2)

for Y,ψ, L, but we omit this to alleviate the notation.
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4.1. Working with Md

The BSDE (4.1) is written with the local P -martingale M from the canonical decomposition

S = S0 + M + A = S0 +M +
∫
λ d〈M〉 of S. In simple models with jumps, it is useful to

split M = M c +Md into its continuous and purely discontinuous local martingale parts M c

and Md, respectively. Then 〈M〉 = 〈M c〉+ 〈Md〉, and we define the predictable processes

δc :=
d〈M c〉

d〈M〉
, δd :=

d〈Md〉

d〈M〉
= 1− δc.

We now consider the backward equation

Yt = Y0 +

t∫

0

(
ψc
sδ

c
s + ψ

d
s(1− δ

c
s) + λs

pYs

)2

pYs(1 + λ2s∆〈M〉s) + gs(Y )
d〈M〉s +

t∫

0
ψc
s dM

c
s +

t∫

0
ψd
s dM

d
s + L′

t,(4.2)

YT = 1.

A solution of (4.2) is a priori a tuple (Y,ψc,ψd, L′) with L′ ∈M0,loc(P ) strongly P -orthogonal

to both M c and Md, ψc ∈ L2
loc(M

c), ψd ∈ L1
loc(M

d), and Y a P -special semimartingale with

[NY , [S] ] ∈ Aloc(P ). As for (4.1), we restrict our attention to solutions with ψd ∈ L2
loc(M

d)

and L′ ∈M2
0,loc(P ).

Proposition 4.1. The BSDEs (4.1) and (4.2) are equivalent. More precisely, (Y,ψ, L) with

ψ ∈ L2
loc(M) and L ∈M2

0,loc(P ) solves (4.1) if and only if (Y,ψc,ψd, L′) with ψc ∈ L2
loc(M

c),

ψd ∈ L2
loc(M

d) and L′ ∈M2
0,loc(P ) solves (4.2), where the tuples are related by

(4.3) ψ.M + L = ψc.M c + ψd .Md + L′.

Proof. If (Y,ψ, L) solves (4.1), we use the Galtchouk–Kunita–Watanabe decomposition of

ψ.M + L with respect to M c and Md to obtain (4.3) and define ψc,ψd, L′; so L′ is strongly

P -orthogonal to both M c and Md, and taking the covariation with M and using 〈L,M〉 ≡ 0

gives ψ = ψcδc + ψdδd. Plugging this and (4.3) into (4.1) shows directly that (Y,ψc,ψd, L′)

solves (4.2).

Conversely, if (Y,ψc,ψd, L′) solves (4.2), we define ψ := ψcδc+ψd(1−δc) ∈ L2
loc(M) and

L := ψc.M c+ψd .Md+L′−ψ.M ∈M2
0,loc(P ). Then plugging into (4.2) directly shows that

(Y,ψ, L) satisfies (4.1), and since 〈L,M〉 ≡ 0 due to the definitions above, L is also strongly

P -orthogonal to M . So (Y,ψ, L) solves (4.1). q.e.d.

Equation (4.2) is particularly convenient for models with simple jumps, as illustrated by
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Example 4.2. Consider the jump-diffusion model

dSt = St−(µt dt+ σt dWt + ηt dnt), S0 > 0,

where W is a Brownian motion and nt = Nt−αt, 0 ≤ t ≤ T , is the compensated martingale of

a simple Poisson process with intensity α > 0. The predictable processes µ, σ, η satisfy σ (= 0

and suitable integrability conditions, and we assume that η > −1 to ensure that S > 0. Then

we have dM c
t = St−σt dWt, dMd

t = St−ηt dnt, d〈M〉t = S2
t−(σ

2
t + αη2t ) dt, λt =

µt

St−(σ2
t+αη2

t )

and δct = σ2
t

σ2
t+αη2

t

. Because 〈M〉 is continuous, so is BY due to (4.2); hence pY = Y− by

(2.10). Moreover, using [n] = N gives

[
NY , [S]

]p
t
=

[
ψc.M c + ψd .Md + L′, [Md]

]p
t

=
[
ψd .Md + L′, (S−η)

2.[n]
]p
t

= (S3
−ψ

dη3).Np

t

= (S3
−ψ

dη3α).t

so that gt(Y ) = αη3
tψ

d
t St−

σ2
t+αη2

t
. Using the notations ψ̃c = ψcS−σ, ψ̃d = ψdS−η and plugging in

then allows us to rewrite the BSDE (4.2) after simple calculations as

Yt = Y0 +

t∫

0

(ψ̃c
sσs + αψ̃

d
sηs + µsYs−)2

Ys−(σ2s + αη2s) + αψ̃
d
sη

2
s

ds+
t∫

0
ψ̃c
s dWs +

t∫

0
ψ̃d
s dns + L′

t, YT = 1.

