
Finding Bugs is Easy ∗

(Extended Abstract)

David Hovemeyer and William Pugh
Dept. of Computer Science, University of Maryland

College Park, Maryland 20742 USA
{daveho,pugh}@cs.umd.edu

ABSTRACT
Many techniques have been developed over the years to au-
tomatically find bugs in software. Often, these techniques
rely on formal methods and sophisticated program analysis.
While these techniques are valuable, they can be difficult to
apply, and they aren’t always effective in finding real bugs.

Bug patterns are code idioms that are often errors. We
have implemented automatic detectors for a variety of bug
patterns found in Java programs. In this extended abstract1,
we describe how we have used bug pattern detectors to find
serious bugs in several widely used Java applications and
libraries. We have found that the effort required to imple-
ment a bug pattern detector tends to be low, and that even
extremely simple detectors find bugs in real applications.

From our experience applying bug pattern detectors to
real programs, we have drawn several interesting conclu-
sions. First, we have found that even well tested code writ-
ten by experts contains a surprising number of obvious bugs.
Second, Java (and similar languages) have many language
features and APIs which are prone to misuse. Finally, that
simple automatic techniques can be effective at countering
the impact of both ordinary mistakes and misunderstood
language features.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation — Reliability, Validation

General Terms
Reliability

Keywords
Static analysis, bugs, bug patterns, bug checkers

1. INTRODUCTION
Few people who develop or use software will need to be

convinced that bugs are a serious problem. Automatic tech-
niques and tools for finding bugs offer tremendous promise
for improving software quality. In recent years, much re-

∗Supported by NSF grant CCR-0098162 and by an IBM
Eclipse Innovation award.
1The full version of this paper will be published as [2].

Copyright is held by the author/owner.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

// Eclipse 3.0,

// org.eclipse.jdt.internal.ui.compare,

// JavaStructureDiffViewer.java, line 131

Control c= getControl();

if (c == null && c.isDisposed())

return;

Figure 1: Example of null pointer dereference.

search has investigated automatic techniques to find bugs
in software. Some of the techniques proposed in this re-
search require sophisticated program analysis. This research
is valuable, and many interesting and useful analysis tech-
niques have been proposed as a result. However, these tech-
niques have generally not found their way into widespread
use.

In our work, we have investigated simple static analysis
techniques for finding bugs based on the notion of bug pat-
terns. A bug pattern is a code idiom that is likely to be
an error. Occurrences of bug patterns are places where code
does not follow usual correct practice in the use of a language
feature or library API. Automatic detectors for many bug
patterns can be implemented using relatively simple static
analysis techniques. In many ways, using static analysis to
find occurrences of bug patterns is like an automated code
inspection. We have implemented a number of automatic
bug pattern detectors in a tool called FindBugs (available
from http://findbugs.sourceforge.net).

In this extended abstract, we will describe some of the bug
patterns our tool looks for, and present examples of bugs
that our tool has found in several widely used applications
and libraries. We hope that the obvious and embarrassing
nature of these bugs will convince you of the need for wider
adoption of automatic bug finding tools. We also present
empirical results which classify (for selected bug patterns)
the percentage of warnings reported by the tool that indicate
real bugs. We will argue that although some of the bug
pattern detectors we evaluated produce false warnings, they
produce enough genuine examples of bugs to make the tool
useful in practice.

2. BUG PATTERNS
Programmers are smart. Therefore, we expect that bugs

in software should be subtle, and require sophisticated anal-
ysis techniques to find. And, there is no doubt that many
bugs are subtle.

However, consider the code shown in Figure 1. This bug

132

Code Description
CN Cloneable Not Implemented Correctly
DC Double Checked Locking
DE Dropped Exception
EC Suspicious Equals Comparison
Eq Bad Covariant Definition of Equals
HE Equal Objects Must Have Equal Hashcodes
IS2 Inconsistent Synchronization
MS Static Field Modifiable By Untrusted Code
NP Null Pointer Dereference
NS Non-Short-Circuit Boolean Operator
OS Open Stream

RCN Redundant Comparison to Null
RR Read Return Should Be Checked
RV Return Value Should Be Checked
Se Non-serializable Serializable Class

UR Uninitialized Read In Constructor
UW Unconditional Wait
Wa Wait Not In Loop

Figure 2: Summary of selected bug patterns.

is not subtle, and a relatively simple analysis found not one,
but 54 null pointer dereference bugs in Eclipse 3.0 similar
to the one shown. Our experience has shown that even
well-tested, production software usually contains a signifi-
cant number of obvious bugs.