It depends on the choice of the filtration IF whether we can have a nontrivial L′ ∈M2
0,loc(P )

strongly P -orthogonal to both M c and Md, or W and n. If IF is generated by W and N ,

then L′ ≡ 0 automatically by the martingale representation theorem in IFW,N .

4.2. Using random measures

For models with more general jumps, the version (4.2) of the basic BSDE (4.1) is less useful

because one cannot easily express g(Y ) in terms of integrands like in the preceding example.

We therefore use semimartingale characteristics and in particular work with the jump measure

of S. For the required notations and results, we refer to Chapter II of Jacod/Shiryaev (2003).

We take E = IR there so that Ω̃ = Ω × [0, T ]× IR with the σ-field P̃ = P ⊗ B(IR), where P

is the predictable σ-field on Ω× [0, T ].

Denote by µS the random measure associated with the jumps of S and by ν its P -com-

pensator. Using Proposition II.2.9 of Jacod/Shiryaev (2003), we have

ν(ω, dt, dx) = Ft(ω, dx) dBt(ω)
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for a predictable increasing B null at 0. Moreover, (2.7) gives ∆S = ∆M + λ∆〈M〉 and

(x2 ∧1) ∗µS + [M ]+ 〈M〉, and combining this with the construction of B in Jacod/Shiryaev

(2003) and (2.6), we see that B + 〈M〉. We introduce the predictable processes

b :=
dB

d〈M〉
, δc :=

d〈M c〉

d〈M〉

and note that [Md] =
∑

(∆M)2 = (x− λ∆〈M〉)2 ∗ µS implies that

〈Md〉 = (x− λ∆〈M〉)2 ∗ ν =
( ∫

(x− λ∆〈M〉)2F (dx)
)
.B,

so that 〈M〉 = 〈M c〉+ 〈Md〉 can be reformulated as

(4.4) δct + bt
∫
(x− λt∆〈M〉t)2Ft(dx) = 1 P ⊗ 〈M〉-a.e.

With the notation Ŵt =
∫

IR

Wt(x)ν({t}, dx), we now consider the backward equation

Yt = Y0 +

t∫

0

(
ϕsδcs + bs

∫
x(Ws(x)− Ŵs)Fs(dx) + λspYs

)2

pYsδcs + bs
∫
x2

(
pYs +Ws(x)− Ŵs

)
Fs(dx)

d〈M〉s(4.5)

+
t∫

0
ϕs dM c

s +W ∗ (µS − ν)t + L′
t, YT = 1.

A solution of (4.5) is a priori a tuple (Y,ϕ,W, L′) with ϕ ∈ L2
loc(M

c), W ∈ G1
loc(µ

S) (see

(3.62) in Jacod (1979)), L′ ∈ M2
0,loc(P ) strongly P -orthogonal to M c and to the space of

stochastic integrals {W̄ ∗ (µS − ν) | W̄ ∈ G2
loc(µ

S)}, and Y a P -special semimartingale with

[NY , [S] ] ∈ Aloc(P ). As before for (4.1) and (4.2), we restrict our attention to solutions with

W ∈ G2
loc(µ

S) and L′ ∈M2
0,loc(P ).

In view of the next result, (4.5) seems the natural form of the BSDE (4.1) or (2.18) in the

general case, because its generator is expressed in terms of integrands. Nevertheless, as seen

in Section 2, the form (2.18) is more convenient for proving results via stochastic calculus.

Proposition 4.3. The BSDEs (4.1) and (4.5) are equivalent. More precisely, (Y,ψ, L) with

ψ ∈ L2
loc(M) and L ∈ M2

0,loc(P ) solves (4.1) if and only if (Y,ϕ,W, L′) with ϕ ∈ L2
loc(M

c),

W ∈ G2
loc(µ

S) and L′ ∈M2
0,loc(P ) solves (4.5), where the tuples are related by

ψ.M + L = ϕ.M c +W ∗ (µS − ν) + L′.