Static analysis based on bug patterns represents a useful
sweet spot in the design space for bug checking tools. Be-
cause bug patterns focus on finding deviations from standard
practice, rather than performing deep analysis, they tend to
be easy to implement, and their output is generally easy
to explain to programmers. With suitable heuristics, auto-
matic detectors for bug patterns can find real bugs without
too high a percentage of false warnings.

It is important to distinguish between bug checkers and
style checkers. Bug checkers look for deviations from cor-
rect behavior, while style checkers look for deviations from
coding style rules. The distinction is that examples of code
that violate a style rule are not particularly likely to be bugs
(although bugs may often be violations of a style rule). Tools
that focus mainly on style, such as PMD[4], are valuable be-
cause they help make code easier to understand. However,
they tend to be less effective at finding actual bugs, due to
the large volume of output they produce. (See Section 3.3.)

In this section we will briefly present a handful of the bug
patterns FindBugs can detect, along with some occurrences
of those patterns in real code. Figure 2 lists the subset
of patterns referred to in this extended abstract. Due to
space limitations, we can describe only a few members of
this subset. For more complete descriptions and information
about analysis techniques, please see the full version of this
paper [2].

2.1 Double Checked Locking (DC)
Double checked locking is a design pattern intended for

thread safe lazy initialization. An example of double checked
locking is shown in Figure 3.

Unfortunately, the double checked locking pattern assumes
a sequentially consistent memory model, which isn’t true in
any major programming language. In Figure 3 it is possible
that the writes initializing the SyncFactory object and the

// jdk1.5.0, build 59

// javax.sql.rowset.spi,

// SyncFactory.java, line 325

if(syncFactory == null){

synchronized(SyncFactory.class) {

if(syncFactory == null){

syncFactory = new SyncFactory();

} //end if

} //end synchronized block

} //end if

Figure 3: Example of double checked locking.

// GNU classpath 0.08,

// java.util,

// Vector.java, line 354

public int lastIndexOf(Object elem) {

return lastIndexOf(elem, elementCount - 1);

}

Figure 4: Example of inconsistent synchronization.

write to the syncFactory field could be reordered (either
by the compiler or the processor). Threads which do not
acquire the lock may see the object in an inconsistent state.

2.2 Bad Covariant Definition of Equals (Eq)
In this pattern, a class defines an equals() method using

the type of the class as the parameter, rather than defining
the parameter as type Object. This covariant version of
equals() does not override equals() in the base Object

class, and will not be callable by generic container classes
such as sets and maps.

2.3 Inconsistent Synchronization (IS2)
A common idiom for making objects thread-safe in Java is

for methods to synchronize on the this reference when ac-
cessing or updating shared state. Programmers sometimes
mistakenly omit synchronization of some field references, re-
sulting in data races. The detector for this pattern looks
for field accesses that are not guarded by a lock on this.
Fields usually, but not always, accessed with the lock held
are candidate instances of this pattern. In order to reduce
false positices, the detector employs several heuristics to in-
fer whether or not the synchronization guarding the field
was intentional or incidental.

An example of inconsistent synchronization is shown in
Figure 4.

2.4 Null Pointer Dereference (NP)
Dereferencing a null pointer almost always indicates an

error. In many cases, null pointer exceptions result from
simple typos (such as using the wrong boolean operator fol-
lowing an explicit null comparison), or from incorrect code
modification during maintenance. The detector for this pat-
tern catches many obvious null dereference errors. The anal-
ysis is intraprocedural, and infers null values arising from
explicit null constants and explicit comparisons to null. Al-
though the detector does not find dereferences of null values
passed as method parameters, it nonetheless does find a sur-
prising number of real bugs (such as the Eclipse bug shown
in Figure 1).

133

// Eclipse 3.0,

// org.eclipse.ui.internal.cheatsheets.views,

// CheatSheetPage.java, line 83

if(cheatSheet != null & cheatSheet.getTitle() != null)

return cheatSheet.getTitle();

Figure 5: A non-short-circuit boolean operator bug.

// JBoss 4.0.0RC1

// org.jboss.deployment.scanner

// AbstractDeploymentScanner.java, line 185

// If we are not enabled, then wait

if (!enabled) {

try {

synchronized (lock) {

lock.wait();

...

Figure 6: An example of an unconditional wait.

2.5 Non-Short-Circuit Boolean Operator (NS)
Programmers may unintentionally use a non-short-circuiting

boolean operator (& and |) where they intended to use a
short-circuiting boolean operator. Because both subexpres-
sions are evaluated unconditionally, unintended behavior may
result. An example is shown in Figure 5; this example would
also be caught by the NP pattern, but other cases might re-
sult in problems not caught by our existing bug detectors,
such as an out of bounds array reference.

2.6 Unconditional Wait (UW)
Coordinating threads using wait() and notify() is a fre-

quent source of errors in multithreaded programs. This pat-
tern looks for code where a monitor wait is performed un-
conditionally upon entry to a synchronized block. Typically,
this indicates that the condition associated with the wait was
checked without a lock held, which means that a notification
performed by another thread could be missed.

Figure 6 shows an example of an unconditional wait.

3. EVALUATION
In order to evaluate the effectiveness of the bug detectors

implemented in FindBugs, we manually evaluated the high
and medium priority warnings produced by version 0.8.4
the tool for a subset of the bug patterns2. We classified the
warnings as follows:

• Some bug pattern detectors are very accurate, but de-
termining whether the situation detected warrants a
fix is a judgment call. For example, we can easily and
accurately tell whether a class contains a static field
that can be modified by untrusted code. However, hu-
man judgment is needed to determine whether that
class will ever run in an environment where it can be
accessed by untrusted code. We did not try to judge
whether the results of such detectors warrant fixing,
but simply report the warnings generated.

• Some the bug detectors admit false positives, and re-
port warnings in cases where the situation described

2We used the -workHard command line option to eliminate
consideration of unlikely exception paths.

Application Eq HE MS Se DE CN
rt.jar 1.5.0 build 59 9 55 259 207 89 73
eclipse-3.0 3 170 1,000 49 23 20

Figure 8: Bug counts for selected other detectors.

Application KLOC FindBugs PMD
rt.jar 1.5.0 build 59 1,183 3,314 17,133
eclipse-3.0 2,237 4,227 25,227

Figure 9: Application sizes and total number of
warnings generated by FindBugs and PMD.

by the warning does not, in fact occur. Such warnings
are classified as false positives.

• The warning may reflect a violation of good program-
ming practice but be unlikely to cause problems in
practice. For example, many incorrect synchroniza-
tion warnings correspond to data races that are real
but highly unlikely to cause problems in practice. Such
warnings are classified as mostly harmless bugs.

• And then there are the cases where the warning is
accurate and in our judgment reflects a serious bug
that warrants fixing. Such warnings are classified as
serious.

In this extended abstract, we present results for one li-
brary and one application:

• rt.jar 1.5.0 build 59: Sun’s implementation of the core
J2SE libraries

• eclipse 3.0: a popular Java IDE

The full version of the paper presents results for additional
applications and libraries.

3.1 Empirical Evaluation
Figure 7 shows the results of classifying the detectors

which can produce false positives. In general, the detectors
achieved our goal of having at least 50% of the warnings rep-
resent genuine bugs. Only the UW and Wa detectors were
significantly less accurate. However, given the small num-
ber of warnings they produced and the potential difficulty
of debugging timing-related thread bugs, we feel that they
performed adequately.

3.2 Other Detectors
Figure 8 lists results for some of our bug detectors for

which we did not perform manual examinations. These de-
tectors are fairly to extremely accurate at detecting whether
software exhibits a particular feature (such as violating the
hashcode/equals contract, or having static fields that could
be mutated by untrusted code). However, it is sometimes a
difficult and very subjective judgment as to whether or not
the reported feature is a bug that warrants fixing in each
particular instance. We will simply note that in many cases,
these reports represent instances of poor style or design.

3.3 Comparison with PMD
In Figure 9, we list the total number of thousands of lines

of source code for each benchmark application3, the total

3Note that the figure for rt.jar is low because not all of its
source code is available in the standard public distribution.