Proof. If (Y,ψ, L) solves (4.1), we take its martingale part ψ.M + L and represent this as

(4.6) ψ.M + L = ϕ.M c +W ∗ (µS − ν) + U ∗ µS + L̃
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with ϕ ∈ L2
loc(M

c), W ∈ G2
loc(µ

S), U ∈ H2
loc(µ

S) (see Jacod (1979), §3.3b, pp. 101–102) and

L̃ ∈ M2
0,loc(P ) with [L̃, S] ≡ 0. This is the so-called Jacod decomposition; see Jacod (1979),

Théorème 3.75, or Theorem 2.4 in Choulli/Schweizer (2011) for a more detailed exposition.

We next express g(Y ) in terms of W and ν. Using (4.1) and (4.6) yields

(4.7) ∆NY
t = Wt(∆St)I{∆St +=0} − Ŵt + Ut(∆St)I{∆St +=0} + ∆L̃t.

Moreover,
∑

∆L̃(∆S)2 = ∆S .[L̃, S] ≡ 0 so that we get

[
NY , [S]

]
=

∑
∆NY (∆S)2 =

(
x2(W (x)− Ŵ )

)
∗ µS +

(
x2U(x)

)
∗ µS .

Because [NY , [S] ] is in Aloc(P ), this implies that x2U(x) is in H1
loc(µ

S) so that (x2U(x))∗µS

is a local P -martingale by Jacod (1979), (3.73). Hence we obtain

[
NY , [S]

]p
=

((
x2(W (x)−Ŵ )

)
∗µS

)p

=
(
x2(W (x)−Ŵ )

)
∗ν =

( ∫
x2(W (x)−Ŵ )F (dx)

)
.B,

and so gt(Y ) = bt
∫
x2(Wt(x)−Ŵt)Ft(dx). Moreover, [S] = [S]c+

∑
(∆S)2 = 〈M c〉+x2 ∗µS

gives [S]p = 〈M c〉+x2 ∗ν = (δc+
∫
x2F (dx) b).〈M〉 so that comparing with (2.8) yields that

1 + λ2∆〈M〉 = δc + b
∫
x2F (dx) and hence

(4.8) Nt(Y ) = pYt(1 + λ2t∆〈M〉t) + gt(Y ) = pYtδct + bt
∫
x2

(
pYt +Wt(x)− Ŵt

)
Ft(dx).

If we now define L′ := U ∗ µS + L̃, then (4.6) gives

(4.9) ψ.M + L = ϕ.M c +W ∗ (µS − ν) + L′.

But [L′,M ] = [L′, S]−[L′,λ.〈M〉] = (xU(x))∗µS+[L̃, S]−[L′,λ.〈M〉] is a local P -martingale

by Yoeurp’s lemma and a similar argument as just above, using now that U ∈ H2
loc(µ

S); so

〈L′,M〉 ≡ 0 and L′ is strongly P -orthogonal to M c. Moreover, we have for all W̄ ∈ G2
loc(µ

S)

that [L̃, W̄ ∗(µS−ν)] = 0 since [L̃, S] ≡ 0, and so 〈L′, W̄ ∗(µS−ν)〉 = 〈U ∗µS, W̄ ∗(µS−ν)〉 ≡ 0

for all W̄ ∈ G2
loc(µ

S) by Jacod (1979), Exercice 3.23. Finally, (2.7) and Yoeurp’s lemma yield

〈W ∗ (µS − ν),M〉 = [W ∗ (µS − ν), S − λ.〈M〉]p(4.10)

= [W ∗ (µS − ν), S]p

=
((

x(W (x)− Ŵ )
)
∗ µS

)p

=
(
x(W (x)− Ŵ )

)
∗ ν.

Taking in (4.9) the covariation with M and using also 〈L,M〉 ≡ 0 ≡ 〈L′,M〉 yields

ψ.〈M〉 =
(
ϕδc +

( ∫
x(W (x)− Ŵ )F (dx)

)
b
)
.〈M〉
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so that we get

(4.11) ψt = ϕtδct + bt
∫
x(Wt(x)− Ŵt)Ft(dx) P ⊗ 〈M〉-a.e.

Plugging (4.11) and (4.8) into (4.1) and using (4.9), we see that (Y,ϕ,W, L′) solves (4.5).

Conversely, if (Y,ϕ,W, L′) solves (4.5), then we define ψ by (4.11) and

L := ϕ.M c − ψ.M +W ∗ (µS − ν) + L′.

Then ψ ∈ L2
loc(M) due to (4.4) and because W ∈ G2

loc(µ
S), and so L ∈M2

0,loc(P ). Moreover,

(4.10), the definitions of L and ψ via (4.11) and the definitions of δc and b yield

〈L,M〉 = 〈L′,M〉 = 〈L′,M c +Md〉 = 〈L′,M c〉+ 〈L′, x ∗ (µS − ν)〉 ≡ 0

by the orthogonality properties of L′, so that L is strongly P -orthogonal to M . Finally, the

Jacod decomposition applied to L′ implies that the latter must have the form L′ = U ∗µS+ L̃

due to its orthogonality properties. But then we obtain from (4.5) again (4.7), hence also

(4.8), and then plugging in shows that (Y,ψ, L) solves (4.1). This completes the proof. q.e.d.

Just for completeness, but without any details, we give here the equivalent versions of

the BSDEs (3.2) and (3.3) for v(1) and v(0). They are

dY (1)
t =

(
ϕ(1)
t δ

c
t + bt

∫
x(W (1)

t (x)− Ŵ (1)
t )Ft(dx) + λtpY

(1)
t

)

pY (2)
t δct + bt

∫
x2

(
pY (2)

t +W (2)
t (x)− Ŵ (2)

t

)
Ft(dx)

×
(
ϕ(2)
t δ

c
t + bt

∫
x(W (2)

t (x)− Ŵ (2)
t )Ft(dx) + λtpY

(2)
t

)
d〈M〉t

+ ϕ(1)
t dM c

t + d
(
W (1) ∗ (µS − ν)

)
t
+ dL(1),′

t , Y (1)
T = H,

and

dY (0)
t =

(
ϕ(1)
t δ

c
t + bt

∫
x(W (1)

t (x)− Ŵ (1)
t )Ft(dx) + λtpY

(1)
t

)2

pY (2)
t δct + bt

∫
x2

(
pY (2)

t +W (2)
t (x)− Ŵ (2)

t

)
Ft(dx)

d〈M〉t + dN (0)
t , Y (0)

T = H2.

Finally, the recursive representation for the optimal strategy in (3.6) takes the form

ϑ∗,0t =
ϕ(1)
t δ

c
t + bt

∫
x(W (1)

t (x)− Ŵ (1)
t )Ft(dx) + λtpY

(1)
t

pY (2)
t δct + bt

∫
x2

(
pY (2)

t +W (2)
t (x)− Ŵ (2)

t

)
Ft(dx)

−
ϕ(2)
t δ

c
t + bt

∫
x(W (2)

t (x)− Ŵ (2)
t )Ft(dx) + λtpY

(2)
t

pY (2)
t δct + bt

∫
x2

(
pY (2)

t +W (2)
t (x)− Ŵ (2)

t

)
Ft(dx)

Xϑ∗,0

t− .

Of course, this can equivalently be rewritten as a linear SDE for Xϑ∗,0
as in (3.4), simply by

integrating with respect to S.
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4.3. Further comments

At this point, it seems appropriate to comment on related work in the literature, where we

restrict ourselves to papers that have used BSDE techniques in the context of mean-variance

hedging. While extending work by many authors done for an Itô process setting in a Brownian

filtration, the results in Mania/Tevzadze (2003a,b) and Bobrovnytska/Schweizer (2004) still

all assume that S is continuous. At the other end of the scale, Černý/Kallsen (2007) have a

general S ∈ S2
loc(P ), with IP 2

e,σ(S) (= ∅; but their methods do not exploit stochastic control

ideas and results at all, and BSDEs appear only very tangentially in their equations (3.32)

and (3.37). As a matter of fact, their opportunity process L equals our coefficient v(2) and

so their equation (3.37), which gives a BSDE for L, should coincide with our equation (4.5).

However, Černý/Kallsen (2007) give no proof for (3.37) and even remark that “it is not

obvious whether this representation is of any use”. Moreover, a closer examination shows

that (3.37) is not entirely correct; it seems that they dropped the jumps of the FV part of L

somewhere, which explains why their equation has L− instead of (the correct term) pL.