134

rt.jar 1.5.0 build 59 eclipse-3.0
mostly mostly

code warnings serious harmless false pos warnings serious harmless false pos
DC 88 100% 0% 0% 88 100% 0% 0%
EC 8 100% 0% 0% 19 57% 0% 42%
IS2 116 44% 47% 7% 63 61% 22% 15%
NP 37 100% 0% 0% 70 78% 7% 14%
NS 12 25% 66% 8% 14 78% 21% 0%
OS 13 15% 0% 84% 26 46% 0% 53%
RCN 35 57% 0% 42% 69 40% 11% 47%
RR 12 91% 0% 8% 39 38% 0% 61%
RV 7 71% 0% 28% 8 100% 0% 0%
UR 4 100% 0% 0% 4 50% 50% 0%
UW 6 50% 0% 50% 7 28% 0% 71%
Wa 8 37% 0% 62% 12 25% 0% 75%

Figure 7: Evaluation of false positive rates for selected bug pattern detectors.

number of high and medium priority warnings generated by
FindBugs version 0.8.4, and the number of warnings gener-
ated by PMD version 1.9 [4]4. In general, FindBugs pro-
duces a much lower number of warnings than PMD when
used in the default configuration. Undoubtedly, PMD finds
a significant number of bugs in the benchmark applications:
however, they are hidden in the sheer volume of output pro-
duced.

We do not claim this comparison shows that FindBugs is
“better” than PMD, or vice versa. Rather, the two tools
focus on different aspects of software quality

4. WHY BUGS OCCUR
We have been actively working on FindBugs for a year and

a half, and have looked at a huge number of bugs. Based
on this experience, we can offer the following observations
on why bugs occur. These are by no means exhaustive, but
may provide some food for thought.

Everyone makes dumb mistakes. This is perhaps the
most fundamental theme of our work so far. Detectors for
the most blatant and dumb mistakes imaginable routinely
turn up real bugs in real software. One way to explain this
phenomenon is that a huge number of bugs are just one
step removed from a syntax error. For example, many of
the null pointer bugs we’ve seen fall into this category: the
programmer intended to use the && operator, but mistakenly
used the || operator. We even found a bug in code written
by Joshua Bloch, author of Effective Java [1]: the bug, a
class with an equals() method but no hashCode() method,
was a violation of one of the proscriptions laid out in his
book. The lesson here is that even the best programmers
are not perfect 100% of the time. Bug checkers take static
checking further than the compiler, and are able to catch
errors that the compiler ignores.

Java offers many opportunities for latent bugs.
The hashcode/equals and covariant equals bug patterns are
examples of latent bugs: they don’t affect the correctness of
a program until a particular kind of runtime behavior oc-
curs. For example, a class with a covariant equals method
will work correctly until someone puts it into a map or set.
Then, rather than failing in an obvious manner (such as

4For PMD, we used the suggested rulesets: basic, unused-
code, imports, and favorites.

throwing an exception), the program will quietly perform
the wrong computation. Similarly, there are a number of
patterns and requirements (such as those for a serializable
class) that are not checked by the compiler but simply result
in runtime errors when violated. Bug checkers help increase
the visibility of some of these latent errors.

Programming with threads is harder than people
think. We did a study of concurrency errors in Java pro-
grams [3], and found that misuse of concurrency (such as de-
liberate use of data races to communicate between threads)
is widespread. The problem here is that programmers are
not as scared of using threads as they should be. Java tends
to hide many of the potential negative consequences of con-
currency glitches. For example, a data race cannot cause a
program to violate type safety, or corrupt memory. How-
ever, due to the aggressive reordering of memory accesses
by modern processors and JVMs, programming with data
races is a very bad idea. Concurrency bugs are especially
problematic because they can be extremely difficult to re-
produce. Bug checkers can help prevent concurrency errors
before they make it into deployed code.

5. CONCLUSIONS
Static analysis based on bug patterns finds an important

class of bugs in production code, and is a very useful com-
plement to traditional quality assurance practices such as
code inspections and testing.

6. RELATED WORK
For references to related work, please see the full version

of the paper [2].

7. REFERENCES
[1] J. Bloch. Effective Java Programming Language Guide.

Addison-Wesley, 2002.

[2] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Notices, December 2004.

[3] D. Hovemeyer and W. Pugh. Finding concurrency bugs
in Java. In Proceedings of the PODC Workshop on
Concurrency and Synchronization in Java Programs,
St. John’s, Newfoundland, Canada, July 2004.

[4] PMD, http://pmd.sourceforge.net, 2004.

135