The paper closest to our work is probably Kohlmann/Xiong/Ye (2010). They first study

the variance-optimal martingale measure as in Mania/Tevzadze (2003b) via the problem

dual to mean-variance hedging and obtain a BSDE that describes Ṽ = 1/V 0(1) = 1/v(2);

see our Proposition 2.2. For mean-variance hedging itself, they subsequently describe the

optimal strategy in feedback form with the help of a process (called h) for which they give a

BSDE. Their assumptions are considerably more restrictive than ours because in addition to

S ∈ S2
loc(P ) and IP 2

e,σ(S) (= ∅, they also suppose that S is quasi-left-continuous; and for the

results on mean-variance hedging, they additionally even assume that Md
loc(P ) is generated

by integrals of µS − ν (and also that the VOMM exists and satisfies the reverse Hölder

inequality R2(P ) and a certain jump condition). We found it hard to see exactly why this

restrictive condition on Md
loc(P ) is needed; the proof in Kohlmann/Xiong/Ye (2010) for their

verification result is rather computational and does not explain where the rather technical

BSDEs come from.

Finally, a similar (subjective) comment as the last one also applies to Lim (2005). The

problem studied there is mean-variance hedging (not the VOMM), and the process S is a

multivariate version of the simple jump-diffusion model in Example 4.2, with a d-dimensional

Brownian motion W and an m-variate Poisson process N . The filtration used for strategies

ϑ and payoffs H is generated by W and N ; but all model coefficients (including the intensity

of N) are assumed to be IFW -predictable. Technically speaking, this condition serves to

simplify Lim’s equation (3.1), which corresponds to our equation from Example 4.2 for Y

without the jump term. It would be interesting to see also at the conceptual level why the

assumption is needed.

Remark. As already pointed out before Theorem 3.1, the BSDE system (3.1)–(3.3) is less
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complicated than it looks. It is only weakly coupled, meaning that one can solve (3.3) (even

directly) once one has the solutions of (3.1) and (3.2), and that (3.2) is linear and hence

also readily solved once one has the solution of (3.1). In general, however, (3.1) has a very

complicated driver, and it seems a genuine challenge for abstract BSDE theory to prove

existence of a solution directly via BSDE techniques. We do not do that (and do not need

to) since we only use the BSDEs to describe optimal strategies; existence of the latter (and

hence existence of solutions to the BSDEs) is proved directly via other arguments.

In the special case where the filtration IF is continuous, the complicated equation (3.1)

or (2.18) can be reduced to a classical quadratic BSDE, as follows. First of all, as already

pointed out before Lemma 2.3, the operation N(Y ) in (2.12) reduces to N(Y ) = Y , at least

in the context of (2.18). So (2.18) becomes

(4.12) dYt =
(ψt + λtYt)2

Yt
d〈M〉t + ψt dMt + dLt, YT = 1,

and we know from Lemma 2.1 that the solution q = V 0(1) is strictly positive. If we in-

troduce y := log Y , apply Itô’s formula and define ϕ := ψ/Y , 0 :=
∫
(1/Y ) dL, then it is

straightforward to verify that (4.12) can be rewritten as

dyt = ϕt dMt +
(
(ϕt + λt)2 −

1
2ϕ

2
t

)
d〈M〉t + d0t −

1
2 d〈0〉t, yT = 0.

This can then be tackled by standard BSDE methods if desired. '

5. Examples

In this section, we present some simple examples and special cases to illustrate our results.

We keep this deliberately short in view of the total length of the paper. Throughout this

section, we assume that S ∈ S2
loc(P ) and IP 2

e,σ(S) (= ∅.

Recall the P -canonical decomposition S = S0 + M +
∫
λ d〈M〉 of our price process.

Because λ ∈ L2
loc(M), the process Ẑ := E(−λ.M) is in M2

loc(P ) with Ẑ0 = 1. Moreover, it is

easy to check that ẐS is a local P -martingale so that Ẑ is a so-called signed local martingale

density for S. If Ẑ is a true P -martingale and in M2(P ), then Q̂ with dQ̂ := ẐT dP is in

IP 2
s,σ(S) and called the minimal signed (local) martingale measure for S; if even Ẑ > 0 so

that Q̂ is in IP 2
e,σ(S), then Q̂ is the minimal martingale measure (MMM) for S.

The MMM is very convenient because its density process Ẑ can be read off explicitly from

S. On the other hand, the important quantity for mean-variance hedging is the variance-

optimal martingale measure (VOMM) Q̃. By Proposition 2.6, we could construct a solution

to the BSDE (2.18) from Q̃ by

V 0
t (1) = qt = v(2)t = 1/Ṽt =

(ZQ̃
t )2

E
[
(ZQ̃

T )2
∣∣Ft

] , 0 ≤ t ≤ T ,
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but the density process ZQ̃ is usually difficult to find. An exception is the case when Q̃ = Q̂,

since then ZQ̃ = Ẑ = E(−λ.M) and the above formula allows us to find an explicit expression

for v(2). To make this approach work, we need conditions when Q̃ and Q̂ coincide. This has

been studied before, and we could give some new results, but do not do so here for reasons

of space. We only mention the MMM since it comes up later in another example.

5.1. Easy solutions for the process V 0(1) = v(2)

In terms of complexity, the BSDE (2.18) or one of its equivalent forms (3.1), (4.2), (4.5) is

the most difficult one. So we focus on that equation, in the form (4.5), and we try to have a

solution tuple (Y,ϕ,W, L′) with ϕ ≡ 0 and W ≡ 0. Then (4.5) simplifies to

Yt = Y0 +
t∫

0

λ2
s
pYs

1+λ2
s∆〈M〉s

d〈M〉s + L′
t,

which gives ∆BY = λ2pY
1+λ2∆〈M〉∆〈M〉. But pY = Y− + ∆BY by (2.10), and plugging this in

above and solving for ∆BY allows us to get pY = Y−(1 + λ2∆〈M〉) so that (4.5) becomes

(5.1) Yt = Y0 +
t∫

0
Ys−λ2s d〈M〉s + L′

t, YT = 1.

This is the equation for a generalised stochastic exponential, and so it is not surprising that

we can find an explicit solution.

Corollary 5.1. Set K := 〈λ.M〉 and suppose that

E(K)−1
T = c+mT

with a constant c > 0 and a P -martingale m which is strongly P -orthogonal both to M c and

to the space of stochastic integrals {W̄ ∗ (µS − ν) | W̄ ∈ G2
loc(µ

S)}. Then the solution of (4.5)

is given by ϕ ≡ 0, W ≡ 0 and

(5.2) Yt = E[E(K)t/E(K)T | Ft] = E(K)t(c+mt), L′
t =

t∫

0
E(K)s− dms + [E(K), m]t.

Proof. Since (5.1) can be written as Y = Y0+
∫
Y− dK+L′, defining Y and L′ by (5.2) gives

by the product rule that (Y, L′) satisfy (5.1) with YT = 1, and L′ is a local P -martingale like

m by Yoeurp’s lemma. Finally, for every W̄ ∈ G2
loc(µ

S), we have that

[
W̄ ∗ (µS − ν), [E(K), m]

]
=

∑
∆
(
W̄ ∗ (µS − ν)

)
∆E(K)∆m = ∆E(K).[W̄ ∗ (µS − ν), m]

is a local P -martingale because m is strongly P -orthogonal to W̄ ∗ (µS − ν). Hence L′ is also

strongly P -orthogonal to W̄ ∗ (µS − ν), and so (Y, 0, 0, L′) is a solution to (4.5). q.e.d.
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Example 5.2. A special case of Corollary 5.1 occurs if the (final) mean-variance tradeoff

〈λ.M〉T and all the jumps λ2∆〈M〉 are deterministic. Then m ≡ 0, the solution for Y is

Yt = E(〈λ.M〉)t/E(〈λ.M〉)T , 0 ≤ t ≤ T

(which is adapted because E(〈λ.M〉)T is deterministic), and all other quantities in the BSDEs

(2.18) or (4.2) or (4.5) are identically 0. If S or M or even only A =
∫
λ2 d〈M〉 is continuous,

the above expression simplifies to

Yt = e〈λ
.M〉t−〈λ.M〉T , 0 ≤ t ≤ T .

Similar results as in this section, but under more restrictive assumptions, have been

obtained by several authors. We only mention exemplarily the work of Biagini/Guasoni/

Pratelli (2000), Mania/Tevzadze (2003b) and Santacroce (2006).

5.2. The discrete-time case

Now we briefly look at the special case of a model in finite discrete time k = 0, 1, . . . , T . Our

price process is given by S = (Sk)k=0,1,...,T , and we assume as in (2.7) that

(5.3) S = S0 +M + λ.〈M〉

with a martingale M = (Mk)k=0,1,...,T null at 0. We assume that S is square-integrable

to avoid technical complications, and we write ∆kY := Yk − Yk−1 for the increments of a

process Y = (Yk)k=0,1,...,T . The Doob decomposition S = S0 + M + A is then given by

∆kA = E[∆kS | Fk−1], we have ∆k〈M〉 = E[(∆kM)2 | Fk−1] = Var[∆kS | Fk−1], and so (5.3)

takes the form S = S0 +M +
∑
j

λj∆j〈M〉 with

(5.4) λj =
∆jA

∆j〈M〉
=

E[∆jS | Fj−1]

Var[∆jS | Fj−1]
.

For the discrete-time version of the BSDE (2.18), we need pYj = E[Yj | Fj−1] and the

density g(Y ) of [NY , [S] ]p with respect to 〈M〉. But [NY , [S] ] =
∑
j

(∆jNY )(∆jS)2 so that

(5.5) gj(Y )∆j〈M〉 = E[(∆jN
Y )(∆jS)

2 | Fj−1].

Moreover, we have

(5.6) (1 + λ2j∆j〈M〉)∆j〈M〉 = Var[∆jS | Fj−1] + (E[∆jS | Fj−1])
2 = E[(∆jS)

2 | Fj−1],
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and the Galtchouk–Kunita–Watanabe decomposition NY =
∑
j

ψj∆jM + L yields

ψj∆j〈M〉 = Cov(∆jN
Y ,∆jM | Fj−1) = Cov(∆jY,∆jS | Fj−1) = Cov(Yj ,∆jS | Fj−1).(5.7)

Hence we get

(ψj + λj
pYj)

2(∆j〈M〉)2 =
(
Cov(Yj ,∆jS | Fj−1) + E[∆jS | Fj−1]E[Yj | Fj−1]

)2

= (E[Yj∆jS | Fj−1])
2.

Writing out the discrete-time analogue of (2.18), expanding the ratios in the first appearing

sum with ∆j〈M〉 and using (5.4)–(5.7) then yields

Yk = Y0 +
k∑

j=1

(ψj + λjpYj)2

pYj(1 + λ2j∆j〈M〉) + gj(Y )
∆j〈M〉+

k∑

j=1

ψj∆jM + Lk(5.8)

= Y0 +
k∑

j=1

(E[Yj∆jS | Fj−1])2

E[Yj | Fj−1]E[(∆jS)2 | Fj−1] + E[(∆jNY )(∆jS)2 | Fj−1]

+
k∑

j=1

ψj∆jM + Lk, YT = 1.

But Yj = Yj−1 + ∆jNY + ∆jBY gives E[Yj | Fj−1] = Yj−1 + ∆jBY = NY
j−1 + BY

j , and the

denominator in the third sum in (5.8) therefore equals

E[(NY
j−1 +BY

j + ∆jN
Y )(∆jS)

2 | Fj−1] = E[Yj(∆jS)
2 | Fj−1].

Passing to increments and taking conditional expectations to make the martingale increments

vanish, the equation (5.8) thus can be written as

Yk−1 = E[Yk −∆kY | Fk−1] = E[Yk | Fk−1]−
(E[Yk∆kS | Fk−1])2

E[Yk(∆kS)2 | Fk−1]
, YT = 1.

This is exactly the recursive relation derived in equation (3.1) in Theorem 1 of Gugushvili

(2003); see also equation (3.36) in Černý/Kallsen (2007). Under more restrictive assumptions,

analogous equations have also been obtained in equation (5) in Theorem 2 of Černý (2004)

or in equation (2.19) in Theorem 1 of Bertsimas/Kogan/Lo (2001).

5.3. On the relation to Arai (2005)

Our final example serves to illustrate the relations between our work and that of Arai (2005),

whose assumptions are rather similar to ours. More precisely, Arai (2005) assumes that S

(which he calls X) is locally bounded, and that the VOMM Q̃ exists in IP 2
e,σ(S) and satisfies

36



the reverse Hölder inequality R2(P ) and a condition on the jumps of ZQ̃. This implies of

course S ∈ S2
loc(P ) and IP 2

e,σ(S) (= ∅. Arai (2005) does not use BSDEs, but works with a

change of numeraire as in Gouriéroux/Laurent/Pham (1998). His numeraire is E
Q̃
[ZQ̃

T | F.],

and to ensure that this is positive, the existence of the VOMM Q̃ in IP 2
e,σ(S) is needed. The

example below illustrates that our assumptions are strictly weaker than those of Arai (2005).

Example 5.3. We start with two independent simple Poisson processes N (±) with the same

intensity α > 0 and define n±
t := N (±)

t − αt, 0 ≤ t ≤ T . We then set

dSt = St−(γ+ dn+
t − γ− dn−

t + δ dt) =: St− dRt,

so that S is clearly locally bounded, hence in S2
loc(P ), and even quasi-left-continuous. We

claim that we can choose the parameters α, γ+, γ−, δ such that

1) IP 2
e,σ(S) (= ∅,

2) the variance-optimal signed martingale measure Q̃ ∈ IP 2
s,σ(S) coincides with the minimal

signed martingale measure Q̂, but is not in IP 2
e,σ(S), which means in our terminology

and that of Arai (2005) that the VOMM does not exist.

Let us first argue 2). Since dMt = St−(γ+ dn+
t −γ− dn−

t ) gives d〈M〉t = S2
t−(γ

2
++γ

2
−)α dt

and we have dAt = St−δ dt, we obtain

λ.M =
δ

α(γ2+ + γ2−)
(γ+n

+ − γ−n
−).

So as soon as we have

(5.9)
δγ+

α(γ2+ + γ2−)
> 1,

we get −λ∆M < −1 at jumps of N (+) so that Ẑ = E(−λ.M) also takes negative values.

Because the mean-variance tradeoff process 〈λ.M〉t = δ2

α(γ2
++γ2

−
) t, 0 ≤ t ≤ T , is deterministic,

the signed MMM Q̂ is variance-optimal by Theorem 8 of Schweizer (1995). Moreover, Ẑ is

clearly in M2(P ) and so Q̃ = Q̂ is in IP 2
s,σ(S), but not in IP 2

e,σ(S). This gives 2).

To construct an element of IP 2
e,σ(S), we start with Z := E(L) := E(β1n+ + β2n−), which

is clearly in M2(P ). To ensure that Z > 0, we need β1 > −1 and β2 > −1. Next, the product

ZS is by Itô’s formula seen to be a local P -martingale if and only if δ dt+d〈L,R〉t ≡ 0, which

translates into the condition δ = (β2γ− − β1γ+)α. This allows us to rewrite (5.8) as

γ2+ + γ2−
γ+

<
δ

α
= β2γ− − β1γ+,
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and if we choose γ+ = γ− = γ, this boils down to β2 − β1 > 2 and δ
α = (β2 − β1)γ. By the

Bayes rule, S is then a local Q-martingale under Q ≈ P with dQ = ZT dP .

If we now choose ε > 0 and β1 = β > −1, β2 = β + 2 + ε, α = 1, δ = (2 + ε)γ, one

readily verifies that all conditions above are satisfied; hence IP 2
e,σ(S) (= ∅ since it contains Q.

If we take γ ∈ (0, 1), we even keep S > 0 since ∆R > −1.

Remark. By its construction, the minimal martingale density Ẑ is always based on −λ.M .

With our above choice of model parameters γ+ = γ− = γ, this is symmetric in n+ and −n−

and therefore risks getting negative jumps rather easily. In contrast, writing

L = βn+ + (β + 2 + ε)n− = −λ.M + L̃

with L̃ = (β + 1 + ε
2 )n

+ + (β + 1 + ε
2 )n

− shows that it can be very beneficial to have some

extra freedom when choosing an ELMM or a martingale density. This is quite analogous to

the well-known counterexample in Delbaen/Schachermayer (1998). '
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http://www.nccr-finrisk.uzh.ch/media/pdf/wp/WP676 D1.pdf

F. Delbaen and W. Schachermayer (1996), “The variance-optimal martingale measure

for continuous processes”, Bernoulli 2, 81–105; Amendments and corrections (1996), Bernoulli

2, 379–380

F. Delbaen and W. Schachermayer (1998), “A simple counterexample to several problems

in the theory of asset pricing”, Mathematical Finance 8, 1-11

C. Dellacherie and P.-A. Meyer (1978), “Probabilities and Potential”, North-Holland,

Amsterdam

C. Dellacherie and P.-A. Meyer (1982), “Probabilities and Potential B. Theory of Mar-

tingales”, North-Holland, Amsterdam

N. El Karoui (1981), “Les aspects probabilistes du contrôle stochastique”, Ecole d’Eté
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